WO2014084387A1 - 残余耐震性能評価システム - Google Patents

残余耐震性能評価システム Download PDF

Info

Publication number
WO2014084387A1
WO2014084387A1 PCT/JP2013/082292 JP2013082292W WO2014084387A1 WO 2014084387 A1 WO2014084387 A1 WO 2014084387A1 JP 2013082292 W JP2013082292 W JP 2013082292W WO 2014084387 A1 WO2014084387 A1 WO 2014084387A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data processing
residual
authentication
server
Prior art date
Application number
PCT/JP2013/082292
Other languages
English (en)
French (fr)
Inventor
正之 荒木
典男 齊藤
崇夫 高橋
Original Assignee
株式会社aLab
イーグローバレッジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社aLab, イーグローバレッジ株式会社 filed Critical 株式会社aLab
Priority to JP2014515396A priority Critical patent/JP5619324B1/ja
Publication of WO2014084387A1 publication Critical patent/WO2014084387A1/ja
Priority to US14/726,145 priority patent/US10191164B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/24Recording seismic data
    • G01V1/242Seismographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/70Other details related to processing
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes

Definitions

  • the present invention relates to a residual seismic evaluation system in which a plurality of strong motion meters installed in structures such as roads, buildings, bridges and dams, and a server for managing them are connected via a network.
  • seismic intensity sensors such as accelerometers are installed in civil engineering structures such as bridges or building structures (hereinafter referred to as “structures”), and the vibration of each part of the structure is measured when an earthquake occurs.
  • the seismic intensity data and acceleration measurement data are transmitted to the management server, and the residual seismic performance evaluation system that evaluates the residual seismic performance of the building from the displacement of the building calculated from the measurement data and the design data of the structure is known.
  • Patent Document 1 the residual seismic performance evaluation system that evaluates the residual seismic performance of the building from the displacement of the building calculated from the measurement data and the design data of the structure is known.
  • Patent Document 2 discloses an invention relating to an earthquake information collection system that collects earthquake motion information from a large number of bases dispersed in a wide area.
  • the data storage amount and data processing amount of the server become enormous. Therefore, in order to reduce the amount of data, it is described that a “threshold value” is provided for measurement data to be detected, and only measurement data exceeding the threshold value is collected and stored (8th to 10th paragraphs). .
  • the residual seismic performance evaluation system by its nature, is required to have extremely high reliability that will continue to operate reliably even in the event of an unprecedented earthquake disaster. Naturally, it must be designed and operated as an “expected event” to fall into a very severe situation such as power loss or network disruption.
  • the “residual seismic performance” varies greatly depending on various factors such as the strength of the structure and the ground. For example, a structure with sufficient seismic design can be judged safe if it has a seismic intensity of 3 or less, without having to “judge” the residual seismic performance at all. There is also a situation where part 3 is damaged and it is necessary to judge whether it is safe or dangerous.
  • the measurement data necessary for the residual seismic performance evaluation system to judge the safety and danger of structures is measured values (acceleration, velocity, or displacement) acquired by the seismic intensity sensor for all x-axis, y-axis, and z-axis. This is numerical data obtained by A / D conversion. If the seismic intensity sensor sampling frequency is 20 ms, for example, 50 data per second per axis must be recorded and retained reliably for a certain period of time with the above-described reliability. This is generally an extremely large amount of data even for an A / D converter of about 8 bits.
  • the present invention has been made in view of the above, and in a relatively large-scale residual seismic performance evaluation system designed to install a large number of strong motion meters, the local side where the strong motion meters are installed and the network are connected.
  • a new network that can safely and reliably record and maintain measurement data necessary for the evaluation of residual seismic performance even in unprecedented disasters, while minimizing the network load between servers that process and store data via Providing a mechanism is the main technical issue.
  • a residual seismic performance evaluation system includes a strong motion meter including a seismic intensity sensor, a network interface, storage, an A / D converter, temporary storage means, and a CPU, and records and processes measurement data acquired by the strong motion meter.
  • a data processing terminal for performing, and a data processing server for evaluating residual seismic performance based on measurement data acquired by the strong motion meter The following steps on the data processing terminal: a. Step of calculating seismic intensity data based on the measurement data acquired by the strong motion meter (S124) b. Step of setting a threshold value of seismic intensity data (S125) c. Step of determining whether seismic intensity data exceeds the threshold (S126) d.
  • the step of transmitting seismic intensity data exceeding the threshold to the data processing server While the data processing server performs the following steps: g. Requesting measurement data from at least one of the strong motion meter and the data processing terminal (S231) h. Receiving the measurement data transmitted in response to the request (S232) Is executed.
  • the “seismic intensity” that can express the magnitude of the shaking of a series of earthquakes numerically based on the huge amount of acceleration data (or velocity or displacement data) acquired by the strong motion meter. Since it can be calculated by a local seismometer or a data processing terminal installed on the local side, by setting a seismic intensity threshold value that conforms to the seismic performance of the structure, the scale of the scale is truly necessary for the evaluation of the remaining seismic performance of the structure. Whether or not it is an earthquake can be easily determined on the data processing terminal side based on the threshold value, and it can be easily determined whether or not the data is to be recorded / held.
  • the strong motion meter since the strong motion meter has storage, it can hold a certain amount of measurement data, so that data can be recorded and held even when the network is cut off. Note that a threshold value is set in the data processing terminal b. Need only be set once, not necessarily every time.
  • the timing for requesting the measurement data defined in step g may be the same as when the seismic intensity data exceeding the threshold is received, that is, in real time, or the timing after that, that is, non-real time. This is because if the network is cut off, it may be sent after the network is restored, or from another point of view, the measurement data is collected in the data processing server in a time zone such as at night when the communication cost is low. This is because an operation such as sending a message is also conceivable.
  • “seismic intensity” refers to “seismic intensity (measured seismic intensity)” published by the Japan Meteorological Agency for one earthquake, as in “magnitude” which indicates the magnitude of the earthquake. This is a “unique value for each point” obtained from the acceleration data by the Japan Meteorological Agency. In this sense, local seismic intensity should be strictly distinguished from “seismic intensity”. However, in this specification, the term “seismic intensity” refers to the seismic intensity (measured seismic intensity) obtained by calculation from the acceleration value on the local side, unless otherwise specified.
  • the residual seismic performance evaluation system is a system that evaluates the degree of damage to a structure based on the observed values (measurement data) observed in the structure where the seismic intensity sensor is installed. This is because it cannot be assumed that the seismic intensity published by the Japan Meteorological Agency is used locally on the residual seismic performance evaluation system on which the present invention is based. For example, even if the officially announced seismic intensity is large, if the seismic intensity obtained from the measured value of the structure itself is small, the possibility of damage to the structure is small, but conversely, the officially announced seismic intensity This is because, even if is small, the seismic intensity greater than the surroundings can be observed in the structure because of the shape and size of the ground and the structure.
  • the system of the present invention it is not always necessary to transmit the raw data such as acceleration data acquired by the strong motion meter on the local side to the server side in real time.
  • the seismic intensity calculated locally is used as a threshold value, so that the seismic intensity can be calculated locally even when the network with the outside is cut off, and the data can be retained safely and reliably.
  • the seismic intensity sensor may be an accelerometer, or a speedometer or a displacement meter, depending on the case, but it is a sensor that primarily detects physical quantities related to earthquake shaking.
  • the measurement data is the measurement data (raw data) recorded by the seismic intensity sensor.
  • the seismic intensity sensor is an acceleration sensor
  • the time and acceleration data recorded by the strong motion meter may be used.
  • the seismic intensity data is numerical data representing the maximum seismic intensity within a unit time, for example. According to the above-described configuration, only the seismic intensity data exceeding the threshold value is transmitted to the data processing server, so that the network load can be suppressed.
  • the strong motion meter and the data processing terminal in the above configuration may be housed in one housing.
  • the residual seismic performance evaluation system transmits only seismic intensity data exceeding a threshold value to the data processing server during normal times, and only requires measurement data for evaluation of the residual seismic performance when requested from the data processing server side. Since this is transmitted, the network load can be greatly reduced. In addition, it is possible to safely and reliably record and maintain data necessary for the evaluation of residual seismic performance even in unprecedented disasters.
  • the figure which shows the residual seismic performance evaluation system of 1st Embodiment The flowchart which shows the process of the seismic intensity data of 1st Embodiment
  • the flowchart which shows the process of the seismic intensity data of 2nd Embodiment The flowchart which shows the process of the seismic intensity data of 3rd Embodiment
  • Flowchart of the integrated authentication program of the fourth embodiment The flowchart which shows calculation of the residual seismic performance evaluation data of 5th Embodiment
  • Flowchart showing map creation of the sixth embodiment The figure which shows the residual seismic performance evaluation system of 7th Embodiment
  • the figure which shows the residual seismic performance evaluation system of 8th Embodiment It is a figure which shows the block configuration of the strong motion meter (IT strong motion meter) and data processing terminal of a residual seismic performance evaluation system, (A) is a figure which shows a strong motion meter (IT strong motion meter), (B) is a data processing terminal.
  • FIG. 1 is a diagram showing a residual seismic performance evaluation system according to the first embodiment.
  • the residual seismic performance evaluation system 100 includes a data processing server (hereinafter sometimes simply referred to as “processing server”) 10, a data processing terminal (hereinafter sometimes simply referred to as “processing terminal”) 20, and a plurality of such. Strong motion meter 30 and user terminal 60, which are connected via network 50.
  • the processing server 10 processes data relating to an enormous earthquake sent from the processing terminal 20.
  • the storage server 40 records various data collected in the processing server 10 and stores necessary authentication data.
  • the data processing server 10 and the storage server 40 are preferably composed of one or a plurality of virtual servers constructed on the cloud. This is because if it is a virtual server on the cloud, it is easy to distribute the load according to the amount of data processing or to move to a more sophisticated server.
  • the storage server 40 may be composed of at least two units, and various data (seismic intensity data, threshold data before and after adjustment, displacement data, stiffness value, residual stiffness value, etc.) may be stored in these storage servers. . In this way, it is possible to reduce the risk that some or all of the various data will be lost due to a disaster or the like. Further, some or all of various data may be decomposed into at least two or more, and the decomposed data may be distributed and stored in at least two or more storage servers. In this way, it is possible to reduce the damage and risk when various data are illegally leaked, stolen or altered.
  • the data processing server 10 may be composed of at least two units, and the data processing server may execute a process for evaluating the remaining seismic performance. In this way, it is possible to reduce the risk that the residual seismic performance cannot be evaluated due to a failure such as damage or failure in the data processing server due to a disaster or the like. Further, the process for evaluating the residual seismic performance may be divided into at least two processes, and each process may be distributed to at least two data processing servers and executed. In this way, it is possible to reduce damage and risk when each processing program is illegally leaked, stolen or tampered with.
  • the data processing server 10 may control the data processing terminal 20.
  • the data processing server 10 controls the stop or restart of part or all of the processing of the data processing terminal 20, the update related to the use license, the stop of the use license, the authority management, and the user authentication. Also good.
  • FIG. 10 (A) shows a block configuration of a strong motion seismometer (IT strong motion meter) 30 that can be connected to the network.
  • the strong motion meter 30 includes a CPU 31 for controlling the entire apparatus, a storage device 32 such as a flash memory and a hard disk, a temporary storage means 33 such as a RAM, a network interface 34, an A / D converter 35, an acceleration sensor 36, and the like.
  • the storage device 32 records an OS and a program for measurement, and stores a calculation result by the CPU 31 as data.
  • the acceleration sensor 36 is connected to the CPU 31 via the A / D converter 35 and transmits the measured acceleration value to the CPU 31 while sampling.
  • This strong motion meter 30 incorporates three acceleration sensors 36 and can measure acceleration corresponding to three axes in the horizontal (XY direction) and vertical (Z direction) in real time. Since acceleration, velocity, and displacement have an integral or differential relationship, theoretically, a velocity sensor or a displacement sensor may be used.
  • a plurality of strong motion meters 30 having the same configuration are provided for one measurement object (structure).
  • the prototype residual seismic performance evaluation system is designed to evaluate the residual seismic performance of a single structure with up to about 100 strong seismometers. However, larger systems can be supported by improving the performance of each terminal and network.
  • the present invention is more effective as the number of strong motion meters increases and the amount of data transmitted to the server increases.
  • FIG. 10B shows a block configuration of the data processing terminal 20.
  • a program for a predetermined data processing terminal may be installed in a general-purpose computer including the CPU 21, the storage device 22, the RAM 23, the network interface 24, and the like.
  • the CPU 21 executes a program for providing a predetermined threshold for seismic intensity data, recording only necessary data in the storage device 22, and transmitting the data to the data processing server 10.
  • the “seismic intensity data” is a numerical value representing the seismic intensity per unit time (for example, every second), and can be calculated from the measurement result of the accelerometer (raw data of the accelerometer).
  • the storage device 22 records the OS and various programs, and stores seismic intensity data and acceleration data.
  • the storage device 22 may be a file server or the like provided in the LAN.
  • the data processing terminal 20 mainly plays a role of managing the strong motion seismometer 30, and it is sufficient that at least one data processing terminal 20 is provided for one structure in which a plurality of strong motion meters 30 are installed. However, for the purpose of load distribution, at least one of the strong motion meters 30 has the function of the processing terminal 20 and this is used as a “base unit” and other strong motion meters as “slave units”. It may be omitted. Alternatively, all strong motion meters may have the function of a processing terminal.
  • the storage device 21 included in the strong motion meter 30 may also be a nonvolatile memory device to the extent necessary for the operation of the device, or a larger capacity hard disk or a file server connected to a network. .
  • the data processing terminal 20 may perform a part or all of processing performed by the data processing server 10 at normal times, for example, processing for adjusting a threshold value described later, processing for calculating residual seismic performance evaluation data, and the like. In this way, not only can the load on the data processing server 10 be suppressed, but also if there is a problem with the network between the data processing server 10 and the data processing terminal 20 due to a disaster or the like, or there is a problem with the power supply on the data processing server 10 side. Even if the problem occurs, if there is no problem on the data processing terminal 20 side, the process for evaluating the remaining seismic performance can be continued. For example, it is sufficient that the processing time can be secured from several minutes to several tens of minutes after the mainshock.
  • FIG. 2 is a flowchart showing the flow of each step of seismic intensity data and the exchange of data between devices in the residual seismic performance evaluation system of this embodiment. Each device will be described.
  • the acceleration data acquired by the acceleration sensor is sequentially transmitted to the data processing terminal.
  • -Data processing server and storage server- S135 Adjust the threshold value set in the data processing terminal.
  • S137 Receive the seismic intensity data transmitted by the data processing terminal in step S127.
  • S138 Compress the seismic intensity data.
  • S145 Transmit the threshold data to the data processing terminal.
  • S148 The seismic intensity data after compression. Record
  • a threshold value of seismic intensity data is set in advance in the data processing terminal 20.
  • This threshold value is configured such that the data processing server 10 adjusts the threshold value based on the data recorded in the storage server 40 and sets it in the processing terminal 20. Then, only seismic intensity data exceeding the threshold is transmitted to the processing server 10. For example, the seismic intensity data is transmitted to the processing server 10 only when the seismic intensity 3 or higher is recorded.
  • This threshold is preferably adjustable. It should be noted that the operation when the threshold value is not exceeded may be any. As an actual operation, for example, seismic intensity data exceeding a threshold value is permanently stored on the processing terminal 20 side, and seismic intensity data below the threshold value is stored for a certain period and then overwritten and deleted sequentially from the oldest one. Good.
  • the data processing terminal 20 may compress the seismic intensity data before transmitting it. If necessary, it may be stored without being compressed. In this case, the decompression step can be omitted when a read request is made.
  • the data processing server 10 contributes to reducing the amount of calculation for evaluating the remaining seismic performance.
  • the threshold value Since only the data exceeding the threshold is transmitted to the data processing server 10 as seismic intensity data, only necessary data among the measurement data measured by the strong motion meter 30 is stored while suppressing the load on the data processing server 10 and the data processing terminal 20 can do.
  • the processing server 10 also contributes to reducing the amount of calculation required for calculating the residual seismic performance.
  • FIG. 3 is a flowchart of the measurement data processing program.
  • the data processing server 10 in order for the data processing server 10 to judge the evaluation of residual seismic performance, the flow of each step until it requests
  • the measurement data raw data
  • the strong motion meter measured and between each apparatus. Indicates data exchange.
  • -Data processing server and storage server- S231 Processing server requests acceleration data from strong motion meter and processing terminal or both-Strong motion meter-
  • S212 Receive acceleration data request from processing server and send acceleration data to processing terminal
  • S213 Record acceleration data in strong motion meter-Data processing terminal-
  • S223 Acceleration data is compressed.
  • S224 Acceleration data is recorded.
  • steps S212 and S213 are executed. Also good.
  • the steps S222-224 on the data processing terminal side may be performed periodically, for example, with a frequency of about once a day.
  • the data processing server for example, acquires seismic intensity data of earthquakes that recorded seismic intensity 3 or higher in real time, while acceleration data with a large amount of data is summarized in non-real time such as a time zone with a small amount of communication.
  • the residual seismic performance evaluation system it is possible to efficiently acquire and store measurement data such as acceleration data measured by the strong motion meter 30 while suppressing the load on the data processing server 10 and the data processing terminal 20. it can.
  • FIG. 4 is a diagram illustrating a flowchart of a measurement data processing program according to the third embodiment.
  • the operation of each device when a large earthquake is actually observed will be described on the assumption that the data processing terminal has observed seismic intensity data exceeding a threshold value.
  • -Data processing server- S331 Receive seismic intensity data from data processing terminal S332: Adjust threshold S333: Compare seismic intensity data with threshold S334: Generate data processing server specification change signal S335: Change data processing server specification S336: Request acceleration data
  • Steps S334 to S335 are steps for changing the specifications of the data processing server that will perform data processing from now on according to the processing amount of the data processing server. For example, when a large seismic intensity tremor is observed for a long time, it is expected that the amount of calculation for evaluating the residual seismic performance will increase. Change to something.
  • the operation after requesting acceleration data in step S336 is indicated by a broken line because the processing described in the second embodiment can be used. Note that the processing after step S212 and S222 is omitted.
  • the specification of the data processing server 10 can be changed to increase the processing capability, and then the acceleration data can be requested to prepare for the subsequent processing.
  • FIG. 5 is a flowchart of the integrated authentication program.
  • FIG. 5 shows operations of the data processing server 10, the data processing terminal 20, the strong motion meter 30, and the storage server 40 at startup.
  • Step S111, S121, and S131 all indicate startup steps
  • S112, S122, and S132 all indicate device authentication and environment authentication steps.
  • Authentication may be performed using a device-specific ID for device authentication and a white list such as a software list or a setting list for environment authentication.
  • Authentication data and environmental data are stored in the storage server 40 and are read out as necessary. The environment data is used when the environment is updated when the environment authentication is not passed. Further, if necessary, individual authentication may be performed on each device with a user name such as a responsible person or a management company.
  • the identity authentication corresponds to authentication by an organization or corporation that performs installation authentication of the strong motion meter.
  • user authentication may be applied in the data processing server, and installer authentication may be applied in the data processing terminal and the strong motion seismometer.
  • the use is permitted only to the authenticated data processing server 10, the data processing terminal 20, or the strong motion seismometer 30. Moreover, the data processing server 10, the data processing terminal 20, or the strong motion seismometer 30 which is not authenticated by any one of them is not permitted to be used, and can be made unusable.
  • the integrated authentication program is executed by at least one of the data processing server 10, the data processing terminal 20, and the strong motion meter 30 based on the authentication data stored in the storage server 40.
  • the respective environments may be updated in the order of the terminal 20 and the strong motion seismometer 30, and accordingly, data used for environment authentication, for example, a white list may be updated.
  • Authentication data may be further added to the update information.
  • the seismic intensity data processing program is implemented.
  • each of the data processing server 10, the data processing terminal 20, and the strong motion meter 30 executes an integrated authentication program for performing device authentication and environment authentication at the time of start-up, so that each device improves safety and is appropriate. It can be guaranteed to work in the environment. In this way, an extremely reliable environment can be constructed by performing the authentication on all devices that use the person / device / environment authentication.
  • each device in order to ensure authentication reliability and tamper resistance, each device must be implemented in a robust, highly reliable and secure chassis, and the network must consist of a secure communication network such as a VPN. desirable. In this way, by configuring the system as closed as possible, the tamper resistance of the entire system can be improved.
  • a trusted system can be configured by configuring a closed system as much as possible.
  • FIG. 6 is a flowchart showing a method for calculating residual seismic performance evaluation data.
  • the means for calculating the residual seismic performance evaluation data performs the following steps S531 to S538, thereby calculating the stiffness value and the residual stiffness value of the structure for evaluating the residual seismic performance.
  • the data processing server 10 decompresses the acceleration data stored in the storage server 40 (S531, S541).
  • displacement data is calculated based on the acceleration data (S533).
  • the natural period value is calculated from the acceleration data and the displacement data, and the natural period value data is compressed and stored in the storage server 40 (S544).
  • a stiffness value is calculated from the natural period value (S535).
  • the stiffness data is compressed and stored in the storage server 40 (S536, S546).
  • a residual stiffness value is calculated from the stiffness value (S537).
  • the residual stiffness value data is compressed and stored in the storage server 40 (S546).
  • the stiffness value and the residual stiffness value of the structure for evaluating the residual seismic performance can be calculated (S537, S538) and stored in the storage server 40 (S547, S548). It is possible to evaluate the residual seismic performance by comparing the calculated stiffness value of the structure with the residual stiffness value.
  • the stiffness value is obtained in the flow that the P curve (performance curve) is obtained from the acceleration data, the S curve (skeleton curve) is obtained therefrom, and the stiffness curve is obtained therefrom.
  • the skeleton curve is a curve indicating how the building deforms when a force is applied in the east-west direction of the structure, for example, and the vertical axis represents stress and the horizontal axis represents displacement in the east-west direction.
  • the skeleton curve is a straight line that passes through the origin when the displacement of the structure is within the elastic limit, but if it exceeds that, the line breaks and the inclination of the straight line after that point becomes smaller.
  • FIG. 7 is a flowchart showing the map creation method of the sixth embodiment.
  • the data processing server further includes a map creation step using the stiffness value and the residual stiffness value of the structure.
  • steps S631 to S635 shown in FIG. 7 By executing steps S631 to S635 shown in FIG. 7 on the data processing server, a map relating to the stiffness value of the structure and a map relating to the residual stiffness value of the structure are created.
  • a structure rigidity value map is created based on the rigidity value calculated in step S631, the residual rigidity value calculated in S, and the structure design data stored in advance in the storage server 40 (S632). ). If there is no design data of the structure, a reinforcement work or the like is considered when the stiffness value is reduced by a certain amount, for example, 10% from the initial stiffness value, or when the change in stiffness value changes by more than a measurement error.
  • the seismic intensity data compressed and stored in the storage server 40 is decompressed and displayed on the map to create a seismic intensity map (S633).
  • a stiffness value map and a seismic intensity map of the created structure are created for each customer (S634).
  • the data of the stiffness value map and seismic intensity map created for each customer is uploaded to a server for publishing to the network 50 (step S635).
  • the stiffness value map and the seismic intensity map can be created for each customer and the data can be disclosed to the network 50.
  • Data uploaded to the server can be accessed and used from the user terminal 60. When the access is made, the integrated authentication program may be used.
  • the users of the terminal 60 may be classified into two or more groups, and the data such as the stiffness value map and seismic intensity map that can be accessed for each classified user may be restricted.
  • a data range may be set.
  • FIG. 8 is a diagram illustrating a flow of each site of the residual seismic performance evaluation system according to the seventh embodiment.
  • each is constructed in a disaster area, a non-disaster area 1, a disaster area 2,..., A non-disaster area N, and a cloud is used as a data processing server in each area.
  • the acceleration data is stored in a cloud storage device separately for each region.
  • the cloud is used for the data processing server, there is an advantage that the calculation processing capacity and the storage capacity of the storage device can be changed flexibly in a relatively short time.
  • step S811 an alarm is issued to the cloud in charge of the disaster area (hereinafter referred to as “disaster area cloud”) (step S811).
  • a cloud in charge of non-disaster area 1, disaster area 2,..., Non-disaster area N (hereinafter referred to as “non-disaster area 1, disaster area 2,. May be alerted.
  • the contract and setting of the cloud in the disaster area are changed (step S812).
  • the cloud contracts and settings of non-disaster area 1, disaster area 2,..., Non-disaster area N may be changed as necessary (steps S822 to S852).
  • Steps S811 and S812 correspond to step S334.
  • acceleration data is requested from the disaster area strong motion meter or data processing terminal (not shown) from the disaster area cloud (step S813).
  • This step S813 corresponds to the above step S336.
  • acceleration data transmitted from a strong motion meter (not shown) or a data processing terminal is received (step S815), the received acceleration data is compressed (step S816), and the compressed acceleration data is stored in the cloud in the disaster area. Save in the device (step S817).
  • Steps S815, S816, and S817 correspond to steps S232, S233, and S243 described above.
  • acceleration data of non-disaster area 1, disaster area 2,..., Non-disaster area N in a cloud storage device When storing acceleration data of non-disaster area 1, disaster area 2,..., Non-disaster area N in a cloud storage device, acceleration data from each cloud to a strong motion meter or data processing terminal (not shown) in each area , Receiving acceleration data transmitted from the local seismograph or data processing terminal (steps S825 to S855), compressing the received acceleration data (steps S826 to S856), and compressing the acceleration data The data is stored in the cloud storage device in the disaster area (steps S827 to S857).
  • the cloud contract and setting can be changed for each region, and acceleration data can be stored in the cloud storage device of each region.
  • FIG. 9 is a diagram showing a residual seismic performance evaluation system according to the eighth embodiment.
  • the residual seismic performance evaluation system 800 includes a data processing server 10, an integrated terminal 70 in which mainly the data processing terminal 20, the strong motion seismometer 30 and the communication module 71 are integrated, and a user terminal 60. Connected through.
  • the network setting of the data processing terminal and the strong motion seismometer and the adjustment of the data processing terminal and the strong motion seismometer at the site become unnecessary, and the installation work can be facilitated.
  • the integrated terminal 70 in which the data processing terminal and the strong motion meter are integrated is used, network setting and installation work can be easily performed.
  • FIG. 11 is a flowchart illustrating seismic intensity data processing according to the ninth embodiment.
  • FIG. 12 is a flowchart illustrating processing mainly executed by the data processing server according to the ninth embodiment.
  • a new certificate authority (Certificate Authority, CA) is provided, and authentication data transmitted from the certificate authority is used as measurement data (acceleration data) and You may make it add to calculation data (seismic intensity data).
  • CA Certificate Authority
  • -Data processing terminal- S124a The acceleration data transmitted from the strong motion meter is received to calculate seismic intensity data, the authentication data transmitted from the data processing server is received, and then the authentication data is added to the seismic intensity data.
  • S154a Send authentication data to the storage server.
  • S154b Send authentication data to the data processing server.
  • authentication data may be added to the acceleration data transmitted from the strong motion meter 30, and then seismic intensity data may be generated.
  • the authentication data transmitted in the certificate authority may include data for time authentication in addition to the data for personal authentication, device authentication, and environment authentication described in the fourth embodiment.
  • the data processing server 10, the data processing terminal 20, the strong motion meter 30, and the storage server 40 may all include a TPM (Trusted Platform Module) and store the authentication data of the certificate authority in the TPM.
  • TPM Trusted Platform Module
  • This TPM is a security chip that has a mechanism to protect information mainly from attempts to illegally analyze internal information.
  • PKI keys electronic keys
  • electronic certificates It has a function to prove the validity of the platform and a data encryption function.
  • at least one of each server, terminal, and device may be provided with a TPM that stores authentication data of the certificate authority.
  • certificate authority may be an external certificate authority as TTP (Trusted Third Party).
  • the residual seismic performance evaluation system 900 of the ninth embodiment can easily implement various certifications by providing a new certification authority (CA), and adds certification data of the certification authority to seismic intensity data. By authenticating using the authentication data, the reliability and safety of seismic intensity data can be further enhanced.
  • CA certification authority
  • FIG. 13 is a flowchart of the integrated authentication program according to the tenth embodiment.
  • each authentication person authentication, device authentication, environment authentication and / or time authentication
  • CA certificate authority
  • FIG. 13 shows a state of integrated authentication that performs personal authentication, device authentication, environment authentication, and time authentication when the data processing server 10, the data processing terminal 20, the strong motion meter 30, and the storage server 40 are activated.
  • Steps S111, S121, and S131 shown in FIG. 13 indicate steps at the time of activation
  • S112a, S122a, and S132a indicate steps for device authentication, environment authentication, and time authentication
  • Each of S152a, S153a, and S154a indicates a step of transmitting authentication data (data for personal authentication, device authentication, environment authentication, and time authentication) generated by the certificate authority to the storage server 40.
  • S152b and S153b indicate steps for transmitting authentication data to the data processing server 10 and S154b for transmitting authentication data to the data processing terminal 20, respectively.
  • the residual seismic performance evaluation system 1000 holds the authentication data generated by the certificate authority in each device, specifically, the data processing server 10, the data processing terminal 20, the strong motion meter 30 and
  • the storage server 40 holds data for personal authentication, device authentication, environment authentication, and time authentication, respectively, and it is possible to confirm whether each device is installed in an appropriate situation by authenticating using the authentication data. it can.
  • Integrated authentication including personal authentication, device authentication, environment authentication, and time authentication may be mutually performed among the data processing server 10, the data processing terminal 20, the strong motion meter 30, the storage server 40, and the certificate authority. Good.
  • the integrated authentication may be performed at regular intervals after the data processing server 10, the data processing terminal 20, the strong motion meter 30, and the storage server 40 are started.
  • the residual seismic performance evaluation system 1000 performs the integrated authentication using the authentication data of the certificate authority, so that each device can operate in an appropriate operating environment with higher reliability and safety. Can be guaranteed easily.
  • FIG. 14 is a flowchart showing calculation of residual seismic performance evaluation data according to the eleventh embodiment.
  • the authentication data of the certificate authority is measured as acceleration data, displacement data, and the stiffness value and residual stiffness value of the structure for evaluating the residual seismic performance. It may be added to at least one of the calculated values.
  • processing for adding authentication data to each data will be described.
  • the calculation means for the residual seismic performance evaluation data adds authentication data to the acceleration data and the calculated displacement data when generating the displacement data (S533a). At the time of subsequent generation of the stiffness value, authentication data is added to the calculated stiffness value (S535a). At the time of generating the subsequent residual stiffness value, authentication data is added to the calculated residual stiffness value (S537a).
  • the residual seismic performance evaluation system 1100 can evaluate the residual seismic performance by comparing the stiffness value of the generated structure and the residual stiffness value, and authenticate using the authentication data added to each data. Reliability of each data (guarantee of authenticity, preservation of evidence), safety, availability, efficiency, and management quality of all IT resources involved in this system can be improved.
  • the residual seismic performance evaluation system 1100 of the eleventh embodiment converts the authentication data of the certification authority into at least one value of acceleration data, displacement data, the stiffness value of the structure for evaluating the residual seismic performance, and the residual stiffness value.
  • the reliability and safety of each data can be further enhanced.
  • FIG. 15 is a flowchart showing map creation according to the twelfth embodiment.
  • a map relating to the stiffness value of the structure and a map relating to the residual stiffness value of the structure may be created using the stiffness value and the residual stiffness value of the structure, respectively.
  • the authentication data of the certificate authority may be added to at least one of the stiffness value, seismic intensity data, and customer-specific data.
  • a process of adding authentication data to each of the stiffness value of the structure, seismic intensity data, and customer-specific data of each map will be described.
  • the residual seismic performance evaluation system 1200 publishes the data to the network 50 and authenticates using the authentication data added when accessing from the user terminal 60, thereby improving the reliability and safety. Data can be used.
  • the users of the user terminal 60 may be classified into two or more groups, and data such as the stiffness value map and seismic intensity map that can be accessed for each classified user may be restricted.
  • VPN may be adopted for the purpose of impersonating some or all of the above network, suppressing or detecting eavesdropping and tampering.
  • FIG. 16 is a diagram illustrating a residual seismic performance evaluation system according to a thirteenth embodiment.
  • the residual seismic performance evaluation system 1300 includes a data processing server 10, an integrated terminal 70 in which mainly the data processing terminal 20, the strong motion seismometer 30 and the communication module 71 are integrated, a user terminal 60, and each certificate authority (personal authentication). Station, device certificate authority, environment certificate authority, and time certificate authority), and these are connected via networks 50 and 50a such as the Internet.
  • the network 50a may be a LAN for locally connecting the data processing server 10 and each certificate authority.
  • the residual seismic performance evaluation system 1300 of the thirteenth embodiment uses the integrated terminal 70 in which the data processing terminal and the strong motion seismometer are integrated, the network setting and installation work can be easily performed and the reliability and safety can be improved. It is possible to easily guarantee that it can operate in an appropriate environment with increased performance.
  • Data processing server 11 CPU (Central Processing Unit) 12 storage device 13 temporary storage means (RAM) 14 Network interface 20 Data processing terminal (Station) 21 CPU (Central Processing Unit) 22 Storage device 23 Temporary storage means (RAM) 24 Network interface 30 Strong motion meter 31 CPU (Central processing unit) 32 Storage device 33 Temporary storage means (RAM) 34 Network interface 35 A / D converter 36 Acceleration sensor 40 Storage server 50 Network (transmission path) 51 Network (LAN) 100, 800, 1300 Residual seismic performance evaluation system

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)

Abstract

【課題】ネットワーク負荷を最小限に抑える残余耐震性能評価システムを提供する。 【解決手段】 震度センサー等を備えた強震計と、強震計が取得した測定データを記録及び処理するためのデータ処理端末と、測定データに基いて残余耐震性能を評価するためのデータ処理サーバとを含む残余耐震性能評価システムであって、 前記データ処理端末に以下のステップを実行させる一方、 a.前記強震計が取得した測定データに基づいて震度データを算出S124 b.震度データの閾値を設定S125 c.震度データが前記閾値を超えているか否かを判断S126 d.前記閾値を超えた震度データを前記データ処理サーバへ送信S127 さらに、前記データ処理サーバに、以下のステップを実行させる。 g.前記強震計又は前記データ処理端末の少なくともいずれか一方に測定データを要求S231 h.要求に応じて送信された測定データを受信S232

Description

残余耐震性能評価システム
 本発明は、道路、建物、橋梁やダム等の構造物内に複数設置された強震計と、それらを管理するサーバがネットワークを介して接続された残余耐震評価システムに関する。
 橋梁等の土木構造物又は建築構造物(以下、「構造物」という。)に加速度計等の震度センサーを複数設置しておき、地震が発生した際に構造物の各部位の揺れを計測してその震度データ及び加速度等の測定データを管理サーバへ送信し、測定データから算出した建物の変位量と構造物の設計データ等から建物の残余耐震性能を評価する残余耐震性能評価システムが知られている(特許文献1)。
 特許文献2は、広い地域に分散された多数の拠点から地震動の情報を集める地震情報収集システム等に関する発明を開示している。このようなシステムにおいては、本震に引き続いて起こる多数の余震全ての情報を収集及び記憶すると、サーバーのデータ記憶量やデータ処理量が莫大になる。そこで、データ量を軽減するために、検出対象とする測定データに「閾値」を設け、閾値を越えた測定データのみを収集及び記憶することが記載されている(第8段落~第10段落)。
特開2011-95237号公報 特開2004-301738号公報
 残余耐震性能評価システムは、その性質上、未曾有の震災が発生した際にも、確実に動作し続ける極めて高い信頼性が求められる。当然のことながら、電源喪失やネットワーク寸断などの極めて過酷な状況に陥ることを「想定内の事象」として設計・運用されなければならない。一方、「残余耐震性能」は、構造物の強度や地盤など種々の要因によって大きく異なっている。例えば、十分な耐震設計がなされた構造物であれば、震度3以下では「判定」するまでもなく残余耐震性能に全く影響せず安全と判断できる一方で、老朽化した木造家屋などでは、震度3でも一部損壊が起こり、安全か危険かの判定が必要になる、といった事態も考えられる。
 このような状況において、判定に影響を与えない小さな地震についても一律に加速度データなどの測定データをネットワークを介して管理サーバへ送信する続けるとなると、一つの構造物に設置される強震計の数が多くなるほど管理サーバへ送信されるデータ量も飛躍的に増大する。特に、残余耐震性能評価システムが構造物の安全・危険を判断するために必要な測定データは、x軸、y軸、z軸すべてについて震度センサーが取得した計測値(加速度や速度或いは変位)をA/D変換して得られた数値データである。震度センサーのサンプリング周波数が例えば20msであれば、1軸あたり1秒間に50データ、これを上述の信頼性をもって一定期間、確実に記録・保持しつづけなければならない。これは、8ビット程度のA/D変換器であってもこれは一般に非常に膨大なデータ量になる。
 特に、大規模な残余耐震性能評価システムを構築する場合、最終的にはクラウド上のデータ処理サーバに各拠点から送信された全ての測定データが集められることになるが、加速度などの測定データを24時間365日送り続けることを前提とする設計は、ネットワーク負荷を増大させる原因となるだけでなく、データの保持コストの点からも、また、震災発生時にも動作し続ける高い信頼性が要求される観点からも、現実的でない。
 本発明は、上記に鑑みてなされたものであり、多数の強震計を設置するように設計された比較的大規模な残余耐震性能評価システムにおいて、強震計を設置しているローカル側とネットワークを介してデータを処理及び保存しているサーバ側との間のネットワーク負荷を最小限に抑えると共に、未曾有の災害時にも残余耐震性能評価に必要な測定データを安全かつ確実に記録及び保持できる新たな仕組みを提供することを主な技術的課題とする。
 本発明に係る残余耐震性能評価システムは、震度センサーとネットワークインターフェースとストレージとA/D変換器と一時記憶手段とCPUとを備えた強震計と、前記強震計が取得した測定データを記録及び処理するためのデータ処理端末と、前記強震計が取得した測定データに基いて残余耐震性能を評価するためのデータ処理サーバとを含み、
 前記データ処理端末に以下のステップ:
 a.前記強震計が取得した測定データに基づいて震度データを算出するステップ(S124)
 b.震度データの閾値を設定するステップ(S125)
 c.震度データが前記閾値を超えているか否かを判断するステップ(S126)
 d.前記閾値を超えた震度データを前記データ処理サーバへ送信するステップ(S127)
 を実行させる一方、前記データ処理サーバに、以下のステップ:
 g.前記強震計又は前記データ処理端末の少なくともいずれか一方に測定データを要求するステップ(S231)
 h.要求に応じて送信された測定データを受信するステップ(S232)
を実行させることを特徴とする。
 上記のような構成によれば、強震計が取得した膨大なデータ量の加速度データ(或いは速度又は変位データ)に基づいて一連の地震について地震の揺れの大きさを数値で表現できる「震度」をローカル側の強震計又はローカル側に設置したデータ処理端末で計算できるため、構造物の耐震性能に則した震度閾値を設定することで、その構造物にとって残余耐震性能評価に真に必要な規模の地震であるか否かを閾値によりデータ処理端末側で簡易に判定し、記録・保持すべきデータか否かを簡単に判別できるようになる。しかも、強震計がストレージを備えているため一定量の測定データを保持できるため、ネットワークが寸断された場合でも、データを記録・保持し続けることができる。なお、データ処理端末に閾値を設定するステップb.は一度だけ設定すればよく、必ずしも毎回設定する必要はない。
 なお、ステップgで規定される測定データを要求するタイミングは、閾値を越えた震度データを受信したと同時すなわちリアルタイムでも、それ以降のタイミングすなわち非リアルタイムでもよい。この理由は、ネットワークが寸断された場合には、ネットワークの復旧後に送信してもよいためであり、或いは別の観点から、通信コストの低い夜間などの時間帯にまとめてデータ処理サーバに測定データを送信するといった運用も考えられるからである。
 ところで、一般に、単に「震度」という場合は本来的には地震の規模を示す「マグニチュード」などと同様に、一つの地震に対して気象庁が公表した「震度(計測震度)」を指し、これは気象庁が加速度データから計算で求めた「地点毎に一意の値」である。この意味において、ローカルの震度は、厳密には「震度」と区別されるべきである。しかし、本明細書では、単に「震度」という場合は、特に明示した場合を除き、ローカル側で加速度値から計算により求めた震度(計測震度)を指す。この理由は、本発明に係る残余耐震性能評価システムは、震度センサーを設置したまさにその構造物で観測された観測値(測定データ)に基いて構造物の損傷の程度を評価するシステムであり、気象庁が公表する震度を本発明が前提とする残余耐震性能評価システムのローカル側で用いることは想定し得ないからである。例えば、公式発表された震度がいかに大きくても、構造物自体で計測された計測値から求めた震度が小さければ、構造物の損傷の可能性は小さいといえ、逆に、公式発表された震度が小さくても、地盤や構造物の形状や大きさの関係から、その構造物では周囲よりも大きな震度が観測され得るからである。
 本発明のシステムを前提にすれば、ローカル側で強震計が取得した加速度データなどの生データも、必ずしもリアルタイムにサーバ側に送信する必要はない。ローカルで計算した震度を閾値に用いるため、外部とのネットワークが寸断されている場合でも、ローカル内で震度を計算することができ、安全・確実にデータを保持できるからである。
 ここで、震度センサーとは加速度計、場合によっては速度計或いは変位計などでもよいが、地震の揺れに関する物理量を第一次的に検知するセンサーを言う。測定データとは震度センサーが記録した測定データ(生データ)などである。例えば震度センサーが加速度センサーである場合には、強震計が記録した時刻と加速度のデータであってもよい。震度データとは例えば単位時間内の最大震度を表す数値データである。上述の構成によれば、閾値を越えた震度データだけをデータ処理サーバへ送信するため、ネットワーク負荷を抑えることができる。これによりネットワーク環境の悪い地域に強震計を設置する場合には、通信費の削減やネットワーク資源の有効利用が促進される。上記の構成における強震計とデータ処理端末は一つの筐体に納められていてもよい。
 本発明に係る残余耐震性能評価システムは、平時には閾値を越えた震度データだけをデータ処理サーバへ送信しておき、データ処理サーバ側から要求した場合にだけ残余耐震性能の評価に必要な測定データを送信するため、ネットワーク負荷を大幅に抑えることができる。また、未曾有の災害時にも残余耐震性能評価に必要なデータを安全かつ確実に記録及び保持できる。
第1の実施形態の残余耐震性能評価システムを示す図 第1の実施形態の震度データの処理を示すフローチャート 第2の実施形態の震度データの処理を示すフローチャート 第3の実施形態の震度データの処理を示すフローチャート 第4の実施形態の統合認証プログラムのフローチャート 第5の実施形態の残余耐震性能評価データの算出を示すフローチャート 第6の実施形態の地図作成を示すフローチャート 第7の実施形態の残余耐震性能評価システムを示す図 第8の実施形態の残余耐震性能評価システムを示す図 残余耐震性能評価システムの強震計(IT強震計)及びデータ処理端末のブロック構成を示す図であり、(A)は強震計(IT強震計)を示す図であり、(B)はデータ処理端末を示す図 第9の実施形態の震度データの処理を示すフローチャート 第9の実施形態のデータ処理サーバが実施する処理を示すフローチャート 第10の実施形態の統合認証プログラムのフローチャート 第11の実施形態の残余耐震性能評価データの算出を示すフローチャート 第12の実施形態の地図作成を示すフローチャート 第13の実施形態の残余耐震性能評価システムを示す図
 以下、図面を参照して本発明の各実施形態について説明する。同一又は同類の部材には同一の符号を用いるか又は添字のみ異ならせて表示するものとし、重複した説明を省略しているが、各実施形態の記載は本発明の技術的思想を理解するために合目的的に解釈され、実施形態の記載に限定解釈されるべきものではない。
(第1の実施形態)
 図1は、第1の実施形態の残余耐震性能評価システムを示す図である。この残余耐震性能評価システム100は、データ処理サーバ(以下、単に「処理サーバ」という場合がある。)10と、データ処理端末(以下、単に「処理端末」という場合がある。)20と、複数の強震計30と、利用者端末60とを備え、それらがネットワーク50を介して接続されている。処理サーバ10は処理端末20から送られる膨大な地震に関するデータを処理する。ストレージサーバ40は処理サーバ10に集められた各種のデータを記録したり必要な認証データ等を保存する。データ処理サーバ10やストレージサーバ40は、クラウド上に構築された一つ又は複数の仮想サーバで構成されることが好ましい。クラウド上の仮想サーバであれば、データの処理量などに応じて負荷を分散させたりより高機能なサーバに移行したりすることが容易だからである。
 ストレージサーバ40を少なくとも2台で構成するとともに、それらのストレージサーバに各種データ(震度データ、調整前・後の閾値データ、変位データ、剛性値や残余剛性値等)を保存するようにしてもよい。このようにすると、各種データの一部又は全部が災害等により消失するリスクを減らすことができる。また、各種データの一部又は全部を少なくとも2つ以上に分解し、その分解したデータを少なくとも2台以上のストレージサーバに分散させて保存するようにしてもよい。このようにすると、各種データが不正に漏えい、盗難、改ざんされた場合の被害、リスクを減らすことができる。
 データ処理サーバ10を少なくとも2台で構成するとともに、それらのデータ処理サーバにより残余耐震性能の評価の処理をそれぞれ実行するようにしてもよい。このようにすると、災害等によりそれらのデータ処理サーバに損傷や故障等の不具合が生じて残余耐震性能を評価できないというリスクを減らすことができる。また、残余耐震性能の評価の処理を少なくとも2つ以上に分けて、それぞれの処理を少なくとも2台以上のデータ処理サーバに分散させて実行するようにしてもよい。このようにすると、それぞれの処理用プログラムが不正に漏えい、盗難、改ざんされた場合の被害、リスクを減らすことができる。
 データ処理サーバ10は、データ処理端末20を制御するようにしてもよい。例えば、データ処理サーバ10は、データ処理端末20の一部又は全部の処理の停止、再開、使用ライセンスに関わる更新、使用ライセンスの停止、権限の管理、利用者の認証をそれぞれ制御するようにしてもよい。
 なお、ネットワークとして、VPNなどを適用したセキュアな無線ネットワーク(例えば900MHz帯、Zigbee(登録商標))、光通信などを利用することで高額な有線通信電設費用を単純な電源工事だけで済ますことができる。
 図10(A)はネットワークに接続可能な強震計(IT強震計)30のブロック構成を示している。この強震計30は装置全体を制御するCPU31と、フラッシュメモリーやハードディスクなどのストレージデバイス32と、RAM等の一時記憶手段33と、ネットワークインターフェース34と、A/D変換器35と、加速度センサー36などを一つの筐体内に備える。ストレージデバイス32は、OSや計測のためのプログラムを記録したりCPU31による演算結果をデータとして保存したりする。加速度センサー36はA/D変換器35を介してCPU31に接続され、加速度の計測値をサンプリングしながらCPU31に伝達する。
 この強震計30は、3つの加速度センサー36を内蔵し、水平(X-Y方向)及び垂直(Z方向)の3軸に対応する加速度をリアルタイムに計測することができる。なお、加速度と速度と変位は積分乃至微分の関係にあるため、理論的には速度センサーや変位センサーであってもよい。強震計30は一つの計測対象物(構造物)に対して同じ構成のものが複数設けられる。試作した残余耐震性能評価システムは、最大100台程度の強震計で一つの構造物の残余耐震性能を評価することを想定している。しかし、各端末やネットワークの性能向上によってはさらに大規模なシステムにも対応できる。本発明は、強震計の数が増え、サーバに送信されるデータ量が増大するほど効果を発揮する。
 図10(B)はデータ処理端末20のブロック構成を示している。CPU21、ストレージデバイス22、RAM23、ネットワークインターフェース24などを備えた汎用的なコンピュータに所定のデータ処理端末用のプログラムをインストールしたものでよい。
 CPU21は、加速度データから震度データを生成するプログラムを実行するほか、震度データに所定の閾値を設けて必要なデータのみをストレージデバイス22に記録しデータ処理サーバ10に送信するプログラムを実行するなどの働きをする。ここで、「震度データ」とは単位時間あたり(例えば1秒間ごと)の震度を表す数値であり、加速度計の測定結果(加速度計の生データ)から算出することができる。ストレージデバイス22は、OSや各種のプログラムを記録すると共に震度データや加速度データを保存する。ストレージデバイス22は当然ながらLAN内に設けられたファイルサーバなどでもよい。
 データ処理端末20は、主に強震計30を管理する役割を果たすものであり、複数の強震計30を設置した一つの構造物に対して少なくとも一台設けられていればよい。ただし、負荷分散を目的として、強震計30の少なくとも一台に処理端末20の機能を兼ね備えさせ、これを「親機」、その他の強震計を「子機」として用いることで、処理端末20を省略してもよい。或いは、全ての強震計が処理端末の機能を備えてもよい。強震計30が備えるストレージデバイス21についても、機器の動作に最低限必要な程度の不揮発性メモリーデバイスであっても、或いはより大容量のハードディスクないしネットワークに接続されたファイルサーバ等であってもよい。
 データ処理端末20は、通常時にデータ処理サーバ10で行う処理、例えば、後述する閾値を調整する処理や残余耐震性能評価データを算出する処理等の一部又は全部を行なうようにしてもよい。このようにすると、データ処理サーバ10の負荷を抑えることはもちろんのこと、災害等によりデータ処理サーバ10とデータ処理端末20間のネットワークに問題が生じた場合やデータ処理サーバ10側で電源に問題が生じた場合であっても、データ処理端末20側に問題が生じていなければ残余耐震性能を評価するための処理を実行しつづけることができる。例えば、この処理時間として本震発生後数分から数十分程度を確保できればよい。
 図2は、本実施形態の残余耐震性能評価システムにおける、震度データの各ステップの流れと各機器間のデータのやり取りを示すフローチャートである。各機器ごとに説明する。
-強震計-
 S100:加速度センサーで取得した加速度データを逐次データ処理端末へ送信
-データ処理端末-
 S124:強震計から送信された加速度データを受信して震度データを生成
 S125:震度データに対する閾値を設定
 S126:震度データを閾値とを比較
 S127:閾値を越えた場合に震度データをデータ処理サーバに送信
 S128:震度データを圧縮
 S129:圧縮後の震度データを保存
-データ処理サーバ・ストレージサーバ-
 S135:データ処理端末に設定する閾値を調整する
 S137:ステップS127でデータ処理端末が送信した震度データを受信
 S138:震度データを圧縮
 S145:閾値データをデータ処理端末に送信
 S148:圧縮後の震度データを記録
 すなわち、データ処理端末20で予め震度データの閾値を設定しておく。この閾値は、ストレージサーバ40に記録されているデータに基いてデータ処理サーバ10で閾値を調整し、これを処理端末20に設定するように構成する。そして、閾値を超える震度データのみを、処理サーバ10に送信する。例えば、震度3以上を記録した場合にだけ、処理サーバ10にその震度データを送信する。この閾値は調整できることが好ましい。なお、閾値を越えない場合の動作についてはいずれでもよい。実際の運用としては、例えば、処理端末20側では閾値を越えた震度データは永久保存とし、閾値以下の震度データは一定期間保存したあと古いものから順次上書き消去されていくように構成してもよい。なお、データ処理量とデータ処理端末20の性能等を考慮して、震度データを送信する前にデータ処理端末20側で圧縮してもよい。また、必要であれば敢えて圧縮しないまま保存してもよい。この場合、読み出し要求に際して解凍ステップを省略することができる。
 以上のように、震度データに閾値を設けることでデータ処理端末20とデータ処理サーバ10との間のデータ量が大幅に小さくなる。さらに、データ処理サーバ10で残余耐震性能の評価をするための計算量を抑えることにも貢献する。
 第1の実施形態の残余耐震性能評価システム100では、強震計30の数が多くなり、強震計30で計測された測定データが大量にデータ処理端末20に集められた場合であっても、閾値を超えたデータだけを震度データとしてデータ処理サーバ10に送信するため、データ処理サーバ10及びデータ処理端末20の負荷を抑えて、強震計30で計測された測定データのうち必要なデータのみを保存することができる。処理サーバ10が残余耐震性能の算出に必要な計算量を抑えることにも貢献する。
(第2の実施形態)
 図3は、測定データの処理プログラムのフローチャートを示す図である。本実施形態では、データ処理サーバ10が、残余耐震性能の評価を判断するために、強震計が計測した測定データ(生データ)を要求して取得するまでの各ステップの流れと各機器間のデータのやり取りを示す。第1の実施形態にならい、各機器ごとに説明する。
-データ処理サーバ・ストレージサーバ-
 S231:処理サーバが強震計及び処理端末又はその両方に加速度データを要求
-強震計-
 S212:処理サーバからの加速度データの要求を受けて処理端末に加速度データを送信
 S213:強震計に加速度データを記録
-データ処理端末-
 S222:処理サーバからの加速度データの要求を受けて処理サーバに加速度データを送信
 S223:加速度データを圧縮
 S224:加速度データを記録
 なお、原則的にはデータ処理サーバ10はデータ処理端末20に対して加速度データを要求すれば足りるため、必ずしも強震計に加速度データの要求信号を送信する必要は無い。しかし、強震計がデータ処理サーバ10からの加速度データの要求信号を処理できる場合には、或いは強震計が加速度データを記録できるストレージデバイスを備えている場合には、ステップS212やS213を実行してもよい。
 データ処理端末側でのステップS222-224は定期的に、例えば、1日に1回程度の頻度で実施されるように構成してもよい。このようにすれば、データ処理サーバは例えば震度3以上を記録した地震の震度データについてはリアルタイムに取得する一方で、データ量の多い加速度データについては通信量の少ない時間帯など、非リアルタイムにまとめて取得できる利点がある。
 第2の実施形態の残余耐震性能評価システムでは、データ処理サーバ10及びデータ処理端末20の負荷を抑えて、強震計30で計測された加速度データ等の測定データを効率よく取得し保存することができる。
(第3の実施形態)
 図4は、第3の実施形態の測定データの処理プログラムのフローチャートを示す図である。本実施形態では、データ処理端末が閾値を超える震度データを観測した場合を前提として、実際に大きな地震が観測された際の各機器の動作について説明する。
-データ処理サーバ-
 S331:データ処理端末から震度データを受信
 S332:閾値調整
 S333:震度データを閾値とを比較
 S334:データ処理サーバ仕様変更信号を発生
 S335:データ処理サーバ仕様変更
 S336:加速度データ要求
 ステップS334-S335は、データ処理サーバの処理量に応じてこれからデータ処理を行うデータ処理サーバの仕様を変更するステップである。例えば、震度の大きい揺れを長時間観測したような場合には、残余耐震性能を評価するための計算量が増大することが予想されるため、処理を開始する前にデータ処理サーバを高スペックのものに変更する。ステップS336で加速度データを要求した後の動作は実施形態2で説明した処理を援用することができるので破線で示した。なお、ステップS212やS222以後の処理は省略している。
 以上の処理により、閾値を超える震度データを検出した場合にはデータ処理サーバ10の仕様を変更して処理能力を高め、その後加速度データを要求して以後の処理に備えることができる。
(第4の実施形態)
 図5は、統合認証プログラムのフローチャートを示す図である。図5は、データ処理サーバ10、データ処理端末20、強震計30及びストレージサーバ40のそれぞれの起動時の動作を示している。
 強震計、処理端末、サーバのいずれもが機器認証及び環境認証を実施する様子が示されている。ストレージサーバ40に本人認証、機器認証及び環境認証のためのデータを保持し、各機器が適切な状況で設置されているか確認することができる。ステップS111・S121・S131はいずれも起動時のステップを、S112・S122・S132はいずれも機器認証と環境認証のステップを示している。機器認証では機器固有のIDを、環境認証ではソフトウェアリストや設定リスト等のホワイトリストをそれぞれ用いて認証してもよい。ストレージサーバ40には認証データ及び環境データが保存されており、必要に応じて読み出される。環境データは環境認証をパスしなかった場合に環境を更新する際に用いられる。また、必要により、各機器に対して更に、責任者乃至管理会社等のユーザ名で本人認証を行ってもよい。
 実際の運用としては、例えば
(1)強震計の設置認証を行う機関又は法人があり、
(2)強震計の設置認証を行う目的で強震計の設置等を行なう業者を認定する機関又は法人があり、
(3)強震計の設置認定を得た業者が強震計の設置等を行なう
という態様が考えられる。
 この場合、本人認証は、強震計の設置認証を行う機関又は法人による認証に相当する。本人認証としては、前記データ処理サーバでは、利用者の認証、前記データ処理端末及び前記強震計では、設置者の認定を適用してもよい。
 このように、統合認証プログラムを各機器が実行することにより、認証されたデータ処理サーバ10、データ処理端末20又は強震計30に対してのみその利用が許可される。また、それらの1つでも認証されなかったデータ処理サーバ10、データ処理端末20又は強震計30はその利用が許可されず、使用できない状態とすることができる。この統合認証プログラムは、ストレージサーバ40に保存された認証データを基にしてデータ処理サーバ10、データ処理端末20及び強震計30の少なくともいずれか1つのCPUで実施される。
 統合認証プログラムは、データ処理サーバ10、データ処理端末20又は強震計30の起動時の環境認証において認証されなかった場合、ストレージサーバ40に保存された環境データを基にデータ処理サーバ10、データ処理端末20、強震計30の順にそれぞれの環境を更新し、それに伴って環境認証に用いるデータ、例えば、ホワイトリストを更新するようにしてもよい。
 その際に、更新情報を記録することによりアップデートプログラムの検出、配信、適用確認及びその証跡をトラスティッド(trusted、信頼可能)に残すことができる。更新情報には、さらに、認証データを付加してもよい。
 以上の統合認証プログラムによる認証後、上記震度データの処理プログラムが実施される。
 以上のように、データ処理サーバ10とデータ処理端末20と強震計30のすべてが起動時に機器認証及び環境認証を行うための統合認証プログラムを実行することで各機器が安全性を高めて適切な環境で動作することを保証することができる。このように、本人・機器・環境認証を利用するすべての機器に対して行うことで、極めて信頼性の高い環境を構築できる。特に、認証の信頼性や耐タンパ性を確保するためには、各機器が頑強で信頼性・安全性の高い筺体に実装され、ネットワークがVPNなどのセキュアな通信網で構成されていることが望ましい。このように、可能な限り閉じた系を構成することで、システム全体の耐タンパ性を高めることができる。また、このように、可能な限り閉じた系を構成することで、トラスティッドなシステムを構成することができる。
 機器認証に際してはPKIなど、何らかの鍵か、MACアドレス、IPアドレスなどを単独もしくは複数を組み合わせて用いることで要求している端末であることを認証することができる。環境認証では、その端末のソフトとハードが改ざんされていないことを認証する。最後にそれを利用している本人、又は、設置した本人を認証する。
(第5の実施形態)
 図6は、残余耐震性能評価データの算出方法を示すフローチャートである。図6に示すように、残余耐震性能評価データの算出手段は、以下のステップS531~S538を実施することにより、残余耐震性能を評価するための構造物の剛性値及び残余剛性値を算出する。
 まず、データ処理サーバ10がストレージサーバ40に保存された加速度データを解凍する(S531、S541)。次に、その加速度データを基に変位データを算出する(S533)。次に、加速度データ及び変位データから固有周期値を算出すると共に固有周期値のデータを圧縮してストレージサーバ40に保存する(S544)。次に、固有周期値から剛性値を算出する(S535)。次に、剛性値のデータを圧縮してストレージサーバ40に保存する(S536、S546)。また、剛性値から残余剛性値を算出する(S537)。次に、残余剛性値のデータを圧縮してストレージサーバ40に保存する(S546)。以上のステップにより、残余耐震性能を評価するための構造物の剛性値及び残余剛性値を算出し(S537、S538)、ストレージサーバ40に保存することができる(S547、S548)。この算出された構造物の剛性値と残余剛性値を比較して残余耐震性能を評価することができる。
 具体的には、加速度データからP曲線(パフォーマンスカーブ)を出し、そこからS曲線(スケルトンカーブ)を求め、そこから剛性カーブを出すというフローで剛性値を出す。なお、スケルトンカーブとは、例えば構造物の東西方向に力を加えて行くと建物の変形がどうなるかを示したカーブで、例えば、縦軸が応力、横軸が東西方向の変位で表現する。スケルトンカーブは、構造物の変位が弾性限界内までである場合には原点を通る直線であるが、それを超えると線が折れ、その点以降の直線の傾きが小さくなる特徴がある。この手法は設計データ、建物の素材などの情報に基いて大規模なシュミレーションを行う従来の手法と比べて実測値から建物の剛性が簡便に求められる利点がある。
 上記以外の残余耐震性能の評価方法やアルゴリズムを複数用いてもよい。また、それらの残余耐震性能の評価方法やアルゴリズムは、データ処理サーバ10とデータ処理端末20の一方又は両方において処理するようにしてもよい。さらに、利用者の要望や目的に応じて、残余耐震性能の評価方法やアルゴリズムを切り替え・選択できるようにしてもよい。
(第6の実施形態)
 図7は、第6の実施形態の地図作成方法を示すフローチャートである。本実施形態では、データ処理サーバが構造物の剛性値及び残余剛性値を用いた地図作成ステップを更に備える。図7に示す各ステップS631~S635をデータ処理サーバで実行することにより、構造物の剛性値に関する地図及び構造物の残余剛性値に関する地図を作成する。
 まず、ステップS631で算出された剛性値と、上記Sで算出された残余剛性値と、ストレージサーバ40に予め保存された構造物の設計データを基に構造物の剛性値地図を作成する(S632)。もし構造物の設計データがない場合には、初期剛性値から一定程度、例えば10%ダウンしたところ、或いは剛性値の変化が測定誤差以上変化したところで補強工事などの検討をする。次に、ストレージサーバ40に圧縮して保存された震度データを解凍し、地図上に表示することで震度地図を作成する(S633)。次に、作成された構造物の剛性値地図及び震度地図を顧客別に作成する(S634)。その後、その顧客別に作成された剛性値地図及び震度地図のデータをネットワーク50に公開するためのサーバにアップロードする(ステップS635)。以上の各ステップS631~S635を実行することにより、剛性値地図及び震度地図を顧客別に作成してそれらのデータをネットワーク50に公開することができる。サーバにアップロードされたデータは、利用者端末60からアクセスして利用することができる。そのアクセスする際に、上記統合認証プログラムを用いてもよい。
 また、端末60の利用者を2つ以上のグループに分類し、その分類された利用者ごとにアクセスできる上記剛性値地図や震度地図等のデータを制限するようにしてもよい。例えば、構造物の所有者のグループ、不動産管理会社や建築・保守会社のグループ、地方自治体や関係省庁のグループの3つのグループに分け、それぞれのグループごとにアクセス、閲覧、取得できるデータの範囲を設定するようにしてもよい。
 或いは、構造物に関して所有者、運営管理者、保守管理者、保守工事実施業者などの複数の個人、又は事業者が関与する場合も、グループに分け、それぞれのグループごとにアクセス、閲覧、取得できるデータの範囲を設定するようにしてもよい。
(第7の実施形態)
 図8は、第7の実施形態の残余耐震性能評価システムの各拠点のフローを示す図である。このシステムでは災害地域、非災害地域1、災害地域2、・・・、非災害地域Nにそれぞれ構築され、各地域のデータ処理サーバとしてクラウドが用いられている。加速度データは各地域毎に分けてクラウドの記憶装置に保存されている。データ処理サーバにクラウドを用いると、計算処理能力や記憶装置の保存できる容量の変更が比較的短時間で柔軟に実施できる利点がある。
 災害地域の加速度データをクラウドの記憶装置に保存するために、まず、災害地域を担当するクラウド(以下、「災害地域のクラウド」という。)に対して警報を発する(ステップS811)。ステップS811では、必要に応じて非災害地域1、災害地域2、・・・、非災害地域Nを担当するクラウド(以下、「非災害地域1、災害地域2、・・・、非災害地域Nのクラウド」という。)に対して警報を発してもよい。次に、災害地域のクラウドの契約及び設定を変更する(ステップS812)。このとき、必要に応じて非災害地域1、災害地域2、・・・、非災害地域Nのクラウドの契約及び設定を変更してもよい(ステップS822~S852)。このステップS811及びS812は、上記ステップS334に相当している。次に、災害地域のクラウドから図示しない災害地域の強震計又はデータ処理端末に対して加速度データを要求する(ステップS813)。このステップS813は、上記ステップS336に相当している。次に、図示しない強震計又はデータ処理端末から送信された加速度データを受信し(ステップS815)、受信された加速度データを圧縮し(ステップS816)、圧縮された加速度データを災害地域のクラウドの記憶装置に保存する(ステップS817)。このステップS815、S816、S817は、上記ステップS232、S233、S243に相当している。
 非災害地域1、災害地域2、・・・、非災害地域Nの加速度データをクラウドの記憶装置に保存する場合、それぞれのクラウドから図示しない各地域の強震計又はデータ処理端末に対して加速度データを要求し、各地域の強震計又はデータ処理端末から送信された加速度データを受信し(ステップS825~S855)、受信された加速度データを圧縮し(ステップS826~S856)、圧縮された加速度データを災害地域のクラウドの記憶装置に保存する(ステップS827~S857)。
 第7の実施形態の残余耐震性能評価システム700では、各地域毎にクラウドの契約及び設定を変更して加速度データを各地域のクラウドの記憶装置に保存することができる。
(第8の実施形態)
 図9は、第8の実施形態の残余耐震性能評価システムを示す図である。上記残余耐震性能評価システムでは、強震計とデータ処理端末が統合されていてもよい。残余耐震性能評価システム800は、データ処理サーバ10と、主にデータ処理端末20と強震計30と通信モジュール71とが統合された統合端末70と、利用者端末60とを備え、それらがネットワークを介して接続されている。このような統合端末70を用いることでデータ処理端末と強震計のそれぞれのネットワーク設定や現地でのデータ処理端末と強震計の調整が不要となり、設置作業を容易にすることができる。また、統合認証を実施する際にもデータ処理端末及び強震計をそれぞれ認証する必要が無くなるため、容易に認証することができる。
 第8の実施形態の残余耐震性能評価システム800では、データ処理端末と強震計とが統合された統合端末70を用いているため、ネットワーク設定や設置作業を容易に実施することができる。
(第9の実施形態)
 図11は、第9の実施形態の震度データの処理を示すフローチャートである。また、図12は、第9の実施形態のデータ処理サーバが主に実施する処理を示すフローチャートである。上記実施形態の残余耐震性能評価システムにおいて、図11及び図12に示すように、新たに認証局(Certificate Authority, CA)を設け、認証局から送信される認証データを測定データ(加速度データ)及び/又は算出データ(震度データ)に付加するようにしてもよい。以下、震度データに認証データを付加する処理について説明する。
-データ処理端末-
 S124a:強震計から送信された加速度データを受信して震度データを算出し、データ処理サーバから送信された認証データを受信し、その後震度データに認証データを付加する。
-データ処理サーバ・ストレージサーバ-
 S134:認証データをデータ処理端末に送信する。
 S144:認証データをデータ処理サーバに送信する。
-認証局(CA)-
 S154a:認証データをストレージサーバ-に送信する。
 S154b:認証データをデータ処理サーバに送信する。
 以上のように、新たに認証局を設けることで様々な認証を容易に実施することができる。また、上記震度データに付加された認証データを用いて認証することで震度データの信頼性・安全性を高めることができる。
 上記S124aにおいて、強震計30から送信された加速度データに認証データを付加し、その後震度データを生成するようにしてもよい。
 認証局において送信される認証データは、上記第4の実施形態において説明した本人認証、機器認証及び環境認証のためのデータの他に時刻認証のためのデータを含むようにしてもよい。
 データ処理サーバ10、データ処理端末20、強震計30及びストレージサーバ40は、いずれもTPM(Trusted Platform Module)を備え、このTPMに認証局の認証データを保存するようにしてもよい。このTPMは、主に内部情報を不正に解析しようとする行為から情報を守るための仕組みを持つセキュリティチップであり、電子鍵(PKIの鍵)や電子証明書を安全に保管する機能の他にプラットフォームの正当性を証明する機能やデータの暗号化機能を有する。なお、各サーバ・端末・機器の少なくとも1つが認証局の認証データを保存したTPMを備えるようにしてもよい。
 なお、上記認証局は、TTP(Trusted Third Party)としての外部認証局であってもよい。
 第9の実施形態の残余耐震性能評価システム900は、新たに認証局(CA)を設けることで様々な認証を容易に実施することができるとともに、その認証局の認証データを震度データに付加し、その認証データを用いて認証することで震度データの信頼性・安全性をより高めることができる。
(第10の実施形態)
 図13は、第10の実施形態の統合認証プログラムのフローチャートである。上記第9の実施形態の残余耐震性能評価システムにおいて、認証局(CA)から送信される認証データを用いて各認証(本人認証、機器認証、環境認証及び/又は時刻認証)を実施するようにしてもよい。図13は、データ処理サーバ10、データ処理端末20、強震計30及びストレージサーバ40のそれぞれの起動時の本人認証、機器認証、環境認証及び時刻認証を実施する統合認証の様子を示している。
 図13に示すステップS111・S121・S131はいずれも起動時でのステップを、S112a・S122a・S132aはいずれも機器認証、環境認証及び時刻認証のステップを示している。S152a・S153a・S154aはいずれも認証局で生成された認証データ(本人認証、機器認証、環境認証、時刻認証のためのデータ)をストレージサーバ40に送信するステップをそれぞれ示している。また、S152b・S153bはいずれも認証データをデータ処理サーバ10に、S154bは認証データをデータ処理端末20に送信するステップをそれぞれ示している。以上のような各ステップにより、残余耐震性能評価システム1000は、各機器に認証局で生成された認証データを保持し、具体的には、データ処理サーバ10、データ処理端末20、強震計30及びストレージサーバ40は本人認証、機器認証、環境認証及び時刻認証のためのデータをそれぞれ保持し、それらの認証データを用いて認証することで各機器が適切な状況で設置されているか確認することができる。
 本人認証、機器認証、環境認証及び時刻認証を含む統合認証は、データ処理サーバ10、データ処理端末20、強震計30、ストレージサーバ40及び認証局の全ての間で相互に実施するようにしてもよい。
 上記統合認証は、データ処理サーバ10、データ処理端末20、強震計30及びストレージサーバ40の起動後所定時間経過ごと(定期的)にそれぞれ実施するようにしてもよい。
 第10の実施形態の残余耐震性能評価システム1000は、認証局の認証データを用いて統合認証を実施することで各機器がより信頼性・安全性を高めて適切な動作環境で動作することを容易に保証することができる。
(第11の実施形態)
 図14は、第11の実施形態の残余耐震性能評価データの算出を示すフローチャートである。上記第9及び第10の実施形態の残余耐震性能評価システムにおいて、認証局の認証データを、加速度データの測定値並びに変位データ、残余耐震性能を評価するための構造物の剛性値及び残余剛性値等の計算値の少なくとも一つの値に付加するようにしてもよい。以下、各データに認証データを付加する処理について説明する。
 図14に示すように、残余耐震性能評価データの算出手段は、変位データの生成時、加速度データや算出された変位データに認証データを付加する(S533a)。その後の剛性値の生成時、算出された剛性値に認証データを付加する(S535a)。その後の残余剛性値の生成時、算出された残余剛性値に認証データを付加する(S537a)。残余耐震性能評価システム1100は、生成された構造物の剛性値と残余剛性値を比較して残余耐震性能を評価することができるとともに、各データに付加された認証データを用いて認証することで各データの信頼性(真正性保証、証拠性保持)、安全性、可用性、効率性、さらには本システムに関与するIT資産全般の管理品質を向上することができる。
 第11の実施形態の残余耐震性能評価システム1100は、認証局の認証データを、加速度データ、変位データ、残余耐震性能を評価するための構造物の剛性値及び残余剛性値の少なくとも一つの値に付加し、その認証データを用いて認証することで各データの信頼性・安全性をより高めることができる。
(第12の実施形態)
 図15は、第12の実施形態の地図作成を示すフローチャートである。上記第11の実施形態の残余耐震性能評価システムにおいて、構造物の剛性値及び残余剛性値を用いて構造物の剛性値に関する地図及び構造物の残余剛性値に関する地図をそれぞれ作成するようにしてもよい。また、各地図の作成時に剛性値、震度データ及び顧客別データの少なくとも一つに認証局の認証データを付加するようにしてもよい。以下、構造物の剛性値、震度データ及び各地図の顧客別データのそれぞれに認証データを付加する処理について説明する。
 図15に示すように、構造物の剛性値の地図の生成時、剛性値に認証データを付加する(S632a)。その後の震度地図の生成時、震度データに認証データを付加する(S633a)。その後の顧客別データの生成時、各地図データに認証データを付加する(S634a)。以上のS632a、S633a、S634aにより、認証局の認証データを付加した剛性値地図及び震度地図を顧客別に作成することができる。残余耐震性能評価システム1200は、それらのデータをネットワーク50に公開し、利用者端末60からアクセスする際に付加された認証データを用いて認証することで、より信頼性・安全性を高めた各データを利用することができる。利用者端末60の利用者を2つ以上のグループに分類し、その分類された利用者ごとにアクセスできる上記剛性値地図や震度地図等のデータを制限するようにしてもよい。
 上記ネットワークの一部、または全てになりすまし、盗聴、改竄を抑制、検知する目的でVPNを採用してもよい。
(第13の実施形態)
 図16は、第13の実施形態の残余耐震性能評価システムを示す図である。上記第9乃至第12の残余耐震性能評価システムでは、強震計とデータ処理端末が統合されていてもよい。残余耐震性能評価システム1300は、データ処理サーバ10と、主にデータ処理端末20と強震計30と通信モジュール71とが統合された統合端末70と、利用者端末60と、各認証局(本人認証局、機器認証局、環境認証局、時刻認証局)を備え、それらがインターネット等のネットワーク50、50aを介して接続されている。なお、ネットワーク50aは、データ処理サーバ10と各認証局の間をローカルで接続するためのLANであってもよい。このような統合端末70を用いることでデータ処理端末と強震計のそれぞれのネットワーク設定や現地でのデータ処理端末と強震計の調整が不要となり、設置作業を容易にすることができ、統合認証を実施する際にもデータ処理端末及び強震計をそれぞれ認証する必要が無くなるため、容易に認証することができる。そして、各認証局の認証データを用いることでより信頼性・安全性を高めて適切な環境で動作することを容易に保証することができる。
 第13の実施形態の残余耐震性能評価システム1300は、データ処理端末と強震計とが統合された統合端末70を用いているため、ネットワーク設定や設置作業を容易に実施するとともにより信頼性・安全性を高めて適切な環境で動作することを容易に保証することができる。
10 データ処理サーバ(Server)
11 CPU(中央演算処理装置)
12 ストレージデバイス
13 一時記憶手段(RAM)
14 ネットワークインターフェース
20 データ処理端末(Station)
21 CPU(中央演算処理装置)
22 ストレージデバイス
23 一時記憶手段(RAM)
24 ネットワークインターフェース
30 強震計
31 CPU(中央演算処理装置)
32 ストレージデバイス
33 一時記憶手段(RAM)
34 ネットワークインターフェース
35 A/D変換器
36 加速度センサー
40 ストレージサーバ
50 ネットワーク(伝送路)
51 ネットワーク(LAN)
100、800、1300 残余耐震性能評価システム

Claims (13)

  1.  震度センサーとネットワークインターフェースとストレージとA/D変換器と一時記憶手段とCPUとを備えた強震計と、前記強震計が取得した測定データを記録及び処理するためのデータ処理端末と、前記強震計が取得した測定データに基いて残余耐震性能を評価するためのデータ処理サーバとを含み、
     前記データ処理端末に以下のステップ:
     a.前記強震計が取得した測定データに基づいて震度データを算出するステップ(S124)
     b.震度データの閾値を設定するステップ(S125)
     c.震度データが前記閾値を超えているか否かを判断するステップ(S126)
     d.前記閾値を超えた震度データを前記データ処理サーバへ送信するステップ(S127)
     を実行させる一方、前記データ処理サーバに、以下のステップ:
     g.前記強震計又は前記データ処理端末の少なくともいずれか一方に測定データを要求するステップ(S231)
     h.要求に応じて送信された測定データを受信するステップ(S232)
    を実行させることを特徴とする残余耐震性能評価システム。
  2.   ストレージサーバをさらに備え、
     前記閾値は、前記ストレージサーバに記録された閾値データを前記データ処理サーバが読み出し、所定の閾値調整を行った後、調整後の閾値を前記データ処理端末に設定することを特徴とする請求項1記載の残余耐震性能評価システム。
  3.  前記データ処理端末に以下のステップをさらに実行させることを特徴とする請求項1又は2記載の残余耐震性能評価システム。
     e.前記閾値を超えた震度データを圧縮するステップ(S128)
     f.前記圧縮された震度データを保存するステップ(S129)
  4.  前記データ処理サーバは、前記測定データを要求するステップ(S231)の前に、
     i.前記データ処理サーバの仕様を変更するステップ(S335)
     を更に備えていることを特徴とする請求項1乃至3のいずれか1項に記載の残余耐震性能評価システム。
  5.  前記データ処理サーバ、前記データ処理端末及び前記強震計は、その起動時に、いずれも本人認証及び/又は機器認証及び/又は環境認証をそれぞれ実施することを特徴とする請求項1乃至4のいずれか1項に記載の残余耐震性能評価システム。
  6.  前記いずれかの認証を実施した結果、前記データ処理サーバ、前記データ処理端末又は前記強震計が認証されなかった場合、前記ストレージサーバに保存された環境認証データを基に前記データ処理サーバ、前記データ処理端末及び前記強震計の順に環境を更新するステップ(S133、S123、S113)をさらに含むことを特徴とする請求項5記載の残余耐震性能評価システム。
  7.  前記データ処理サーバは、
     前記測定データを基に変位データを算出するステップ(S533)と、
     前記変位データから固有周期値を算出するステップ(S534)と、
     前記固有周期値から剛性値を算出するステップ(S535)と、
     前記剛性値から残余剛性値を算出するステップ(S537)とを実施する
    ことを特徴とする請求項1乃至請求項4のいずれか1項に記載の残余耐震性能評価システム。
  8.  前記震度データを基に震度地図を作成するステップ(S633)と、
     前記残余剛性値及び構造物データを基に剛性値地図を作成するステップ(S632)と、
     前記震度地図及び/又は前記剛性値地図をネットワークサーバへアップロードするステップ(S635)とを実施する地図作成手段をさらに備える
    ことを特徴とする請求項7記載の残余耐震性能評価システム。
  9.  前記強震計を設置する構造物の設計データが利用できる場合にはその設計値を基に構造物の剛性値地図を作成し、構造物の設計データが利用できない場合には、初期剛性値から一定程度、或いは剛性値の変化が測定誤差以上変化したところで残余耐震性能の判断を下すことを特徴とする請求項7又は8記載の残余耐震性能評価システム。
  10.  前記ストレージサーバ、前記データ処理サーバ、前記データ処理端末及び前記強震計は、その起動時又は起動後定期的に、いずれも本人認証及び/又は機器認証及び/又は環境認証及び/又は時刻認証をそれぞれ実施することを特徴とする請求項2記載の残余耐震性能評価システム。
  11.  前記いずれかの認証を実施した結果、前記ストレージサーバ、前記データ処理サーバ、前記データ処理端末又は前記強震計が認証されなかった場合、前記ストレージサーバに保存された環境認証データを基に前記ストレージサーバ、前記データ処理サーバ、前記データ処理端末及び前記強震計の順に環境を更新するステップをさらに含むことを特徴とする請求項10記載の残余耐震性能評価システム。
  12.  前記データ処理サーバは、
      算出された前記変位データ、前記固有周期値、前記剛性値及び前記残余剛性値の少なくとも一つの値に認証データを付加するステップを実施する
    ことを特徴とする請求項7乃至請求項9のいずれか1項に記載の残余耐震性能評価システム。
  13.  前記データ処理端末に以下のステップを実行させることを特徴とする請求項1乃至12のいずれか1項に記載の残余耐震性能評価システム。
     j.前記測定データ及び/又は前記震度データに認証データを付加するステップ
PCT/JP2013/082292 2012-11-30 2013-11-29 残余耐震性能評価システム WO2014084387A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014515396A JP5619324B1 (ja) 2012-11-30 2013-11-29 残余耐震性能評価システム
US14/726,145 US10191164B2 (en) 2012-11-30 2015-05-29 Residual seismic-resistant performance evaluation system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012263850 2012-11-30
JP2012-263850 2012-11-30
JP2013-119657 2013-06-06
JP2013119657A JP5430786B1 (ja) 2012-11-30 2013-06-06 残余耐震性能評価システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/726,145 Continuation-In-Part US10191164B2 (en) 2012-11-30 2015-05-29 Residual seismic-resistant performance evaluation system

Publications (1)

Publication Number Publication Date
WO2014084387A1 true WO2014084387A1 (ja) 2014-06-05

Family

ID=50396532

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/082288 WO2014084386A1 (ja) 2012-11-30 2013-11-29 残余耐震性能評価システム
PCT/JP2013/082292 WO2014084387A1 (ja) 2012-11-30 2013-11-29 残余耐震性能評価システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082288 WO2014084386A1 (ja) 2012-11-30 2013-11-29 残余耐震性能評価システム

Country Status (4)

Country Link
US (1) US10191164B2 (ja)
JP (2) JP5430786B1 (ja)
PE (1) PE20151190A1 (ja)
WO (2) WO2014084386A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176866A (ja) * 2019-04-16 2020-10-29 ミサワホーム株式会社 被災度表示システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017207865A1 (en) * 2016-06-01 2017-12-07 Nokia Technologies Oy Seismic determination of location
JP6790689B2 (ja) * 2016-09-30 2020-11-25 富士電機株式会社 管理システム
JP6850615B2 (ja) * 2017-01-20 2021-03-31 株式会社Nttファシリティーズ 耐震補強設計支援装置、耐震補強設計手法、及びプログラム
JP6934434B2 (ja) * 2018-02-19 2021-09-15 鹿島建設株式会社 建物評価システム及び建物評価方法
JP2019219202A (ja) * 2018-06-18 2019-12-26 白山工業株式会社 構築物情報報知システム
CN112611353B (zh) * 2020-12-03 2021-11-02 中国水利水电科学研究院 一种大坝监控报警系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201839A (ja) * 1993-01-08 1994-07-22 Furuno Electric Co Ltd 海中ステーション
JPH10253765A (ja) * 1997-03-14 1998-09-25 Kinkei Syst:Kk 地震観測速報システム
JP2003344213A (ja) * 2002-05-24 2003-12-03 Building Research Institute 建物の耐震性能評価方法及び装置
JP2004301738A (ja) * 2003-03-31 2004-10-28 Tokyo Gas Co Ltd 地震情報収集システムおよび地震情報収集装置ならびに地震情報収集方法
JP2011095237A (ja) * 2009-09-29 2011-05-12 Central Corporation 耐震性能評価方法、耐震性能評価装置及び耐震性能評価システム
JP2012083172A (ja) * 2010-10-08 2012-04-26 Kajima Corp 建物の損傷評価方法及び建物の損傷評価装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061299A (en) * 1996-12-19 2000-05-09 Institut Francais Du Petrole Method of transmitting compressed seismic data
US20030189136A1 (en) * 1998-05-20 2003-10-09 Toshihide Maeda Communication system, communication receiving device and communication terminal in the system
US7233781B2 (en) * 2001-10-10 2007-06-19 Ochoa Optics Llc System and method for emergency notification content delivery
US7079986B2 (en) * 2003-12-31 2006-07-18 Sieracki Jeffrey M Greedy adaptive signature discrimination system and method
JP2005316633A (ja) * 2004-04-28 2005-11-10 Hitachi Ltd 建築物、構造物、あるいはそれらに付随する設備の点検および監視方法
US20070204046A1 (en) * 2006-02-28 2007-08-30 Puneet Batta Methods and apparatus for balanced load distribution in wireless switch architecture
US9176242B2 (en) * 2008-11-10 2015-11-03 Conocophillips Company Practical autonomous seismic recorder implementation and use
CN101877821A (zh) * 2009-04-29 2010-11-03 深圳富泰宏精密工业有限公司 应用于通讯装置的地震现场定位系统及方法
EP2489442A1 (en) * 2011-02-18 2012-08-22 Aernnova Engineering Solutions Iberica Integrated phased array transducer, system and methodology for structural health monitoring of aerospace structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201839A (ja) * 1993-01-08 1994-07-22 Furuno Electric Co Ltd 海中ステーション
JPH10253765A (ja) * 1997-03-14 1998-09-25 Kinkei Syst:Kk 地震観測速報システム
JP2003344213A (ja) * 2002-05-24 2003-12-03 Building Research Institute 建物の耐震性能評価方法及び装置
JP2004301738A (ja) * 2003-03-31 2004-10-28 Tokyo Gas Co Ltd 地震情報収集システムおよび地震情報収集装置ならびに地震情報収集方法
JP2011095237A (ja) * 2009-09-29 2011-05-12 Central Corporation 耐震性能評価方法、耐震性能評価装置及び耐震性能評価システム
JP2012083172A (ja) * 2010-10-08 2012-04-26 Kajima Corp 建物の損傷評価方法及び建物の損傷評価装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176866A (ja) * 2019-04-16 2020-10-29 ミサワホーム株式会社 被災度表示システム
JP7012685B2 (ja) 2019-04-16 2022-01-28 ミサワホーム株式会社 被災度表示システム

Also Published As

Publication number Publication date
JP2014222223A (ja) 2014-11-27
US10191164B2 (en) 2019-01-29
JP5430786B1 (ja) 2014-03-05
WO2014084386A1 (ja) 2014-06-05
PE20151190A1 (es) 2015-08-19
US20150260862A1 (en) 2015-09-17
JP5619324B1 (ja) 2014-11-05
JPWO2014084387A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5619324B1 (ja) 残余耐震性能評価システム
Li et al. Structural health monitoring for a 600 m high skyscraper
JP2021523490A (ja) 信頼できるコンテキスチャルコンテンツ
US20220155773A1 (en) System and method for structural health monitoring using internet of things and machine learning
US11652610B2 (en) Multi-layer ledgers for multi-party secure data governance
US10630702B1 (en) Protocol agnostic security by using out-of-band health checks
Cho et al. System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction
BR112016015435B1 (pt) Método e gateway para a geração de dados em uma cadeia de suprimento de petróleo e gás para compatibilidade com sistemas externos, e meio legível por computador não transitório
JP6495509B2 (ja) 遠隔状態監視システム及び監視方法
Lo Iacono et al. Structural monitoring of “Himera” viaduct by low-cost MEMS sensors: characterization and preliminary results
KR101754937B1 (ko) M2m 무선통신을 이용한 재난 경보 시스템
CN115664691A (zh) 一种通信安全车联网系统
Demartino et al. Feasibility of energy harvesting from vertical pedestrian‐induced vibrations of footbridges for smart monitoring applications
JP6699144B2 (ja) センサ装置及びセンサネットワークシステム、並びにセンサ装置の発行方法
JP6609403B2 (ja) 構造物検証システム、構造物検証装置、構造物検証プログラム
CN207352404U (zh) 基于物联网平台的通信铁塔远程监控系统
KR102336848B1 (ko) 센서 데이터 위변조 방지 장치, 보안성 시각화 장치 및 이를 포함하는 보안 시스템
CN114358423A (zh) 处理针对幕墙的建筑数据的方法
Ginzburg et al. Early-warning landslide monitoring system
US20240111264A1 (en) Method for operating a field device, and system for operating field devices
Wiqar et al. Low-cost civil structure health monitoring using wireless sensor network
CN115022831A (zh) 电力设施抗震监测系统、方法、装置、介质和程序产品
KR101807637B1 (ko) 교량 상시진동 모니터링 및 측정치 처리 방법
Lin et al. A cost effective three-axis accelerometer for building structure health monitoring
Chen et al. IoT-Based SHM Using Digital Twins for Interoperable and Scalable Decentralized Smart Sensing Systems. Information 2024, 15, 121

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014515396

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 000703-2015

Country of ref document: PE

Ref document number: 2015/06444

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859494

Country of ref document: EP

Kind code of ref document: A1