WO2014087974A1 - 光導波路および光ファイバ伝送系 - Google Patents

光導波路および光ファイバ伝送系 Download PDF

Info

Publication number
WO2014087974A1
WO2014087974A1 PCT/JP2013/082384 JP2013082384W WO2014087974A1 WO 2014087974 A1 WO2014087974 A1 WO 2014087974A1 JP 2013082384 W JP2013082384 W JP 2013082384W WO 2014087974 A1 WO2014087974 A1 WO 2014087974A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
less
optical waveguide
optical fiber
condition
Prior art date
Application number
PCT/JP2013/082384
Other languages
English (en)
French (fr)
Inventor
林 哲也
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP13860522.5A priority Critical patent/EP2930546A4/en
Priority to JP2014551093A priority patent/JPWO2014087974A1/ja
Priority to CN201380063758.3A priority patent/CN104838298B/zh
Publication of WO2014087974A1 publication Critical patent/WO2014087974A1/ja
Priority to US14/730,461 priority patent/US9354387B2/en
Priority to US15/048,270 priority patent/US9513431B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present invention relates to an optical waveguide and an optical fiber transmission system, and in particular, the optical waveguide includes a multi-core optical fiber (hereinafter referred to as an optical fiber) and a multi-core optical waveguide (hereinafter simply referred to as an optical waveguide).
  • the optical waveguide includes a multi-core optical fiber (hereinafter referred to as an optical fiber) and a multi-core optical waveguide (hereinafter simply referred to as an optical waveguide).
  • An optical fiber (MCF) having a plurality of cores extending along the fiber axis in a common clad portion is expected as an optical transmission line capable of transmitting a large amount of information.
  • crosstalk signal degradation due to crosstalk between adjacent cores
  • the present invention has been made in view of the above, and it is an object of the present invention to provide an optical fiber, an optical waveguide, and an optical fiber transmission system in which an increase in crosstalk is suppressed even when bending is applied with a small radius of curvature.
  • an optical waveguide includes a plurality of cores in which a set of adjacent cores has the same core structure, a clad covering each of the plurality of cores, and one end surface of the plurality of cores. A first surface disposed; and a second surface disposed on the other end surface of the plurality of cores, wherein the plurality of cores extend from the first surface toward the second surface.
  • the minimum value D of the distance between the centers of adjacent cores is a value in the range of 15 ⁇ m to 60 ⁇ m
  • the waveguide has the first to third conditions at a predetermined wavelength in a predetermined wavelength band. Either condition is met.
  • the first condition is (a)
  • the optical waveguide is an optical fiber (multi-core optical fiber), (b) in the bent state is assigned 90 degrees to the optical fiber of 4mm below a predetermined curvature radius R b, the bending loss per the 90 degrees of a given core and alpha 90deg, between the cores of the same core structure The difference of ⁇ 90 deg at 1 dB or less, (c) Virtual crosstalk (linear value) at a fiber length of 10 km is 0 when the optical fiber is bent at a predetermined radius of curvature of 30 mm to 200 cm between adjacent cores with a center distance of the minimum value D.
  • the bending loss ⁇ 90 deg is Or a trench assist type in which the clad portion around the core has a trench layer in which the relative refractive index difference with respect to the clad is ⁇ 0.1% or less.
  • the bending loss ⁇ 90 deg in a certain case is defined by being equal to or less than the value represented by the following formula (2).
  • “virtual crosstalk” measures the crosstalk in an optical fiber having a certain fiber length, and uses the fact that the crosstalk (linear value) is proportional to the fiber length. This means the linear value when converted to the value of.
  • the second condition is (a) In the first condition, as “when the fiber length is not taken into account”, the mathematical formulas (1) and (2) are defined as the following mathematical formulas (3) and (4), respectively.
  • the above-mentioned “case in which the fiber length is not taken into consideration” assumes a case where the fiber length is unknown or a case where the fiber length is very short of several tens of meters or less.
  • the third condition is (a) the core has a bent portion in which the radius of curvature Rb is fixed to 7 mm or less; (b) Crosstalk between adjacent cores having an adjacent core interval of D is 0.01 or less, (c) A bending supplement angle corresponding to a supplement angle with respect to the angle on the bending center side among the angles defined by the straight portion of the core sandwiching the bending portion is 58 to 90 degrees, (d) the first surface and the second surface are planes on which light can enter and exit the core, and (e) It is defined by the height of the optical waveguide when one of the first and second surfaces is the bottom surface being 10 mm or less.
  • the supplementary bending angle is an angle corresponding to the smaller one of the angles defined by the straight portion of the core sandwiching the bent portion.
  • minimum diameter means a bending radius of 7 mm or less for an optical waveguide and 4 mm or less for an optical fiber.
  • the optical waveguide is an optical waveguide that satisfies the first condition or the second condition, and has a refractive index lower than that of the core between the core and the trench layer. You may have an inner cladding layer whose refractive index is higher than a layer.
  • the spatial mode of the core is a fundamental mode.
  • the mode field diameter of the predetermined spatial mode at the predetermined wavelength may be 5.6 ⁇ m to 15.7 ⁇ m.
  • the core spatial mode may be a multimode. Good.
  • the core may include a plurality of sub-cores and a sub-cladding having a refractive index lower than that of the sub-cores.
  • each of the plurality of sub-cores has the same refractive index profile structure, and the number of spatial modes of the core is at least equal to or greater than the number of the plurality of sub-cores.
  • the crosstalk is preferably 0.1 or more.
  • the predetermined wavelength band is 1.26 ⁇ m to 1.625 ⁇ m. Is preferred. Note that such a predetermined wavelength band is assumed to be a communication wavelength band used in a normal silica glass fiber applicable to the optical waveguide. Further, as a seventh aspect applicable to at least one of the first to sixth aspects, in the optical waveguide that satisfies the first condition or the second condition, the cable cutoff wavelength of the core is in the O band.
  • the core in the optical waveguide that satisfies the first condition or the second condition, has a cable cutoff of 1.29 ⁇ m or less. And a mode field diameter of 8.0 ⁇ m to 10.1 ⁇ m at a wavelength of 1.31 ⁇ m, and any of the following fourth to seventh conditions at any wavelength of 1.49 ⁇ m and 1.55 ⁇ m: It is preferable that the following conditions are satisfied.
  • This configuration shows the characteristics to be satisfied by each core when used in an optical interconnect system (optical interconnect) in single mode operation.
  • the fourth condition is Or bending loss alpha 90deg at 4mm of R b is less than 0.139 [dB / 90 °], or core and between the cladding, the relative refractive index difference relative to the cladding is less -0.1% become bending loss alpha 90deg at 4mm of R b in the case of providing the trench layer is defined by not more than 0.288 [dB / 90 °].
  • the fifth condition is Or bending loss alpha 90deg at 3mm of R b is less than 0.120 [dB / 90 °], or, the relative refractive index difference relative to the cladding between the core and the cladding is 0.1% or less when comprising a trench layer made, bending loss alpha 90deg at 3mm of R b is defined by at 0.250 [dB / 90 ° or less.
  • the sixth condition is Or bending loss alpha 90deg at 2mm of R b is less than 0.098 [dB / 90 °], or, the relative refractive index difference relative to the cladding between the core and the cladding is 0.1% or less
  • the bending loss ⁇ 90 deg at R b of 2 mm is defined as 0.204 [dB / 90 degrees] or less.
  • the seventh condition is Or bending loss alpha 90deg at 1mm of R b is less than 0.069 [dB / 90 °], or, the relative refractive index difference relative to the cladding between the core and the cladding is 0.1% or less
  • the bending loss ⁇ 90 deg at 1 mm R b is defined as 0.144 [dB / 90 degrees] or less.
  • the cable cutoff wavelength of the core is 1.26 ⁇ m.
  • the mode field diameter of the core at a wavelength of 1.31 ⁇ m is 8.0 ⁇ m to 10.1 ⁇ m, and the bending loss ⁇ 90 deg at R b of 4 mm at a wavelength of 1.49 ⁇ m is 0.139 [dB / 90 degrees] or less, and a trench layer having a relative refractive index difference of ⁇ 0.2% or less with respect to the cladding is provided between the core and the cladding, and the cladding is used as a reference.
  • the bending loss alpha 90deg at 4mm of R b equal to or less than 0.288 [dB / 90 °] It is preferred.
  • the optical waveguide may be an optical fiber.
  • the optical fiber has a bent portion that is bent so that the bending angle is 58 degrees or more and 90 degrees or less.
  • the stress strain generated in the optical fiber by bending is heat-treated.
  • the bent portion is bent at a supplemental angle while Rb is maintained even when there is no external stress.
  • An optical fiber transmission system includes a transmitter, a receiver, and an optical fiber as an optical waveguide according to at least one of the first to tenth aspects.
  • each of the transmitter and the receiver includes a waveguide chip capable of inputting and outputting light, and a housing incorporating the waveguide chip.
  • Each of the transmitter and the receiver is optically connected to the optical fiber so that the acute angle formed by the surface of the waveguide chip and the optical fiber is 74 to 90 degrees. Furthermore, the optical fiber is given a bending of Rb in the housing.
  • the optical waveguide satisfying the third condition has a height of the optical waveguide of the first surface or the second surface.
  • the insertion loss of the core at a predetermined wavelength is a plurality of The difference between the cores is 1 dB or less, and the insertion loss is not more than the value represented by the following formula (5), or the clad portion around the core has a relative refractive index difference based on the clad. It is preferable that the insertion loss in the case of the trench assist type having a trench layer of ⁇ 0.1% or less is equal to or less than the value represented by the following formula (6).
  • the optical waveguide has a refractive index between the core and the trench layer that is higher than that of the core. It may have an inner cladding layer that is lower and has a higher refractive index than the trench layer.
  • the predetermined wavelength band is 1.26 ⁇ m to 1.625 ⁇ m.
  • the mode field diameter of the fundamental mode of the core at a predetermined wavelength is preferably 5.6 ⁇ m to 15.7 ⁇ m.
  • An optical fiber transmission system includes a transmitter, a receiver, and a transmission line, and the first to tenth, twelfth to fifteenth conditions satisfying the first condition or the second condition as the transmission line.
  • An optical fiber according to at least one of the aspects is provided.
  • Each of the transmitter and the receiver includes a waveguide chip having a function of inputting or outputting signal light, and a housing in which the waveguide chip is incorporated.
  • the optical fiber is an optical waveguide according to at least one of the first to tenth and twelfth to fifteenth aspects, and the waveguide chip and the optical waveguide chip satisfying the third condition. Optically connected.
  • the acute angle between the surface of the waveguide chip and the core of the optical waveguide in the housing is set to 74 to 90 degrees.
  • an optical fiber, an optical waveguide, and an optical fiber transmission system in which an increase in crosstalk is suppressed even when bending is applied with a small curvature radius are provided.
  • FIG. 3A The relationship between the crosstalk and the radius of curvature of the optical fiber when different types of cores are adjacent to each other (FIG. 3A), and the crosstalk and the optical fiber when the cores having the same core structure are adjacent to each other. It is a figure which shows the relationship (FIG.3 (B)) with a curvature radius.
  • the bending loss coefficient ⁇ b and the increase amount of crosstalk XT b caused by the bending loss are as follows. It is a figure which shows the result of having measured and having calculated
  • a core interval D of a core having the same core structure and a peripheral clad portion of a matched clad type, or a core having the same core structure and a peripheral clad portion of a trench assist type It is a figure which shows the relationship with the coefficient (gamma) regarding the crosstalk increase resulting from a bending loss.
  • the bending loss coefficient ⁇ b and the increase amount of crosstalk XT b caused by the bending loss are It is a figure which shows the result of having measured and having calculated
  • the bending loss coefficient ⁇ b and the bending-induced crosstalk increase XT b are It is a figure which shows the result of having measured and calculated
  • FIG. 4 is a diagram showing the relationship between the total crosstalk over the entire length of the optical transmission link and the bit error rate under the influence of the crosstalk when several allowable values resulting from crosstalk of the transmission quality Q value are changed. is there.
  • the crosstalk other than the portion bent at 90 degrees has a margin of 3 dB with respect to the maximum allowable XT total .
  • XT b and XT total due to bending of per portion bent at 90 degrees.
  • FIGS. 1A to 1C are diagrams illustrating a first configuration example of an optical transmission link configured to include an optical fiber (MCF) transmission system according to an embodiment of the present invention.
  • An optical transmission link 1 shown in FIG. 1 (A) includes two optical transceivers (OT: Optical Transceivers) 11 and 12, optical fibers 20 that connect between OT11 and 12, and electrical signals connected to the OT11.
  • the line 31 and the electric signal line 32 connected to the OT 12 are included.
  • the OTs 11 and 12 function as transmitters or receivers.
  • the number of optical fibers 20 that connect the OTs 11 and 12 is not necessarily one, and a configuration may be adopted in which a plurality of optical fibers are coupled using connectors, fusion, and end face butt.
  • the OT 11 includes a housing 13 and a silicon photonics chip (waveguide chip, SPC: Silicon Photonics Chip) 14 that is provided inside the housing 13 and inputs and outputs light.
  • a fiber 20 is connected to the SPC 14.
  • the optical fiber 20 is formed with a bending portion C1 bent at a very small diameter for connection to the SPC 14 at the end, and is fixed to the SPC 14 by an MCF connection component 17.
  • the OT 12 includes a housing 13 'and an SPC 14' provided inside the housing 13 ', and the electric signal line 32 and the optical fiber 20 are connected to the SPC 14'.
  • the optical fiber 20 has a bending portion C2 bent at an extremely small diameter of 10 mm or less for connection to the SPC 14 ', and is fixed to the SPC 14' by an MCF connection component 17 '.
  • FIG. 1B shows a state in which the optical fiber 20 is bent at an allowable curvature radius Rb of 90 degrees.
  • FIG. 1C shows a state in which the bending of Rb is applied 180 degrees (two 90-degree bendings). This is because the optical fiber 20 is placed on the mandrel of Rb by 0.5. Corresponds to a wound state.
  • FIG. 2 is a diagram illustrating a second configuration example of the optical transmission link configured to include the optical fiber (MCF) transmission system according to the embodiment of the present invention.
  • the optical transmission link 2 shown in FIG. 2 is different from the optical transmission link 1 of FIG. 1 in the following points. That is, the difference from the optical transmission link 1 is that the SPC 14 and the optical fiber 20 are connected by the optical waveguide 18 in the housing 13 of the OT 11.
  • the optical waveguide 18 provided in the OT 11 has a plurality of cores bent at 90 degrees with a very small radius of curvature inside, and is connected to each core of the optical fiber 20 at one end face, and the SPC 14 at the other end face. Connect with.
  • the optical fiber 20 is connected and fixed to the optical waveguide 18 by the MCF connection component 19.
  • the same configuration is adopted in OT12. That is, the optical fiber 20 is fixed to the optical waveguide 18 ′ by the MCF connection component 19 ′, and the optical waveguide 18 ′ is connected to the SPC 14 ′.
  • cores 181 and 181 'bent with a minimum diameter are formed in the optical waveguides 18 and 18', respectively. That is, in the optical transmission link 2 of FIG. 2, the optical fiber 20 itself is not subjected to a minimum diameter bending, but the cores 181 and 181 'inside the optical waveguides 18 and 18' are greatly bent.
  • the crosstalk monotonously decreases as the radius of curvature of the optical fiber decreases.
  • the crosstalk increases once, but if the radius of curvature is further reduced from there, the crosstalk increases. It is known that talk will gradually become smaller.
  • FIG. 3A is a diagram showing the relationship between the crosstalk and the radius of curvature of the optical fiber when different types of cores are adjacent to each other.
  • FIG. 3B is a diagram showing cores having the same core structure. It is a figure which shows the relationship between the crosstalk in the case of adjoining, and the curvature radius of an optical fiber.
  • FIGS. 3A and 3B although there is a difference depending on whether or not the types of adjacent cores are the same, when the optical fiber is bent with a very small radius of curvature, crosstalk It has been predicted from the conventional knowledge that the value of the current value becomes smaller.
  • 3A and 3B is related to K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Homogeneous and Heterogeneous Multi-core Fibers” IEEE Summer Topicals 2012, TuC4.4.
  • the increase in crosstalk is not the direct exchange of optical power between the spatial modes guided by each of the multiple cores, but the optical power that propagates through the spatial mode of a core.
  • the optical power of the cladding mode is generated by coupling to the spatial mode of another core after being coupled to the cladding mode once by bending loss. Based on this assumption, a new theoretical model was constructed and examined. As a result, the optical fiber is bent with a bending loss coefficient ⁇ b [/ m] in the section of length L b [m]. If the crosstalk increase XT b bending losses caused between homologous core, we have discovered that can be represented by the following equation (7).
  • ⁇ [m] decreases the light coupling efficiency from the clad mode to the spatial mode of the core due to the non-uniformity of the optical power distribution in the clad and the positional relationship of the coupled core with respect to the bending direction. This is a correction coefficient for taking this into consideration.
  • an optical fiber having a plurality of cores having the same core structure and a peripheral clad portion of a matched clad type, and an optical fiber having the same core structure and a peripheral clad portion are trenches.
  • Each of the optical fibers having a plurality of assist-type cores was prototyped, and the relationship was confirmed by examining the relationship between the bending loss coefficient ⁇ b and the amount of crosstalk increase XT b caused by the bending loss.
  • the core whose peripheral clad portion is a matched clad type has a refractive index distribution as shown in FIG.
  • a cross-sectional view of the core and its periphery is shown in FIG. That is, in the configuration shown in FIGS. 4A and 4B, the periphery of the core 401 is covered with a uniform cladding 402 having a refractive index lower than that of the core 401.
  • FIG. 5A shows a refractive index profile of an example of a core whose peripheral cladding portion is a trench assist type
  • FIG. 5B shows a cross-sectional view of the core and its periphery.
  • a trench layer 413 having a refractive index lower than that of the cladding 412 is provided between the core 411 and the cladding 412.
  • ⁇ c is the relative refractive index difference of the core 411 based on the cladding 412
  • ⁇ d is the relative refractive index difference of the trench layer 413 based on the cladding 412
  • 2 a is the core diameter
  • 2 b is the outer diameter of the trench layer.
  • optical waveguide according to the present embodiment preferably has a cable cutoff wavelength of 1.29 ⁇ m or less and a predetermined wavelength of 1.49 ⁇ m or more for short-distance applications, More preferably, the cable cutoff wavelength is 1.26 ⁇ m or less and the predetermined wavelength is 1.55 ⁇ m or more.
  • the mode field diameter at a wavelength of 1.31 ⁇ m has a typical value of 8.6 ⁇ m or more, a deviation from the typical value is desirably ⁇ 0.6 ⁇ m or less, and the typical value is 9 It is desirable that it is 5 ⁇ m or less. That is, the mode field diameter at a wavelength of 1.31 ⁇ m is desirably 8.0 ⁇ m to 10.1 ⁇ m.
  • the predetermined radius of curvature R b corresponds to the miniaturization of the connecting component, and is 4.0 mm or less, 3.5 mm or less, 3.0 mm or less, 2.5 mm or less, 2.0 mm or less, 1.5 mm or less, It is desired to be as small as 1.0 mm or less.
  • the R b bending at a predetermined wavelength with respect to the allowable radius of curvature R b Allowable bending loss at time is 0.288 dB / 90 degrees for 4.0 mm, 0.270 dB / 90 degrees for 3.5 mm, 0.250 dB / 90 degrees for 3.0 mm, For 2.5.0 mm, 0.228 dB / 90 degrees, for 2.0 mm, 0.204 dB / 90 degrees, for 1.5 mm, 0.177 dB / 90 degrees, for 1.0 mm Is 0.144 dB / 90 degrees.
  • the mode field diameter at a wavelength of 1.31 ⁇ m is set to 8.6 ⁇ m
  • the cable cutoff wavelength is set to 1.26 ⁇ m or less
  • the crosstalk increase amount at a wavelength of 1.49 ⁇ m generated by one 90 ° bending with R b 4 mm.
  • the refractive index profile shown in FIG. 5 (A) desirably has a trench layer, and ⁇ d is at least ⁇ 0.2%. Desirably, it is desirable that it be less than ⁇ 0.3% and ⁇ 0.5% or less.
  • ⁇ c is preferably at least 0.35% or less, more preferably 0.3% or less and 0.25% or less. However, if ⁇ c is too small, a confinement loss, which is a loss due to leakage of light confined in the core into the clad, occurs. In order to set the confinement loss to 0.01 dB / km or less at a wavelength of 1.55 ⁇ m, for example, ⁇ c is desirably 0.24% or more. In order for the mode field diameter at a wavelength of 1.31 ⁇ m to be 8.0 ⁇ m to 9.2 ⁇ m, 2a is preferably 9.3 ⁇ m to 11.8 ⁇ m. In particular, in the combination of the parameters (i) and (ii) below, particularly good characteristics can be realized from the viewpoint of all of the mode field diameter, bending loss, cutoff wavelength, and confinement loss.
  • FIG. 6A shows the refractive index distribution of another configuration example of the core in which the peripheral clad portion is a trench assist type
  • FIG. 6B is a cross-sectional view of the core and its periphery. It is shown.
  • the inner cladding layer between the core 411 and the trench layer 413 has a refractive index lower than that of the core 411 and higher than that of the trench layer 413. 414 may be provided.
  • 4 (B), 5 (B), and 6 (B) the boundary around the cladding 412 does not mean the end of the cladding, but a rectangular range in the fiber cross section is extracted and conceptually displayed. It's just what you do.
  • FIG. 7 includes a plurality of levels of measurement data having different radii of curvature and wavelengths. However, as shown in FIG. 7, it was confirmed that the relationship between XT b and ⁇ b satisfies Equation (7) regardless of the radius of curvature and wavelength, and ⁇ varies depending on the core interval.
  • an optical fiber having a plurality of cores having the same core structure and having a peripheral cladding portion of a matched cladding type and having a plurality of different core intervals, and having the same core structure and peripheral
  • FIG. 8 shows the relationship between the core interval D and the coefficient ⁇ related to the increase in crosstalk caused by bending loss in a plurality of optical fibers with different core intervals (TA-MCF) having a plurality of cores whose cladding portions are trench assist type.
  • TA-MCF core intervals
  • depends on the positional relationship between the cores, the maximum value of ⁇ obtained at each core pitch is plotted in FIG. From the results of FIG. 8, it was confirmed that ⁇ decreases exponentially as D increases in both the core whose peripheral cladding portion is a matched cladding type and the core whose peripheral cladding portion is a trench assist type.
  • the following formula (8) is satisfied when the peripheral clad portion is a matched clad core, and the following formula (8) is satisfied when the peripheral clad portion is a trench assist type core. 9) is satisfied.
  • the unit of ⁇ is [m]
  • the unit of D is [ ⁇ m].
  • Equation (8) Is considered that ⁇ of the fiber is expressed by Equation (8).
  • it is desirable that the refractive index of the trench layer be sufficiently lower than that of the cladding, and it is desirable that at least the relative refractive index difference with respect to the cladding be ⁇ 0.1% or less. It can be said that the smaller the value is ⁇ 0.2% or less, ⁇ 0.3% or less, ⁇ 0.4% or less, ⁇ 0.5% or less, ⁇ 0.6% or less, or ⁇ 0.7% or less.
  • Equation (11) is obtained.
  • the maximum allowable value of the crosstalk increase XT b by bending XT b, when the max, the core (or, sufficiently low refractive index is matched cladding type cladding portion surrounding and having the same core structure the formed optical fiber core) having no trench layer to the cladding portion of the peripheral, the following equation (12) acceptably XT b by satisfying the maximum value XT b, a formula can be suppressed to below max ( 10).
  • the bending loss alpha 90deg generated by bending the core 90 degrees at a radius of curvature R b [mm] [dB / 90 °] is acceptable as a cross-talk increase XT b due to bending when the bending 90 degrees
  • max 90 deg and the relational expression L b [m] ( ⁇ / 2) (10 ⁇ 3 R b ) is used, the surrounding clad portion has a matched clad type with the same core structure.
  • XT b is set to a maximum value XT b, max 90 deg or less based on Expression (12). In order to suppress this, it is necessary to satisfy the following formula (14).
  • an optical fiber configured with a core having the same core structure and a peripheral clad portion of which is a trench assist type (that is, a core having a trench layer having a sufficiently low refractive index in the peripheral clad portion), an optical fiber (13 In order to suppress XT b to the maximum value XT b, max90 deg or less based on), it is necessary to satisfy the following formula (15).
  • FIG. 9 shows a result of measurement and the relationship obtained, that is, a graph corresponding to FIG. 7 of the first embodiment.
  • XT b (4.03 ⁇ 10 ⁇ 5 [m]) ( ⁇ b [/ m]) 2 (L b [m])
  • Equation (7) regardless of the radius of curvature and the wavelength, and ⁇ changed with the core interval.
  • a bending loss coefficient ⁇ b and a crosstalk increase amount XT b caused by the bending loss are measured, The results of obtaining these relationships are shown in FIG. 10 as in FIG.
  • the trench layer of this optical fiber has a relative refractive index difference of ⁇ 0.4% or less with respect to the cladding, and the value obtained by dividing the inner diameter of the trench layer by the outer diameter of the trench layer is 0.9 or less.
  • XT b (1.28 ⁇ 10 ⁇ 5 [m]) ( ⁇ b [/ m]) 2 (L b [m])
  • both the core whose peripheral clad portion is a matched clad type and the core whose peripheral clad portion is a trench assist type satisfy the relationship of ⁇ D ⁇ 3 .
  • the following formula (16) is satisfied when the peripheral clad portion is a matched clad type core
  • the following formula (16) is satisfied when the peripheral clad portion is a trench assist type core. 17) is satisfied.
  • the unit of ⁇ is [m]
  • the unit of D is [ ⁇ m].
  • the optical power leaked into the clad is smaller than in the case where there is no trench layer. Even if there is a layer having a lower refractive index than the cladding between the core and the cladding of the optical fiber, the refractive index of the layer is not sufficiently low (for example, the relative refractive index difference with respect to the cladding is not less than -0.1%).
  • ⁇ of the fiber is considered to be expressed by Equation (16).
  • it is desirable that the refractive index of the trench layer is sufficiently lower than that of the cladding, and at least a relative refractive index difference with respect to the cladding is ⁇ 0.1% or less. Desirably, -0.2% or less, -0.3% or less, -0.4% or less, -0.5% or less, -0.6% or less, or -0.7% or less is more desirable. It can be said.
  • the above formula (14) or formula (15) (similarly, formula (22) Or R ( b ) is preferably as small as possible, more preferably 6 mm or less, and further preferably 5 mm or less, 4 mm or less, 3 mm or less, 2 mm or less, 1 mm or less. .
  • FIG. 12 shows the relationship between the crosstalk increase ratio (XT w / oB + XT b ) / XT w / oB .
  • (XT w / oB + XT b ) / XT w / oB is 2 or less (3 dB or less) It is desirable that it be 1.26 or less (1 dB or less).
  • XT b / XT w / oB is preferably at least 1 or less (0 dB or less), more preferably 1/4 or less ( ⁇ 6 dB or less).
  • XT b, max90deg is desirably XT w / oB or less, It is further desirable that it is XT w / oB / 4 or less.
  • the crosstalk XT w / oB from the other core to the predetermined core at a predetermined wavelength in a state where the optical fiber is bent with a curvature radius of 30 mm to 200 cm is ⁇ 20 dB or less.
  • Crosstalk from another core to a given core at a given wavelength in a state where the fiber is bent at a given radius of curvature R b [mm] of 90 mm or less with a given radius of curvature R b [mm] is XT w / oB 2 times or less, and more preferably 1.26 times or less.
  • XT w / oB is preferably measured in a state where the almost entire length of the optical fiber is in the range of the curvature radius of 30 mm to 200 cm, and the upper limit of the radius of curvature in the measurement is when XT w / oB is smaller.
  • 100 cm and more preferably, 50 cm is more preferably, more preferably 30 cm, more preferably 20 cm, 10 cm and most preferably, better smaller.
  • each modulation method and Q-Penality (dB) in each graph is 0.1 dB in the modulation method OOK in the graph G1310, 1 dB in the modulation method PDM-QPSK in the graph G1320, and 1 dB in the graph G1330.
  • the modulation system PDM-16QAM is 0.5 dB.
  • FIG. 14 plots the cases of ⁇ 17 dB, ⁇ 27 dB, and ⁇ 40 dB as the maximum allowable XT total . In each case, when XT b increases, the XT total suddenly starts to increase. I understand.
  • XT b and max90 deg in Formula (14) and Formula (15) are desirably 10 ⁇ 3 or less, and 10 ⁇ 4 or less and 10 ⁇ 5 or less. It is even more desirable to be small.
  • FIGS. 15A to 15D show examples of a cross section perpendicular to an axis extending in the longitudinal direction of an optical fiber preferably used in the present embodiment.
  • a plurality of cores 511 having the same core structure are covered with a cladding 512 having a lower refractive index than the core 511.
  • it is preferable that the outer side of the cladding 512 is covered with a coating 513.
  • one core 511 is arranged at the center of the optical fiber and six around the core, and the distance between the cores is equal.
  • the optical fiber 502 of FIG. 15B four cores 511 are arranged in a row, and these two sets are separated and arranged so as to be parallel to each other.
  • the optical fiber 503 of FIG. 15C eight cores 511 are arranged at equal intervals on a predetermined circumference.
  • an optical fiber 504 in FIG. 15D is obtained by forming a cross section of the clad 512 into a substantially rectangular shape so that the four cores 511 of the optical fiber 502 in FIG.
  • the refractive index of the coating 513 is preferably higher than the refractive index of the cladding 512 and more preferably higher than the refractive index of the core 511 in order to suppress the propagation of the cladding mode. .
  • the refractive index of the coating 513 is the refractive index of the core 511. Preferably it is lower than the rate.
  • the number and arrangement of the cores are not limited to the examples shown in FIGS. 15A to 15D.
  • the core and the clad glass or resin is preferable, and pure silica glass or quartz glass mixed with an additive is more preferable.
  • resin, carbon, and metal are suitable as the constituent material of the coating.
  • the coating may be composed of a plurality of layers made of different materials.
  • the fiber length is 10 km or less, the above-described effect can be effectively achieved.
  • short-distance transmission applications high performance computing and data center transmission
  • the cross-talk increase ratio (XT w / oB + XT b ) / XT w / oB even when a small meaning in the total fiber length for long, short, fiber length is crosstalk increase ratio at 1km below
  • the crosstalk increase ratio is suppressed at 100 m or less, and more preferably, the crosstalk increase ratio is suppressed at 10 m or less.
  • the minimum value D of the center-to-center distance between adjacent cores in the optical fiber is preferably 15 to 60 ⁇ m, but the upper limit is 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, and the smaller one is called miniaturization. Preferred in terms.
  • the loss at the curvature radius Rb of the higher-order spatial mode than the predetermined spatial mode of the core is the curvature radius of the predetermined spatial mode. It is preferably greater than the loss at Rb by 19.3 dB or more per 90 degrees. Further, the loss at a curvature radius of 140 mm of a higher order spatial mode than the predetermined spatial mode of the core is 1 dB / m or more, and the loss at a curvature radius of 140 mm of the predetermined spatial mode is 0.1 dB / m or less. It is preferable. Furthermore, the predetermined spatial mode is preferably a higher-order spatial mode other than the base mode.
  • the predetermined spatial mode is a fundamental mode
  • the mode field diameter of the fundamental mode at a predetermined wavelength is 5.6 ⁇ m to 15.7 ⁇ m (more preferably 7.9 ⁇ m or more). it can.
  • the predetermined wavelength belongs to a predetermined wavelength band, for example, 1.26 ⁇ m to 1.625 ⁇ m, general optical communication is possible.
  • the predetermined wavelength is 1.31 ⁇ m and the cable cutoff wavelength of the core is 1.29 ⁇ m or less, it can be applied to the O band.
  • the predetermined wavelength is 1.49 ⁇ m and the cable cut-off wavelength of the core is 1.46 ⁇ m or less
  • the predetermined wavelength is 1.55 ⁇ m and the cable cutoff wavelength of the core is 1.53 ⁇ m or less, it can be applied to the C band.
  • FIGS. 15A to 15D is a part of an example of a cross section perpendicular to the axis extending in the longitudinal direction of the optical fiber, and the cross-sectional shape of the optical fiber is shown in FIG.
  • the shape is not limited to that shown in FIG.
  • This optical waveguide is used in the optical transmission link 2 shown in FIG.
  • FIG. 16A is a perspective view illustrating the configuration of the optical waveguide 18, and
  • FIG. 16B is a diagram illustrating the first flat surface 18A (first surface) and the second surface where the core of the optical waveguide is exposed to the outside. It is a figure explaining the plane 18B (2nd surface).
  • a plurality of cores 181 having the same core structure are covered with a clad 182 having a lower refractive index than the core 181.
  • the clad 182 may be covered with a coating.
  • Light can enter and exit the core 181 from the first plane 18 ⁇ / b> A and the second plane 18 ⁇ / b> B of the optical waveguide 18.
  • the core 181 has a bent portion C3 having a very small radius of curvature (10 mm or less).
  • FIG. 17A shows an example in which the angle formed by the first plane 18A and the second plane 18B is larger than 90 degrees
  • FIG. 17B shows the first plane 18A and the second plane.
  • the angle formed by 18B is smaller than 90 degrees.
  • the plurality of cores 181 are arranged in parallel at the bent portion C3 and bent 58 to 90 degrees. That is, the angle 180A of the bending complementary angle of the bent portion C in FIGS. 17A and 17B is preferably 58 to 90 degrees, and more preferably 74 to 90 degrees.
  • the angle 181A formed by the first plane 18A and the core 181 and the angle 181B formed by the second plane 18B and the core 181 are right angles, respectively.
  • the acute angle is preferably 74 degrees or more, and more preferably 81 degrees to 83 degrees.
  • the number of cores and the core arrangement are appropriately changed according to the optical fiber, and are not limited to the examples shown in FIGS. 16 (A) to 16 (B) and FIGS. 17 (A) to 17 (B). .
  • the arrangement of the cores and the core diameter may be different between the first plane 18A and the second plane 18B.
  • glass or resin is preferable, and pure silica glass or quartz glass mixed with an additive is more preferable.
  • the height of the core of the optical waveguide that is, the height from the lowermost core in 18A to 18B, according to the radius of curvature of the core.
  • the height of the core of the optical waveguide with respect to the radius of curvature of the bent portion of the core is 10 mm or less for 7 mm or less, 9 mm or less for 6 mm or less, 9 mm or less for 5 mm or less, preferably 8 mm or less, for 4 mm or less, respectively. It is preferably 6 mm or less for 7 mm or less, 3 mm or less, 5 mm or less for 2 mm or less, or 4 mm or less for 1 mm or less.
  • Equation (14) or Equation (15) holds.
  • R b is desirably 7 mm or less, 6 mm or less, 5 mm or less, 4 mm or less, 3 mm or less, 2 mm or less, or 1 mm or less.
  • transmission loss and bending loss due to scattering or absorption in the optical waveguide cannot be distinguished, but insertion loss of the optical waveguide can be confirmed.
  • R b is desirably 7 mm or less, 6 mm or less, 5 mm or less, 4 mm or less, 3 mm or less, 2 mm or less, 1 mm or less and a small radius of curvature. Also, this time preferably bending supplementary Considering that 90 degrees or less, as in the case of the optical fiber of the present invention, at least XT b, it max90deg is 10 -3 preferably 10 -4 It is more desirable that it is 10 ⁇ 5 or less.
  • the optical waveguide 18 transmits 10% or more of ultraviolet rays so that an ultraviolet curing adhesive can be used when the optical waveguide 18 is bonded to the SPC 14 and the optical fiber 20 as shown in FIG. Is preferred. Further, it is preferable that the optical waveguide 18 has a bent portion C3 having an extremely small radius of curvature (10 mm or less) but has a crosstalk of ⁇ 20 dB (0.01) or less.
  • the number of cores of the optical fiber and the optical waveguide of the present invention is desirably an even number. Furthermore, from the viewpoint of improving the core density (the number of cores per cross-sectional area), the number of cores is desirably four or more, and each core is desirably disposed on a hexagonal lattice. In addition, considering that light is branched from all shared light sources to all cores, it is desirable that the number of cores is a power of two. Further, considering the connectivity with the optical input / output circuit of the SPC, it is desirable that the core is disposed on a rectangular lattice. Further, when the balance between the core density and the connectivity to the SPC is balanced, it is desirable that the cores are arranged at equal intervals on the same circle.
  • the insertion loss of a higher-order spatial mode than the predetermined spatial mode is 19.3 dB or more larger than the insertion loss of the predetermined spatial mode.
  • the mode field diameter of the core fundamental mode at a predetermined wavelength is preferably 5.6 ⁇ m to 15.7 ⁇ m, and more preferably 7.9 ⁇ m or more.
  • the predetermined wavelength is preferably one wavelength of 1.26 ⁇ m to 1.625 ⁇ m.
  • the core peripheral structure of the optical fiber and the optical waveguide according to the present embodiment is desirably a matched clad type in which a clad having a constant refractive index is provided around the core, and a trench layer having a lower refractive index than the clad is provided in the clad portion around the core.
  • the provided trench assist type is more desirable.
  • the trench assist type may include an inner cladding layer having a refractive index lower than that of the core and higher than that of the trench layer between the core trench layer and the core.
  • the optical fiber and the optical waveguide core 190 have a refractive index higher than that of the clad 193 and a plurality of core constituent cores (sub-cores) 191 having the same core structure,
  • a clad (subclad) 192 constituting a core 190 having a refractive index lower than that of the sub-core 191 is provided, and the number of spatial modes of the core 190 is preferably at least the number of the sub-cores 191.
  • Adjacent subcores 191 may or may not be in contact.
  • the refractive index of the sub-cladding 192 may or may not be equal to the refractive index of the cladding 193.
  • the crosstalk between the adjacent sub-cores 191 in the core 190 is preferably -10 dB or more, and the same on the output side when light is incident on only one sub-core. More preferably, the difference in the average power of light between all sub-cores in the core is within 1 dB.
  • the crosstalk between the sub-cores is preferably 10 dB or more and more preferably 20 dB or more than the crosstalk between the cores.
  • the bending loss is a decrease in the intensity of light in one core due to leakage of light guided through the core into the clad, but it is generally constant when measuring the bending loss of an optical fiber.
  • the measurement is performed with the radius of curvature of 1 mm, the light once leaked from the core to the clad is reflected at the clad-coating interface or the coating-air interface and returned to the core without leaking into the clad.
  • Interference occurs between the light that has been guided through and the light that has once leaked, returned by reflection, and recombined with the core, and the actual observed bending loss is greater than the original bending loss of the core itself. May become smaller or smaller (a value oscillates with a change in wavelength).
  • the wavelength dependence of the bending loss in an actual fiber is measured, the wavelength dependence of the bending loss is fitted with an exponential curve, and the value at a predetermined wavelength of the exponential curve is obtained at a predetermined wavelength.
  • it is desirable to use it as a bending loss in the present invention in which the influence of the interference is eliminated.
  • fitting is performed with a straight line with respect to the wavelength dependence of the logarithm of the bending loss, and the bending loss is obtained from the value at the predetermined wavelength of the straight line as the logarithm of the bending loss. Therefore, it is desirable to use it as a bending loss in the present invention in which the influence of the interference is eliminated.
  • the optical fiber cladding is made of quartz glass
  • the curvature radius dependence of the cumulative fracture probability of the optical fiber 10 years after the bending of two 90 degree bends (that is, 0.5 turn) is applied to the optical fiber is the level of several cladding diameters.
  • the graphs 1910 to 1960 show the dependency of the cladding diameter on the radius of curvature of the optical fiber.
  • the cladding diameter of each graph is 125 ⁇ m in the graph 1910, 150 ⁇ m in the graph 1920, 175 ⁇ m in the graph 1930, and 175 ⁇ m in the graph 1940, respectively.
  • graph 1950 shows 225 ⁇ m
  • graph 1960 shows 250 ⁇ m.
  • An optical fiber tends to have a cladding diameter larger than 125 ⁇ m as a larger number of cores are built in the cladding. As the number of cores increases, the cladding diameter increases and the radius of curvature must be increased in order to reduce the fracture probability.
  • the radius of curvature at which the cladding diameter and the cumulative fracture probability deteriorate rapidly is 5 mm or less for a cladding diameter of 150 ⁇ m, 6 mm or less for a cladding diameter of 175 ⁇ m, 7 mm or less for a cladding diameter of 200 ⁇ m, 8 mm or less for a cladding diameter of 225 ⁇ m, 9 mm or less for a cladding diameter of 250 ⁇ m, It becomes.
  • the optical fiber is broken by bending because of stress applied to the glass by bending.
  • heat treatment is performed when the optical fiber is bent, and stress distortion caused by the bending is performed, so that the optical fiber can be hardly broken.
  • FIG. 19 shows a state where heat treatment is not performed.
  • the heat-treated optical fiber is expected to relieve the bending stress even under minimal bending, so the problem of fracture life is considered to be considerably reduced.
  • the optical fiber of the present invention is an optical fiber having a bent portion that is bent by 58 degrees or more, In the bent portion, the heat treatment is applied to relieve stress strain generated inside the fiber by bending, and the bent portion has the predetermined radius of curvature R even when no external stress is applied.
  • B is bent at 58 degrees or more with a small diameter of 10 mm or less, and the problem of the probability of fracture is small even in this state.
  • the bending angle is not limited to the above, and the lower limit bending angle may be 74 degrees or more and 81 degrees or more.
  • the bending angle is preferably a right angle as described in paragraphs “0022” to “0025”. However, from the viewpoint of suppressing the reflected light at the end face from entering the core again, it is an acute angle of 74. It is preferably at least 80 °, more preferably from 81 ° to 83 °.
  • an optical fiber according to the second embodiment is an optical fiber in which a plurality of cores having the same core structure are covered with a clad having a lower refractive index than the core,
  • D is a value in the range of 15 ⁇ m to 60 ⁇ m
  • the crosstalk XT w / oB from the other core to the predetermined core at a predetermined wavelength in a state where the optical fiber is not bent with a curvature radius of less than 30 mm is ⁇ 20 dB (0.01 )
  • the crosstalk from the other core to the predetermined core at the predetermined wavelength in a state where the bending of the predetermined curvature radius R b [mm] of 7 mm or less is applied to the optical fiber at 90 degrees is XT w / Less than twice oB .
  • the optical fiber includes a trench layer having a relative refractive index difference of ⁇ 0.1% or less between the core and the cladding.
  • the optical fiber according to the second embodiment is an optical fiber in which a plurality of cores having the same core structure are covered with a clad having a lower refractive index than the core, Between the core and the clad, no layer having a relative refractive index difference of ⁇ 0.1% or less with respect to the clad is provided,
  • the minimum value of the distance between the centers of adjacent cores, D [ ⁇ m] is a value in the range of 15 ⁇ m to 60 ⁇ m
  • the crosstalk XT w / oB from the other core to the predetermined core at a predetermined wavelength in a state where the optical fiber is not bent with a curvature radius of less than 30 mm is ⁇ 20 dB (0.01 )
  • the optical fiber according to the second embodiment is an optical fiber in which a plurality of cores having the same core structure are covered with a clad having a lower refractive index than the core, Between the core and the cladding, a trench layer having a relative refractive index difference of ⁇ 0.1% or less with respect to the cladding is provided,
  • the minimum value of the distance between the centers of adjacent cores, D [ ⁇ m] is a value in the range of 15 ⁇ m to 60 ⁇ m
  • the crosstalk XT w / oB from the other core to the predetermined core at a predetermined wavelength in a state where the optical fiber is not bent with a curvature radius of less than 30 mm is ⁇ 20 dB (0.01 )
  • a bending loss ⁇ 90 deg per 90 degrees of a predetermined core at a predetermined wavelength in a state where a bending of a predetermined curvature radius R b [mm] of 7 mm or less is applied to the optical fiber at
  • the optical fiber has an inner cladding between the core and the trench layer, having a refractive index lower than that of the core and higher than that of the trench layer. Having a layer.
  • the fiber length of the optical fiber is 10 km or less.
  • the optical fiber according to the second embodiment is an optical fiber in which a plurality of cores having the same core structure are covered with a clad having a lower refractive index than the core, Between the core and the clad, no layer having a relative refractive index difference of ⁇ 0.1% or less with respect to the clad is provided,
  • the minimum value of the distance between the centers of adjacent cores, D [ ⁇ m] is a value in the range of 15 ⁇ m to 60 ⁇ m
  • the crosstalk XT w / oB from the other core to the predetermined core at a predetermined wavelength in a state where the optical fiber is not bent with a curvature radius of less than 30 mm is ⁇ 20 dB (0.01 )
  • a bending loss ⁇ 90 deg per 90 degrees of a predetermined core at a predetermined wavelength in a state where a bending of a predetermined curvature radius R b [mm] of 7 mm or less is applied to the optical fiber at 90 degrees
  • the optical fiber according to the second embodiment includes an optical fiber in which a plurality of cores having the same core structure are covered with a clad having a lower refractive index than the core, and the clad is covered with an integral coating.
  • the minimum value of the distance between the centers of adjacent cores, D [ ⁇ m], is a value in the range of 15 ⁇ m to 60 ⁇ m
  • the crosstalk XT w / oB from the other core to the predetermined core at a predetermined wavelength in a state where the optical fiber is not bent with a curvature radius of less than 30 mm is ⁇ 20 dB (0.01 )
  • the bending loss ⁇ 90 deg per 90 degrees of a predetermined core at a predetermined wavelength in a state where bending of a predetermined curvature radius R b [mm] of 4 mm or less is applied to the optical fiber at 90 degrees is as follows: Is equal to or less than the value indicated by Equation (27),
  • the difference between the cores of a plurality of identical core structures with a bending loss ⁇ 90 deg is 1 dB or less
  • the optical fiber has an inner cladding layer having a refractive index lower than that of the core and higher than that of the trench layer between the core and the trench layer. .
  • the loss at the radius of curvature Rb of the higher-order spatial mode than the predetermined spatial mode of the core is predetermined. More than 19.3 dB per 90 degrees is larger than the loss at the radius of curvature Rb of the spatial mode.
  • a loss at a curvature radius of 140 mm in a spatial mode higher than a predetermined spatial mode of the core is 1 dB / m That's it, The loss at a curvature radius of 140 mm in a predetermined spatial mode is 0.1 dB / m or less.
  • the predetermined spatial mode is a higher-order spatial mode other than the base mode.
  • the core includes a plurality of sub-cores having a refractive index higher than that of the cladding, and a sub-cladding having a refractive index lower than that of the sub-core.
  • the plurality of sub-cores all have the same core structure,
  • the number of core spatial modes is at least the number of sub-cores,
  • the crosstalk between adjacent sub-cores is ⁇ 10 dB or more.
  • the predetermined spatial mode is a base mode, The mode field diameter of the predetermined spatial mode at the predetermined wavelength is 5.6 ⁇ m to 15.7 ⁇ m.
  • the predetermined wavelength is any one of 1.26 ⁇ m to 1.625 ⁇ m.
  • the predetermined wavelength is 1.31 ⁇ m, The cable cutoff wavelength of the core is 1.29 ⁇ m or less.
  • the predetermined wavelength is 1.49 ⁇ m, The cable cutoff wavelength of the core is 1.46 ⁇ m or less.
  • an optical fiber according to the second embodiment is an optical fiber in which a plurality of cores having the same core structure are covered with a clad having a lower refractive index than the core, and the clad is covered with an integral coating.
  • a trench layer having a relative refractive index difference of ⁇ 0.1% or less with respect to the cladding is provided,
  • the minimum value of the distance between the centers of adjacent cores, D [ ⁇ m], is a value in the range of 15 ⁇ m to 60 ⁇ m
  • Crosstalk between adjacent cores at a predetermined wavelength at a center distance of D is ⁇ 20 dB (0.01) or less
  • the cable cut wavelength of the core is 1.29 ⁇ m or less
  • the mode field diameter at the core wavelength of 1.49 ⁇ m is 5.6 ⁇ m to 15.7 ⁇ m
  • the bending loss ⁇ 90 deg per 90 degrees of a predetermined core at a predetermined wavelength in a state where bending of a predetermined curvature radius R b [mm] of 4 mm or less is applied to the optical fiber at 90 degrees is as follows: Is equal to or less than the value indicated by Equation (28),
  • Equation (28) The difference between the cores of a plurality of identical core structures with a
  • the optical fiber includes an inner cladding layer having a refractive index lower than that of the core and higher than that of the trench layer between the core and the trench layer.
  • the predetermined curvature radius R b is 5 mm or less.
  • the optical fiber is an optical fiber having a bent portion that is bent by 58 degrees or more, In the bent part, the stress generated inside the fiber by bending is relaxed, Even when there is no external stress, the bent portion is bent by 58 degrees or more with the minimum radius of curvature being a predetermined radius of curvature Rb .
  • the twenty-third configuration relates to an optical fiber transmission system, and in an optical fiber transmission system including a transmitter, a receiver, and a transmission path, at least one of the first to twenty-second configurations is used as a transmission path.
  • the transmitter and the receiver each include a waveguide chip capable of inputting and outputting light, and a housing containing the waveguide chip.
  • the light incident / exiting the waveguide chip is performed at an angle of 74 to 90 degrees from the chip surface,
  • the optical fiber is optically connected to the waveguide chip at an angle of 74 to 90 degrees with a bend having a radius of curvature R b [mm].
  • the twenty-fourth configuration relates to an optical waveguide, and the optical waveguide is an optical waveguide in which a plurality of cores having the same core structure are covered with a clad having a refractive index lower than that of the core,
  • the core has a bent portion with a minimum curvature radius of 10 mm or less, Due to the bent part, the central axis direction of the core is bent in the range of 58 degrees to 90 degrees, With at least two planes that allow light to enter and exit the core, with the bent part in between,
  • the height of the optical waveguide when one of the planes is the bottom is 13 mm or less,
  • the minimum value D [ ⁇ m] of the distance between the centers of adjacent cores is a value in the range of 15 ⁇ m to 60 ⁇ m,
  • the crosstalk between adjacent cores with a center distance of D at a predetermined wavelength is ⁇ 20 dB (0.01) or less.
  • the minimum radius of curvature of the core is 7 mm or less
  • the height of the optical waveguide when one of the planes is the bottom is 10 mm or less.
  • the minimum radius of curvature of the core is 5 mm or less
  • the height of the optical waveguide when any one of the planes is the bottom is 8 mm or less.
  • the optical waveguide has a relative refractive index difference of ⁇ 0 between the core and the clad with reference to the clad.
  • a trench layer of less than 1%
  • Due to the bent part the central axis direction of the core is bent 76 degrees to 90 degrees
  • the minimum curvature radius of the core is R b [mm]
  • the insertion loss at a predetermined wavelength of the core is not more than the value shown by the following formula (30)
  • the difference in insertion loss between cores of a plurality of identical core structures is 1 dB or less.
  • the optical waveguide includes an inner cladding layer having a refractive index lower than that of the core and higher than that of the trench layer between the core and the trench layer.
  • the insertion loss of a higher-order spatial mode than the predetermined spatial mode is 19.3 dB or more larger than the insertion loss of the predetermined spatial mode.
  • the predetermined spatial mode is a higher-order spatial mode other than the base mode.
  • the core includes a plurality of sub-cores having a refractive index higher than that of the cladding and a sub-cladding having a refractive index lower than that of the sub-core. Prepared, The sub-cores all have the same core structure The number of core spatial modes is at least the number of sub-cores, Within the core, the crosstalk between adjacent sub-cores is ⁇ 10 dB (0.1) or more. (33) As a thirty-third configuration applicable to at least one of the twenty-fourth to thirty-first configurations, the mode field diameter of the core base mode at a predetermined wavelength is 5.6 ⁇ m to 15.7 ⁇ m.
  • the predetermined wavelength is any one wavelength of 1.26 ⁇ m to 1.625 ⁇ m.
  • the thirty-fifth configuration relates to an optical fiber transmission system, and the optical fiber transmission system is an optical fiber transmission system including a transmitter, a receiver, and a transmission path, As a transmission line, equipped with an optical fiber,
  • the transmitter and the receiver include a waveguide chip having a function of inputting or outputting signal light, and A housing containing a waveguide chip; Incoming and outgoing signal light of the waveguide chip is performed at an angle of 74 to 90 degrees from the chip surface, In the housing, the optical fiber is optically connected to the waveguide chip via an optical waveguide having at least one of the twenty-fourth to thirty-second structures.
  • SYMBOLS 1, 2 Optical transmission link, 11 ... Optical transceiver (OT), 13 ... Housing 13, 14 ... Silicon photonics chip (SPC), 18 ... Optical waveguide, 20 ... Optical fiber (multi-core optical fiber).
  • OT Optical transceiver
  • SPC Silicon photonics chip

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 隣接するコアの組が同一コア構造を有する複数のコアを有する光導波路において、隣接コアの最小中心間距離の最小値Dは15μm~60μmであり、コアは曲率半径Rが7mm以下に固定された曲がり部を有し、曲がり部の曲げ補角が58度~90度であり、光導波路の高さが10mm以下であることにより規定され、隣接コア間のクロストークが0.01以下である。

Description

光導波路および光ファイバ伝送系
 本発明は、光導波路および光ファイバ伝送系に関し、特に、光導波路はマルチコア光ファイバ(以下、光ファイバという)、マルチコア光導波路(以下、単に光導波路という)を含む。
 ファイバ軸に沿って延在する複数のコアを共通のクラッド部中に有する光ファイバ(MCF)は、大容量の情報を伝送することができる光伝送路として期待されている。
 しかしながら、光ファイバにおいては、隣接コア間クロストーク(以下、クロストークという)等による信号の劣化が課題としてあることが知られている。特に、光ファイバに対して極めて小さい曲率半径の曲げを付与した場合に、従来知られている知見に反してクロストークが大きくなることを発見した。
 本発明は上記を鑑みてなされたものであり、小さい曲率半径で曲げを付与した場合であってもクロストークの増加が抑制された光ファイバ、光導波路、および、光ファイバ伝送系の提供を目的とする。
 上記目的を達成するため、第1の形態に係る光導波路は、隣接するコアの組が同一コア構造を有する複数のコアと、複数のコアそれぞれを覆うクラッドと、複数のコアの一方の端面が配置された第1面と、複数のコアの他方の端面が配置された第2面と、を備え、複数のコアが第1面から第2面に向かって延在している。当該光導波路において、隣接するコアの中心間距離の最小値Dは、15μm~60μmの範囲の値であり、当該導波路は、所定波長帯における所定の波長において、第1~第3条件のうち何れかの条件が満たされる。
第1条件は、
(a)当該光導波路が光ファイバ(マルチコア光ファイバ)であり、
(b)4mm以下の所定の曲率半径Rの曲げが光ファイバに対して90度付与された状態において、所定のコアの該90度当たりの曲げ損失をα90degとし、同一コア構造のコア間でのα90degの差が1dB以下であり、
(c)最小値Dの中心間距離で隣接するコア間の、30mm乃至200cmの所定の曲率半径で光ファイバが曲がった状態における、10kmのファイバ長での仮想クロストーク(リニア値)が、0.01以下であり、かつ、
(d)XTw/oBを30mm乃至200cmの所定の曲率半径で光ファイバが曲がった状態における10km以下の所定のファイバ長における実測のクロストーク(リニア値)とするとき、曲げ損失α90degが以下の数式(1)で示された値以下であるか、または、コア周辺のクラッド部分が、クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を有するトレンチアシスト型である場合の曲げ損失α90degが以下の数式(2)で示された値以下であることにより規定される。ここで、「仮想クロストーク」は、あるファイバ長の光ファイバにおけるクロストークを測定し、クロストーク(リニア値)はファイバ長に比例することを利用して、この測定値を所定のファイバ長での値に換算したときのリニア値を意味する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
第2条件は、
(a)第1条件において、「ファイバ長を考慮しない場合」として、数式(1)および数式(2)は、それぞれ、以下の数式(3)および数式(4)として規定される。ここでは、上記の「ファイバ長を考慮しない場合」は、ファイバ長が不明な場合、または、ファイバ長が数十m以下の非常に短い場合を想定している。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
第3条件は、
(a)コアが、曲率半径Rが7mm以下に固定された曲がり部を有し、
(b)隣接コア間隔がDである隣接コア間のクロストークが0.01以下であり、
(c)曲がり部を挟むコアの直線部分により規定される角度のうち曲げ中心側の角度に対する補角に相当する曲げ補角が58度~90度であり、
(d)第1面および第2面が、コアへの光の入出射が可能な平面であり、かつ、
(e)第1および第2面の1つを底面とした際の当該光導波路の高さが10mm以下であることにより規定される。ここで、曲げ補角は、曲がり部を挟むコアの直線部分により規定される角度のうち小さい方の角度に相当する角度である。
 上記光導波路としての光ファイバによれば、極小径で光ファイバを曲げた場合にも低クロストークを維持できる。なお、本明細書において「極小径」は、光導波路では7mm以下、光ファイバでは4mm以下の曲げ半径を意味する。
 上記第1の態様に適用可能な第2の態様として、当該光導波路は、第1条件または第2条件を満たす光導波路として、コアとトレンチ層の間に、コアよりも屈折率が低く、トレンチ層よりも屈折率が高い、内クラッド層を有してもよい。また、上記第1および第2の態様のうち少なくとも何れかの態様に適用可能な第3の態様として、第1条件または第2条件を満たす当該光導波路において、コアの空間モードは基底モードであり、所定の波長における所定の空間モードのモードフィールド径は5.6μm~15.7μmであってもよい。上記第1~第3の態様のうち少なくとも何れかの態様に適用可能な第4の態様として、第1条件または第2条件を満たす当該光導波路において、コアの空間モードはマルチモードであってもよい。
 上記第1~第4の態様のうち少なくとも何れかの態様に適用可能な第5の態様として、コアは、複数のサブコアと、サブコアより屈折率の低いサブクラッドとを備えてもよい。この第5の態様において、複数のサブコアそれぞれは同一の屈折率プロファイル構造を有し、コアの空間モード数は少なくとも前記複数のサブコアの個数以上であり、コアの内部において、隣接するサブコアの間のクロストークは0.1以上であるのが好ましい。
 上記第1~第5の態様のうち少なくとも何れかの態様に適用可能な第6の態様として、第1条件または第2条件を満たす当該光導波路において、所定波長帯は1.26μm~1.625μmであるのが好ましい。なお、このような所定波長帯は、当該光導波路に適用可能な通常の石英ガラスファイバで用いる通信波長帯を想定している。また、上記第1~第6のうち少なくとも何れかの態様に適用可能な第7の態様として、第1条件または第2条件を満たす当該光導波路において、コアのケーブルカットオフ波長は、Oバンドにおける当該光導波路の使用を想定した1.29μm以下、Sバンドにおける当該光導波路の使用を想定した1.46μm以下、Cバンドにおける当該光導波路の使用を想定した1.53μm以下の何れかであるのが好ましい。
 上記第1~第7の態様のうち少なくとも何れかの態様に適用可能な第8の態様として、第1条件または第2条件を満たす当該光導波路において、コアは、1.29μm以下のケーブルカットオフ波長と、波長1.31μmにおいて8.0μm~10.1μmのモードフィールド径を有するとともに、1.49μmおよび1.55μmの何れかの波長において、以下の第4条件~第7条件のうち何れかの条件が満たされるのが好ましい。この構成は、シングルモード動作で光インタコネクトシステム(光インコネ)に使う場合に、各コアの満たすべき特性を示している。
第4条件は、
4mmのRでの曲げ損失α90degが0.139[dB/90度]以下であるか、または、コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合に4mmのRでの曲げ損失α90degが0.288[dB/90度]以下であることにより規定される。
第5条件は、
3mmのRでの曲げ損失α90degが0.120[dB/90度]以下であるか、または、コアとクラッドの間にクラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合の、3mmのRでの曲げ損失α90degが0.250[dB/90度]以下であることにより規定される。
第6条件は、
2mmのRでの曲げ損失α90degが0.098[dB/90度]以下であるか、または、コアとクラッドの間にクラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合の、2mmのRでの曲げ損失α90degが0.204[dB/90度]以下であることにより規定される。
第7条件は、
1mmのRでの曲げ損失α90degが0.069[dB/90度]以下であるか、または、コアとクラッドの間にクラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合の、1mmのRでの曲げ損失α90degが0.144[dB/90度]以下であることにより規定される。
 上記第1~第8の態様のうち少なくとも何れかの態様に適用可能な第9の態様として、第1条件または第2条件を満たす当該光導波路において、コアのケーブルカットオフ波長は、1.26μm以下であり、波長1.31μmにおけるコアのモードフィールド径は、8.0μm~10.1μmであり、波長1.49μmにおける、4mmのRでの曲げ損失α90degは、0.139[dB/90度]以下であるのが好ましく、更に、コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.2%以下となるトレンチ層が設けられ、かつ、クラッドを基準としたコアの比屈折率が0.24%~0.35%である場合に、波長1.49μmにおける、4mmのRでの曲げ損失α90degは、0.288[dB/90度]以下であるのが好ましい。
 上記第1~第9の態様のうち少なくとも何れかの態様に適用可能な第10の態様として、当該光導波路は光ファイバであってもよい。この場合、当該光ファイバは、曲げ補角が、58度以上90度以下となるように曲がっている曲がり部を有し、曲がり部において、曲げによって当該光ファイバの内部に生じる応力歪みが熱処理加工で緩和されており、曲がり部が、外部からの応力が無いときでもRが維持された状態で、曲げ補角で曲げられている。
 第11の態様に係る光ファイバ伝送系は、送信器、受信器、および、上記第1~第10の態様のうち少なくとも何れかの態様に係る光導波路としての光ファイバを備える。この第11の態様に係る光ファイバ伝送系において、送信器および受信器のそれぞれは、光の入出力が可能な導波路チップと、導波路チップを内蔵する筐体とを備える。送信器および受信器のそれぞれは、導波路チップの表面と光ファイバのなす鋭角の角度が74~90度となるよう、光ファイバと光学的に接続される。さらに、光ファイバは、筐体内においてRの曲げが付与されている。
 上記第1~第10の態様のうち少なくとも何れかの態様に適用可能な第12の態様として、第3条件を満たす当該光導波路は、当該光導波路の高さを第1面または第2面の何れかを底面としたときの他の面における低い光導波路の高さとしたとき、コアのRが5mm以下かつ光導波路の高さが8mm以下である第1構成、または、コアの前記Rが3mm以下かつ前記光導波路の前記高さが6mm以下である第2構成、の何れかを有するのが好ましい。
 上記第1~第10、第12の態様のうち少なくとも何れかの態様に適用可能な第13の態様として、第3条件を満たす当該光導波路において、コアの所定の波長における挿入損失は、複数のコア間での差が1dB以下であり、挿入損失は、以下の数式(5)で示された値以下であるか、または、コア周辺のクラッド部分が、クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備えるトレンチアシスト型である場合の挿入損失が、以下の数式(6)で示された値以下であるのが好ましい。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 上記第1~第10、第12~第13の態様のうち少なくとも何れかの態様に適用可能な第14の態様として、当該光導波路は、コアとトレンチ層の間に、コアよりも屈折率が低く、トレンチ層よりも屈折率が高い、内クラッド層を有してもよい。
 上記第1~第10、第12~第14の少なくとも何れかの態様に適用可能な第15の態様として、第3条件を満たす当該光導波路において、所定波長帯は1.26μm~1.625μmであり、かつ、所定の波長におけるコアの基底モードのモードフィールド径は5.6μm~15.7μmであるのが好ましい。
 第16の態様に係る光ファイバ伝送系は、送信器、受信器、および伝送路を備え、伝送路として、第1条件または第2条件を満たす上記第1~第10、第12~第15の態様のうち少なくとも何れかの態様に係る光ファイバを備える。送信器および受信器のそれぞれは、信号光の入力または出力の機能を備えた導波路チップと、導波路チップを内蔵する筐体とを備える。筐体内において、光ファイバは、上記第1~第10、第12~第15のうち少なくとも何れかの態様に係る光導波路であって第3条件を満たす光導波路を介して、前記導波路チップと光学的に接続されている。送信器および受信器のそれぞれにおいて、導波路チップの表面と筐体内の光導波路のコアのなす鋭角の角度は、74~90度に設定されている。
 本実施形態によれば、小さい曲率半径で曲げを付与した場合であってもクロストークの増加が抑制された光ファイバ、光導波路、および、光ファイバ伝送系が提供される。
は、実施形態に係る光ファイバ伝送系を含んで構成される光伝送リンクの第1の構成例を説明する図である。 は、実施形態に係る光ファイバ伝送系を含んで構成される光伝送リンクの第2の構成例を説明する図である。 は、互いに異なる種類のコアが隣接する場合のクロストークと光ファイバの曲率半径との関係(図3(A))と、互いに同一コア構造を有するコアが隣接する場合のクロストークと光ファイバの曲率半径との関係(図3(B))を示す図である。 は、コア周辺のクラッド部分がマッチドクラッド型である構成を説明する図である。 は、コア周辺のクラッド部分がトレンチアシスト型である第1の構成を説明する図である。 は、コア周辺のクラッド部分がトレンチアシスト型である第2の構成を説明する図である。 は、第1実施形態について、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型である複数のコアを備えた光ファイバにおいて、曲げ損失係数αと曲げ損失起因のクロストーク増加量XTとを測定し、その関係を求めた結果を示す図である。 は、第1実施形態について、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型であるコア、または、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型であるコアのコア間隔Dと曲げ損失起因のクロストーク増加に関する係数γとの関係を示す図である。 は、第2実施形態について、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型である複数のコアを備えた光ファイバにおいて、曲げ損失係数αと曲げ損失起因のクロストーク増加量XTとを測定し、その関係を求めた結果を示す図である。 は、第2実施形態について、同一構造を有するとともに周辺のクラッド部分がトレンチアシスト型である複数のコアを備えた光ファイバにおいて、曲げ損失係数αと曲げ起因のクロストーク増加量XTとを測定し、これらの関係を求めた結果を示す図である。 は、第2実施形態について、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型であるコア、または、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型であるコアのコア間隔Dと曲げ損失起因のクロストーク増加に関する係数γとの関係を示す図である。 は、極小径曲げを付与しない状態でのクロストークXTw/oBに対する、極小曲げに起因するクロストーク増加量XTの比率を示すXT/XTw/oBと、極小径曲げを付与した際のクロストーク増加比率(XTw/oB+XT)/XTw/oBと、の関係を示す図である。 は、伝送品質Q値のクロストーク起因のペナルティとして許容可能な値をいくつか変更した場合における、光伝送リンク全長での総クロストークと、クロストーク影響下のビットエラー率の関係を示す図である。 は、極めて小さな曲率半径で90度に曲げた箇所が2つある構成の場合に、90度に曲げた箇所以外でクロストークが、許容可能な最大XTtotalに対して3dBのマージンを持っている際の、90度に曲げた箇所1つあたりの曲げによるクロストーク増加量XTとXTtotalとの関係を示す図である。 は、光ファイバの長手方向に伸びる軸に垂直な断面の例を示す図である。 は、本実施形態に係る光導波路の構成の例を説明する図である。 は、本実施形態に係る光導波路の構成の例を説明する図である。 は、本実施形態に係る光ファイバと光導波路のコアの構成の変形例を説明する図である。 は、90度曲げ2つ分の曲がりが光ファイバに付与されて10年後の光ファイバの累積破断確率の曲率半径依存性について、いくつかのクラッド径の水準について示した図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、本明細書で使用される主なパラメータを以下の表1に示す。
Figure JPOXMLDOC01-appb-T000013
上記「*」はリニア値であり、数式中における各クロストーク関連パラメータにはリニア値を用いる。ただし、明細書中や図中ではこれらパラメータの単位として「dB」単位を用いる場合があり、その場合は、リニア値に対応するdB値を用いたパラメータとして扱われるものとする。また、これらパラメータの計算値についても同様である。
 以下、光ファイバの第1および第2実施形態に共通の構成について説明する。図1(A)~図1(C)は、本発明の実施形態に係る光ファイバ(MCF)伝送系を含んで構成される光伝送リンクの第1の構成例を説明する図である。図1(A)に示された光伝送リンク1は、2つの光トランシーバ(OT:Optical Transceiver)11,12、OT11,12の間を接続する光ファイバ20、OT11に対して接続される電気信号線31、および、OT12に対して接続される電気信号線32を含んで構成される。OT11,12は、送信器または受信器として機能する。なお、OT11,12を接続する光ファイバ20は1本である必要はなく、コネクタ、融着、端面の突き合わせを利用して複数本の光ファイバを連結する構成としてもよい。
 OT11は、筺体13と、筺体13の内部に設けられて光の入出力を行うシリコンフォトニクスチップ(導波路チップ、SPC:Silicon Photonics Chip)14と、を含んで構成され、電気信号線31と光ファイバ20とがSPC14に対して接続される。光ファイバ20は、SPC14と接続するために極小径で曲げられた曲げ付与部C1が端部に形成され、MCF接続用部品(connection device)17によってSPC14に対して固定されている。
 また、OT12は、筺体13’と、筺体13’の内部に設けられたSPC14’と、を含んで構成され、電気信号線32と光ファイバ20とがSPC14’に対して接続される。光ファイバ20は、SPC14’と接続するために10mm以下の極小径で曲げられた曲げ付与部C2が端部に形成され、MCF接続用部品17’によってSPC14’に対して固定されている。
 このように、SPCに対して光ファイバ20を接続する場合、OT11,12を小型化するためには、筺体13(13’)の内部で光ファイバ20を、極めて小さな曲率半径でほぼ90度近く曲げる必要がある。なお、図1(B)には、光ファイバ20に、許容曲率半径Rの曲げが90度付与された状態が示されている。また、図1(C)には、Rの曲げが180度(90度曲げ2つ分)付与された状態が示されており、これは、光ファイバ20がRのマンドレルに0.5ターン巻きつけられた状態に相当する。
 図2は、本発明の実施形態に係る光ファイバ(MCF)伝送系を含んで構成される光伝送リンクの第2の構成例を説明する図である。図2に示された光伝送リンク2は、図1の光伝送リンク1と比較して、以下の点が相違する。すなわち、OT11の筺体13において、SPC14と光ファイバ20とが光導波路18によって接続されている点が光伝送リンク1との相違点である。
 OT11に設けられた光導波路18は、内部に極めて小さな曲率半径で90度曲げられた複数のコアが形成されていて、一方の端面で光ファイバ20の各コアと接続し、他方の端面でSPC14と接続する。光ファイバ20は、MCF接続部品19によって光導波路18に対して接続固定される。
 また、OT12においても同様の構成とされている。すなわち、光ファイバ20は光導波路18’に対してMCF接続用部品19’によって固定され、光導波路18’がSPC14’に対して接続している構成となっている。
 図2の光伝送リンク2では、光導波路18,18’において極小径で曲げられたコア181,181’がそれぞれ形成されている。すなわち、図2の光伝送リンク2では、光ファイバ20自体には極小径曲げが付与されていないが、光導波路18,18’内部のコア181,181’が大きく曲げられている。
 ところで、光ファイバにおけるクロストークは、光ファイバに付与される曲げ・捻れやファイバの構造、特に長手方向の変動の影響を受けることが知られている。最新の知見は、M. Koshiba, K. Saitoh, K. Takenaga, and S.
 Matsuo, “Analytical Expression of Average
Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore
Fibers,” IEEE Photon. J., vol. 4, no. 5, pp. 1987-1995,
Oct. 2012に示されている。
 上記の文献によれば、実効屈折率が等しい同一コア構造のコア間では、光ファイバの曲率半径が小さければ小さいほど、クロストークも単調に小さくなることが知られている。また、実効屈折率が互いに異なる異種構造のコア間では、光ファイバの曲率半径を小さくしていくと、一度急激にクロストークが上昇するが、そこから更に曲率半径を小さくしていくと、クロストークもまた徐々に小さくなっていくことが知られている。
 ここで、上記の関係が図3(A)および図3(B)に示されている。図3(A)は、互いに異なる種類のコアが隣接する場合のクロストークと光ファイバの曲率半径との関係を示す図であり、図3(B)は、互いに同一のコア構造を有するコアが隣接する場合のクロストークと光ファイバの曲率半径との関係を示す図である。図3(A)および図3(B)に示されたように、隣接するコアの種類が同一か否かによって差はあるものの、光ファイバを極めて小さい曲率半径で曲げた場合には、クロストークが小さくなっていくことが従来の知見から予想されていた。なお、図3(A)および図3(B)の関係は、K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo,
“Homogeneous and Heterogeneous Multi-core Fibers” IEEE Summer Topical s 2012, TuC4.4 に示されている。
 しかしながら、図7に示す通り、光ファイバを極めて小さい曲率半径で曲げた場合(すなわち、曲げ損失が増大した場合)には、上記の知見に反してクロストークが増加する現象を発明者らは発見した。そこで、上記のクロストークが増加するメカニズムについて検討した。
 極めて小さい曲率半径で光ファイバを曲げた場合のクロストークの増加は、複数のコアそれぞれが導波する空間モード間での直接の光パワーのやりとりではなく、あるコアの空間モードを伝搬する光パワーが、曲げ損失により一度クラッドモードに結合した後、クラッドモードの光パワーがさらに別のコアの空間モードに結合することにより発生すると仮定した。この仮定に基づいて新たな理論モデルを構築して検討を行ったところ、光ファイバに対して長さL[m]の区間で曲げ損失係数α[/m]の曲げが付与されている場合、同種コア間での曲げ損失起因のクロストーク増加量XTは、以下の数式(7)で表すことができることを発明者らは発見した。
Figure JPOXMLDOC01-appb-M000014
 ここで、γ[m]は、クラッド中の光パワー分布の非均一性、および、曲げ方向に対する結合されるコアの位置関係によって、クラッドモードからコアの空間モードへの光の結合効率が低下することを考慮に入れるための補正係数である。
 上記の数式(7)の妥当性について、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型である複数のコアを備えた光ファイバ、および、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型である複数のコアを備えた光ファイバのそれぞれを試作し、曲げ損失係数αと曲げ損失起因のクロストーク増加量XTの関係を調べることで確認を行った。
 ここで、周辺のクラッド部分がマッチドクラッド型であるコアは、屈折率分布が図4(A)に示された構成となっている。また、コアおよびその周辺の断面図が図4(B)に示されている。すなわち、図4(A)および図4(B)に示された構成では、コア401の周囲がコア401よりも屈折率が低い一様なクラッド402に覆われている。
 また、図5(A)には、周辺のクラッド部分がトレンチアシスト型であるコアの一例の屈折率分布が示され、図5(B)にはコアおよびその周辺の断面図が示されている。図5(A)および図5(B)に示されたトレンチアシスト型では、コア411とクラッド412の間に、クラッド412よりも屈折率の低いトレンチ層413が設けられている。図5(A)において、Δcはクラッド412基準のコア411の比屈折率差、Δdはクラッド412基準のトレンチ層413の比屈折率差、2aはコア径、2bはトレンチ層の外径を指す。
 SPCを送受信機に用いた光伝送リンクでの光通信では、波長1.31μm、1.49μm、または、1.55μmの光が主に用いられる。特に、短距離向けの光通信では、波長1.31μmと1.49μmが用いられることが多い。本実施形態に係る光導波路(光ファイバを含む)は、短距離用途では、ケーブルカットオフ波長が1.29μm以下であり且つ所定の波長が1.49μm以上であることが望ましく、通常用途では、ケーブルカットオフ波長が1.26μm以下であり且つ所定の波長が1.55μm以上であることが更に望ましい。また、その際、波長1.31μmにおけるモードフィールド径は、その典型値が8.6μm以上であり、典型値からの偏差は±0.6μm以下であることが望ましく、更に、該典型値は9.5μm以下であることが望ましい。すなわち、波長1.31μmにおけるモードフィールド径は、8.0μm~10.1μmであることが望ましい。また、所定の曲率半径Rは、接続用部品の小型化に対応し、4.0mm以下、3.5mm以下、3.0mm以下、2.5mm以下、2.0mm以下、1.5mm以下、1.0mm以下、と小さいことが望まれている。Dが十分短い15μmの場合でも、曲げ損失起因のクロストーク増加量XTを90度曲げ1回当たり0.001以下(-30dB以下)に抑えるためには、「所定の曲率半径(mm)と所定波長での90度曲げでの許容曲げ損失の最大値(dB/90度)」の関係である組合せ(曲率半径,許容曲げ損失の最大値)は、(4.0,0.139)、(3.5,0.130)、(3.0,0.120)、(2.5,0.110)、(2.0,0.098)、(1.5,0.085)、(1.0,0.069)であることが望ましい。
 また、前記コアと前記クラッドの間に、前記クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合、許容曲率半径Rに対する所定の波長でのR曲げ時での許容曲げ損失は、4.0mmに対しては0.288dB/90度、3.5mmに対しては0.270dB/90度、3.0mmに対しては0.250dB/90度、2.5.0mmに対しては0.228dB/90度、2.0mmに対しては0.204dB/90度、1.5mmに対しては0.177dB/90度、1.0mmに対しては0.144dB/90度となる。
 また、波長1.31μmにおけるモードフィールド径が8.6μmとし、ケーブルカットオフ波長が1.26μm以下とし、R=4mmの1回の90度曲げにより発生する波長1.49μmにおけるクロストーク増加量XTb,max90degが0.001以下(-30dB以下)とするためには、図5(A)に示された屈折率分布はトレンチ層を有することが望ましく、Δdは、少なくとも-0.2%以下であることが望ましく、-0.3%以下、-0.5%以下と小さいこと望ましい。曲げロスとカットオフ波長の観点からは、Δcを少なくとも0.35%以下であることが望ましく、0.3%以下、0.25%以下と小さいことが更に望ましい。ただし、Δcが小さすぎると、コアに閉じ込められた光がクラッドに漏洩することによる損失である閉じ込め損失が生じてしまう。閉じ込め損失を例えば波長1.55μmで0.01dB/km以下にするためにはΔcは0.24%以上であることが望ましい。波長1.31μmにおけるモードフィールド径が8.0μm~9.2μmとなる為には、2aは9.3μm~11.8μmであることが望ましい。特に、下記(i),(ii)のパラメータの組み合わせにおいて、モードフィールド径、曲げロス、カットオフ波長、閉じ込め損失すべての観点から特に良好な特性を実現できる。
 (i) Δc=0.28%、Δd=-0.5%、2a=10.6μm、1.95≦b/a≦2.4
  (ii)Δc=0.30%、Δd=-0.5%、2a=10.6μm、1.74≦b/a≦2.19
 次に、図6(A)には、周辺のクラッド部分がトレンチアシスト型であるコアの他の構成例の屈折率分布が示され、図6(B)には、コアおよびその周辺の断面図が示されている。図6(A)および図6(B)に示されたトレンチアシスト型は、コア411とトレンチ層413の間に、コア411よりも屈折率が低くトレンチ層413よりも屈折率の高い内側クラッド層414を備えていてもよい。図4(B)、図5(B)、図6(B)において、クラッド412周囲の境界は、クラッドの終わりを意味するものではなく、ファイバ断面中の矩形範囲を抽出して概念的に表示しているものにすぎない。
 (光ファイバの第1実施形態)
  次に、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型である複数のコアを備えた光ファイバにおいて、曲げ損失係数αと曲げ損失起因のクロストーク増加量XTとを測定し、その関係を求めた結果が図7に示されている。曲げ損失起因のクロストーク増加量XTは、十分長い光ファイバのうちの2mの区間に、曲げ損失を生じる一定の曲率半径の曲げを付与したときクロストークの、前記曲げを付与しないときとのクロストークからの増加量(リニア値)から測定した。
 従来の知見に基づけば、曲げを付与した区間ではクロストークが減少するはずである。また、曲げを付与した区間の長さは光ファイバの全長に比べて十分短いので、曲げを付与していない区間におけるクロストークは殆ど変化しないはずであるから、上記の増加量を数式(7)に示した曲げによるクロストーク増加量XTとみなすことができる。図7は両対数グラフであるため、y=cx(yは縦軸パラメータ、xは横軸パラメータ)の関係を満たす場合にグラフが直線となる。この式の両辺の対数をとると、log(y)=dlog(x)+log(c)となる。すなわち、dが直線の傾きに影響し、cが直線のy切片に影響することが分かる。この直線を示す式と図7とを見比べ、さらに上記の数式(7)に基づいて検討する。これによれば、数式(7)から、xがα、γLがcに相当し、dは2となるので、γのみを変数として数式(7)を測定値にフィッティングしたものが図7中の直線である。図7には、曲率半径および波長が互いに異なる複数水準の測定データが含まれる。しかしながら、図7に示されたように、XTとαとの関係が曲率半径や波長に関係なく数式(7)を満たし、γはコア間隔によって変化することが確認された。
 次に、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型である複数のコアを備え且つ複数の異なるコア間隔を備えた光ファイバ(MC-MCF)と、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型である複数のコアを備えた複数のコア間隔の異なる光ファイバ(TA-MCF)におけるコア間隔Dと曲げ損失起因のクロストーク増加に関する係数γとの関係が図8に示されている。図8において、グラフG810は、y=0.0453exp(-0.133x)で与えられるMC-MCF測定値の近似直線であり、グラフG820は、y=0.0146exp(-0.156x)で与えられるTA-MCF測定値の近似直線である。γは、コア間の位置関係にも依存するが、図8には各コアピッチで得られたγの最大値がプロットされている。図8の結果から、周辺のクラッド部分がマッチドクラッド型であるコアおよび周辺のクラッド部分がトレンチアシスト型であるコアの双方においてγはDが大きくなると指数関数的に減少することが確認された。具体的には、周辺のクラッド部分がマッチドクラッド型であるコアの場合には、以下の数式(8)を満たし、周辺のクラッド部分がトレンチアシスト型であるコアの場合には、以下の数式(9)を満たす。なお、γの単位は[m]であり、Dの単位は[μm]である。トレンチ層がある場合は、クラッドに漏洩した光パワーが、他のコア周辺のトレンチよりも内側には、入り込みにくくなる(コアモードとクラッドモードの電界の重なりが小さくなる)為、トレンチ層が無い場合に比べてよりも、γが小さくなると理解できる。よって、光ファイバのコアとクラッドの間にクラッドよりも屈折率の低い層があっても、その層の屈折率が十分低くない場合(例えばクラッドに対する比屈折率差が-0.1%以下でない)は、そのファイバのγは数式(8)で表されると考えられる。γが数式(9)で表される為には、トレンチ層の屈折率がクラッドに比べて十分低いことが望ましく、少なくともクラッドに対する比屈折率差で-0.1%以下であることが望ましく、-0.2%以下、-0.3%以下、-0.4%以下、-0.5%以下、-0.6%以下、-0.7%以下、と小さいほど望ましいと言える。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ここで、曲げ損失係数αに関する関係式α[/m]=(ln10/10)αb、dB[dB/m]を用いて、上記の数式(7)および数式(8)に基づいて、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型であるコアの間で生じる曲げ損失起因のクロストーク増加量を求めると、次の数式(10)になる。
Figure JPOXMLDOC01-appb-M000017
 上記の数式(7)および数式(9)に基づいて、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型であるコアの間で生じる曲げ損失起因のクロストーク増加量を求めると、次の数式(11)になる。
Figure JPOXMLDOC01-appb-M000018
 ここで、曲げによるクロストーク増加量XTの許容可能な最大値をXTb,maxとすると、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型であるコア(または、十分低い屈折率のトレンチ層を周辺のクラッド部分に有さないコア)で構成される光ファイバでは、以下の数式(12)を満たすことによりXTを許容可能な最大値XTb,max以下に抑制できることが数式(10)から求められる。
Figure JPOXMLDOC01-appb-M000019
 また、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型であるコア(即ち、十分低い屈折率のトレンチ層を周辺のクラッド部分に有するコア)で構成される光ファイバでは、以下の数式(13)を満たすことによりXTを許容可能な最大値XTb,max以下に抑制できることが数式(11)から求められる。
Figure JPOXMLDOC01-appb-M000020
 ここで、曲率半径R[mm]にてコアを90度曲げることにより発生する曲げ損失α90deg[dB/90度]は、90度曲げる場合の曲げによるクロストーク増加量XTとして許容可能な最大値をXTb,max90degとすると共に、L[m]=(π/2)(10-3)という関係式を利用すると、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型であるコア(または、十分低い屈折率のトレンチ層を周辺のクラッド部分に有さないコア)で構成される光ファイバにおいては、数式(12)に基づいてXTを最大値XTb,max90deg以下に抑制するためには、以下の数式(14)を満たす必要がある。
Figure JPOXMLDOC01-appb-M000021
 また、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型であるコア(即ち、十分低い屈折率のトレンチ層を周辺のクラッド部分に有するコア)で構成される光ファイバにおいては、数式(13)に基づいてXTを最大値XTb,max90deg以下に抑制するためには、以下の数式(15)を満たす必要がある。
Figure JPOXMLDOC01-appb-M000022
 (光ファイバの第2実施形態)
  第2実施形態では、同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型である複数のコアを備えた光ファイバにおいて、曲げ損失係数αと曲げ損失起因のクロストーク増加量XTとを測定し、その関係を求めた結果、すなわち、第1実施形態の図7に相当するグラフが図9に示されている。この第2実施形態の場合も第1実施形態と同様に、図9は両対数グラフであるため、y=cxの関係を満たす場合にグラフが直線で示される。この式の両辺の対数をとると、log(y)=dlog(x)+log(c)となる。すなわち、dが直線の傾きに影響し、cが直線の切片に影響することが分かる。この直線を示す式と図9とを見比べ、さらに上記の数式(7)に基づいて検討する。これによれば、数式(7)から、xがα、γLbがcに相当し、dは2となるので、γのみを変数として数式(7)を測定値にフィッティングしたものが図9中の直線および破線である。図9では、コア間隔が45.4μmの場合(グラフG910)と、コア間隔が91.8μmの場合(グラフG920)の2水準それぞれにおいて、曲率半径および波長が互いに異なる複数水準の測定データが含まれる。なお、グラフ910は、近似直線XT=(4.03×10-5[m])(α[/m])(L[m])を示し、グラフ920は、近似直線XT=(4.68×10-6[m])(α[/m])(L[m])を示す。しかしながら、図9に示されたように、XTとαとの関係が曲率半径や波長に関係なく数式(7)を満たし、γはコア間隔によって変化することが確認された。
 次に、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型である複数のコアを備えた光ファイバにおいて、曲げ損失係数αと曲げ損失起因のクロストーク増加量XTとを測定し、これらの関係を求めた結果が、図9と同様に図10に示されている。この光ファイバのトレンチ層は、クラッドを基準とした際の比屈折率差が-0.4%以下であり、トレンチ層内径をトレンチ層外径で割った値は、0.9以下である。図10の測定値は、コア間隔が45μmの場合(グラフG1010)と、コア間隔が51μmの場合(グラフG1020)と、の2水準のそれぞれにおいて、曲率半径および波長が互いに異なる複数水準の測定データが含まれる。なお、グラフ1010は、近似直線XT=(1.28×10-5[m])(α[/m])(L[m])を示し、グラフ1020は、近似直線XT=(7.90×10-6[m])(α[/m])(L[m])を示す。しかしながら、図10に示されたように、XTとαとの関係が曲率半径や波長に関係なく数式(7)を満たし、γはコア間隔によって変化することが確認された。この結果は、周辺のクラッド部分がマッチドクラッド型であるコアを有する、図9に示された光ファイバと同様である。
 同一コア構造を有するとともに周辺のクラッド部分がマッチドクラッド型であるコア、または、同一コア構造を有するとともに周辺のクラッド部分がトレンチアシスト型であるコアのコア間隔Dと曲げ損失起因のクロストーク増加に関する係数γとの関係が図11に示されている。なお、図11において、グラフG1110は、マッチドクラッド型光ファイバ(マッチドクラッド型MCF)の近似直線(y=cx-3)を示し、グラフG1120は、トレンチアシスト型光ファイバ(トレンチアシスト型MCF)の近似直線(y=cx-3)を示している。図11の結果から、周辺のクラッド部分がマッチドクラッド型であるコアおよび周辺のクラッド部分がトレンチアシスト型であるコアの双方においてγ∝D-3の関係を満たすことが確認された。具体的には、周辺のクラッド部分がマッチドクラッド型であるコアの場合には、以下の数式(16)を満たし、周辺のクラッド部分がトレンチアシスト型であるコアの場合には、以下の数式(17)を満たす。なお、γの単位は[m]であり、Dの単位は[μm]である。トレンチ層がある場合は、クラッドに漏洩した光パワーが、他のコア周辺のトレンチよりも内側には、入り込みにくくなる(コアモードとクラッドモードの電界の重なりが小さくなる)。クラッドに漏洩した光パワーは、トレンチ層が無い場合に比べてよりも、γが小さくなる。光ファイバのコアとクラッドの間にクラッドよりも屈折率の低い層があっても、その層の屈折率が十分低くない場合(例えばクラッドに対する比屈折率差が-0.1%以下でない)は、そのファイバのγは数式(16)で表されると考えられる。γが数式(17)で表されるようにするには、トレンチ層の屈折率は、クラッドに比べて十分低いことが望ましく、少なくともクラッドに対する比屈折率差で-0.1%以下であることが望ましく、-0.2%以下、-0.3%以下、-0.4%以下、-0.5%以下、-0.6%以下、-0.7%以下と小さいことが更に望ましいと言える。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 なお、第1実施形態に関する上記の段落「0047」~「0052」の説明は、この第2実施形態にも適用される。ただし、上記の段落「0047」~「0052」の説明をこの第2実施形態に適用する場合には、上記数式(10)は以下の数式(18)に、上記数式(11)は以下の数式(19)に、上記数式(12)は以下の数式(20)に、上記数式(13)は以下の数式(21)に、上記数式(14)は以下の数式(22)に、上記数式(15)は以下の数式(23)に、それぞれ置き換えて各段落の記載を読み替えるものとする。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
 以下は、光ファイバの第1および第2実施形態に共通の説明である。
  ここで、OTの筺体をよりコンパクトとする(すなわち、小型化する)ためには、光ファイバにおいて、Rが7mm以下で上記の数式(14)または数式(15)(同様に、数式(22)または数式(23))が成り立つことが望ましく、Rは、小さいほどよく、6mm以下で成り立つことが更に望ましく、5mm以下、4mm以下、3mm以下、2mm以下、1mm以下で成り立つことが更に望ましい。
 ここで、極小径曲げを付与しない状態でのクロストークXTw/oBに対する、極小曲げに起因するクロストーク増加量XTの比率を示すXT/XTw/oBと、極小径曲げを付与した際のクロストーク増加比率(XTw/oB+XT)/XTw/oBと、の関係が図12に示されている。図12によれば、(XTw/oB+XT)/XTw/oBの急激な上昇を避けるためには、(XTw/oB+XT)/XTw/oBは2以下(3dB以下)であることが望ましく、1.26以下(1dB以下)であることがさらに望ましい。同様の理由で、XT/XTw/oBは少なくとも1以下(0dB以下)であることが望ましく、1/4以下(-6dB以下)であることがさらに望ましい。上記の関係を満たすには、すなわち、数式(14)および数式(15)(数式(22)および数式(23)も同様)においてXTb,max90degは、XTw/oB以下であることが望ましく、XTw/oB/4以下であることがさらに望ましい。
 すなわち、光ファイバに、曲率半径30mm乃至200cmの曲げを付与した状態での、所定の波長における、所定のコアへの他のコアからのクロストークXTw/oBは、-20dB以下であり、光ファイバに、曲率半径7mm以下の所定の曲率半径R[mm]の曲げを90度付与した状態での、所定の波長における所定のコアへの他のコアからのクロストークは、XTw/oBの2倍以下であることが好ましく、1.26倍以下であることがさらに好ましい。また、XTw/oBは、光ファイバのほぼ全長が、曲率半径30mm~200cmの範囲にある状態で測定を行うのが望ましく、測定における曲率半径の上限値は、より小さなXTw/oBのときでもXTを抑圧する観点からは、100cmがさらに望ましく、50cmがさらに望ましく、30cmがさらに望ましく、20cmがさらに望ましく、10cmが最も望ましく、小さいほどよい。
 次に、図13では、オンオフ変調(OOK)、偏波多重の四位相偏移変調(PDM-QPSK)、または、偏波多重の16値直交振幅変調(PDM-16QAM)を変調方式とした場合に、伝送品質Q値のクロストーク起因のペナルティとして許容可能な値(Q-Penalty)のいくつかの水準における、光伝送リンク全長での総クロストークと、クロストーク影響下のビットエラー率の関係が示されている。すなわち、各グラフにおける各変調方式とQ-Penalty(dB)は、それぞれ、グラフG1310では、変調方式OOKで、0.1dB、グラフG1320では、変調方式PDM-QPSKで、1dB、グラフG1330では、変調方式OOKで、0.5dB、グラフG1340では、変調方式PDM-16QAMで、0.5dBである。
 図13に示された、光伝送リンク全長での総クロストークXTtotalとビットエラー率(BER)との関係から、例えば、短距離伝送に多用されるオンオフ変調(OOK)の場合に伝送品質Q値のクロストーク起因のペナルティ(Q-Penalty;Qペナルティ)を0.1dBしか認めない場合を考える。この場合、BER<10-14のエラーフリー伝送を実現するためには、XTtotalは-40dB以下(リニア値で10-4以下)である必要がある。一方、長距離伝送に多用される偏波多重の四位相偏移変調(PDM-QPSK)の場合にQペナルティを1dB認める場合には、硬判定のエラー訂正により十分エラーフリー伝送が可能となるBER<10-3を実現するためには、XTtotalは-17dB以下(リニア値で2×10-2以下)である必要がある。また、長距離伝送で将来用いられることが期待される偏波多重の16値直交振幅変調(PDM-16QAM)の場合にQペナルティを0.5dB認める場合、硬判定のエラー訂正により十分エラーフリー伝送が可能となるBER<10-3を実現するためには、XTtotalは-27dB以下(リニア値で2×10-3以下)である必要がある。
 そこで、あるコアに対する最近接コアが2つである光ファイバを用いた光伝送リンクの構成において、極めて小さな曲率半径で90度に曲げた箇所が2つある図1(A)の構成の場合に、90度に曲げた箇所以外でクロストークが、許容可能な最大XTtotalに対して3dBのマージンを持っている際の、90度に曲げた箇所1つあたりの曲げによるクロストーク増加量XTとXTtotalとの関係が図14に示されている。図14では、許容可能な最大XTtotalとして-17dB、-27dBおよび-40dBの場合についてプロットしており、それぞれの場合において、XTが大きくなっていくとあるところで突然XTtotalが上昇し始めることが分かる。XTtotalの大幅な上昇を抑え、許容可能な最大XTtotalより小さく抑えておくためには、図14より、XTtotalの許容可能な最大値とそれに対応するXTの上限値の関係が、-17dB(-20dB以下)の場合にXTがおおよそ10-3以下であり、XTtotalが-27dB(-30dB以下)の場合にXTがおおよそ10-4以下であり、XTtotalが-40dB(-43dB以下)の場合にXTがおおよそ10-5以下であることが分かる。よって、数式(14)および数式(15)(数式(22)および数式(23)も同様)におけるXTb,max90degは10-3以下であることが望ましく、10-4以下、10-5以下と小さいことがさらに望ましい。
 本実施形態に好適に用いられる光ファイバの長手方向に伸びる軸に垂直な断面の例が図15(A)~図15(D)に示されている。図15(A)~図15(D)の例は、いずれも、複数の同一コア構造のコア511が、コア511より低屈折率のクラッド512に覆われている。また、図15(A)~図15(D)の例に示されたようにクラッド512の外側が被覆513によって覆われていることが好ましい。
 なお、図15(A)の光ファイバ501は、コア511が光ファイバの中央に1つとその周辺に6つ配置され、コア間距離は等間隔となっている。図15(B)の光ファイバ502は、4つのコア511が一列に配置され、これらが離間して2セット互いに平行となるように配置されたものである。図15(C)の光ファイバ503は、8つのコア511が所定の円周上に等間隔で配置されている。さらに図15(D)の光ファイバ504は、図15(B)の光ファイバ502の4つ並んだコア511が長辺側となるようにクラッド512の断面を略長方形に形成したものである。
 上記の光ファイバ501~504においては、クラッドモードの伝搬を抑圧するために、被覆513の屈折率は、クラッド512の屈折率より高いことが好ましく、コア511の屈折率よりも高いことがさらに好ましい。また、クラッド512と被覆513との界面に近いコア511を導波する光が被覆513に結合することでコア511の伝送損失が増加しないようする観点では、被覆513の屈折率はコア511の屈折率より低いことが好ましい。なお、コアの数や配置は図15(A)~図15(D)に示された例に限られない。また、コアおよびクラッドの構成物質としては、ガラスまたは樹脂が好適であり、純粋な石英ガラスまたは添加物の混ざった石英ガラスがさらに好適である。また、被覆の構成物質としては、樹脂、炭素、金属が好適である。また、被覆は、互いに異なる材料からなる複数の層により構成されてもよい。
 また、ファイバ長が10km以下であると、上記作用は効果的に奏されるが、極小径の曲げが多く付与され得る短距離伝送の用途(ハイパフォーマンスコンピューティングやデータセンターでの伝送)において、ファイバ長が短い為にファイバ全長でのXTw/oBが小さいときでもクロストーク増加比率(XTw/oB+XT)/XTw/oBを抑える意味では、ファイバ長が1km以下でクロストーク増加比率が抑えられているとさらに好ましく、100m以下でクロストーク増加比率が抑えられているとより好ましく、10m以下でクロストーク増加比率が抑えられていると最も好ましい。
 また、上記の光ファイバにおける隣接するコアの中心間距離の最小値Dは、15~60μmであることが好ましいが、上限値は、50μm以下、40μm以下、30μm以下、と小さい方が小型化という意味では好ましい。
 なお、信号伝送に用いない高次の空間モードを遮断するという意味では、コアの所定の空間モードよりも高次の空間モードの曲率半径Rでの損失が、前記所定の空間モードの曲率半径Rでの損失よりも、90度当たり19.3dB以上大きいことが好ましい。また、コアの所定の空間モードよりも高次の空間モードの曲率半径140mmでの損失が1dB/m以上であり、所定の空間モードの曲率半径140mmでの損失が0.1dB/m以下であることが好ましい。さらに、上記の所定の空間モードは、基底モード以外の高次の空間モードであることが好ましい。
 また、所定の空間モードは基底モードであり、所定の波長における基底モードのモードフィールド径が、5.6μm~15.7μm(7.9μm以上であることがより好ましい)である態様とすることができる。上記の所定の波長が、所定の波長帯、たとえば、1.26μm~1.625μmに属する場合、一般的な光通信が可能である。具体的には、上記の所定の波長が1.31μmであり、コアのケーブルカットオフ波長は1.29μm以下である場合に、Oバンドに対して適用することができる。さらに、所定の波長が1.49μmであり、コアのケーブルカットオフ波長は1.46μm以下である場合に、Sバンドに対して適用することができる。そして、所定の波長が1.55μmであり、コアのケーブルカットオフ波長は1.53μm以下である場合に、Cバンドに対して適用することができる。
 なお、図15(A)~図15(D)に示された例は光ファイバの長手方向に伸びる軸に垂直な断面の例の一部であり、光ファイバの断面形状は図15(A)~図15(D)に示された形状に限定されない。
 次に、本実施形態に係る光導波路の構成の例が図16(A)~図16(B)および図17(A)~図17(B)に示されている。この光導波路は、図2に示された光伝送リンク2に用いられるものである。図16(A)は、光導波路18の構成を説明する斜視図であり、図16(B)は、光導波路のコアが外部に露出する第1の平面18A(第1面)および第2の平面18B(第2面)を説明する図である。
 光導波路18は、複数の同一コア構造のコア181が、コア181より低屈折率のクラッド182に覆われている。クラッド182は、被覆に覆われていてもよい。光導波路18の第1の平面18Aと第2の平面18Bからコア181への光の入出射が可能である。コア181は、極めて小さい曲率半径(10mm以下)の曲がり部C3を有している。
 曲がり部について、図17(A)および図17(B)を用いてさらに説明する。図17(A)は、第1の平面18Aと第2の平面18Bとのなす角が90度より大きい場合の例であり、図17(B)は、第1の平面18Aと第2の平面18Bとのなす角が90度より小さい場合の例である。図17(A)および図17(B)に示されたように、曲がり部C3において複数のコア181は、平行に配置され、58度~90度曲がっている。すなわち、図17(A)および図17(B)における曲がり部Cの曲げ補角の角180Aが58度~90度であることが好ましく、74度~90度であることが更に好ましい。また、第1の平面18Aとコア181とのなす角181A、および、第2の平面18Bと、コア181とのなす角181Bは、それぞれ直角であることがこのましいが、コアに端面での反射光が入ることを抑圧する観点では、鋭角は74度以上が好ましく、81度~83度であるとさらに好ましい。なお、コア数やコア配置は光ファイバに応じて適宜変更されるので、図16(A)~図16(B)および図17(A)~図17(B)に示された例に限定されない。また、第1の平面18Aと第2の平面18Bとでコアの配置やコア径が異なっていてもよい。光導波路18のコア181およびクラッド182の構成物質としては、ガラスまたは樹脂が好適であり、純粋な石英ガラスまたは添加物の混ざった石英ガラスがさらに好適である。
 また、小型化の実現のためには、コアの曲率半径に応じて、光導波路のコアの高さ、すなわち、18Aから18Bでの一番下のコアまでの高さを、設定すると良い。例えば、コアの曲げ部の曲率半径に対する光導波路のコアの高さは、それぞれ、7mm以下に対し10mm以下、6mm以下に対し9mm以下、5mm以下に対し9mm以下好ましくは8mm以下、4mm以下に対し7mm以下、3mm以下に対し6mm以下、2mm以下に対し5mm以下、1mm以下に対し4mm以下とすることが好ましい。
 また、本発明の光導波路のコアそれぞれの曲げ損失は、前記最小曲率半径をRとすると、本発明の光ファイバの場合と同様に、数式(14)または数式(15)が成り立つのは、Rが7mm以下、6mm以下、5mm以下、4mm以下、3mm以下、2mm以下、1mm以下と小さいことが望ましい。コアの曲がりが部品として固定され曲げ損失を測定できない光導波路では、光導波路中の散乱や吸収などによる伝送損失と曲げ損失とは区別できないが、光導波路の挿入損失は確認できる。挿入損失が、上記の数式(15)または数式(16)の右辺よりも小さいことが望ましい。Rは、7mm以下、6mm以下、5mm以下、4mm以下、3mm以下、2mm以下、1mm以下と小さい曲率半径で成り立つことが望ましい。また、このとき好ましい曲げ補角が90度以下であることを考えると、本発明の光ファイバの場合と同様に、少なくともXTb,max90degは10-3以下であることが望ましく、10-4以下であることがさらに望ましく、10-5以下であることがさらに望ましい。
 また、上記の光導波路18を、図2に示されたようにSPC14および光ファイバ20に接着する際に紫外線硬化接着剤を用いることができるように、光導波路18は紫外線を10%以上透過することが好適である。また、光導波路18は、極めて小さい曲率半径(10mm以下)の曲がり部C3を有しながらも、クロストークが-20dB(0.01)以下であることが好ましい。
 また、2つのコアを1ペアとして、互いのコアで逆方向への信号伝送を行うことを考えると、本発明の光ファイバおよび光導波路のコア数は、偶数であることが望ましい。さらに、コア密度(断面積当たりのコア数)の向上の観点からは、コア数が4個以上であることが望ましく、各コアが六方格子上に配置されることが望ましい。また、共有する1つの光源から全てのコアに光を分岐することを考えると、コア数が2のべき乗個であることが、望ましい。また、SPCの光入出力回路との結合性を考えると、コアは長方格子上に配置されていることが望ましい。また、コア密度とSPCへの結合性のバランスをとると、コアは同一円上に等間隔に配置されることが望ましい。
 なお、上記の光導波路は、所定の空間モードよりも高次の空間モードの挿入損失が、前記所定の空間モードの挿入損失よりも、19.3dB以上大きいことが好ましい。
 また、所定の波長におけるコアの基底モードのモードフィールド径は、5.6μm~15.7μmであることが好ましく、7.9μm以上であることがより好ましい。そして、上記の所定の波長は、1.26μm~1.625μmの何れかの一波長であることが好ましい。
 本実施形態に係る光ファイバおよび光導波路のコア周辺構造は、コアの周囲に一定の屈折率のクラッドがあるマッチドクラッド型が望ましく、コア周辺のクラッド部分に該クラッドより屈折率の低いトレンチ層を備えたトレンチアシスト型がさらに望ましい。なお、トレンチアシスト型は、コアのトレンチ層とコアの間には、コアより屈折率が低くトレンチ層より屈折率が高い内側クラッド層を備えても良い。
 また、本実施形態に係る光ファイバと光導波路のコア190は、図18に示されたように、クラッド193より屈折率が高く、同一コア構造である複数のコア構成コア(サブコア)191と、サブコア191より屈折率の低いコア190を構成するクラッド(サブクラッド)192とを備え、コア190の空間モード数は、少なくともサブコア191の個数以上であることが望ましい。また、隣接するサブコア191は、接触していても接触していなくても良い。また、サブクラッド192の屈折率は、クラッド193の屈折率と等しくても等しくなくても良い。ここで、光ファイバにおいては、コア190の内部において、隣接するサブコア191の間のクロストークは、-10dB以上であることが望ましく、1つのサブコアのみに光を入射した際の出射側での同一コア内の全てのサブコア間での光の平均パワーの差が1dB以内であることがさらに望ましい。また、光導波路においては、コア間のクロストークよりも、サブコアの間でのクロストークが10dB以上大きいことが望ましく、20dB以上大きいことがさらに望ましい。
 本明細書における曲げ損失とは、コアを導波する光がクラッドに漏れ出すことによる一コア中の光の強度の減少であるが、一般的に光ファイバの曲げ損失を測定する際に、一定の曲率半径に曲げて測定を行うと、一旦コアからクラッドに漏洩した光が、クラッドと被覆の界面や、被覆と空気の界面で反射して戻ってくることにより、クラッドに漏洩せずにコア中を導波した光と一旦漏洩してから反射により戻ってきてコアに再結合した光との間で干渉が起こり、実際に観測される曲げ損失は、コア自体の本来の曲げ損失よりも大きくなったり小さくなったり(波長変化に対して値が振動する)することがある。そこで、実際のファイバでの曲げ損失の波長依存性を測定し、前記曲げ損失の波長依存性に対し、指数曲線でフィッティングを行い、前記指数曲線の所定の波長での値を所定の波長での曲げ損失として用いることで、前記干渉の影響を排除した、本発明中における曲げ損失として用いることが望ましい。また、前記曲げ損失の対数の波長依存性に対し、直線でフィッティングを行い、前記直線の所定の波長での値を所定の波長での値を曲げ損失の対数として、そこから曲げ損失を求めることで、前記干渉の影響を排除した、本発明中における曲げ損失として用いることが望ましい。
 また、光ファイバのクラッドが石英ガラスでできている場合、極めて小さな曲率半径で光ファイバを曲げると、光ファイバが破断する確率が高くなる問題がある。ここで、90度曲げ2つ分(即ち0.5ターン分)の曲がりが光ファイバに付与されて10年後の光ファイバの累積破断確率の曲率半径依存性が、いくつかのクラッド径の水準について図19に示されている。すなわち、各グラフ1910~1960は、各クラッド径の光ファイバの曲率半径依存性を示し、各グラフのクラッド径は、それぞれ、グラフ1910では125μm、グラフ1920では150μm、グラフ1930では175μm、グラフ1940では200μm、グラフ1950では225μm、グラフ1960では250μmを、示している。一般的なクラッド径125μmの1コアファイバでは、曲率半径4mm以下で急激に累積破断確率が悪化する。光ファイバは、クラッド内に多数のコアを内蔵するほど、クラッド径は125μmよりも大きくなる傾向がある。コア数が増加するほど、クラッド径が大きくなり、破断確率を低下させるためには、曲率半径を大きくしなければならない。クラッド径と累積破断確率が急激に悪化する曲率半径は、クラッド径150μmでは5mm以下、クラッド径175μmでは6mm以下、クラッド径200μmでは7mm以下、クラッド径225μmでは8mm以下、クラッド径250μmでは9mm以下、となる。曲げにより光ファイバが破断するのは、曲げによりガラスに加わる応力が原因である。なお、光ファイバを曲げる際に加熱処理を行い、曲げにより生じる応力歪みを緩和する処理を行うことで、光ファイバが極めて小さな曲率半径で曲げられていても、破断しにくくすることができる。図19は、加熱処理がされていない状態である。加熱処理された光ファイバは、極小曲げ下でも曲げ応力が緩和することが想定されることから、破断寿命の問題はかなり減少すると考えられる。
 上記のことから、光ファイバを、図1(A)に示された伝送システムに用いることを考えると、本発明の光ファイバは、58度以上曲がっている曲がり部を有する光ファイバであって、前記曲がり部においては、加熱処理を施すことで、曲げによってファイバ内部に生じる応力歪みが緩和されており、前記曲がり部は、外部からの応力を付与していないときでも、前記所定の曲率半径Rを10mm以下の小径として58度以上曲がっていて、かつ、その状態でも破断確率の問題は小さい。曲げ角度は上記に限定されず、下限曲げ角度は、74度以上、81度以上でもよい。上記曲げ角度は、段落「0022」乃至「0025」に記載の通り、直角であることがこのましいが、コアに端面での反射光が再びコアに入ることを抑圧する観点では、鋭角で74度以上が好ましく、81度~83度であるとさらに好ましい。
 以下、上述の第2実施形態に係る光ファイバの具体的な構成について説明する。
(1)第1構成として、第2実施形態に係る光ファイバは、複数の同一コア構造のコアが、コアより低屈折率のクラッドで覆われた、光ファイバであって、
 隣接するコアの中心間距離の最小値をD[μm]とするとき、
 Dは、15μm~60μmの範囲の値であり、
 光ファイバに対して、曲率半径30mm未満の曲げが付与されていない状態での、所定の波長における、所定のコアへの他のコアからのクロストークXTw/oBは、-20dB(0.01)以下であり、
 光ファイバに対して、7mm以下の所定の曲率半径R[mm]の曲げが90度付与した状態での、所定の波長における所定のコアへの他のコアからのクロストークは、XTw/oBの2倍以下である。
(2) 上記第1構成に適用可能な第2構成として、当該光ファイバは、コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える。
(3) 第3構成として、第2実施形態に係る光ファイバは、複数の同一コア構造のコアが、コアより低屈折率のクラッドで覆われた光ファイバであって、
 コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以下となる層が設けられず、
 隣接するコアの中心間距離の最小値をD[μm]は、15μm~60μmの範囲の値であり、
 光ファイバに対して、曲率半径30mm未満の曲げが付与されていない状態での、所定の波長における、所定のコアへの他のコアからのクロストークXTw/oBは、-20dB(0.01)以下であり、
 光ファイバに、7mm以下の所定の曲率半径R[mm]の曲げが90度付与された状態での、所定の波長における所定のコアの90度当たりの曲げ損失α90degは、以下の数式(24)で示された値以下であり、
Figure JPOXMLDOC01-appb-M000031
 曲げ損失α90degの複数の同一コア構造のコア間での差が1dB以下である。
(4)第4構成として、第2実施形態に係る光ファイバは、複数の同一コア構造のコアが、コアより低屈折率のクラッドで覆われた、光ファイバであって、
 コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備え、
 隣接するコアの中心間距離の最小値をD[μm]は、15μm~60μmの範囲の値であり、
 光ファイバに対して、曲率半径30mm未満の曲げが付与されていない状態での、所定の波長における、所定のコアへの他のコアからのクロストークXTw/oBは、-20dB(0.01)以下であり、
 光ファイバに対して、7mm以下の所定の曲率半径R[mm]の曲げが90度付与された状態での、所定の波長における所定のコアの90度当たりの曲げ損失α90degは、以下の数式(25)で示された値以下であり、
Figure JPOXMLDOC01-appb-M000032
 曲げ損失α90degの複数の同一コア構造のコア間での差が1dB以下である。
(5) 上記第2または4構成に適用可能な第5構成として、当該光ファイバは、コアとトレンチ層の間に、コアよりも屈折率が低く、トレンチ層よりも屈折率が高い、内クラッド層を有する。
(6) 上記第1~第5構成のうち少なくとも何れかに適用可能な第6構成して、当該光ファイバのファイバ長は10km以下である。
(7) 第7構成として、第2実施形態に係る光ファイバは、複数の同一コア構造のコアが、コアより低屈折率のクラッドで覆われた、光ファイバであって、
 コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以下となる層が設けられず、
 隣接するコアの中心間距離の最小値をD[μm]は、15μm~60μmの範囲の値であり、
 光ファイバに対して、曲率半径30mm未満の曲げが付与されていない状態での、所定の波長における、所定のコアへの他のコアからのクロストークXTw/oBは、-20dB(0.01)以下であり、
 光ファイバに対して、7mm以下の所定の曲率半径R[mm]の曲げが90度付与された状態での、所定の波長における所定のコアの90度当たりの曲げ損失α90degは、以下の数式(26)で示された値以下であり、
Figure JPOXMLDOC01-appb-M000033
 曲げ損失α90degの複数の同一コア構造のコア間での差は1dB以下である。
(8) 第8構成として、第2実施形態に係る光ファイバは、複数の同一コア構造のコアが、コアより低屈折率のクラッドで覆われ、クラッドが一体の被覆で覆われた、光ファイバであって、
 コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以
下となるトレンチ層を備え、
 隣接するコアの中心間距離の最小値をD[μm]は、15μm~60μmの範囲の値であり、
 光ファイバに対して、曲率半径30mm未満の曲げが付与されていない状態での、所定の波長における、所定のコアへの他のコアからのクロストークXTw/oBは、-20dB(0.01)以下であり、
 光ファイバに対して、4mm以下の所定の曲率半径R[mm]の曲げが90度付与された状態での、所定の波長における所定のコアの90度当たりの曲げ損失α90degは、以下の数式(27)で示された値以下であり、
Figure JPOXMLDOC01-appb-M000034
 曲げ損失α90degの複数の同一コア構造のコア間での差は1dB以下である。
(9) 第8構成に適用可能な第9構成として、当該光ファイバは、コアとトレンチ層の間に、コアよりも屈折率が低く、トレンチ層よりも屈折率が高い、内クラッド層を有する。
(10) 上記第1~第9構成のうち少なくとも何れかの構成に適用可能な第10構成として、コアの所定の空間モードよりも高次の空間モードの曲率半径Rでの損失は、所定の空間モードの曲率半径Rbでの損失よりも、90度当たり19.3dB以上大きい。
(11) 上記第1~第9構成のうち少なくとも何れかの構成に適用可能な第11構成として、コアの所定の空間モードよりも高次の空間モードの曲率半径140mmでの損失は1dB/m以上であり、
 所定の空間モードの曲率半径140mmでの損失が0.1dB/m以下である。
(12) 上記第10構成または第11構成に適用可能な第12構成として、所定の空間モードは、基底モード以外の高次の空間モードである。
(13) 上記第1~第12構成のうち少なくとも何れかの構成に適用可能な第13構成として、コアは、クラッドより屈折率の高い複数のサブコアと、サブコアより屈折率の低いサブクラッドとを備え、
 複数のサブコアは、全て同一のコア構造であり、
 コアの空間モード数は、少なくともサブコアの個数以上であり、
 コア内部において、隣接するサブコアの間のクロストークは、-10dB以上である。
(14) 上記第1~第11構成のうち少なくとも何れかの構成に適用可能な第14構成として、所定の空間モードは基底モードであり、
 所定の波長における所定の空間モードのモードフィールド径は5.6μm~15.7μmである。
(15) 上記第1~第14構成のうち少なくとも何れかの構成に適用可能な第15構成として、所定の波長は1.26μm~1.625μmのいずれかの一波長である。
(16) 上記第14構成に適用可能な第16構成として、所定の波長は1.31μmであり、
 コアのケーブルカットオフ波長は1.29μm以下である。
(17)上記第14構成に適用可能な第17構成として、所定の波長は1.49μmであり、
 コアのケーブルカットオフ波長は1.46μm以下である。
(18) 上記第14構成に適用可能な第18構成として、所定の波長は1.55μmであり、
 コアのケーブルカットオフ波長は1.53μm以下である。
(19) 第19構成として、第2実施形態に係る光ファイバは、複数の同一コア構造のコアが、コアより低屈折率のクラッドで覆われ、クラッドが一体の被覆で覆われた光ファイバであって、
 コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以
下となるトレンチ層を備え、
 隣接するコアの中心間距離の最小値をD[μm]は、15μm~60μmの範囲の値であり、
 所定の波長における、Dの中心間距離で隣接するコア間のクロストークは-20dB(0.01)以下であり、
 コアのケーブルカット波長は1.29μm以下であり、
コアの波長1.49μmでのモードフィールド径は5.6μm~15.7μmであり、
 光ファイバに対して、4mm以下の所定の曲率半径R[mm]の曲げが90度付与された状態での、所定の波長における所定のコアの90度当たりの曲げ損失α90degは、以下の数式(28)で示された値以下であり、
Figure JPOXMLDOC01-appb-M000035
 曲げ損失α90degの複数の同一コア構造のコア間での差は1dB以下である。
(20) 上記第19構造に適用可能な第20構成として、当該光ファイバは、コアとトレンチ層の間に、コアよりも屈折率が低く、トレンチ層よりも屈折率が高い、内クラッド層を有する。
(21) 上記第1~第7、第10~第20構成のうち少なくとも何れかの構成に適用可能な第21構成として、所定の曲率半径Rは5mm以下である。
(22) 上記第1~第21構成のうち少なくとも何れかの構成に適用可能な第22構成として、当該光ファイバは、58度以上曲がっている曲がり部を有する光ファイバであって、
 曲がり部においては、曲げによってファイバ内部に生じる応力が緩和されており、
 曲がり部は、外部からの応力が無いときでも、最小曲率半径を所定の曲率半径Rとして58度以上曲がっている。
(23) 第23の構成は、光ファイバ伝送系に関し、送信器、受信器および伝送路を備える光ファイバ伝送系において、伝送路として、上記第1~第22構成のうち少なくとも何れかの構成を有する光ファイバを備え、
 送信機および受信器は、光を入出力可能な導波路チップと、導波路チップを内蔵する筐体とを備え、
 導波路チップの光の入出射はチップ表面から74~90度の角度で行われ、
 筐体内において、光ファイバは、曲率半径R[mm]の曲げが付与された状態で、導波路チップと74~90度の角度で光学的に接続されている。
(24) 第24構成は、光導波路に関し、当該光導波路は、複数の同一コア構造のコアが、コアよりも屈折率の低いクラッドで覆われた、光導波路であって、
 コアは、最小曲率半径10mm以下の曲がり部を有し、
 曲がり部により、コアの中心軸方向は58度~90度の範囲で曲がっており、
 曲がり部を挟んで、コアへの光の入出射が可能な平面を少なくとも2つ備え、
 平面の1つを底面とした際の光導波路の高さは、13mm以下であり、
 隣接するコアの中心間距離の最小値D[μm]は、15μm~60μmの範囲の値であり、
 所定の波長における、Dの中心間距離で隣接するコア間のクロストークは、-20dB(0.01)以下である。
(25) 上記第24構成に適用可能な第25構成として、コアの最小曲率半径は、7mm以下であり、
 平面の1つを底面とした際の光導波路の高さは、10mm以下である。
(26) 上記第24構成に適用可能な第25構成として、コアの最小曲率半径は、5mm以下であり、
平面のいずれか一方を底面とした際の光導波路の高さは、8mm以下
である。
(27) 上記第24~第26構成の少なくとも囲擦れかに適用可能な第27構成として、コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以下となる層が設けられず、
 コアの最小曲率半径をRb[mm]とするとき、
 コアの所定の波長における挿入損失は、以下の数式(29)で示された値以下であり、
Figure JPOXMLDOC01-appb-M000036
 挿入損失の複数の同一コア構造のコア間での差は1dB以下である。
(28) 上記第24~第26構成のうち少なくとも何れかの構成に適用可能な第28構成として、当該光導波路は、コアとクラッドの間に、クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備え、
 曲がり部により、コアの中心軸方向は76度~90度曲がっており、
 コアの最小曲率半径をR[mm]とするとき、
 コアの所定の波長における挿入損失は、以下の数式(30)で示された値以下であり、
Figure JPOXMLDOC01-appb-M000037
 挿入損失の複数の同一コア構造のコア間での差は1dB以下である。
(29) 上記第28構成に適用可能な第29構成として、当該光導波路は、コアとトレンチ層の間に、コアよりも屈折率が低く、トレンチ層よりも屈折率が高い、内クラッド層を有する。
(30) 上記第24~第29構成のうち少なくとも何れかの構成に適用可能な第30構成として、所定の波長において、
 所定の空間モードよりも高次の空間モードの挿入損失は、所定の空間モードの挿入損失より19.3dB以上大きい。
(31) 上記第30構成に適用可能な第31構成として、所定の空間モードは、基底モード以外の高次の空間モードである。
(32) 上記第24~第31構成のうち少なくとも何れかの構成に適用可能な第32構成として、コアは、クラッドより屈折率の高い複数のサブコアと、サブコアより屈折率の低いサブクラッドとを備え、
 サブコアは、全て同一のコア構造であり、
 コアの空間モード数は、少なくともサブコアの個数以上であり、
 コア内部において、隣接するサブコアの間のクロストークは、-10dB(0.1)以上である。
(33) 上記第24~第31構成のうち少なくとも何れかの構成に適用可能な第33構成として、所定の波長におけるコアの基底モードのモードフィールド径は、5.6μm~15.7μmである。
(34) 上記第24~第33構成のうち少なくとも何れかの構成に適用可能な第34構成として、所定の波長は、1.26μm~1.625μmのいずれかの一波長である。
(35) 第35構成は、光ファイバ伝送系に関し、当該光ファイバ伝送系は、送信器、受信器および伝送路を備える光ファイバ伝送系であって、
 伝送路として、光ファイバを備え、
 送信機および受信器は、信号光の入力または出力の機能を備えた導波路チップと、
 導波路チップを内蔵する筐体とを備え、
 導波路チップの信号光の入出射はチップ表面から74~90度の角度で行われ、
 筐体内において、光ファイバは、上記第24~第32の構造のうち少なくとも何れかの構成を有する光導波路を介して、導波路チップと光学的に接続されている。
 1、2…光伝送リンク、11…光トランシーバ(OT)、13…筺体13、14…シリコンフォトニクスチップ(SPC)、18…光導波路、20…光ファイバ(マルチコア光ファイバ)。

Claims (16)

  1.  隣接するコアの組が同一コア構造を有する複数のコアと、前記複数のコアそれぞれを覆うクラッドと、前記複数のコアの一方の端面が配置された第1面と、前記複数のコアの他方の端面が配置された第2面と、を備え、前記複数のコアが前記第1面から前記第2面に向かって延在している光導波路であって、
     隣接するコアの中心間距離の最小値Dが15μm~60μmの範囲の値であるとともに、
     第1条件は、
     当該光導波路が光ファイバであり、
     4mm以下の所定の曲率半径Rの曲げが前記光ファイバに対して90度付与された状態において、所定のコアの該90度当たりの曲げ損失をα90degとし、前記同一コア構造のコア間でのα90degの差が1dB以下であり、
     前記最小値Dの中心間距離で隣接するコア間の、30mm乃至200cmの所定の曲率半径で光ファイバが曲がった状態における、10kmのファイバ長での仮想クロストーク(リニア値)が、0.01以下であり、かつ、
     XTw/oBを30mm乃至200cmの所定の曲率半径で光ファイバが曲がった状態における10km以下の所定のファイバ長におけるクロストーク(リニア値)とするとき、前記曲げ損失α90degが以下の数式(1)で示された値以下であるか、または、前記コア周辺のクラッド部分が、前記クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を有するトレンチアシスト型である場合の前記曲げ損失α90degが以下の数式(2)で示された値以下であることにより規定され、
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
     第2条件は、
     前記第1条件において、前記ファイバ長を考慮しない場合として、前記数式(1)および前記数式(2)は、それぞれ、以下の数式(3)および数式(4)として規定され、
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
     第3条件は、
     前記コアが、前記曲率半径Rが7mm以下に固定された曲がり部を有し、
     隣接コア間隔が前記Dである隣接コア間のクロストークが0.01以下であり、
     前記曲がり部を挟む前記コアの直線部分により規定される角度のうち曲げ中心側の角度に対する補角に相当する曲げ補角が58度~90度であり、
     前記第1面および前記第2面が、前記コアへの光の入出射が可能な平面であり、かつ、
     前記第1および第2面の1つを底面とした際の当該光導波路の高さが10mm以下であることにより規定され、
     所定波長帯における所定の波長において、前記第1~第3条件のうち何れかの条件を満たす光導波路。
  2.  前記第1条件または前記第2条件を満たす光導波路であって、
     前記コアと前記トレンチ層の間に、前記コアよりも屈折率が低く、前記トレンチ層よりも屈折率が高い、内クラッド層を有する請求項1に記載の光導波路。
  3.  前記第1条件または前記第2条件を満たす光導波路であって、
     前記コアの空間モードは、基底モードであり、
     前記所定の波長における前記所定の空間モードのモードフィールド径は、5.6μm~15.7μmである請求項1または2に記載の光導波路。
  4.  前記第1条件または前記第2条件を満たす光導波路であって、
     前記コアの空間モードは、マルチモードである請求項1または2に記載の光導波路。
  5.  前記コアは、複数のサブコアと、前記サブコアより屈折率の低いサブクラッドとを備え、
     前記複数のサブコアそれぞれは、同一の屈折率プロファイル構造を有し、
     前記コアの空間モード数は、少なくとも前記複数のサブコアの個数以上であり、
     前記コアの内部において、隣接するサブコアの間のクロストークは、0.1以上である請求項4に記載の光導波路。
  6.  前記第1条件または前記第2条件を満たす光導波路であって、
     前記所定波長帯は、1.26μm~1.625μmである請求項1~3の何れか一項に記載の光導波路。
  7.  前記第1条件または前記第2条件を満たす光導波路であって、
     前記コアのケーブルカットオフ波長は、1.29μm以下、1.46μm以下、1.53μm以下の何れかである請求項1~4の何れか一項に記載の光導波路。
  8.  前記第1条件または前記第2条件を満たす光導波路であって、
     前記コアは、1.29μm以下のケーブルカットオフ波長と、波長1.31μmにおいて8.0μm~10.1μmのモードフィールド径を有するとともに、
     第4条件は、
     4mmの前記Rでの前記曲げ損失α90degが0.139[dB/90度]以下であるか、または、前記コアと前記クラッドの間に、前記クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合に4mmの前記Rでの前記曲げ損失α90degが0.288[dB/90度]以下であることにより規定され、
     第5条件は、
     3mmの前記Rでの前記曲げ損失α90degが0.120[dB/90度]以下であるか、または、前記コアと前記クラッドの間に前記クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合の、3mmの前記Rでの前記曲げ損失α90degが0.250[dB/90度]以下であることにより規定され、
     第6条件は、
     2mmの前記Rでの前記曲げ損失α90degが0.098[dB/90度]以下であるか、または、前記コアと前記クラッドの間に前記クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合の、2mmの前記Rでの前記曲げ損失α90degが0.204[dB/90度]以下であることにより規定され、
     第7条件は、
     1mmの前記Rでの前記曲げ損失α90degが0.069[dB/90度]以下であるか、または、前記コアと前記クラッドの間に前記クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備える場合の、1mmの前記Rでの前記曲げ損失α90degが0.144[dB/90度]以下であることにより規定され、
     1.49μmおよび1.55μmの何れかの波長において、前記第4条件~第7条件のうち何れかの条件を満たす請求項1~4の何れか一項に記載の光導波路。
  9.  前記第1条件または前記第2条件を満たす光導波路であって、
     前記コアのケーブルカットオフ波長は、1.26μm以下であり、
     波長1.31μmにおける前記コアのモードフィールド径は、8.0μm~10.1μmであり、
     波長1.49μmにおける、4mmの前記Rでの前記曲げ損失α90degは、0.139[dB/90度]以下であり、
     前記コアと前記クラッドの間に、前記クラッドを基準とした比屈折率差が-0.2%以下となるトレンチ層が設けられ、かつ、前記クラッドを基準とした前記コアの比屈折率が0.24%~0.35%である場合に、波長1.49μmにおける、4mmの前記Rでの前記曲げ損失α90degは、0.288[dB/90度]以下である請求項1~4の何れか一項に記載の光導波路。
  10.  当該光導波路は光ファイバであり、
     曲げ補角が、58度以上90度以下となるように曲がっている曲がり部を有し、
     前記曲がり部において、曲げによって前記光ファイバの内部に生じる応力歪みが熱処理加工で緩和されており、
     前記曲がり部が、外部からの応力が無いときでも前記Rが維持された状態で、前記曲げ補角で曲げられている請求項1~9の何れか一項に記載の光導波路。
  11.  送信器、受信器、および、請求項1~9の何れか一項に記載の光導波路としての前記光ファイバを備える光ファイバ伝送系であって、
     前記送信器および前記受信器のそれぞれは、光の入出力が可能な導波路チップと、前記導波路チップを内蔵する筐体とを備え、
     前記送信器および前記受信器のそれぞれは、前記導波路チップの表面と前記光ファイバのなす鋭角の角度が74~90度となるよう、前記光ファイバと光学的に接続され、
     前記光ファイバは、前記筐体内において前記Rの曲げが付与されている光ファイバ伝送系。
  12.  前記第3条件を満たす光導波路であって、
     前記光導波路の高さを前記第1面または第2面の何れかを底面としたときの他の面における低い光導波路の高さとしたとき、前記コアの前記Rが5mm以下かつ前記光導波路の前記高さが8mm以下である第1構成、または、前記コアの前記Rが3mm以下かつ前記光導波路の前記高さが6mm以下である第2構成、の何れかを有する請求項1に記載の光導波路。
  13.  前記第3条件を満たす光導波路であって、
     前記コアの前記所定の波長における挿入損失は、前記複数のコア間での差が1dB以下であり、
     前記挿入損失は、以下の数式(5)で示された値以下であるか、または、前記コア周辺のクラッド部分が、前記クラッドを基準とした比屈折率差が-0.1%以下となるトレンチ層を備えるトレンチアシスト型である場合の前記挿入損失が、以下の数式(6)で示された値以下である、
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    請求項1または12に記載の光導波路。
  14.  前記コアと前記トレンチ層の間に、前記コアよりも屈折率が低く、前記トレンチ層よりも屈折率が高い、内クラッド層を有する請求項13に記載の光導波路。
  15.  前記第3条件を満たす光導波路であって、
     前記所定の波長帯は1.26μm~1.625μmであり、かつ、前記所定の波長における前記コアの基底モードのモードフィールド径は5.6μm~15.7μmである請求項1、12~14の何れか一項に記載の光導波路。
  16.  送信器、受信器、および伝送路を備える光ファイバ伝送系であって、
     前記伝送路として、前記第1条件または前記第2条件を満たす請求項1~9の何れか一項に記載の光導波路として前記光ファイバを備え、
     前記送信器および前記受信器のそれぞれは、信号光の入力または出力の機能を備えた導波路チップと、前記導波路チップを内蔵する筐体とを備え、
     前記筐体内において、前記光ファイバは、請求項1、12~15の何れか一項に記載の前記第3条件を満たす光導波路を介して、前記導波路チップと光学的に接続され、
     前記送信器および前記受信器のそれぞれにおいて、前記導波路チップの表面と前記筐体内の光導波路のコアのなす鋭角の角度が74~90度に設定されている光ファイバ伝送系。
PCT/JP2013/082384 2012-12-05 2013-12-02 光導波路および光ファイバ伝送系 WO2014087974A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13860522.5A EP2930546A4 (en) 2012-12-05 2013-12-02 OPTICAL WAVE GUIDE, AND FIBER OPTIC TRANSMISSION SYSTEM
JP2014551093A JPWO2014087974A1 (ja) 2012-12-05 2013-12-02 光導波路および光ファイバ伝送系
CN201380063758.3A CN104838298B (zh) 2012-12-05 2013-12-02 光波导和光纤传输系统
US14/730,461 US9354387B2 (en) 2012-12-05 2015-06-04 Optical waveguide and optical fiber transmission system
US15/048,270 US9513431B2 (en) 2012-12-05 2016-02-19 Optical waveguide and optical fiber transmission system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261733527P 2012-12-05 2012-12-05
JP2012-266464 2012-12-05
US61/733,527 2012-12-05
JP2012266464 2012-12-05
JP2013173368 2013-08-23
JP2013-173368 2013-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/730,461 Continuation US9354387B2 (en) 2012-12-05 2015-06-04 Optical waveguide and optical fiber transmission system

Publications (1)

Publication Number Publication Date
WO2014087974A1 true WO2014087974A1 (ja) 2014-06-12

Family

ID=50883391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082384 WO2014087974A1 (ja) 2012-12-05 2013-12-02 光導波路および光ファイバ伝送系

Country Status (5)

Country Link
US (2) US9354387B2 (ja)
EP (1) EP2930546A4 (ja)
JP (2) JPWO2014087974A1 (ja)
CN (1) CN104838298B (ja)
WO (1) WO2014087974A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063800A1 (ja) * 2014-10-22 2016-04-28 住友電気工業株式会社 マルチコア光ファイバ、光ケーブル、及び光コネクタ
JP2016071025A (ja) * 2014-09-29 2016-05-09 住友電気工業株式会社 光処理装置、光学装置
JP2016133592A (ja) * 2015-01-19 2016-07-25 住友電気工業株式会社 マルチコア光ファイバおよび光接続部品
JP2016177073A (ja) * 2015-03-19 2016-10-06 住友電気工業株式会社 光接続部品製造方法、光モジュール、および光接続部品
CN107132612A (zh) * 2017-05-26 2017-09-05 中国电子科技集团公司电子科学研究院 一种矩形芯子光纤
WO2021230292A1 (ja) * 2020-05-13 2021-11-18 住友電気工業株式会社 光配線部品
WO2022049735A1 (ja) * 2020-09-04 2022-03-10 日本電信電話株式会社 マルチコア光ファイバ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026072A1 (ja) * 2015-08-13 2017-02-16 住友電気工業株式会社 光接続部品
US11911101B2 (en) * 2016-02-03 2024-02-27 Cyclone Biosciences, Llc Process and system for reducing laser damage to surgical instruments
JP6677020B2 (ja) * 2016-03-03 2020-04-08 住友電気工業株式会社 光ファイバ伝送システム
US10690843B2 (en) 2016-03-17 2020-06-23 Fujikura Ltd. Multicore fiber
JP6862712B2 (ja) * 2016-08-05 2021-04-21 住友電気工業株式会社 光ファイバ評価方法及び光ファイバ評価装置
WO2018075911A1 (en) 2016-10-21 2018-04-26 Intuitive Surgical Operations, Inc. Shape sensing with multi-core fiber sensor
EP3724668B1 (en) * 2017-12-11 2024-05-15 Micatu Inc. An electric field detection device and methods of use thereof
CN109186825B (zh) * 2018-08-10 2021-02-02 哈尔滨工业大学(深圳) 一种光纤宏弯压力传感器及其测量系统
JP7172634B2 (ja) * 2019-01-18 2022-11-16 日本電信電話株式会社 マルチコア光ファイバ及び設計方法
CN110768721A (zh) * 2019-11-06 2020-02-07 苏州大学 多芯光纤网络中资源分配方法
US20230106774A1 (en) * 2020-03-06 2023-04-06 Sumitomo Electric Industries, Ltd. Optical waveguide device and optical communication system including same
JP7501019B2 (ja) * 2020-03-19 2024-06-18 住友電気工業株式会社 マルチコア光ファイバ
CN114415299B (zh) * 2022-03-30 2022-06-24 深圳市埃尔法光电科技有限公司 一种光纤信号直导式光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449002A (en) * 1987-07-28 1989-02-23 Raychem Corp Bent optical fiber and manufacture thereof
JP2011520152A (ja) * 2008-05-07 2011-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. ポイントツーポイント通信のための光学エンジン
WO2011114795A1 (ja) * 2010-03-16 2011-09-22 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ
JP2011237782A (ja) * 2010-04-13 2011-11-24 Sumitomo Electric Ind Ltd 光分岐素子及びそれを含む光通信システム
WO2012077699A1 (ja) * 2010-12-09 2012-06-14 株式会社フジクラ マルチコアファイバ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7845860B2 (en) * 2008-01-10 2010-12-07 Hewlett-Packard Development Company, L.P. Method for connecting multicore fibers to optical devices
US8503847B2 (en) * 2008-10-03 2013-08-06 National University Corporation Yokohama National University Method of arranging cores of multi-core fiber
EP2388629A4 (en) * 2009-01-19 2014-09-03 Sumitomo Electric Industries OPTICAL FIBER WITH MULTIPLE SOULS
JP5347989B2 (ja) * 2010-01-21 2013-11-20 住友電気工業株式会社 マルチコア光ファイバ
JP5708015B2 (ja) * 2010-02-26 2015-04-30 住友電気工業株式会社 光ファイバケーブル
US8737793B2 (en) * 2010-03-16 2014-05-27 Furukawa Electric Co., Ltd. Multi-core optical fiber and method of manufacturing the same
JP6032009B2 (ja) * 2010-08-30 2016-11-24 住友電気工業株式会社 マルチコア光ファイバ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449002A (en) * 1987-07-28 1989-02-23 Raychem Corp Bent optical fiber and manufacture thereof
JP2011520152A (ja) * 2008-05-07 2011-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. ポイントツーポイント通信のための光学エンジン
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ
WO2011114795A1 (ja) * 2010-03-16 2011-09-22 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法
JP2011237782A (ja) * 2010-04-13 2011-11-24 Sumitomo Electric Ind Ltd 光分岐素子及びそれを含む光通信システム
WO2012077699A1 (ja) * 2010-12-09 2012-06-14 株式会社フジクラ マルチコアファイバ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
K. SAITOH; M. KOSHIBA; K. TAKENAGA; S. MATSUO: "Homogeneous and Heterogeneous Multi-core Fibers", IEEE SUMMER TOPICALS, 2012
M. KOSHIBA; K. SAITOH; K. TAKENAGA; S. MATSUO: "Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers", IEEE PHOTON. J., vol. 4, no. 5, October 2012 (2012-10-01), pages 1987 - 1995, XP011485397, DOI: doi:10.1109/JPHOT.2012.2221085
See also references of EP2930546A4
YOSHINARI AWAJI ET AL.: "Measurement and simulation of bending characteristics of homo- and hetero- geneous seven core fibers", IEICE TECHNICAL REPORT. OFT, OPTICAL FIBER TECHNOLOGIES, vol. 111, no. 298, 10 November 2011 (2011-11-10), pages 21 - 24, XP008179282 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071025A (ja) * 2014-09-29 2016-05-09 住友電気工業株式会社 光処理装置、光学装置
EP3211464A4 (en) * 2014-10-22 2017-10-18 Sumitomo Electric Industries, Ltd. Multi-core optical fiber, optical cable, and optical connector
CN110161622B (zh) * 2014-10-22 2020-11-06 住友电气工业株式会社 多芯光纤、光缆及光连接器
WO2016063800A1 (ja) * 2014-10-22 2016-04-28 住友電気工業株式会社 マルチコア光ファイバ、光ケーブル、及び光コネクタ
CN106575013A (zh) * 2014-10-22 2017-04-19 住友电气工业株式会社 多芯光纤、光缆及光连接器
CN106575013B (zh) * 2014-10-22 2019-07-09 住友电气工业株式会社 多芯光纤、光缆及光连接器
US9726816B2 (en) 2014-10-22 2017-08-08 Sumitomo Electric Industries, Ltd. Multi-core optical fiber, optical cable, and optical connector
CN110161622A (zh) * 2014-10-22 2019-08-23 住友电气工业株式会社 多芯光纤、光缆及光连接器
JPWO2016063800A1 (ja) * 2014-10-22 2017-08-03 住友電気工業株式会社 マルチコア光ファイバ、光ケーブル、及び光コネクタ
JP2016133592A (ja) * 2015-01-19 2016-07-25 住友電気工業株式会社 マルチコア光ファイバおよび光接続部品
JP2016177073A (ja) * 2015-03-19 2016-10-06 住友電気工業株式会社 光接続部品製造方法、光モジュール、および光接続部品
CN107132612A (zh) * 2017-05-26 2017-09-05 中国电子科技集团公司电子科学研究院 一种矩形芯子光纤
WO2021230292A1 (ja) * 2020-05-13 2021-11-18 住友電気工業株式会社 光配線部品
CN115280205A (zh) * 2020-05-13 2022-11-01 住友电气工业株式会社 光布线部件
GB2609764A (en) * 2020-05-13 2023-02-15 Sumitomo Electric Industries Optical wiring component
WO2022049735A1 (ja) * 2020-09-04 2022-03-10 日本電信電話株式会社 マルチコア光ファイバ
JP7494920B2 (ja) 2020-09-04 2024-06-04 日本電信電話株式会社 マルチコア光ファイバ

Also Published As

Publication number Publication date
JP2018197874A (ja) 2018-12-13
EP2930546A4 (en) 2016-07-20
US20160170135A1 (en) 2016-06-16
US9513431B2 (en) 2016-12-06
JPWO2014087974A1 (ja) 2017-01-05
EP2930546A1 (en) 2015-10-14
US9354387B2 (en) 2016-05-31
US20150268414A1 (en) 2015-09-24
CN104838298A (zh) 2015-08-12
CN104838298B (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2014087974A1 (ja) 光導波路および光ファイバ伝送系
US9081129B2 (en) Multi-core fiber
US8285094B2 (en) Multicore fiber
EP3761088B1 (en) Multi-core optical fiber
US8737793B2 (en) Multi-core optical fiber and method of manufacturing the same
US8687931B2 (en) Optical fiber
WO2016175209A1 (ja) マルチコアファイバ
WO2012063775A1 (ja) マルチコアファイバ
JP5468711B2 (ja) マルチコアファイバ
US20150277032A1 (en) Optical waveguide, optical fiber cable, and optical module
WO2015001990A1 (ja) マルチコア光ファイバおよびマルチコア光ファイバケーブル
WO2016190228A1 (ja) マルチコアファイバ
US20160004009A1 (en) Multi-core fiber
EP3985420B1 (en) Multi-core optical fiber and multi-core optical fiber cable
EP4220995A1 (en) Multicore optical fiber and optical transmission system
US20230185017A1 (en) Multi-core optical fiber and multi-core optical fiber cable
JP6096268B2 (ja) マルチコアファイバ
US8837887B2 (en) Waveguide and connecting element
EP4231071A1 (en) Optical fiber cable
Harrington The development of hollow core waveguides for in telecommunications, sensors, and laser power delivery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860522

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014551093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013860522

Country of ref document: EP