WO2014088251A1 - 미세공명구조를 갖는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널 - Google Patents

미세공명구조를 갖는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널 Download PDF

Info

Publication number
WO2014088251A1
WO2014088251A1 PCT/KR2013/010763 KR2013010763W WO2014088251A1 WO 2014088251 A1 WO2014088251 A1 WO 2014088251A1 KR 2013010763 W KR2013010763 W KR 2013010763W WO 2014088251 A1 WO2014088251 A1 WO 2014088251A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound absorbing
sound
porous substrate
absorbing sheet
sheet
Prior art date
Application number
PCT/KR2013/010763
Other languages
English (en)
French (fr)
Inventor
강길호
정승문
강봉규
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to US14/649,009 priority Critical patent/US9447577B2/en
Priority to CN201380064157.4A priority patent/CN104838441B/zh
Priority to EP13860957.3A priority patent/EP2930713B1/en
Publication of WO2014088251A1 publication Critical patent/WO2014088251A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0001Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties
    • B29K2995/0002Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/002Coloured

Definitions

  • the present invention relates to a sound absorbing sheet, and more particularly, to a sound absorbing sheet capable of improving sound absorbing performance in a low frequency band including a micro resonance structure, a method of manufacturing the same, and a sound absorbing soundproof panel using the same.
  • Sound absorbers are mainly used in automobiles, aviation, buildings, etc. to absorb sound. Sound absorbing materials provide environmental hygiene from unwanted or harmful sounds, the proposal of which is based on the unwanted frequency range in a given environment.
  • porous materials for absorbing high frequency sound have been used despite being unsuitable for absorbing low frequency sound, and these requirements are due to the considerable material thickness.
  • An example is a nonwoven fabric produced by the melt-blown method of the porous material.
  • the sound absorption performance of all nonwovens is due to the porous sound absorption principle formed by the fine fibers that make up.
  • porous sound absorption it is advantageous for sound absorption in the high frequency band, but disadvantageous in sound absorption in the low and mid frequency band. Accordingly, there is a need for a nonwoven fabric capable of improving sound absorption performance up to the mid-low frequency band.
  • Prior art related to the present invention is Korean Patent Application Publication No. 2011-4418 (published Jan. 13, 2011), which discloses a film layer having a through fine bore and an opening and a layer of fibrous material disposed on the film layer. Including a multilayer sound absorption sheet which improves a sound absorption rate in the frequency band more than 1000Hz is disclosed.
  • Another object of the present invention is to provide a method for manufacturing a sound absorbing sheet capable of improving sound absorbing performance in a low frequency band to have a resonance structure during manufacturing of the sound absorbing sheet.
  • Another object of the present invention to provide a sound-absorbing soundproof panel that can improve the sound absorption performance of the low frequency band by using the sound absorbing sheet.
  • Sound-absorbing soundproof panel for achieving the above object is a sound absorbing material; And a sound absorbing sheet formed on at least one surface of the sound absorbing material, wherein the sound absorbing sheet includes a plurality of concave-convex patterns composed of convex portions and concave portions on one surface of the porous substrate, and the area of the concave portion determined by Equation 1 above.
  • the ratio is 40 to 99%, and the region corresponding to the concave portion is characterized by lower air permeability than the region corresponding to the convex portion.
  • the sound absorbing sheet according to the present invention can increase the sound absorbing performance up to the mid-low frequency band of 200Hz to 2000Hz by the micro resonance principle including the micro resonance structure in the porous substrate.
  • Sound-absorbing soundproof panel can increase the sound absorption performance of the mid-low frequency band of 200Hz ⁇ 2000Hz by including the above-mentioned sound-absorbing sheet.
  • a sound absorbing sheet capable of increasing the sound absorbing performance of the low and mid frequency bands by a relatively simple method of forming a resonance structure on a substrate during the manufacturing of the sound absorbing sheet.
  • FIG. 1 is a plan view showing a sound absorbing sheet according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1.
  • 3 to 5 are plan views showing other examples of the shape of the micro resonance structure formed on the sound absorbing sheet according to the embodiment of the present invention.
  • FIG. 6 is a view schematically illustrating a process of forming a micro resonance structure on a porous substrate through embossing roll molding according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a sound absorbing soundproofing panel according to an embodiment of the present invention.
  • FIG. 1 is a plan view showing a sound absorbing sheet according to the present invention
  • Figure 2 is a cross-sectional view taken along the line A-A '.
  • the sound absorbing sheet according to the present invention has a porous surface including a concave-convex pattern 140 including a protruded portion 120 and a concave portion 130 on one surface thereof.
  • a porous surface including a concave-convex pattern 140 including a protruded portion 120 and a concave portion 130 on one surface thereof.
  • substrate 110 Made of substrate 110.
  • the porous substrate 110 is a sound absorbing material having a sound absorption performance, and may be a thermoplastic organic fiber or a thermoplastic organic fiber containing some inorganic fibers.
  • the thermoplastic organic fibers may be, for example, one or a mixture of two or more selected from polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP).
  • the porous substrate 110 preferably has a basis weight in the range of 30 g / m 2 to 800 g / m 2. At this time, when the basis weight of the porous substrate 110 is less than 30g / m2, the fiber density is so low that the air permeability is likely to occur when forming the concave portion is difficult to form a resonance layer, on the other hand, if more than 800g / m2 , It may be so thick that the formation of the recesses may not be easy.
  • the porous substrate 110 preferably has a thickness of 0.1mm to 10mm.
  • the thickness of the porous substrate 110 means a distance from the bottom surface to the top surface.
  • the porous substrate 110 preferably has an original air permeability in the range of 20 L / m 2 / s to 1200 L / m 2 / s at 100 Pa pressure, and after forming the uneven pattern 140, 20 L / m 2 / s to 200 Pa pressure It is preferred to have air permeability in the range of 1200 L / m 2 / s. If the air permeability of the porous substrate 110 or the air permeability after formation of the uneven pattern 140 is out of the above range, the air permeability may be too high or low to reduce the scratching performance.
  • the sound absorbing sheet according to the present invention corresponds to the first air permeable portion A and the concave portion 130 region of the region corresponding to the plurality of convex portions 120, but has a higher air permeability than the first air permeable portion A. It may be composed of a low second air permeable portion (B).
  • the first air permeable portion A which is a region corresponding to the convex portion 120, has an air permeability inherent to the porous substrate 110 due to the porous property of the porous substrate 110.
  • the recess 130 of the uneven pattern 140 may be formed by thermal compression using a thermal transfer method.
  • the second air permeable part B corresponding to the concave part 130 may have lower air permeability than the first air permeable part A because some air permeability of the porous substrate 110 is lost due to thermal compression. Can be.
  • the second air permeable portion B corresponding to the recess 130 may have air impermeability with little air permeability.
  • the first air permeable portion A is formed in a fine resonance structure.
  • the micro resonance structure is a structure based on the resonance principle, and provides a micro resonance to the sound absorbing sheet contributes to absorbing the low and medium frequency of 200Hz to 2000Hz by the micro resonance principle. That is, the micro resonance structure increases the sound absorption performance of the mid-low frequency band of 200 Hz to 2000 Hz in the sound absorbing sheet.
  • the sound-absorbing sheet according to the present invention satisfies the average sound absorption coefficient value of 0.4 or more in the mid-low frequency band of the above range.
  • the sound absorption sheet according to the present invention has an area ratio of at least 40% of the concave portion 130 defined by Equation 1 in the porous substrate 110. As mentioned above, it is preferable to satisfy 40 to 99%. At this time, when the area ratio of the concave portion 130 is less than 40%, the sound absorbing performance of the low and medium frequency bands may be degraded because the resonance sound absorbing effect is not properly exhibited. On the other hand, when the area ratio exceeds 99%, the sound absorbing effect of the frequency band is reduced. However, the sound absorption frequency band becomes very narrow so that the overall sound absorption rate can be reduced.
  • Area ratio of recessed part [area part of recessed part] / [area part of porous base material]
  • the convex portion 120 may also have a diameter W, preferably in the range of 0.2 mm to 20 mm, more preferably in the range of 0.5 mm to 5 mm.
  • the shape of the convex portion 120 may be circular as shown in FIG. 1.
  • the uneven pattern 140 may have a pitch interval P of 0.5 mm to 50 mm, and more preferably, may have a pitch interval P of 0.5 mm to 20 mm.
  • the diameter (W) of the convex portion 120 is less than 0.2mm or more than 20mm, the resonance sound absorption effect is difficult to be exhibited.
  • the pitch interval P of the uneven pattern 140 is less than 0.5mm or more than 50mm, it may be difficult to exhibit the resonance sound absorption effect.
  • 3 to 5 are plan views showing other examples of the shape of the micro resonance structure formed on the sound absorbing sheet according to the embodiment of the present invention.
  • the convex portion 120 formed on the porous substrate 110 of the illustrated sound absorbing sheet may have a polygonal shape, for example, a rectangular shape shown in FIG. Can be modified.
  • the convex portion 120 of the sound absorbing sheet may be a stripe shape shown in FIG. 4 or a shape selected from a combination of the shapes shown in FIGS. 2 to 5, for example, the check shape shown in FIG. 5. have.
  • the sound absorbing sheet according to the embodiment of the present invention by the convex portion 120 illustrated in FIGS. 3 to 5 may be formed in a micro resonance structure of various shapes.
  • the convex portion 120 may have a width W of 0.2 mm to 20 mm, more preferably 0.5 mm to 5 mm, for the same reason as described above.
  • the uneven pattern 140 may have a pitch interval P in the range of 0.5 mm to 50 mm, more preferably in the range of 0.5 mm to 20 mm.
  • reference numeral 130 denotes a concave portion
  • 140 denotes an uneven pattern, which may be the same as in FIG. 1, and thus redundant description thereof will be omitted.
  • the method for manufacturing a sound absorbing sheet according to an embodiment of the present invention includes preparing a porous substrate and forming a plurality of uneven patterns having convex portions and recesses on one surface of the porous substrate.
  • thermoplastic organic fibers including the above-mentioned thermoplastic organic fibers or some inorganic fibers are prepared.
  • the thermoplastic organic fiber may be, for example, one or a mixture of two or more selected from polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP). This is because, in the case of thermoplastic organic fibers, the thermoforming is easy when heated to near the melting point.
  • the porous substrate has a basis weight in the range of 30 g / m 2 to 800 g / m 2, an original air permeability in the range of 20 L / m 2 / s to 1200 L / m 2 / s at 100 Pa pressure, and a thickness of 0.1 mm to 10 mm. It is desirable to have.
  • porous substrates can be prepared by using conventional dry, wet, spunbonding, needle punching, melt-blown methods, etc., on the aforementioned fibers. .
  • a plurality of uneven patterns having convex portions and concave portions may be formed on one surface of the porous substrate using a thermal transfer method.
  • the porous substrate made of thermoplastic organic fibers such as PET, PE, PP, and the like, is heated to near the melting point of the organic fibers to enable thermoforming of the organic fibers.
  • thermoforming properties of the organic fibers it is possible to form a micro-resonance structure itself on the porous substrate.
  • a thermal transfer method may be used as a method of forming organic fibers.
  • an embo roll molding or an embo press molding may be used, but is not particularly limited thereto.
  • embossing roll molding is shown in FIG.
  • FIG. 6 is a view schematically showing a process of forming a micro-resonance structure on the porous substrate through the embossing roll forming according to an embodiment of the present invention.
  • the prepared porous substrate 610 passes between an embossing roll 620 and a cylindrical roll 630 having a plurality of embossing 625 formed on a surface of an embossing roll forming apparatus.
  • the emboss 625 is transferred to one surface (shown as an upper surface) of the porous substrate 610 by the embossing roll 620 and then molded and cured, and a plurality of concave portions 640 and convex portions 650 are formed.
  • Concave-convex pattern 660 may be formed.
  • the process for forming a plurality of uneven patterns 660 is preheated by using an infrared (IR) heater in the temperature range of 60% to 100% of the melting point of the porous substrate 610, the resonance structure
  • the embossing roll 620 may be formed by stamping the preheated porous substrate 610.
  • the emboss 625 of the embossing roll 620 is transferred to one surface of the porous substrate 610 so that the micro resonant layer made up of a plurality of concave-convex patterns 660 having the concave portion 640 and the convex portion 650. Is formed.
  • the portion pressed by the embossing roll 620 that is, the recess 640 is low or if the air permeability is low
  • the portion not pressed by the embossing roll 620 that is, the convex portion 650 is inherent to the nonwoven fabric Maintains air permeability.
  • the porous substrate 610 when the porous substrate 610 is preheated at a temperature of less than 60% or more than 100% of the melting point, the substrate may not be sufficiently melted or melted so that it may be difficult to transfer the emboss.
  • the process for forming a plurality of concave-convex pattern 660 is concave portion 640 compared to the area of the porous substrate 610 in order to satisfy the sound absorption performance required for the present invention in the mid-low frequency band of 200Hz to 2000Hz It is preferable to compress the porous substrate 610 so that the area ratio of the concave portion 640 defined as the area portion of the film is at least 40% or more, preferably 40 to 99%.
  • the sound absorbing sheet manufactured according to the present invention may be applied to a sound absorbing panel having sound absorbing properties so as to absorb various noises generated indoors to suppress indoor noises.
  • Such sound insulation panels have been used in various ways for building interior materials.
  • a soundproofing panel using a sound absorbing sheet according to the present invention will be briefly described.
  • FIG. 7 is a cross-sectional view showing a sound absorbing soundproofing panel according to an embodiment of the present invention.
  • the sound absorbing sheet 720 having the configuration of the present invention may be formed on at least one surface of the sound absorbing material 710 to constitute the sound absorbing soundproofing panel 700.
  • the sound absorbing material 710 is not particularly limited as a material capable of absorbing sound waves incident on the medium to attenuate the sound reflectance.
  • the sound absorbing material 710 may be formed including one or more selected from a porous plate, an organic material, an inorganic material, a natural material, a thermoplastic resin matrix, and a thermosetting resin matrix.
  • the sound absorbing sheet 720 may include a plurality of concave-convex patterns 750 formed of a concave portion 730 forming a micro resonance structure on one surface of the porous substrate 720 and a convex portion 740 having a porosity.
  • the recesses 730 and the regions corresponding to the convex portions 740 may have air permeability, and in particular, the regions corresponding to the recesses 730 may have lower air permeability than the regions corresponding to the convex portions 740. It may have an air impermeability.
  • the sound absorbing sheet 720 has an area ratio of the concave portion 730 to at least 40%, preferably 40 to 99%, with respect to the total area of the lower portion of the sound absorbing sheet 720.
  • the average sound absorption rate satisfies 0.4 or more.
  • the sound-absorbing soundproofing panel 700 is manufactured by attaching an adhesive on the sound absorbing material 710 and then attaching one side of the sound absorbing sheet 720 in which the uneven pattern 750 is not formed with the sound absorbing material 710 and then drying it. Can be.
  • the sound-absorbing soundproof panel 700 may exhibit excellent soundproofing and sound-absorbing performance in the mid-low frequency band of the above range by including a sound-absorbing sheet 720, the sound absorption performance of the 200Hz ⁇ 2000Hz mid-low frequency band by the micro-resonance structure.
  • the sound-absorbing soundproofing panel 700 may be used as interior materials such as lecture rooms, conference rooms, karaoke, etc. equipped with an electroacoustic facility, but is not limited thereto.
  • a non-compression part (convex part) was formed in a circular shape on a nonwoven fabric having a basis weight of 80 g / m 2 of PET nonwoven fabric produced by a spun bonding method through embo roll molding at 220 ° C. to form a resonance layer in the nonwoven fabric.
  • the diameter of the circle is 1.5 mm
  • the pitch interval is 1.9 mm
  • the area ratio of the crimp part is 43.5%.
  • the rest of the configuration is the same as that in Example 1 except that the pitch interval was 2.3 mm and the area ratio of the crimp portion was 61.4%.
  • the rest of the configuration is the same as that in Example 1 except that the pitch interval was 3.3 mm and the area ratio of the crimp portion was 81.3%.
  • the rest of the configuration is the same as that in Example 1 except that the pitch interval was 15 mm and the area ratio of the crimp portion was 99%.
  • An embossing roll molding at 220 ° C. was carried out on a PET nonwoven fabric having a basis weight of 80 g / m 2 produced by a spunbonding method to form a resonance layer in the nonwoven fabric.
  • the square one side of the non-compression part has a length of 1 mm, a pitch interval of 2.3 mm, and an area ratio of the compression part of 81.1%.
  • a non-compression part was formed into a stripe by embossing a roll at 220 ° C. to a PET nonwoven fabric having a basis weight of 80 g / m 2 produced by a spunbonding method to form a resonance layer in the nonwoven fabric.
  • the stripe width of the non-compression part is 1 mm
  • the pitch interval is 5.3 mm
  • the area ratio of the compression part is 81.1%.
  • the sound absorption performance of the PET nonwoven fabric itself having a basis weight of 80 g / m 2 produced by the spunbonding method was measured.
  • the rest of the configuration is the same as that in Example 1 except that the pitch interval was 1.8 mm and the area ratio of the crimp portion was 37%.
  • the rest of the configuration is the same as in Example 1 except that the pitch interval is 20 mm and the area ratio of the crimp portion is 99.5%.
  • a non-compression part was formed into a stripe by embossing at 220 ° C. on a PET nonwoven fabric having a basis weight of 80 g / m 2 produced by a spunbonding method to form a resonance layer in the nonwoven fabric.
  • the stripe width of the non-compression part is 10 mm, the pitch interval is 15 mm, and the area ratio of the compression part is 33.3%.
  • cylindrical roll 700 sound-absorbing soundproof panel
  • W diameter or width of the convex portion
  • P pitch spacing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

미세공명구조를 포함하여 마이크로 공명원리에 의해 저주파수대역까지 흡음 성능을 향상시킬 수 있는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널에 대하여 개시한다. 본 발명에 따른 흡음시트는 다공성 기재의 일면에 볼록부와 오목부로 구성되는 다수의 요철 패턴을 포함하고, 하기 식 1에 의해 정해지는 오목부의 면적 비율이 40~99%이며, 상기 오목부에 대응하는 영역은 상기 볼록부에 대응하는 영역보다 공기 투과성이 낮은 것을 특징으로 한다. [식 1] 오목부의 면적 비율 = [오목부의 면적부]/[다공성 기재의 면적부].

Description

미세공명구조를 갖는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널
본 발명은 흡음시트에 관한 것으로, 보다 상세하게는 미세공명구조를 포함하여 저주파수대역의 흡음 성능을 높일 수 있는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널에 관한 것이다.
다양한 종류의 흡음재(sound absorber)가 음향을 흡수하기 위해 장치산업뿐만 아니라 자동차, 항공, 빌딩 등에 주로 사용되고 있다. 흡음재는 원하지 않거나 유해한 음으로부터 환경위생을 제공하며, 이의 제안은 주어진 환경에서 원하지 않는 주파수 영역에 근거한다.
특히, 고주파 음을 흡수하기 위한 다공성 물질은 저주파 음을 흡수하기에 적절하지 않음에도 불구하고 사용되고 있으며, 이들 요구는 상당한 물질 두께 때문이다.
다공성 물질 중 멜트블로운(melt-blown) 방법에 의해 생산된 부직포(nonwoven fabric)를 예로 들 수 있다. 모든 부직포의 흡음 성능은 구성하는 미세한 섬유에 의해 형성되는 다공성 흡음 원리에 기인한다. 하지만, 다공성 흡음의 경우 고주파수대역의 흡음에는 유리하나 중저주파수대역의 흡음에는 불리한 단점이 있다. 이에 따라, 중저주파수대역까지 흡음 성능을 높일 수 있는 부직포가 요구된다.
본 발명과 관련된 선행문헌으로는 대한민국 공개특허공보 제2011-4418호(2011.01.13. 공개)가 있으며, 상기 문헌에는 관통 미세 보어 및 개구를 갖는 필름 층 및 필름 층 상에 배치되는 섬유질 재료 층을 포함하여, 1000Hz 이상의 주파수 대역에서 흡음률을 높이는 다층 흡음 시트가 개시되어 있다.
본 발명의 목적은 공명구조를 포함하여 마이크로 공명원리에 의해 저주파수대역의 흡음 성능을 높일 수 있는 흡음시트를 제공하는 것이다.
본 발명의 다른 목적은 흡음시트의 제조과정 중 공명구조를 갖도록 저주파수대역의 흡음 성능을 높일 수 있는 흡음시트를 제조하는 방법을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 흡음시트를 이용하여 저주파수대역의 흡음 성능을 향상시킬 수 있는 흡음형 방음패널을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명에 따른 흡음시트는 다공성 기재의 일면에 볼록부와 오목부로 구성되는 다수의 요철 패턴을 포함하고, 하기 식 1에 의해 정해지는 오목부의 면적 비율이 40~99%이며, 상기 오목부에 대응하는 영역은 상기 볼록부에 대응하는 영역보다 공기 투과성이 낮은 것을 특징으로 한다. [식 1] 오목부의 면적 비율 = [오목부의 면적부]/[다공성 기재의 면적부].
상기 목적을 달성하기 위한 본 발명에 따른 흡음시트 제조 방법은 다공성 기재를 마련하는 단계; 및 열전사 방법을 이용하여 상기 다공성 기재의 일면에 볼록부와 오목부를 갖는 요철 패턴을 형성하는 단계;를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명에 따른 흡음형 방음패널은 흡음재; 및 적어도 상기 흡음재의 일면 상에 형성되는 흡음시트를 포함하며, 상기 흡음시트는 다공성 기재의 일면에 볼록부와 오목부로 구성되는 다수의 요철 패턴을 포함하고, 상기 식 1에 의해 정해지는 오목부의 면적 비율이 40~99%이며, 상기 오목부에 대응하는 영역은 상기 볼록부에 대응하는 영역보다 공기 투과성이 낮은 것을 특징으로 한다.
본 발명에 따른 흡음시트는 다공성 기재에 미세공명구조를 포함하여 마이크로 공명원리에 의해 200Hz ~2000Hz의 중저주파수대역까지 흡음 성능을 높일 수 있다.
본 발명에 따른 흡음형 방음패널은 상기한 흡음시트를 포함함으로써 200Hz ~ 2000Hz의 중저주파수대역의 흡음 성능을 높을 수 있다.
본 발명에 따르면 흡음시트의 제조과정 중 기재에 공명구조를 형성하는 비교적 간단한 방법에 의해 중저주파수대역의 흡음 성능을 높일 수 있는 흡음시트를 손쉽게 제조할 수 있다.
도 1은 본 발명의 실시예에 따른 흡음시트를 나타낸 평면도이다.
도 2는 도 1을 선 A-A'로 절취한 단면도이다.
도 3 내지 도 5는 본 발명의 실시예에 따른 흡음시트에 형성된 미세공명구조 형상의 다른 일례들을 도시한 평면도이다.
도 6은 본 발명의 실시예에 따라 엠보 롤(embo roll) 성형을 통해 다공성 기재에 미세공명구조를 형성하는 공정을 개략적으로 나타낸 도면이다.
도 7은 본 발명의 실시예에 따른 흡음형 방음패널을 나타낸 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 미세공명구조를 포함하여 저주파수대역의 흡음 성능을 향상시킬 수 있는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널에 관하여 상세히 설명하기로 한다.
도 1은 본 발명에 따른 흡음시트를 나타낸 평면도이고, 도 2는 도 1을 선 A-A'로 절취한 단면도이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 흡음시트는 일면에 볼록부(protrude portion, 120)와 오목부(concave portion, 130)로 구성되는 요철 패턴(140)을 포함하는 다공성(porous) 기재(110)로 이루어진다.
본 발명에서 다공성 기재(110)는 음(sound)의 흡수 성능이 있는 흡음 재료로서, 열가소성 유기섬유이거나, 혹은 일부 무기섬유가 포함된 열가소성 유기섬유일 수 있다. 이때, 열가소성 유기섬유는, 일례로, 폴리에틸렌테레프탈레이트(polyethylene Terephthalate; PET), 폴리에틸렌(polyethylene; PE) 및 폴리프로필렌(polypropylene; PP) 중에서 선택된 하나 또는 선택된 둘 이상의 혼합물일 수 있다.
다공성 기재(110)는 30g/㎡ 내지 800g/㎡ 범위의 평량을 갖는 것이 바람직하다. 이때, 다공성 기재(110)의 평량이 30g/㎡ 미만일 경우, 섬유 밀도가 너무 낮아 오목부 형성시 공기 투과성이 발생할 소지가 커서 공명층 형성에 어려움이 있고, 반면에, 800g/㎡를 초과하는 경우, 너무 두꺼워져서 오목부 성형이 용이하지 않을 수 있다.
다공성 기재(110)는 0.1mm 내지 10mm의 두께를 갖는 것이 바람직하다. 이때, 다공성 기재(110)의 두께가 0.1mm 미만일 경우, 일면에 요철 패턴을 형성하는 것이 어려울 수 있고, 반면에 10mm를 초과하는 경우, 흡음 성능과 상관 없이 제조 비용만 상승될 수 있다. 여기서, 다공성 기재(110)의 두께는 바닥면으로부터 최상면까지의 거리를 의미한다.
다공성 기재(110)는 100Pa 압력시 20L/㎡/s 내지 1200L/㎡/s 범위의 원(original) 통기도를 갖는 것이 바람직하고, 요철 패턴(140) 형성 후에는 200Pa 압력시 20L/㎡/s 내지 1200L/㎡/s 범위의 통기도를 갖는 것이 바람직하다. 다공성 기재(110)의 원 통기도나 요철 패턴(140) 형성후의 통기도가 상기한 범위를 벗어날 경우, 통기도가 너무 높거나 낮아 흠음 성능이 저하될 수 있다.
본 발명에 따른 흡음시트는 다수의 볼록부(120)에 대응하는 영역의 제1 공기 투과부(A)와, 오목부(130) 영역에 대응하되, 제1 공기 투과부(A)에 비해 공기 투과성이 낮은 제2 공기 투과부(B)로 구성될 수 있다.
볼록부(120)에 대응하는 영역인 제1 공기 투과부(A)는 다공성 기재(110)의 다공성 특성으로 인해 다공성 기재(110) 고유의 공기 투과성을 갖는다.
요철 패턴(140)의 오목부(130)는 열전사 방법을 이용한 열 압착에 의해 형성될 수 있다. 이 경우, 오목부(130)에 대응하는 제2 공기 투과부(B)는 열 압착으로 인해 다공성 기재(110)의 공기 투과성이 일부 없어지기 때문에 제1 공기 투과부(A)에 비해 낮은 공기 투과성을 갖을 수 있다. 실질적으로, 오목부(130)에 대응하는 제2 공기 투과부(B)는 공기 투과성이 거의 없는 공기 불투과성을 갖을 수 있다. 이때, 제1 공기 투과부(A)가 미세공명구조로 형성된다.
이러한 미세공명구조는 공명원리에 기초한 구조물로서, 흡음시트에 마이크로 공명을 제공하여 마이크로 공명원리에 의해 200Hz ~ 2000Hz의 중저주파를 흡수하는데 기여한다. 즉, 미세공명구조는 흡음시트에서 200Hz ~ 2000Hz의 중저주파수대역의 흡음 성능을 높이는 역할을 한다. 이를 통해, 본 발명에 따른 흡음시트는 상기한 범위의 중저주파수대역에서 평균 흡음률 값이 0.4 이상을 만족한다.
특히, 미세공명구조에 의한 중저주파수대역의 흡음 성능을 만족시키기 위해, 본 발명에 따른 흡음시트는 다공성 기재(110) 중 하기 식 1에 의해 정해지는 오목부(130)의 면적 비율이 최소 40% 이상, 바람직하게 40~99%를 만족하는 것이 바람직하다. 이때, 오목부(130)의 면적 비율이 40% 미만일 경우, 공명흡음 효과 발휘가 제대로 되지 않아 중저주파수대역의 흡음성능이 떨어질 수 있고, 반면에 99%를 초과하는 경우, 주파수대역의 공명흡음 효과는 발휘하나 흡음 주파수 대역이 매우 좁아져서 전체적인 흡음율은 감소할 수 있다.
[식 1]
오목부의 면적 비율 = [오목부의 면적부]/[다공성 기재의 면적부]
또한, 볼록부(120)는, 바람직하게 0.2mm 내지 20mm 범위, 더욱 바람직하게 0.5mm 내지 5mm 범위의 직경(W)을 갖을 수 있다. 볼록부(120)의 형상은 도 1에 도시된 것처럼 원형일 수 있다.
또한, 요철 패턴(140)은 0.5mm 내지 50mm의 피치 간격(P)을 갖는 것이 바람직하고, 더욱 바람직하게 0.5mm 내지 20mm의 피치 간격(P)을 갖을 수 있다. 이때, 볼록부(120)의 직경(W)이 0.2mm 미만이거나 20mm를 초과하는 경우, 공명흡음 효과가 발휘되기 어렵다. 또한, 요철 패턴(140)의 피치 간격(P)이 0.5mm 미만이거나 50mm를 초과하는 경우에도 공명흡음 효과가 발휘되기 어려워질 수 있다.
도 3 내지 도 5는 본 발명의 실시예에 따른 흡음시트에 형성된 미세공명구조 형상의 다른 일례들을 도시한 평면도이다.
도 3 내지 도 5를 참조하면, 도시된 흡음시트의 다공성 기재(110)에 형성되는 볼록부(120)는 다각형 형상, 일례로 도 3에 도시된 사각형 형상일 수 있으나, 삼각형, 오각형 등으로 다양하게 변형될 수 있다. 이와는 달리, 흡음시트의 볼록부(120)는 도 4에 도시된 스트라이프(stripe) 형상이거나 혹은 도 2 내지 도 5에 도시된 형상들의 조합에서 선택된 형상, 일례로 도 5에 도시된 체크 형상일 수 있다.
도 3 내지 도 5에 도시된 볼록부(120)에 의해 본 발명의 실시예에 따른 흡음시트는 다양한 형상의 미세공명구조로 형성될 수 있다.
이때, 볼록부(120)는 전술한 바와 동일한 이유로 0.2mm 내지 20mm 범위, 더욱 바람직하게 0.5mm 내지 5mm 범위의 폭(W)을 갖을 수 있다. 또한, 요철 패턴(140)은 0.5mm 내지 50mm 범위, 더욱 바람직하게 0.5mm 내지 20mm 범위의 피치 간격(P)을 갖을 수 있다.
도 3 내지 도 5에서, 도면부호 130은 오목부를, 140은 요철 패턴을 의미하며, 이는 도 1에서와 동일할 수 있으므로 이에 대한 중복 설명은 생략한다.
이하, 본 발명의 실시예에 따른 흡음시트의 제조 방법을 간략하게 설명한다.
본 발명의 실시예에 따른 흡음시트의 제조 방법은 다공성 기재를 마련하는 단계 및 다공성 기재의 일면에 볼록부와 오목부를 갖는 다수의 요철 패턴을 형성하는 단계를 포함한다.
다공성 기재 마련 단계에서는 전술한 열가소성 유기섬유 혹은 일부 무기섬유가 포함된 열가소성 유기섬유를 마련한다. 열가소성 유기섬유는, 일례로, 폴리에틸렌테레프탈레이트(polyethylene Terephthalate; PET), 폴리에틸렌(polyethylene; PE) 및 폴리프로필렌(polypropylene; PP) 중에서 선택된 하나 또는 선택된 둘 이상의 혼합물일 수 있다. 이는 열가소성 유기섬유의 경우 녹는점 부근까지 가열하면 열성형이 용이하기 때문이다.
이때, 다공성 기재는 전술한 바와 같이 30g/㎡ 내지 800g/㎡ 범위의 평량과, 100Pa 압력시 20L/㎡/s 내지 1200L/㎡/s 범위의 원(original) 통기도 및 0.1mm 내지 10mm의 두께를 갖는 것이 바람직하다.
이러한 다공성 기재는 전술한 섬유에 통상의 건식(dry), 습식(wet), 스펀본딩(spunbonding), 니들펀칭(needle punching), 멜트블로운(melt-blown) 방법 등을 이용하여 제조할 수 있다.
요철 패턴 형성 단계에서는 열전사 방법을 이용하여 다공성 기재의 일면에 볼록부와 오목부를 갖는 다수의 요철 패턴을 형성할 수 있다.
상기한 PET, PE, PP 등의 열가소성 유기섬유로 이루어진 다공성 기재는 유기섬유의 녹는점 부근까지 가열하면 유기섬유의 열성형이 가능해진다. 이러한 유기섬유의 열성형 특성을 이용하여 다공성 기재에 미세공명구조를 자체적으로 형성할 수 있다.
본 발명에서는 유기섬유의 성형방법으로 열전사 방법을 이용할 수 있다. 열전사 방법으로는 엠보 롤(embo roll) 성형 또는 엠보 프레스(embo press) 성형을 사용할 수 있으며, 이에 특별히 한정되지는 않는다. 이들 중, 엠보 롤 성형의 일례를 도 6에 도시하였다.
도 6은 본 발명의 실시예에 따라 엠보 롤 성형을 통해 다공성 기재에 미세공명구조를 형성하는 공정을 개략적으로 나타낸 도면이다.
도 6을 참조하면, 마련된 다공성 기재(610)를 엠보 롤 성형장치의 표면에 다수의 엠보(625)가 형성된 엠보 롤(620)과 원통 롤(630) 사이를 통과시킨다.
이때, 엠보 롤(620)에 의해 다공성 기재(610)의 일면(상면으로 도시됨)에 엠보(625)가 전사된 후 성형 경화되어, 오목부(640)와 볼록부(650)로 구성되는 다수의 요철 패턴(660)이 형성될 수 있다.
다수의 요철 패턴(660)을 형성하기 위한 공정은 다공성 기재(610)를 녹는점의 60% 내지 100%의 온도 범위에서 적외선(infrared; IR) 히터 등을 이용하여 예열한 후, 공명구조형상의 엠보 롤(620)을 예열된 다공성 기재(610)에 찍는 성형으로 이루어질 수 있다.
이로써, 다공성 기재(610)의 일면에 엠보 롤(620)의 엠보(625)가 전사되어, 오목부(640)와 볼록부(650)를 갖는 다수의 요철 패턴(660)으로 이루어진 미세공명층이 형성된다.
이때, 엠보 롤(620)에 의해 눌린 부분, 즉 오목부(640)는 공기 투과성이 낮아지거나, 혹은 심할 경우 없어지고, 엠보 롤(620)에 눌리지 않은 부분, 즉 볼록부(650)는 부직포 고유의 공기 투과성을 유지하게 된다.
상기에서, 다공성 기재(610)를 녹는점의 60% 미만이거나 100%를 초과하는 온도에서 예열할 경우, 기재가 충분히 녹지 않거나 너무 녹아 엠보를 전사시키기 어려울 수 있다.
특히, 다수의 요철 패턴(660)을 형성하기 위한 공정은 200Hz ~ 2000Hz의 중저주파수대역에서의 본 발명에 요구되는 흡음 성능을 만족시키기 위하여, 다공성 기재(610)의 면적부 대비 오목부(640)의 면적부로 정의되는 오목부(640)의 면적 비율이 최소 40% 이상, 바람직하게 40~99%가 되도록 다공성 기재(610)를 압착하는 것이 바람직하다.
본 발명에 따라 제조된 흡음시트는 실내에서 발생되는 각종 소음을 흡음시켜 실내의 소음을 억제시키도록 흡음성을 갖는 방음패널에 적용될 수 있다. 이러한 방음패널은 건축 내장재용으로 다양하게 사용되고 있다. 이하에서는 본 발명에 따른 흡음시트를 이용한 방음패널에 대하여 간략히 설명한다.
도 7은 본 발명의 실시예에 따른 흡음형 방음패널을 나타낸 단면도이다.
도 7을 참조하면, 본 발명의 구성을 갖는 흡음시트(720)는 적어도 흡음재(710)의 일면 상에 형성되어 흡음형 방음패널(700)을 구성할 수 있다.
이때, 흡음재(710)는 매질에 입사된 음파를 흡수하여 음 반사율을 감쇄시킬 수 있는 소재로서 특별히 한정되지 않는다. 일례로, 흡음재(710)는 다공성 플레이트, 유기소재, 무기소재, 천연소재, 열가소성 수지 매트릭스 및 열경화성 수지 매트릭스 중에서 선택되는 하나 이상을 포함하여 형성될 수 있다.
흡음시트(720)는 다공성 기재(720)의 일면에 미세공명구조를 형성하는 오목부(730)와, 다공성을 갖는 볼록부(740)로 구성되는 다수의 요철 패턴(750)을 포함할 수 있다. 이때, 오목부(730) 및 볼록부(740)에 대응하는 영역은 공기 투과성을 갖을 수 있고, 특히, 오목부(730)에 대응하는 영역은 볼록부(740)에 대응하는 영역보다 낮은 공기 투과성을 갖으며, 심할 경우 공기 불투과성을 갖을 수 있다.
상기 흡음시트(720)는 이를 구성하는 전체 면적부에 대하여 오목부(730)의 면적 비율이 최소 40% 이상, 바람직하게 40~99%를 가져 미세공명구조에 의한 200Hz~2000Hz의 중저주파수대역의 평균 흡음률 값이 0.4 이상을 만족한다.
일례로, 흡음형 방음패널(700)은 흡음재(710) 상에 접착제가 도포된 후 요철 패턴(750)이 형성되지 않은 흡음시트(720)의 한 면이 흡음재(710)와 접착된 다음 건조되어 제조될 수 있다.
상기 흡음형 방음패널(700)은 미세공명구조에 의해 200Hz ~2000Hz 중저주파수대역의 흡음 성능이 향상된 흡음시트(720)를 포함함으로써 상기한 범위의 중저주파수대역에서 우수한 방음 및 흡음 성능을 발휘할 수 있다.
이러한 흡음형 방음패널(700)은 전기 음향 시설을 갖춘 강의실, 대회의실, 노래방 등의 내장재로서 사용될 수 있으며, 이에 한정되지 않는다.
실시예
이하, 본 발명의 실시예들을 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1. 시편 제조
실시예1
스펀본딩 공법으로 제작된 평량 80g/m2의 PET 부직포에 220℃ 에서의 엠보 롤(embo roll) 성형을 통해 비압착부(볼록부)의 형상을 원형으로 성형하여 공명층을 부직포 내에 형성시켰다. 비압착부의 원형상에서 원의 직경은 1.5mm, 피치 간격은 1.9mm, 압착부의 면적 비율은 43.5%이다.
실시예2
피치 간격을 2.3mm로 하고, 압착부의 면적 비율을 61.4%로 한 것을 제외하고, 나머지 구성은 실시예 1과 동일하다.
실시예3
피치 간격을 3.3mm로 하고, 압착부의 면적 비율을 81.3%로 한 것을 제외하고, 나머지 구성은 실시예 1과 동일하다.
실시예4
피치 간격을 15mm로 하고, 압착부의 면적 비율을 99%로 한 것을 제외하고, 나머지 구성은 실시예 1과 동일하다.
실시예5
스펀본딩 공법으로 제작된 평량 80g/m2의 PET 부직포에 220℃ 에서의 엠보 롤 성형을 통해 비압착부의 형상을 정사각형으로 성형하여 공명층을 부직포 내에 형성시켰다. 비압착부의 정사각형 한변의 길이는 1mm, 피치 간격은 2.3mm, 압착부의 면적 비율은 81.1%이다.
실시예6
스펀본딩 공법으로 제작된 평량 80g/m2 의 PET 부직포에 220℃ 에서의 엠보 롤 성형을 통해 비압착부의 형상을 스트라이프(stripe)로 성형하여 공명층을 부직포 내에 형성시켰다. 비압착부의 스트라이프 폭은 1mm, 피치 간격은 5.3mm, 압착부의 면적 비율은 81.1%이다.
비교예1
스펀본딩 공법으로 제작된 평량 80g/m2의 PET 부직포 자체의 흡음성능을 측정하였다.
비교예2
피치 간격을 1.8 mm로 하고, 압착부의 면적 비율을 37%로 한 것을 제외하고, 나머지 구성은 실시예1과 동일하다.
비교예3
피치 간격을 20mm로 하고, 압착부의 면적 비율을 99.5%로 한 것을 제외하고, 나머지 구성은 실시예1과 동일하다.
비교예4
스펀본딩 공법으로 제작된 평량 80g/m2의 PET 부직포에 220℃ 에서의 엠보 롤 성형을 통해 비압착부의 형상을 스트라이프로 성형하여 공명층을 부직포 내에 형성시켰다. 비압착부의 스트라이프 폭은 10mm, 피치 간격은 15mm, 압착부의 면적 비율은 33.3%이다.
2. 흡음 성능 평가
실시예 1~6 및 비교예 1~4의 흡음 성능을 평가하여 하기의 표 1에 나타내었다. 이는 흡음시트의 배후공간이 50mm일 때의 흡음 성능이다.
[표1]
Figure PCTKR2013010763-appb-I000001
표 1을 참조하면, 본 발명에 따른 조건을 만족하는 실시예 1~6의 경우, 200Hz ~ 2000Hz의 주파수대역에서의 평균 흡음률 값이 목표치인 0.4 이상을 만족하였다. 이에 반해, 본 발명에 따른 조건을 만족하지 못하는 비교예 1~4의 경우, 200Hz ~ 2000Hz의 주파수대역에서의 평균 흡음률 값이 목표치에 미치지 못하였다.
즉, 본 발명에 따른 조건을 만족하는 실시예 1~6와 그렇지 못한 비교예 1~4를 비교한 결과, 열압착에 의해 미세공명구조를 부직포 내에 형성시켰을 때, 200Hz~2000Hz의 중저주파수대역의 흡음성능이 크게 개선되는 것을 확인할 수 있었다.
본 발명의 실시예 1에 따른 흡음시트의 압착부를 ×100배 확대하여 촬영한 광학 현미경 사진, 본 발명의 실시예 1에 따른 흡음시트의 비압착부를 ×100배 확대하여 촬영한 광학 현미경 사진을 바탕으로 판단할 때, 실시예 1에 따른 흡음시트의 압착부는 섬유들이 고열 압축 성형되어서 공기 투과성이 없어지는 구조로 변화하는 것을 확인할 수 있었다. 반면에, 실시예 1에 따른 흡음시트의 비압착부는 다공성의 섬유로 이루어져 공기 투과성이 그대로 유지됨을 확인할 수 있었다.
이상에서는 본 발명의 실시예를 중심으로 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 기술자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 이하에 기재되는 특허청구범위에 의해서 판단되어야 할 것이다.
<부호의 설명>
110, 610, 720 : 다공성 기재 120, 650, 740 : 볼록부
130, 640, 730 : 오목부 140, 660, 750 : 요철 패턴
620 : 엠보 롤 625 : 엠보
630 : 원통 롤 700 : 흡음형 방음패널
710 : 흡음재 720 : 흡음시트
A : 제1 공기 투과부 B : 제2 공기 투과부
W : 볼록부의 직경 또는 폭 P : 피치 간격

Claims (18)

  1. 다공성 기재의 일면에 볼록부와 오목부로 구성되는 다수의 요철 패턴을 포함하고, 하기 식 1에 의해 정해지는 오목부의 면적 비율이 40~99%이며, 상기 오목부에 대응하는 영역은 상기 볼록부에 대응하는 영역보다 공기 투과성이 낮은 것을 특징으로 하는 흡음시트.
    [식 1]
    오목부의 면적 비율 = [오목부의 면적부]/[다공성 기재의 면적부]
  2. 제1항에 있어서,
    상기 흡음시트는
    200Hz 내지 2000Hz의 주파수 대역에서 평균 흡음률 값이 0.4 이상인 것을 특징으로 하는 흡음시트.
  3. 제1항에 있어서,
    상기 볼록부의 폭 또는 직경은
    0.2mm 내지 20mm인 것을 특징으로 하는 흡음시트.
  4. 제1항에 있어서,
    상기 요철 패턴은
    0.5mm 내지 50mm의 피치 간격을 갖는 것을 특징으로 하는 흡음시트.
  5. 제1항에 있어서,
    상기 다공성 기재는
    열가소성 유기섬유인 것을 특징으로 하는 흡음시트.
  6. 제1항에 있어서,
    상기 다공성 기재는
    무기섬유가 포함된 열가소성 유기섬유인 것을 특징으로 하는 흡음시트.
  7. 제5항 또는 제6항에 있어서,
    상기 열가소성 유기섬유는
    폴리에틸렌테레프탈레이트(polyethylene Terephthalate), 폴리에틸렌(polyethylene) 및 폴리프로필렌(polypropylene; PP) 중 선택된 하나 또는 선택된 둘 이상의 혼합물인 것을 특징으로 하는 흡음시트.
  8. 제1항에 있어서,
    상기 볼록부는
    원형, 타원형, 다각형, 스트라이프(stripe) 및 이들의 조합에서 선택된 형상 중 선택된 어느 하나의 형상을 갖는 것을 특징으로 하는 흡음시트.
  9. 제1항에 있어서,
    상기 다공성 기재의 평량은
    30g/㎡ 내지 800g/㎡인 것을 특징으로 하는 흡음시트.
  10. 제1항에 있어서,
    상기 다공성 기재는
    0.1mm 내지 10mm의 두께를 갖는 것을 특징으로 하는 흡음시트.
  11. 제1항에 있어서,
    상기 다공성 기재의 통기도는
    200Pa 압력시 20L/㎡/s 내지 1200L/㎡/s인 것을 특징으로 하는 흡음시트.
  12. 제1항에 있어서,
    상기 다공성 기재의 원(original) 통기도는
    100Pa 압력시 20L/㎡/s 내지 1200L/㎡/s인 것을 특징으로 하는 흡음시트.
  13. 다공성 기재를 마련하는 단계; 및
    열전사 방법을 이용하여 상기 다공성 기재의 일면에 볼록부와 오목부를 갖는 다수의 요철 패턴을 형성하는 단계;를 포함하는 것을 특징으로 하는 흡음시트 제조 방법.
  14. 제13항에 있어서,
    상기 열전사 방법은
    엠보 롤(embo roll) 성형 또는 엠보 프레스(embo press) 성형을 사용하는 것을 특징으로 하는 흠음시트 제조 방법.
  15. 제14항에 있어서,
    상기 다수의 요철 패턴을 형성하는 단계는
    상기 다공성 기재의 녹는점의 60% 내지 100%의 온도 범위에서 상기 다공성 기재를 예열하는 단계와,
    엠보 롤 또는 엠보 프레스를 예열된 다공성 기재에 압착시키는 단계를 포함하는 것을 특징으로 하는 흡음시트 제조 방법.
  16. 제13항에 있어서,
    상기 다수의 요철 패턴을 형성하는 단계는
    상기 다공성 기재의 면적부에 대한 오목부의 면적부로 정해지는 상기 오목부의 면적 비율이 40~99%가 되도록 상기 다공성 기재를 압착하는 것을 특징으로 하는 흡음시트 제조 방법.
  17. 흡음재; 및
    적어도 상기 흡음재의 일면 상에 형성되며, 제1항 내지 제16항 중 적어도 어느 한 항에 기재된 구성에 따른 흡음시트;를 포함하는 것을 특징으로 하는 흡음형 방음패널.
  18. 제17항에 있어서,
    상기 흡음재는
    다공성 플레이트, 유기소재, 무기소재, 천연소재, 열가소성 수지 매트릭스 및 열경화성 수지 매트릭스 중에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 흡음형 방음패널.
PCT/KR2013/010763 2012-12-06 2013-11-26 미세공명구조를 갖는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널 WO2014088251A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/649,009 US9447577B2 (en) 2012-12-06 2013-11-26 Sound absorbing sheet having micro resonant structure, method for manufacturing same, and sound absorption type soundproof panel using same
CN201380064157.4A CN104838441B (zh) 2012-12-06 2013-11-26 具有微细共振结构的吸声片及其制备方法以及利用其的吸声式隔声板
EP13860957.3A EP2930713B1 (en) 2012-12-06 2013-11-26 Sound absorbing sheet having micro resonant structure, method for manufacturing same, and sound absorption type soundproof panel using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0141335 2012-12-06
KR1020120141335A KR101604886B1 (ko) 2012-12-06 2012-12-06 미세공명구조를 갖는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널

Publications (1)

Publication Number Publication Date
WO2014088251A1 true WO2014088251A1 (ko) 2014-06-12

Family

ID=50883632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010763 WO2014088251A1 (ko) 2012-12-06 2013-11-26 미세공명구조를 갖는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널

Country Status (5)

Country Link
US (1) US9447577B2 (ko)
EP (1) EP2930713B1 (ko)
KR (1) KR101604886B1 (ko)
CN (1) CN104838441B (ko)
WO (1) WO2014088251A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6622138B2 (ja) * 2016-03-31 2019-12-18 住友理工株式会社 防音部材
JP6622137B2 (ja) * 2016-03-31 2019-12-18 住友理工株式会社 防音カバー
GB201613051D0 (en) 2016-07-28 2016-09-14 Landa Labs (2012) Ltd Applying an electrical conductor to a substrate
US20230292445A1 (en) * 2016-07-28 2023-09-14 Landa Labs (2012) Ltd Application of electrical conductors to an electrically insulating substrate
US10792870B2 (en) * 2016-11-29 2020-10-06 Milliken & Company Process for forming a nonwoven composite
US10607589B2 (en) 2016-11-29 2020-03-31 Milliken & Company Nonwoven composite
CA3053172C (en) * 2017-04-03 2021-03-30 Cascade Engineering, Inc. Acoustic fiber silencer
JP2019031898A (ja) * 2017-08-08 2019-02-28 三菱ケミカル株式会社 薄型遮音シート部材、及びこれを用いた遮音構造体
CN108231053A (zh) * 2018-03-13 2018-06-29 吉林大学 一种具有凸包形态的声学包装材料及其制备方法
KR102552930B1 (ko) * 2018-06-27 2023-07-07 삼성디스플레이 주식회사 패널 하부 부재 및 이를 포함하는 표시 장치
KR102113062B1 (ko) * 2018-07-17 2020-05-20 대덕대학산학협력단 방음 및 전자기파 차폐 기능을 갖는 열전발전 소자 및 제조 방법
WO2020162602A1 (ja) * 2019-02-07 2020-08-13 三菱ケミカル株式会社 遮音シート及び遮音構造体
IT202000003769A1 (it) * 2020-02-24 2021-08-24 Adler Evo S R L Dispositivo per isolamento acustico a base di metamateriali

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760890A (ja) * 1993-08-25 1995-03-07 Yamaha Corp 吸音板
JP2000075865A (ja) * 1998-08-28 2000-03-14 Supankuriito Corp:Kk 吸音板
KR200379075Y1 (ko) * 2004-12-22 2005-03-18 한국석유공업 주식회사 소음방지재
KR20110004418A (ko) 2008-04-14 2011-01-13 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다층 흡음 시트
KR20110076895A (ko) * 2008-10-02 2011-07-06 나고야 유카 가부시키가이샤 흡음 재료, 복층 흡음 재료, 복층 흡음 재료 성형물, 흡음성 내장 재료 및 흡음성 바닥 깔개 재료

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1510712A (en) 1974-06-04 1978-05-17 Scott Paper Co Perforated embossed film to foam laminates
GB1550226A (en) * 1975-06-04 1979-08-08 Scott Paper Co Perforated embossed film or foil to foam laminates
US4213516A (en) * 1978-11-29 1980-07-22 American Seating Company Acoustical wall panel
US4493471A (en) * 1983-02-14 1985-01-15 Mcinnis Donald E Sound speaker stand for attenuating vibrations
DE8700264U1 (de) * 1987-01-07 1988-05-11 Irbit Research + Consulting Ag, Freiburg/Fribourg Aus Schaumstoff bestehende Schalldämmplatte
JPH03182342A (ja) * 1989-12-12 1991-08-08 Daido Steel Sheet Corp 吸音シート、吸音シート付きパネル及びこれらの製造方法
JPH0887277A (ja) 1994-09-14 1996-04-02 Osaka Filter Kogyo Kk 吸音体
CN2501932Y (zh) * 2001-08-15 2002-07-24 北新建材(集团)有限公司 一种具有静音功能的矿棉吸声板
US6659223B2 (en) * 2001-10-05 2003-12-09 Collins & Aikman Products Co. Sound attenuating material for use within vehicles and methods of making same
US20040231914A1 (en) 2003-01-02 2004-11-25 3M Innovative Properties Company Low thickness sound absorptive multilayer composite
US7320739B2 (en) 2003-01-02 2008-01-22 3M Innovative Properties Company Sound absorptive multilayer composite
CN2773220Y (zh) * 2005-02-07 2006-04-19 陈诸琰 隔音保温节能墙板
JP2006337886A (ja) * 2005-06-06 2006-12-14 Inoac Corp 吸音材
JP2007230130A (ja) * 2006-03-02 2007-09-13 Sekisui Chem Co Ltd 発泡ハニカムコアを用いた吸音積層構造体
JP5061881B2 (ja) * 2007-12-18 2012-10-31 ヤマハ株式会社 自動車天井用吸音構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760890A (ja) * 1993-08-25 1995-03-07 Yamaha Corp 吸音板
JP2000075865A (ja) * 1998-08-28 2000-03-14 Supankuriito Corp:Kk 吸音板
KR200379075Y1 (ko) * 2004-12-22 2005-03-18 한국석유공업 주식회사 소음방지재
KR20110004418A (ko) 2008-04-14 2011-01-13 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다층 흡음 시트
KR20110076895A (ko) * 2008-10-02 2011-07-06 나고야 유카 가부시키가이샤 흡음 재료, 복층 흡음 재료, 복층 흡음 재료 성형물, 흡음성 내장 재료 및 흡음성 바닥 깔개 재료

Also Published As

Publication number Publication date
CN104838441B (zh) 2019-01-11
EP2930713A1 (en) 2015-10-14
US20150315781A1 (en) 2015-11-05
US9447577B2 (en) 2016-09-20
EP2930713A4 (en) 2016-02-17
CN104838441A (zh) 2015-08-12
EP2930713B1 (en) 2020-12-30
KR20140073276A (ko) 2014-06-16
KR101604886B1 (ko) 2016-03-25

Similar Documents

Publication Publication Date Title
WO2014088251A1 (ko) 미세공명구조를 갖는 흡음시트, 그 제조 방법 및 이를 이용한 흡음형 방음패널
KR101073316B1 (ko) 진공단열재용 코어재료의 제조방법
CN102016194B (zh) 声学复合材料
CA2405351A1 (en) Conductive sheet material
WO2011162528A2 (en) Porous nanoweb and method for manufacturing the same
WO2014137110A1 (ko) 단열재용 코어 및 그의 제조방법과 이를 이용한 슬림형 단열재
WO2022124506A1 (ko) 단열 및 항균 성능이 우수한 차량용 경량 에어덕트 및 이의 제조방법
WO2022025336A1 (ko) 나노 멤브레인, 나노 멤브레인 조립체 및 나노 멤브레인 제조방법
CA2567988A1 (en) Formation of leather sheet material using hydroentanglement
WO2014092459A1 (ko) 방수통음시트 및 이의 제조 방법
KR20120059770A (ko) 방습 및 단열효과가 우수한 열반사 단열 벽지 및 그 제조방법
WO2019212284A1 (ko) 전자파 차폐능 및 열전도도가 우수한 다층 그라파이트 시트 및 이의 제조방법
CN114290766A (zh) 一种汽车发动机减震吸音隔音垫及其制备方法
CN1826020A (zh) 扬声器用振动板及其制造方法
EP0315169B1 (de) Wärmedämmformkörper mit Umhüllung
WO2014007480A1 (ko) 흡음성능이 향상된 흡음시트 및 그의 제조방법
WO2018056554A1 (ko) 샌드위치 패널용 심재, 샌드위치 패널 및 샌드위치 패널의 제조방법
JP6293792B2 (ja) 防音材、及び防音材の製造方法
CA2257514A1 (en) Method of and apparatus for producing a composite web
WO2015002505A1 (ko) 단열 시트, 하이브리드 단열 시트 및 단열 패널
WO2018124768A1 (ko) 자동차용 언더커버의 제조방법 및 이를 통해 제조된 언더커버
WO2019050376A1 (ko) 압축성형체용 복합섬유 및 이의 제조방법
WO2023106609A1 (ko) 멜트블로운 섬유 및 나노 섬유가 랜덤하게 혼합된 단일층의 가청주파수 대역의 노이즈 저감용 흡음재, 그 제조장치 및 제조방법과, 이에 의해 제조된 흡음재
US6818273B1 (en) Microporous heat insulation body
US9920463B2 (en) Fiber sheet for molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14649009

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013860957

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE