WO2014084373A1 - 熱延通板ガイド - Google Patents

熱延通板ガイド Download PDF

Info

Publication number
WO2014084373A1
WO2014084373A1 PCT/JP2013/082250 JP2013082250W WO2014084373A1 WO 2014084373 A1 WO2014084373 A1 WO 2014084373A1 JP 2013082250 W JP2013082250 W JP 2013082250W WO 2014084373 A1 WO2014084373 A1 WO 2014084373A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
rolled
plate guide
rolled steel
plate
Prior art date
Application number
PCT/JP2013/082250
Other languages
English (en)
French (fr)
Inventor
勝秀 征矢
一也 大内
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2014526329A priority Critical patent/JP5664830B2/ja
Priority to KR1020147031380A priority patent/KR101611118B1/ko
Priority to CN201380026277.5A priority patent/CN104321152B/zh
Priority to IN7663DEN2014 priority patent/IN2014DN07663A/en
Publication of WO2014084373A1 publication Critical patent/WO2014084373A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/008Rollers for roller conveyors

Definitions

  • the present invention relates to a hot-rolled sheet guide disposed between table rolls that convey hot-rolled steel sheets in a hot rolling line.
  • a slab is heated to a predetermined temperature in a heating furnace, the heated slab is rolled to a predetermined thickness with a roughing mill to form a rough rolled material, and the rough rolled material is finished with a plurality of rolling stands.
  • a hot-rolled steel sheet having a predetermined thickness is produced by rolling with a rolling mill.
  • the hot-rolled steel plate rolled with the finishing mill is cooled to predetermined temperature in the cooling floor provided with the table roll, Then, it is wound up in coil shape with a winder.
  • an upper surface cooling device having a nozzle is disposed above the hot-rolled steel sheet to be transported, and a lower surface cooling device having a cooling nozzle is disposed between the table rolls that transport the hot-rolled steel sheet. It is set as the structure which cools the upper and lower surfaces of the hot-rolled steel plate which passes.
  • the hot-rolled plate guide disposed between the table rolls is provided with a nozzle hole at a position corresponding to the above-described cooling nozzle in order to cool the lower surface of the hot-rolled steel plate.
  • the cooling water sprayed from the cooling nozzle stays on the hot-rolling plate guide after colliding with the lower surface of the hot-rolling steel plate. For this reason, the cooling of the portion where the hot-rolling plate guide is disposed is promoted, the cooling unevenness of the lower surface is generated, and there is a possibility that the quality characteristics thereafter may be problematic.
  • drain holes are formed in addition to the nozzle holes, and the cooling water staying on the hot-rolled plate guides is passed through the drain holes. It is comprised so that it may discharge through.
  • the nozzle which injects a cooling water with respect to some through-holes among the through-holes formed in the grid of the hot-rolled plate guide by several in the grid is arrange
  • a large amount of high-pressure water is used as cooling water.
  • the cooling water is injected with high pressure with respect to the steel plate surface in the state with which the space between the hot-rolled steel plate and the hot-rolling plate guide is substantially filled with the cooling water. Therefore, even in Patent Document 2, the drainage property of the hot-rolled plate guide is not sufficient.
  • the problem of uneven cooling temperature of the hot-rolled steel sheet due to the staying water on the hot-rolled sheet guide exists in the longitudinal direction in addition to the width direction of the hot-rolled steel sheet.
  • the thickness variation may occur in the longitudinal direction on one end side of the hot-rolled steel sheet. As a result of investigating the cycle of this thickness variation, it was found that it was in good agreement with the temperature variation of the hot rolled steel sheet before the winder of the hot rolling line.
  • the hot-rolled steel sheet rolled by the finish rolling mill is wound up by the winder, the hot-rolled steel sheet is transported because no tension acts on it.
  • the hot rolled steel sheet may meander up and down.
  • the hot-rolled steel sheet meandering up and down greatly decreases the temperature when the part that protrudes downward approaches and contacts the hot-rolled sheet guide, so as described above, before the winder of the hot rolling line It was found that the temperature of the hot-rolled steel sheet changed periodically in the longitudinal direction.
  • the portion where the hot-rolled steel plate is convex downward is close to and in contact with the hot-rolled plate guide, so if the cooling water has accumulated on the hot-rolled plate guide, Is locally cooled and the temperature is greatly reduced. For this reason, simply providing the drain hole does not sufficiently discharge the cooling water staying on the hot-rolled plate guide, and the temperature fluctuation in the longitudinal direction of the hot-rolled steel plate cannot be suppressed. That is, in order to suppress the temperature fluctuation in the longitudinal direction of the hot-rolled steel sheet, it is necessary to further improve the drainability of the hot-rolled sheet guide.
  • the hot-rolled sheet guide is worn by coming into contact with the hot-rolled steel sheet.
  • the hot-rolled plate guide is made of a material softer than the hot-rolled steel plate so that no flaws are generated in the hot-rolled steel plate, there is a problem that the life is shortened due to early wear.
  • the plate passing speed has been increased, and the early wear of the hot-rolled plate guide tends to be promoted.
  • the hot-rolling plate guide is replaced, the operation is interrupted, so that the life-extension of the hot-rolling plate guide is required from the viewpoint of improving production efficiency.
  • An object of the present invention is to provide a hot-rolled plate guide capable of suppressing temperature fluctuations in the longitudinal direction of a steel sheet and capable of suppressing the early wear and extending the life.
  • a transparent acrylic plate is regarded as a hot-rolled steel plate
  • a hot-rolled plate guide is disposed on the lower surface of the acrylic plate
  • the nozzle disposed in the nozzle hole of the hot-rolled plate guide is directed to the lower surface of the acrylic plate.
  • the cooling water sprayed from the nozzle 27 collides with the lower surface of the acrylic plate, and flows concentrically on the lower surface of the acrylic plate when viewed from the upper surface.
  • the speed of the cooling water is high and the colliding object is a liquid, most of the water colliding with the acrylic plate flows along the lower surface of the acrylic plate without immediately bouncing off and falling.
  • the water that has flowed into the portion with a short distance from the lower surface collision portion of the acrylic plate is supplied from other nozzles directly above the drainage hole 3b. It collides with water and falls through the drain hole 3b (S1).
  • the hot-rolled plate guide according to the present invention is a hot-rolled plate guide disposed between table rolls that convey hot-rolled steel plates in a hot rolling line. And formed between a plurality of nozzle holes provided at positions corresponding to cooling nozzles disposed between the table rolls and the nozzle holes adjacent to each other in the plate width direction of the hot-rolled steel sheet to be conveyed. Drainage holes, wherein the drainage holes extend in the plate-passing direction of the hot-rolled steel plate to be conveyed, and the first hole portion in the plate-passing direction. It is characterized by comprising second holes formed at both ends and expanded in the plate width direction.
  • a plurality of nozzle holes are provided at positions corresponding to the cooling nozzles disposed between the table rolls.
  • the cooling water sprayed toward the lower surface of the hot-rolled steel sheet through the nozzle holes collides with the lower surface of the hot-rolled steel sheet and spreads radially, and the cooling water sprayed from the nozzle holes adjacent to each other in the width direction. Will collide.
  • the cooling water sprayed from the adjacent nozzle holes A drainage hole will be arrange
  • the drain hole extends in the direction of the hot-rolled steel plate being conveyed.
  • the opening area of the drain hole can be secured, and the cooling water discharge can be further promoted.
  • a second hole portion that is enlarged in the plate width direction is provided at an end portion of the front drainage hole in the plate direction.
  • the cooling water sprayed toward the lower surface of the hot-rolled steel sheet through the nozzle holes collides with the lower surface of the hot-rolled steel sheet, spreads radially, and flows in the sheet passing direction. For this reason, it becomes possible to accelerate
  • the drain hole is preferably formed so that the width W1 of the first hole and the width W2 of the second hole satisfy the following formula (1): 1.00 ⁇ W1 / W2 ⁇ 1.70 (1)
  • the hot-rolled plate guide may be formed of a resin that is a softer material than the hot-rolled steel plate.
  • the Vickers hardness of the material forming the hot-rolled plate guide is preferably 36 or more and less than 125.
  • the opening area ratio Sh which is the ratio of the opening area of the nozzle hole and the drain hole to the area of the entire upper surface of the hot-rolled plate guide is 0.13 or more. Therefore, the cooling water existing between the hot-rolled plate guide and the lower surface of the hot-rolled steel plate can be surely discharged from the drain hole, and the cooling water stays on the hot-rolled plate guide. Can be suppressed. Therefore, even when the hot-rolled steel plate is greatly meandering up and down and protrudes downward, the hot-rolled steel plate is prevented from greatly decreasing in temperature even when the hot-rolled steel plate is close to or in contact with the hot-rolled plate guide. Thus, temperature fluctuations in the longitudinal direction of the hot-rolled steel sheet can be suppressed. In the present invention, since the opening area ratio Sh is 0.18 or less, a contact area with the hot-rolled steel sheet is ensured, early wear of the hot-rolled sheet guide can be suppressed, and the life can be extended. Can be planned.
  • the hot-rolling plate guide of the present invention is arranged at the center of the roll width of the table roll, and the width of the hot-rolling plate guide is configured to be 1 ⁇ 2 or less of the roll width of the table roll. You may do it. Thereby, it is possible to easily discharge the cooling water.
  • the temperature fluctuation in the longitudinal direction of the hot-rolled steel sheet can be suppressed by efficiently discharging the cooling water sprayed toward the lower surface of the hot-rolled steel sheet from above the hot-rolled sheet guide, and It is possible to provide a hot-rolled plate guide capable of suppressing the early wear and extending the life.
  • Hot-rolled plate guide 30 according to an embodiment of the present invention will be described with reference to FIGS.
  • the hot-rolled sheet guide 30 according to the present embodiment is used in, for example, the hot rolling line 10 shown in FIG.
  • a hot rolling line 10 shown in FIG. 1 includes a heating furnace 11 that heats the slab 1, a rough rolling machine 12 that roughly heats the heated slab 1 to form a rough rolled material 5a, and reheats the rough rolled material 5a. And an induction heating device 13. Further, the hot rolling line 10 includes a finishing mill 15 that rolls the rough rolled material 5a to produce a hot-rolled steel sheet having a predetermined thickness, and a cooling bed 20 that cools the hot-rolled steel sheet 5 after the finish rolling to a predetermined temperature. And a coiler 18 that winds up the cooled hot-rolled steel sheet 5.
  • the cooling floor 20 includes a plurality of table rolls 21, 21 arranged at intervals toward the sheet passing direction F of the hot rolled steel sheet 5, and the hot rolled steel sheet to be conveyed. 5 is provided with an upper surface cooling device 22 that cools the upper surface of 5 and a lower surface cooling device 25 that is disposed between the table rolls 21 and 21 and cools the lower surface of the hot-rolled steel sheet 5 being conveyed. And in the plate passing direction F, between the table rolls 21 and 21, the hot rolled plate guide 30 which is this embodiment is arrange
  • the upper surface cooling device 22 includes a water supply pipe 23 to which cooling water is supplied, and a laminar nozzle 24 that is connected to the water supply pipe 23 and supplies the cooling water toward the upper surface of the hot-rolled steel sheet 5 to be conveyed. .
  • the lower surface cooling device 25 includes a water supply pipe 26 to which cooling water is supplied, and a plurality of cooling nozzles 27 arranged in the water supply pipe 26. As shown in FIG. 3, the water supply pipe 26 of the lower surface cooling device 25 is disposed so as to extend in the plate width direction of the hot-rolled steel plate 5 to be conveyed. Are arranged in parallel in the plate width direction.
  • the hot-rolling plate guide 30 is a table roll 21 adjacent to the plate-passing direction F in order to prevent the tip of the hot-rolled steel plate 5 rolled by the finish rolling mill 15 from falling between the table rolls 21, 21. 21.
  • the hot-rolled plate guide 30 is made of a softer material than the hot-rolled steel plate 5, and is specifically made of resin.
  • the hot-rolled sheet guide 30 is made of a softer material than the hot-rolled steel sheet 5 in order to prevent the hot-rolled steel sheet 5 from having wrinkles that affect quality such as scratches.
  • the hardness of ordinary steel is about 125 Hv.
  • the hardness of the hot-rolled sheet guide 30 is preferably 125 Hv or less.
  • the hot-rolled plate guide 30 desirably has a hardness of 36 Hv or more.
  • the hot-rolling plate guide 30 is arranged so that the upper surface thereof is in a position retracted one step below the upper end position of the table roll 21. Further, as shown in FIG. 3, the hot-rolled plate guide 30 is arranged at the center of the roll width of the table roll 21, and can handle hot-rolled steel plates 5 having different plate widths.
  • the width of the hot-rolled plate guide 30 is preferably configured to be 1 ⁇ 2 or less of the roll width of the table roll 21.
  • the hot-rolling plate guide 30 is provided with a nozzle hole 31 at a position corresponding to the cooling nozzle 27 of the lower surface cooling device 25.
  • the hot-rolled plate guide 30 according to the present embodiment, as shown in FIG. 4, three nozzle holes 31 are arranged in parallel in the plate width direction of the hot-rolled steel plate 5 to be conveyed. Further, drain holes 32 are provided between the nozzle holes 31 adjacent to each other in the plate width direction. In this embodiment, as shown in FIGS. 3 and 4, the drain hole 32 extends in the sheet passing direction F of the hot-rolled steel sheet 5 being conveyed.
  • the drainage holes 32 are located between the nozzle holes 31 adjacent to each other in the plate width direction, and extend portions 34 that are first holes extending in the plate passing direction F of the hot-rolled steel plate 5, and the drainage holes 32.
  • a wide hole portion 33 is formed at both ends of the extending portion 34 in the sheet passing direction F and is a second hole portion having an opening area enlarged in the plate width direction.
  • an opening area ratio that is an opening area of the nozzle hole 31 and the drainage hole 32 with respect to the entire area of the upper surface of the hot-rolling plate guide 30 when viewed from above in the vertical direction.
  • Sh is set to be within a range of 0.13 or more and 0.18 or less. A detailed description of the shape of the drain hole 32 and the opening area ratio Sh will be described later.
  • the rough rolled material 5a is charged into the induction heating device 13 and reheated. (Reheating process). Then, the rough rolled material 5 a that has passed through the induction heating device 13 is supplied to the finishing mill 15.
  • the finish rolling machine 15 performs finish rolling to produce a hot-rolled steel sheet 5 having a predetermined thickness (finish rolling process).
  • the hot-rolled steel sheet 5 rolled by the finish rolling mill 15 is conveyed toward the sheet passing direction F by the table roll 21 in the cooling floor 20 and cooled to a predetermined temperature by the upper surface cooling device 22 and the lower surface cooling device 25. Then, the hot-rolled steel sheet 5 cooled to a predetermined temperature is wound around the coiler 18 (winding step).
  • Hot rolled plate guide 30 extends the wide hole portion 33 of the drainage hole 32 in the plate width direction from the extending portion 34 in order to achieve both improvement in drainage performance and strength improvement of the cooling water. , More collision flows are discharged from the drain holes 32.
  • FIG. 5 is a view as seen from the front side in the sheet passing direction F of the hot-rolled steel sheet 5 along the II cutting line of FIG.
  • the cooling water W is jetted toward the lower surface of the hot-rolled steel plate 5 from the cooling nozzle 27 inserted into the nozzle hole 31 of the hot-rolled plate guide 30.
  • the cooling water W that has collided with the lower surface of the hot-rolled steel plate 5 spreads radially in the space between the upper surface of the hot-rolled plate guide 30 and the lower surface of the hot-rolled steel plate 5.
  • the hot-rolled plate guide 30 includes the plurality of nozzle holes 31 provided at positions corresponding to the cooling nozzles 27 disposed between the table rolls 21 and 21, and the plate width direction. And drain holes 32 formed between the nozzle holes 31 adjacent to each other. The drain holes 32 are arranged in a region where the cooling waters W injected from the cooling nozzles 27 collide with each other through the nozzle holes 31 and 31 adjacent in the plate width direction. Thereby, drainage of the cooling water W is promoted.
  • the drainage holes 32 are located between the nozzle holes 31 adjacent to each other in the plate width direction and extend in the plate passing direction F of the hot-rolled steel plate 5. And wide hole portions 33 formed at both ends of the extending portion 34 and having an opening area enlarged in the plate width direction.
  • the cooling water W ejected from each cooling nozzle 27, 27 spreads radially between the adjacent nozzle holes 31, 31. Collides linearly along the plate direction F. In the space where the cooling water W collides linearly, an extending portion 34 of the drain hole 32 is disposed.
  • cooling water W flows downstream in the plate passing direction F along with the plate passing of the hot-rolled steel plate 5.
  • a wide hole 33 is formed on the downstream side in the sheet passing direction F through which the cooling water W accompanying the sheet passing of the hot-rolled steel sheet 5 flows.
  • the cooling water W that has collided on the extending portion 34 is quickly discharged to the lower side of the hot-rolling plate guide 30 through the drain hole 32. Further, a collision flow caused by a part of the cooling water that is not discharged by the extending portion 34 flows in the plate passing direction F so as to escape from the extending portion 34, but these are efficiently discharged by the wide hole portion 33. That is, the hot-rolling plate guide 30 is configured so that the cooling water W does not stay on the upper surface thereof.
  • the drain hole 32 is also formed with a wide hole 33 on the upstream side in the sheet passing direction F.
  • the wide hole portion 33 also on the upstream side in the sheet passing direction F is accompanied by the rotation of the table roll 21 located on the upstream side in the sheet passing direction F among the table rolls 21 and 21 on which the hot-rolled plate guide 30 is arranged. It is useful for discharging the flowing cooling water W.
  • the drainage hole 32 is preferably formed so that the width W1 of the wide hole portion 33 and the width W2 of the extending portion 34 in the plate width direction satisfy the relationship of the following formula (1).
  • the widths W1 and W2 are the maximum widths of the wide hole portion 33 and the extending portion 34 in the plate width direction.
  • the width W1 of the wide hole portion 33 formed at both ends of the extending portion 34 is made larger than the width W2 of the extending portion 34.
  • the cooling water which was not discharged by the extension part 34 can be discharged
  • the width W1 of the wide hole portion 33 is excessively increased, the strength of the portion of the hot-rolled plate guide 30 where the wide hole portion 33 is formed is lowered. Accordingly, the width W1 of the wide hole portion 33 is preferably set to a size up to 1.70 times the width W2 of the extending portion 34.
  • the length L of the drainage hole 32 in the plate passing direction F is preferably as large as possible. However, depending on the durability of the hot-rolled plate guide 30 and the positional relationship with the table rolls 21, 21, the passage of the hot-rolled plate guide 30 can be improved. In some cases, the vicinity of the end in the plate direction cannot be opened. The length L of the drain hole 32 is appropriately determined in consideration of these.
  • Such a hot-rolling plate guide 30 has an opening area ratio that is an opening area of the nozzle hole 31 and the drainage hole 32 with respect to the entire area of the upper surface of the hot-rolling plate guide 30 when viewed from above in the vertical direction. It is formed so that Sh is 0.13 or more. Thereby, the opening area which can discharge
  • the hot-rolling plate guide 30 has an opening area ratio Sh which is an opening area of the nozzle hole 31 and the drainage hole 32 with respect to the entire area of the upper surface of the hot-rolling plate guide 30 when viewed from above in the vertical direction. It is configured to be 0.18 or less. In order to increase the discharge efficiency of the cooling water W, it is preferable to increase the opening area of the hot-rolling plate guide 30, but if the opening area is too large, the durability of the hot-rolling plate guide 30 is affected. Therefore, by setting the opening area ratio Sh to 0.18 or less, a contact area between the hot-rolled plate guide 30 and the hot-rolled steel plate 5 in proximity to and in contact with the hot-rolled plate guide 30 is ensured. Thereby, it is possible to prevent the hot-rolling plate guide 30 from being worn out at an early stage and to extend the life.
  • Sh is an opening area of the nozzle hole 31 and the drainage hole 32 with respect to the entire area of the upper surface of the hot-rolling plate guide 30 when viewed from above in the vertical direction.
  • the drainage holes 32 are formed on the extending portions 34 extending in the plate-passing direction F and on both ends of the extending portion 34 in the plate-passing direction F. It consists of the wide hole part 33 expanded in the width direction. Therefore, the cooling water W injected through the nozzle holes 31 and 31 adjacent to each other in the plate width direction is injected through the adjacent nozzle holes 31 and 31 from the extending portion 34 formed in the region where the cooling waters W collide with each other. Further, the opening area of the drain hole 32 from which the collision flow of the cooling water W is discharged can be secured, and the drainage of the cooling water W can be further promoted.
  • the hot-rolled plate guide 30 is made of a resin that is a softer material than the hot-rolled steel plate 5, the hot-rolled steel plate 5 and the hot-rolled plate guide 30 are in contact with each other. Even so, generation of wrinkles in the hot-rolled steel sheet 5 can be suppressed. Even when the hot-rolling plate guide 30 is made of a soft material, as described above, the opening area ratio Sh is set to 0.18 or less, so that the hot-rolling plate guide 30 is worn early. Can be suppressed. Further, the hot-rolling plate guide 30 is arranged at the center of the roll width of the table roll 21, and the width of the hot-rolling plate guide 30 is configured to be 1 ⁇ 2 or less of the roll width of the table roll 21. Thus, the cooling water W sprayed toward the lower surface of the hot-rolled steel sheet 5 can be easily discharged by reducing the installation area of the hot-rolled steel sheet guide 30 itself.
  • the cooling water sprayed toward the lower surface of the hot-rolled steel plate 5 is efficiently discharged from the hot-rolled plate guide 30 to suppress temperature fluctuations in the longitudinal direction of the hot-rolled steel plate 5. In addition, early wear can be suppressed.
  • the hot-rolled plate guide which is this embodiment was demonstrated, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • the number and shape of the nozzle holes and the number and shape of the discharge holes are not limited to those illustrated in the embodiment, and may be appropriately changed in design. Furthermore, although demonstrated as what was comprised with resin, it is not limited to this, What was comprised with the other material may be sufficient.
  • the shape of the drain hole may be different between the upstream side and the downstream side in the plate passing direction as in the hot-rolled plate guide 30A shown in FIG.
  • the hot-rolled plate guide 30A in FIG. 6 differs from the hot-rolled plate guide 30 in FIG. 4 in the shape of the drain holes 32A.
  • the drainage hole 32A in FIG. 6 is formed between the wide hole portion 33a on the upstream side in the plate passing direction and the wide hole portion 33b on the downstream side in the plate passing direction, and the nozzle hole 31A, and extends between the wide hole portions 33a and 33b. It consists of the existing part 34.
  • the drainage hole 32 is preferably formed so that the width W1 of the wide hole portions 33a and 33b and the width W2 of the extending portion 34 in the plate width direction satisfy the relationship of the above formula (1). .
  • the collision flow caused by a part of the cooling water that is not discharged at the extending portion 34 flows more in the downstream side in the sheet passing direction with the passing plate of the hot rolled steel sheet than in the upstream side in the sheet passing direction.
  • the cooling water can be discharged more efficiently by making the wide hole portion 33b on the downstream side in the passage direction longer than the wide hole portion 33a on the upstream side in the passage direction in the passage direction. Can do.
  • Example 1 the temperature fluctuation in the longitudinal direction of the hot-rolled steel sheet was confirmed.
  • a hot-rolling plate guide 30 is used in which drain holes 32 extending in the plate-passing direction are formed between nozzle holes 27 adjacent in the plate-width direction. It was. Further, as a comparative example, the hot-rolled plate guide (Comparative Example 1) not provided with the drain hole of FIG. 4 was used.
  • the above-mentioned hot-rolled plate guide was disposed between the table rolls of the cooling bed, the hot-rolled steel plate was cooled, and the temperature variation in the region of 50 m from the tip of the hot-rolled steel plate that passed through the cooling bed was measured.
  • the temperature fluctuation range E due to the influence of the hot-rolled plate guide was 10.3 ° C.
  • the temperature fluctuation range E due to the influence of the hot-rolled plate guide was 5.8 ° C. It was confirmed that the temperature fluctuation in the longitudinal direction of the hot-rolled steel sheet can be suppressed by using the hot-rolled sheet guide of the present invention example.
  • Example 2 the drainage performance of the hot-rolled plate guide was verified when the width ratio (W1 / W2) between the wide hole portion and the extension portion of the drainage hole and the opening area ratio Sh were changed.
  • a hot-rolling plate guide 30 is used in which drain holes 32 extending in the plate-passing direction are formed between nozzle holes 27 adjacent in the plate-width direction. It was. Further, as a comparative example, a hot-rolled plate guide 30A having drain holes without wide holes as shown in FIG. 7 was used.
  • Example 2 the drainage performance and durability of the hot-rolled plate guides of Examples and Comparative Examples were confirmed using a testing machine that simulated the hot rolling line 10 as shown in FIG.
  • the results are shown in Table 1 below.
  • the drainage was evaluated by measuring the amount of cooling water discharged per unit time.
  • the drainage evaluation was performed based on Table 2 below.
  • the water density of the cooling nozzle 27 was 0.52 m 3 / m 2 ⁇ min.
  • the durability was evaluated by measuring the amount of consumption of the hot-rolled plate guide per month. Durability evaluation was performed based on Table 3 below.
  • the opening area ratio Sh is set to 0.13 or more and 0.18 or less, no.
  • the width ratio (W1 / W2) between the wide hole portion and the extending portion of the drainage hole is less than 1.00 as in FIG. 3, the width of the wide hole portion is narrower than the width of the extending portion. Inferior. No.
  • the width ratio (W1 / W2) between the wide hole portion and the extended portion of the drainage hole is larger than 1.70 as shown in FIG. 4, an excessive load is applied to the neck portion that is a boundary portion between the extended portion and the wide hole portion. It will take. For this reason, a crack occurred at the neck portion, resulting in a problem in durability.
  • the opening area ratio Sh is set to 0.13 or more and 0.18 or less, and the width ratio (W1 / W2) between the wide hole portion and the extending portion of the drainage hole is larger than 1.00 and 1.70.
  • the hot-rolled plate guides used in 1 to 11 were made of a material having a Vickers hardness of 36 to 41 Hv. No. 4 except for No.4. Even if any of 1-3, 5-11 was used for a predetermined period (six months), the steel sheet was not wrinkled, and the scratch resistance was good.
  • Hot Rolled Steel Sheet 10 Hot Rolling Line 15 Finishing Roller 18 Coiler 20 Cooling Floor 21 Table Roll 27 Cooling Nozzle 30 Hot Rolling Plate Guide 31 Nozzle Hole 32 Drainage Hole 33 Wide Hole (Second Hole) 34 Extension (first hole)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

熱延鋼板の下面に向けて噴射された冷却水を熱延通板ガイドの上から効率的に排出することによって熱延鋼板の長手方向の温度変動を抑制でき、かつ、早期損耗を抑制して寿命延長を図ることが可能な熱延通板ガイドを提供する。 【解決手段】熱間圧延ラインにおいて熱延鋼板を搬送するテーブルロール21、21間に配置される熱延通板ガイド30であって、テーブルロール21、21間に配設された冷却ノズル27に対応する位置に設けられた複数のノズル孔31と、搬送される熱延鋼板5の板幅方向に隣接するノズル孔31同士の間に形成された排水孔32と、を備え、排水孔32は、搬送される熱延鋼板5の通板方向Fに向けて延在する延在部34と、延在部34の通板方向Fの両端部に形成され、板幅方向Fに拡大された幅広孔部33とからなることを特徴とする。

Description

熱延通板ガイド
 本発明は、熱間圧延ラインにおいて熱延鋼板を搬送するテーブルロール間に配置される熱延通板ガイドに関する。
 熱間圧延ラインにおいては、加熱炉でスラブを所定温度に加熱し、加熱したスラブを粗圧延機で所定厚みに圧延して粗圧延材とし、この粗圧延材を複数の圧延スタンドを備えた仕上圧延機で圧延して所定厚みの熱延鋼板を製造する。そして、仕上圧延機で圧延された熱延鋼板は、テーブルロールを備えた冷却床において所定の温度にまで冷却された後、巻取機においてコイル状に巻き取られる。
 上述の冷却床においては、搬送される熱延鋼板の上方にはノズルを備えた上面冷却装置が配設され、熱延鋼板を搬送するテーブルロール間に冷却ノズルを備えた下面冷却装置が配設されており、通過する熱延鋼板の上下面を冷却する構成とされている。
 ここで、冷却床においては、仕上圧延機で圧延された熱延鋼板の先端がテーブルロール間に落ち込んでしまうトラブルが発生することがある。特に、熱延鋼板の板厚が薄い場合には、剛性の不足により先端が変形しやすいため、上述のトラブルが発生しやすい傾向にある。そこで、熱間圧延ラインにおいては、熱延鋼板の先端がテーブルロール間に落ち込んでしまうことを防止するために、例えば特許文献1~3に示すような熱延通板ガイド(エプロン)がテーブルロール間に配設されている。
 テーブルロール間に配設された熱延通板ガイドには、熱延鋼板の下面を冷却するために、上述の冷却ノズルに対応する位置にノズル孔が設けられている。ここで、熱延通板ガイドを配設した箇所においては、冷却ノズルから噴射された冷却水は、熱延鋼板の下面に衝突した後に熱延通板ガイドの上に滞留することになる。このため、熱延通板ガイドが配設された部分の冷却が促進されることになり、下面の冷却むらが生じ、その後の品質特性に問題が生じるおそれがある。
 そこで、上述した特許文献1~3に記載された熱延通板ガイドにおいては、ノズル孔に加えて排水孔を形成して、熱延通板ガイドの上に滞留した冷却水を、排水孔を介して排出するように構成されている。
特開2002-239623号公報 特開2010-42445号公報 特許第5015034号公報
 しかし、上記特許文献1では、熱延通板ガイドをテーブルロールの全幅に設置しているため、冷却水が熱延鋼板と熱延通板ガイドとの間に滞留しやすい。この滞留した冷却水のほとんどはガイドの端部から排出されることとなり、結果として板幅方向に冷却偏差が発生してしまう。
 また、上記特許文献2では、熱延通板ガイドに碁盤の目に複数形成された貫通孔のうち一部の貫通孔に対して冷却水を噴射するノズルを千鳥格子状に配置し、残りの貫通孔を排水孔として用いている。ここで、特許文献2においては多量の高圧水を冷却水として用いている。このため、熱延鋼板と熱延通板ガイドとの間がほぼ冷却水で満たされた状態で、鋼板表面に対して冷却水が高圧力で噴射されていると考えられる。したがって、特許文献2においても熱延通板ガイドの排水性は十分ではない。
 熱延通板ガイド上の滞留水による熱延鋼板の冷却温度むらの問題は、熱延鋼板の幅方向に加えて、長手方向にも存在する。熱間圧延ラインによって得られた熱延鋼板を冷間圧延した場合に、熱延鋼板の一端側において、長手方向で板厚変動が生じることがある。この板厚変動の周期を調査した結果、熱間圧延ラインの巻取機前の熱延鋼板の温度変動とよく一致していることが判明した。
 ここで、上述の熱間圧延ラインにおいては、仕上圧延機で圧延された熱延鋼板が巻取機に巻き取られるまでの間は、熱延鋼板に張力が作用していないことから、搬送される熱延鋼板が大きく上下に蛇行することがある。上下に大きく蛇行した熱延鋼板は、下に凸となった部分が熱延通板ガイドに近接・接触することによって温度が低下するため、上述のように、熱間圧延ラインの巻取機前の熱延鋼板の温度が長手方向で周期的に変化することが判明した。
 このように、熱延鋼板が下に凸となった部分は熱延通板ガイドに近接・接触するため、熱延通板ガイドの上に冷却水が滞留していた場合には、熱延鋼板が局所的に冷却されて大きく温度低下することになる。このため、単に排水孔を設けただけでは熱延通板ガイド上に滞留した冷却水の排出が十分ではなく、熱延鋼板の長手方向の温度変動を抑制することができなかった。すなわち、熱延鋼板の長手方向の温度変動を抑制するためには、熱延通板ガイドの排水性のさらなる向上が必要であった。
 上記特許文献3では、このような観点から、図7に示すような、ノズル27が配置されるノズル孔3aと、ノズル孔3aの中間に通板方向直線状の排水孔3bとが形成された熱延通板ガイド3が提案されている。この方式は一定の効果は示すものの、熱延鋼板の幅方向および長手方向の温度変動を抑制するためには、熱延通板ガイドの排水性をさらに向上させる必要があった。
 また、熱延通板ガイドは、熱延鋼板と接触することによって摩耗していく。特に、熱延鋼板に疵が発生しないように熱延通板ガイドを熱延鋼板よりも軟質な材料で構成した場合には、早期に摩耗してしまい寿命が短くなるといった問題があった。最近では、熱間圧延ラインにおける生産性を向上させることを目的として、通板速度の上昇が図られており、熱延通板ガイドの早期損耗が促進される傾向にある。熱延通板ガイドを交換する場合には操業を中断することになるため、生産効率向上の観点から熱延通板ガイドの寿命延長が求められている。
 そこで、本発明は、前述した状況に鑑みてなされたものであって、熱延鋼板の下面に向けて噴射された冷却水を熱延通板ガイドの上から効率的に排出することによって熱延鋼板の長手方向の温度変動を抑制でき、かつ、早期損耗を抑制して寿命延長を図ることが可能な熱延通板ガイドを提供することを目的とする。
 上記の課題を解決することを目的に、本発明者らは、熱間圧延ラインを模擬した試験機を用いて、ノズルによって熱延鋼板の下面に吹き付けられた水の流れを詳細に観察した。具体的には、透明のアクリル板を熱延鋼板に見立て、アクリル板の下面に熱延通板ガイドを配置し、熱延通板ガイドのノズル孔に配置されたノズルからアクリル板の下面に対して水を吹き付けた際の水の流れを、アクリル板の上面側から観察した。その結果、吹き付けられた水が以下のように挙動することを知見した。
 図7の熱延通板ガイド3において、ノズル27から噴射された冷却水は、アクリル板下面に衝突し、上面から見て同心円状にアクリル板下面を流れる。このとき、冷却水の速度が大きいことおよび衝突する物体が液体であることのため、アクリル板に衝突した水の多くが、すぐに跳ね返って落下することなくアクリル板下面に沿って流れる。アクリル板下面に衝突した後、隣接するノズル27の間に流れた水のうち、アクリル板下面衝突部からの距離が短い部分に流れた水は、排水孔3bの直上で他のノズルから供給された水と衝突し、排水孔3bを通って落下する(S1)。アクリル板下面衝突部からの距離が短い部分においては、衝突する水の単位面積あたりの運動量や各部での速度差がほとんどない。そのため、衝突した水は拡散することなく強い水の勢いを保ったまま排水孔3bを通って落下する。
 一方、アクリル板下面衝突部からの距離が長い部分に流れた水は、排水孔3b端部あるいはその延長部直上だけではなく、その周囲に広がりと揺らぎを持って衝突していることが認められた(S2)。これは、アクリル板下面衝突部からの距離が長いので、以下の要因の影響が大きくなり、2つの方向から流れてきて衝突する水の運動量や速度に違いが生じるためと考えられる。さらに、これらの水の運動量や速度は、時間とともに変動するので揺らぎを持った衝突をするものと考えられる。このような水の流れとなる要因としては、以下のものが考えられる。
 1)水が接触する、アクリル板の表面状態、動き(鋼板の走行中の動きに相当する。)や傾きのごくわずかな違い
 2)水を供給するノズル向きの微妙な位置のずれ
 3)ノズル内面にランダムに脱着することでノズル吐出流の向きの微妙な変動の原因になる、水に含まれる気泡
 ノズル内面への気泡の付着によりノズル吐出流の向きは微妙に傾く。その気泡が脱離するとノズル吐出流の向きは真っ直ぐに戻る。この現象が各部位でランダムに繰り返し発生してノズル吐出流の向きが微妙に変動すると考えられる。
 上記の新たな知見に基づき、課題を解決するために、本発明に係る熱延通板ガイドは、熱間圧延ラインにおいて熱延鋼板を搬送するテーブルロール間に配置される熱延通板ガイドであって、前記テーブルロール間に配設された冷却ノズルに対応する位置に設けられた複数のノズル孔と、搬送される前記熱延鋼板の板幅方向に隣接する前記ノズル孔同士の間に形成された排水孔と、を備え、前記排水孔は、搬送される前記熱延鋼板の通板方向に向けて延在する第1の孔部と、前記第1の孔部の前記通板方向の両端部に形成され、前記板幅方向に拡大された第2の孔部とからなることを特徴としている。
 本発明の熱延通板ガイドにおいては、前記テーブルロール間に配設された冷却ノズルに対応する位置に複数のノズル孔が設けられている。このノズル孔を介して熱延鋼板の下面に向けて噴射された冷却水は、熱延鋼板の下面に衝突して放射状に広がり、幅方向に隣接するそれぞれのノズル孔から噴射された冷却水同士が衝突することになる。ここで、本発明においては、搬送される前記熱延鋼板の板幅方向に隣接する前記ノズル孔同士の間に排水孔が形成されているので、隣接するそれぞれのノズル孔から噴射された冷却水同士が衝突する領域に排水孔が配置されることになり、熱延通板ガイドと熱延鋼板の下面との間に存在する冷却水の排出が促進される。
 ここで、本発明の熱延通板ガイドにおいては、前記排水孔は、搬送される前記熱延鋼板の通板方向に向けて延在している。この場合、幅方向に隣接するそれぞれのノズル孔から噴射された冷却水同士が衝突する領域において、排水孔の開口面積を確保することができ、冷却水の排出をさらに促進することができる。
 また、本発明の熱延通板ガイドにおいては、前前記排水孔の前記通板方向の端部には、前記板幅方向に拡大された第2の孔部が設けられている。ノズル孔を介して熱延鋼板の下面に向けて噴射された冷却水は、熱延鋼板の下面に衝突して放射状に広がって通板方向にも流れていく。このため、前記排水孔の通板方向の端部に第2の孔部を設けることにより、冷却水の排出を確実に促進することが可能となる。
 ここで、前記排水孔は、前記第1の孔部の幅W1と前記第2の孔部の幅W2とが下記式(1)を満たすように形成するのが望ましい
 1.00<W1/W2≦1.70   ・・・(1)
 また、本発明の熱延通板ガイドにおいて、前記熱延通板ガイドは、熱延鋼板より軟質な材料である樹脂から形成してもよい。これにより、熱延通板ガイドが熱延鋼板と接触した際に熱延鋼板に疵が生じることを抑制できる。例えば、前記熱延通板ガイドを形成する材質のビッカース硬度は、36以上125未満とするのがよい。
 そして、本発明においては、鉛直方向上方から見て、前記熱延通板ガイドの上面全体の面積に対する前記ノズル孔及び前記排水孔の開口面積の割合である開口面積比Shが0.13以上とされているので、熱延通板ガイドと熱延鋼板の下面との間に存在する冷却水を確実に排水孔から排出することができ、熱延通板ガイドの上に冷却水が滞留することを抑制できる。よって、熱延鋼板が大きく上下に蛇行して下に凸となった部分が熱延通板ガイドに近接・接触した場合であっても、熱延鋼板が大きく温度低下することが抑制されることになり、熱延鋼板の長手方向の温度変動を抑制することができる。また、本発明においては、前記開口面積比Shが0.18以下とされているので、熱延鋼板との接触面積が確保され、この熱延通板ガイドの早期摩耗を抑制でき、寿命延長を図ることができる。
 また、本発明の前記熱延通板ガイドは、前記テーブルロールのロール幅の中央部に配置され、前記熱延通板ガイドの幅は前記テーブルロールのロール幅の1/2以下に構成されるようにしてもよい。これにより、冷却水を排出しやすくすることができる。
 本発明によれば、熱延鋼板の下面に向けて噴射された冷却水を熱延通板ガイドの上から効率的に排出することによって熱延鋼板の長手方向の温度変動を抑制でき、かつ、早期損耗を抑制して寿命延長を図ることが可能な熱延通板ガイドを提供することが可能となる。
本発明の一実施形態である熱延通板ガイドが用いられる熱間圧延ラインの概略説明図である。 本実施形態である熱延通板ガイドがテーブルロール間に配設された状態を示す側面説明図である。 本実施形態である熱延通板ガイドがテーブルロール間に配設された状態を示す平面説明図である。 本実施形態である熱延通板ガイドの説明図である。 本実施形態である熱延通板ガイドを用いた場合の冷却ノズルからの冷却水の挙動を示す説明図である。 本実施形態に係る熱延通板ガイドの変形例を示す平面図である。 従来の熱延通板ガイドにおける冷却水の挙動を説明するための説明図である。
 <1.熱間圧延ラインの概要>
 以下に、本発明の一実施形態である熱延通板ガイドについて、図1~図4を参照して説明する。本実施形態である熱延通板ガイド30は、例えば図1に示す熱間圧延ライン10において使用されるものである。
 [1-1.熱間圧延ラインの構成例]
 図1に示す熱間圧延ライン10は、スラブ1を加熱する加熱炉11と、加熱されたスラブ1を粗圧延して粗圧延材5aとする粗圧延機12と、粗圧延材5aを再加熱する誘導加熱装置13と、を備えている。また、熱間圧延ライン10は、粗圧延材5aを圧延して所定厚さの熱延鋼板を製造する仕上圧延機15と、仕上圧延後の熱延鋼板5を所定温度に冷却する冷却床20と、冷却された熱延鋼板5を巻き取るコイラー18と、を備えている。
 ここで、冷却床20は、図2に示すように、熱延鋼板5の通板方向Fに向けて間隔を開けて配設された複数のテーブルロール21、21と、搬送される熱延鋼板5の上面を冷却する上面冷却装置22と、テーブルロール21、21間に配設され、搬送される熱延鋼板5の下面を冷却する下面冷却装置25と、を備えている。そして、通板方向Fにおいて、テーブルロール21、21間には、本実施形態である熱延通板ガイド30が配置されている。
 上面冷却装置22は、冷却水が供給される給水配管23と、給水配管23に接続され、搬送される熱延鋼板5の上面に向けて冷却水を供給するラミナーノズル24と、を備えている。
 下面冷却装置25は、図2及び図3に示すように、冷却水が供給される給水配管26と、給水配管26に複数配設された冷却ノズル27と、を備えている。下面冷却装置25の給水配管26は、図3に示すように、搬送される熱延鋼板5の板幅方向に延在するように配置されており、複数の冷却ノズル27は、熱延鋼板5の板幅方向に並列するように配置されている。
 熱延通板ガイド30は、仕上圧延機15で圧延された熱延鋼板5の先端がテーブルロール21、21間に落ち込んでしまうことを防止するために通板方向Fに隣接するテーブルロール21、21間に配設される。本実施形態では、熱延通板ガイド30は、熱延鋼板5よりも軟質な材料で構成されており、具体的には樹脂で構成されている。熱延通板ガイド30を熱延鋼板5よりも軟質な材料により構成することで、熱延鋼板5と熱延通板ガイド30とが接触した場合であっても、熱延鋼板5に疵が生じることを抑制できる。
 具体的には、熱延通板ガイド30は、熱延鋼板5にスリキズ等のような品質に影響する疵を付けないようにするため、熱延鋼板5よりも軟質な材料で構成される。例えば、普通鋼の硬度(ビッカース硬度)は約125Hvである。普通鋼を用いた場合には熱延鋼板5が疵付く可能性が高いことから、熱延通板ガイド30の硬度は125Hv以下であるのが望ましい。一方、熱延通板ガイド30の耐久性の観点から、熱延鋼板5に接触してもすぐに摩耗しない程度の硬度があることが望ましい。例えば、熱延通板ガイド30は、36Hv以上の硬度があることが望ましい。
 熱延通板ガイド30は、図2に示すように、その上面がテーブルロール21の上端位置よりも一段下方に後退した位置となるように配置されている。また、熱延通板ガイド30は、図3に示すように、テーブルロール21のロール幅の中央部に配置されており、板幅が異なる熱延鋼板5に対応可能とされている。ここで、板幅方向(すなわち、テーブルロール21のロール幅方向)において、熱延通板ガイド30の幅は、テーブルロール21のロール幅の1/2以下に構成されるのがよい。このように、通板方向Fに隣接するテーブルロール21、21間において熱延通板ガイド30が配置される部分を小さくすることで、熱延鋼板5と熱延通板ガイド30との間に冷却水がさらに滞留しにくくすることができる。
 熱延通板ガイド30は、図3及び図4に示すように、下面冷却装置25の冷却ノズル27に対応する位置にノズル孔31が設けられている。本実施形態に係る熱延通板ガイド30には、図4に示すように、3つのノズル孔31が、搬送される熱延鋼板5の板幅方向に並列するように配設されている。また、板幅方向に隣接するノズル孔31、31同士の間に、それぞれ排水孔32が設けられている。本実施形態では、この排水孔32は、図3及び図4に示すように、搬送される熱延鋼板5の通板方向Fに向けて延在している。排水孔32は、板幅方向に隣接するノズル孔31の間に位置し、熱延鋼板5の通板方向Fに延在する第1の孔部である延在部34と、排水孔32の通板方向Fにおける延在部34の両端部に形成され、板幅方向に開口面積が拡大された第2の孔部である幅広孔部33とから構成されている。
 また、本実施形態である熱延通板ガイド30においては、鉛直方向上方から見て、熱延通板ガイド30の上面全体の面積に対するノズル孔31及び排水孔32の開口面積である開口面積比Shが0.13以上、かつ0.18以下の範囲内となるように設定されている。なお、排水孔32の形状および開口面積比Shの詳細な説明は後述する。
 [1-2.熱間圧延ラインによる熱延鋼板の製造手順]
 次に、この熱間圧延ライン10を用いて熱延鋼板5を製造する手順について説明する。図1に示すように、まず、スラブ1が、加熱炉11に装入されて入口側から出口側に向けて搬送されるとともに加熱される(加熱工程)。加熱されたスラブ1が粗圧延機12に装入される。粗圧延機12によって粗圧延がなされ、粗圧延材5aが製造される(粗圧延工程)。
 次に、粗圧延材5aが誘導加熱装置13に装入され、再加熱される。(再加熱工程)。そして、誘導加熱装置13を通過した粗圧延材5aが仕上圧延機15に供給される。この仕上圧延機15によって仕上圧延がなされ、所定厚さの熱延鋼板5が製造される(仕上圧延工程)。
 仕上圧延機15で圧延された熱延鋼板5は、冷却床20において、テーブルロール21によって通板方向Fに向けて搬送されるとともに、上面冷却装置22及び下面冷却装置25によって所定温度にまで冷却される(冷却工程)そして、所定温度にまで冷却された熱延鋼板5がコイラー18に巻き取られる(巻き取り工程)。
 <2.熱延通板ガイド>
 本実施形態に係る熱延通板ガイド30は、冷却水の排水性向上と強度向上とを両立させるため、板幅方向における排水孔32の幅広孔部33を延在部34より拡張させることで、より多くの衝突流を排水孔32より排出させるように構成されている。
 まず、図5に基づいて、冷却床20によって熱延鋼板5を冷却する冷却工程における下面冷却の状態について説明する。図5は、図4のI-I切断線において熱延鋼板5の通板方向F前方側から見た図である。冷却床20において、熱延通板ガイド30のノズル孔31に挿通された冷却ノズル27から、熱延鋼板5の下面に向けて冷却水Wが噴射される。熱延鋼板5の下面に衝突した冷却水Wは、熱延通板ガイド30の上面と熱延鋼板5の下面との間の空間を放射状に広がっていく。そして、隣接するノズル孔31、31にそれぞれ挿通された冷却ノズル27、27同士からの冷却水Wは、隣接するノズル孔31、31同士の間の空間で衝突する。熱延鋼板5の下面に衝突した冷却水Wのほとんどは、このように挙動する。
 上述したように、本実施形態に係る熱延通板ガイド30は、テーブルロール21、21間に配設された冷却ノズル27に対応する位置に設けられた複数のノズル孔31と、板幅方向に隣接するノズル孔31、31同士の間に形成された排水孔32と、を備えている。排水孔32は、板幅方向に隣接する各ノズル孔31、31を介して冷却ノズル27から噴射された冷却水W同士が衝突する領域に配置される。これにより冷却水Wの排水が促進される。
 より詳細にみると、図4に示すように、排水孔32は、板幅方向に隣接するノズル孔31の間に位置し、熱延鋼板5の通板方向Fに延在する延在部34と、延在部34の両端部に形成され、板幅方向に開口面積が拡大された幅広孔部33とから構成されている。各冷却ノズル27、27から噴射される冷却水Wの排水量が略同一であるとき、各冷却ノズル27、27から噴射され放射状に広がった冷却水Wは、隣接するノズル孔31、31間で通板方向Fに沿って直線状に衝突する。冷却水Wが直線状に衝突する空間には、排水孔32の延在部34が配置されている。また、冷却水Wは、熱延鋼板5の通板に伴って通板方向F下流側に流れる。この熱延鋼板5の通板に随伴する冷却水Wが流れる通板方向F下流側には幅広孔部33が形成されている。
 従って、延在部34の上で衝突した冷却水Wは、排水孔32を介して熱延通板ガイド30の下方側へと速やかに排出される。また、延在部34にて排出されない一部の冷却水による衝突流が、延在部34から逃げるように通板方向Fに流れるが、これらは幅広孔部33によって効率的に排出される。すなわち、熱延通板ガイド30は、その上面に冷却水Wが滞留しないように構成されている。なお、排水孔32は、通板方向F上流側にも幅広孔部33が形成されている。通板方向F上流側にも幅広孔部33は、当該熱延通板ガイド30が配置されているテーブルロール21、21のうち通板方向F上流側に位置するテーブルロール21の回転に伴って流れてくる冷却水Wを排出するのに役立つ。
 ここで、排水孔32は、板幅方向における幅広孔部33の幅W1と延在部34の幅W2とが下記式(1)の関係を満たすように形成されるのがよい。ここで、幅W1、W2は、幅広孔部33、延在部34のそれぞれの板幅方向における最大幅であるとする。
 1.00<W1/W2≦1.70   ・・・(1)
 上述したように、延在部34の上での衝突流が通板方向Fに流れるため、延在部34の両端に形成された幅広孔部33の幅W1を延在部34の幅W2より大きくすることで、延在部34で排出されなかった冷却水を効率よく排出することができる。一方、幅広孔部33の幅W1を大きくし過ぎると、熱延通板ガイド30のうち幅広孔部33が形成されている部分の強度が低下してしまう。このれより、幅広孔部33の幅W1は延在部34の幅W2の1.70倍までの大きさとするのがよい。
 なお、排水孔32の通板方向Fにおける長さLは大きいほどよいが、熱延通板ガイド30の耐久性やテーブルロール21、21との位置関係によっては、熱延通板ガイド30の通板方向端部付近を開口できない場合もある。排水孔32の長さLはこれらを考慮して適宜決定される。
 このような本実施形態に係る熱延通板ガイド30は、鉛直方向上方から見て、熱延通板ガイド30の上面全体の面積に対するノズル孔31及び排水孔32の開口面積である開口面積比Shが0.13以上となるように形成されている。これにより、熱延通板ガイド30と熱延鋼板5の下面との間に存在する冷却水Wを確実に排水孔32から排出することができる開口面積を確保することができ、熱延通板ガイド30の上に冷却水Wが滞留することを抑制できる。
 ここで、冷却床20において熱延鋼板5を冷却する冷却工程では、熱延鋼板5の先端がコイラー18に巻き付くまでの間は熱延鋼板5には張力が作用していない。このため、熱延鋼板5のうち上下方向に大きく蛇行して下に凸となった部分が熱延通板ガイド30に近接・接触することになる。しかし、本実施形態に係る熱延通板ガイド30の構成により、熱延通板ガイド30上における冷却水Wの滞留が抑制されているので、熱延鋼板5の局部的な温度低下を抑制することができ、熱延鋼板5の長手方向の温度変動を抑制することができる。
 また、本実施形態において熱延通板ガイド30は、鉛直方向上方から見て、熱延通板ガイド30の上面全体の面積に対するノズル孔31及び排水孔32の開口面積である開口面積比Shが0.18以下となるように構成されている。冷却水Wの排出効率を高めるには熱延通板ガイド30の開口面積を大きくするのがよいが、開口面積を大きくし過ぎると熱延通板ガイド30の耐久性に影響する。そこで、開口面積比Shを0.18以下とすることで熱延通板ガイド30と当該熱延通板ガイド30に近接・接触する熱延鋼板5との接触面積を確保する。これにより、熱延通板ガイド30が早期に摩耗することを抑制でき、寿命延長を図ることができる。
 <3.まとめ>
 以上、熱間圧延ラインの概要と本実施形態に係る熱延通板ガイド30の構成およびその作用とについて説明した。本実施形態である熱延通板ガイド30においては、排水孔32は、通板方向Fに向けて延在する延在部34と、通板方向Fにおける延在部34の両端部に、板幅方向に拡大された幅広孔部33とからなる。したがって、板幅方向に隣接するそれぞれのノズル孔31、31を介して噴射された冷却水W同士が衝突する領域に形成された延在部34から隣接するノズル孔31、31を介して噴射された冷却水Wの衝突流が排出される、排水孔32の開口面積を確保することができ、冷却水Wの排水をさらに促進することができる。
 さらに、本実施形態においては、熱延通板ガイド30が熱延鋼板5よりも軟質な材料である樹脂で構成されているので、熱延鋼板5と熱延通板ガイド30とが接触した場合であっても、熱延鋼板5に疵が生じることを抑制できる。また、熱延通板ガイド30を軟質な材料で構成した場合であっても、上述のように、開口面積比Shを0.18以下としていることから、熱延通板ガイド30の早期摩耗を抑制することができる。さらに、熱延通板ガイド30は、テーブルロール21のロール幅の中央部に配置され、熱延通板ガイド30の幅はテーブルロール21のロール幅の1/2以下に構成される。このように熱延通板ガイド30の設置面積自体を小さくすることで、熱延鋼板5の下面に向けて噴射された冷却水Wを排出し易くすることができる。
 上述の構成とすることで、熱延鋼板5の下面に向けて噴射された冷却水を熱延通板ガイド30の上から効率的に排出して熱延鋼板5の長手方向の温度変動を抑制し、かつ、早期損耗を抑制することができる。
 以上、本実施形態である熱延通板ガイドについて説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。例えば、図1に示す構成の熱間圧延ラインの冷却床に配設されるものとして説明したが、これに限定されることはなく、他の構成の熱間圧延ライン等に配設されるものであってもよい。
 また、ノズル孔の個数及び形状、排出孔の個数及び形状は、実施形態において図示したものに限定されることはなく、適宜設計変更してもよい。さらに、樹脂で構成したものとして説明したが、これに限定されることはなく、他の材料で構成したものであってもよい。
 例えば、排水孔の形状を、図6に示す熱延通板ガイド30Aのように、通板方向の上流側と下流側とで異なるようにしてもよい。図6の熱延通板ガイド30Aは、図4の熱延通板ガイド30と比較して、排水孔32Aの形状が相違する。図6の排水孔32Aは、通板方向上流側の幅広孔部33aおよび通板方向下流側の幅広孔部33bと、ノズル孔31Aの間に形成され、幅広孔部33a、33bを連結する延在部34とからなる。この場合にも、排水孔32は、板幅方向における幅広孔部33a、33bの幅W1と延在部34の幅W2とが上記式(1)の関係を満たすように形成されるのがよい。
 延在部34にて排出されない一部の冷却水による衝突流は、通板方向上流側よりも熱延鋼板の通板に伴って通板方向下流側に流れる量の方が多いと考えられる。これより、通板方向上流側の幅広孔部33aよりも通板方向下流側の幅広孔部33bを通板方向に長くなるようにすることで、より効率よく冷却水を排出できるようにすることができる。
 以下に、本発明の熱延通板ガイドの効果を確認すべく実施した実験結果について説明する。実施例1では、熱延鋼板の長手方向の温度変動について確認した。本発明の実施例として、図4に示すように、板幅方向に隣接するノズル孔27同士の間に通板方向に向けて延在する排水孔32を形成した熱延通板ガイド30を用いた。また、比較例として、図4の排水孔を設けていない熱延通板ガイド(比較例1)とを用いた。
 上述の熱延通板ガイドを、冷却床のテーブルロール間に配置して、熱延鋼板の冷却を実施し、冷却床を通過した熱延鋼板の先端から50mの領域における温度バラツキを測定した。熱延鋼板の温度は、単色温度計を用いて、熱延通板ガイドが配設された板幅中央部と、熱延通板ガイドが配設されていない幅端部から板幅1/3の位置で測定した。測定された温度データから、以下の式によって、熱延通板ガイドの影響による温度変動幅Eを算出した。
   E=(板幅中央部の温度変動幅)-(1/3位置における温度変動幅)
 従来例の熱延通板ガイドを用いた場合には、熱延通板ガイドの影響による温度変動幅Eが10.3℃であった。これに対して、本発明例の熱延通板ガイドを用いた場合には、熱延通板ガイドの影響による温度変動幅Eが5.8℃であった。本発明例の熱延通板ガイドを用いることにより、熱延鋼板の長手方向の温度変動を抑制できることが確認された。
 実施例2では、排水孔の幅広孔部と延在部との幅比(W1/W2)と開口面積比Shとを変化させたときの熱延通板ガイドの排水性能について検証した。本発明の実施例として、図4に示すように、板幅方向に隣接するノズル孔27同士の間に通板方向に向けて延在する排水孔32を形成した熱延通板ガイド30を用いた。また、比較例として、図7に示したような幅広孔部のない排水孔を有する熱延通板ガイド30Aを用いた。
 実施例2では、図2に示したような熱間圧延ライン10を模擬した試験機を用いて、実施例および比較例の熱延通板ガイドの排水性能および耐久性を確認した。下記表1に、その結果を示す。ここで、排水性については、単位時間当たりの冷却水の排水量を測定して評価した。排水性評価は下記表2に基づき行った。なお、冷却ノズル27の水量密度は0.52m/m・minとした。また、耐久性については、熱延通板ガイドの月当たりの消耗量を測定して評価した。耐久性評価は下記表3に基づき行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1より、開口面積比Shを変化させた場合、No.1、2より、開口面積比Shが0.13より小さくなると、耐久性は良好であるが、排水孔の開口面積が小さすぎるため排水性が低下することがわかる。一方で、No.10、11より、開口面積比Shが0.18より大きくなると、排水性は良好であるが、排水孔の開口面積が大きすぎるために耐久性が低下することがわかる。
 また、開口面積比Shを0.13以上0.18以下とした場合であっても、No.3のように排水孔の幅広孔部と延在部との幅比(W1/W2)が1.00未満となると、延在部の幅より幅広孔部の幅が狭くなるため、排水性が劣る。また、No.4のように排水孔の幅広孔部と延在部との幅比(W1/W2)が1.70より大きくなると、延在部と幅広孔部との境界部分であるネック部に過大な負荷がかかってしまう。このため、ネック部で割れが発生して破壊してしまい、耐久性に問題がある結果となった。
 一方、No.5~9のように、開口面積比Shを0.13以上0.18以下とし、排水孔の幅広孔部と延在部との幅比(W1/W2)を1.00より大きく1.70以下とすることで、排水性、耐久性ともに良好となった。
 なお、本実施例においてはNo.1~11で用いた熱延通板ガイドは、ビッカース硬度が36~41Hvの材質を用いた。破壊したNo.4を除き、No.1~3、5~11のいずれも所定期間(6か月)使用しても鋼板に疵が付くことはなく、耐疵付き性は良好であった。
 5  熱延鋼板
 10 熱間圧延ライン
 15 仕上圧延機
 18 コイラー
 20 冷却床
 21 テーブルロール
 27 冷却ノズル
 30 熱延通板ガイド
 31 ノズル孔
 32 排水孔
 33 幅広孔部(第2の孔部)
 34 延在部(第1の孔部)
 

Claims (6)

  1.  熱間圧延ラインにおいて熱延鋼板を搬送するテーブルロール間に配置される熱延通板ガイドであって、
     前記テーブルロール間に配設された冷却ノズルに対応する位置に設けられた複数のノズル孔と、搬送される前記熱延鋼板の板幅方向に隣接する前記ノズル孔同士の間に形成された排水孔と、
    を備え、
     前記排水孔は、搬送される前記熱延鋼板の通板方向に向けて延在する第1の孔部と、前記第1の孔部の前記通板方向の両端部に形成され、前記板幅方向に拡大された第2の孔部とからなることを特徴とする、熱延通板ガイド。
  2.  前記排水孔は、前記第1の孔部の幅W1と前記第2の孔部の幅W2とが下記式(1)を満たすように形成されることを特徴とする、請求項1に記載の熱延通板ガイド。
     1.00<W1/W2≦1.70   ・・・(1)
  3.  前記熱延通板ガイドは、熱延鋼板より軟質な材料である樹脂から形成されていることを特徴とする、請求項1または2に記載の熱延通板ガイド。
  4.  前記熱延通板ガイドを形成する材質のビッカース硬度は、36以上125未満であることを特徴とする、請求項3に記載の熱延通板ガイド。
  5.  鉛直方向上方から見て、前記熱延通板ガイドの上面全体の面積に対する前記ノズル孔及び前記排水孔の開口面積の割合である開口面積比Shが、0.13以上かつ0.18以下の範囲内に設定されていることを特徴とする、請求項1~4のいずれか1項に記載の熱延通板ガイド。
  6.  前記熱延通板ガイドは、前記テーブルロールのロール幅の中央部に配置され、前記熱延通板ガイドの幅は前記テーブルロールのロール幅の1/2以下に構成されることを特徴とする、請求項1~5のいずれか1項に記載の熱延通板ガイド。
     
PCT/JP2013/082250 2012-11-30 2013-11-29 熱延通板ガイド WO2014084373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014526329A JP5664830B2 (ja) 2012-11-30 2013-11-29 熱延通板ガイド
KR1020147031380A KR101611118B1 (ko) 2012-11-30 2013-11-29 열연 통판 가이드
CN201380026277.5A CN104321152B (zh) 2012-11-30 2013-11-29 热轧用走板引导件
IN7663DEN2014 IN2014DN07663A (ja) 2012-11-30 2013-11-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-262225 2012-11-30
JP2012262225 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084373A1 true WO2014084373A1 (ja) 2014-06-05

Family

ID=50828001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082250 WO2014084373A1 (ja) 2012-11-30 2013-11-29 熱延通板ガイド

Country Status (5)

Country Link
JP (1) JP5664830B2 (ja)
KR (1) KR101611118B1 (ja)
CN (1) CN104321152B (ja)
IN (1) IN2014DN07663A (ja)
WO (1) WO2014084373A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174619A (ja) * 2017-03-31 2018-11-08 三菱電機株式会社 回転電機の固定子およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112742866A (zh) * 2020-12-29 2021-05-04 张家港宏昌钢板有限公司 一种2#剪防堆钢装置及其运行工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137111A (ja) * 1983-01-28 1984-08-07 Nippon Steel Corp 熱鋼板冷却装置
JPH08238518A (ja) * 1995-03-03 1996-09-17 Sumitomo Metal Ind Ltd 鋼材の均一冷却方法およびその装置
JPH10323709A (ja) * 1997-05-28 1998-12-08 Nkk Corp 鋼板の冷却装置
JP2009202174A (ja) * 2008-02-26 2009-09-10 Nippon Steel Corp 均一冷却性と通板安定性に優れる熱延鋼帯の冷却装置および冷却方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137833A (ja) * 1996-11-07 1998-05-26 Hitachi Ltd 圧延機用ストリップ冷却設備及びストリップ冷却方法
KR101291832B1 (ko) * 2008-07-16 2013-07-31 제이에프이 스틸 가부시키가이샤 열강판의 냉각 설비 및 냉각 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137111A (ja) * 1983-01-28 1984-08-07 Nippon Steel Corp 熱鋼板冷却装置
JPH08238518A (ja) * 1995-03-03 1996-09-17 Sumitomo Metal Ind Ltd 鋼材の均一冷却方法およびその装置
JPH10323709A (ja) * 1997-05-28 1998-12-08 Nkk Corp 鋼板の冷却装置
JP2009202174A (ja) * 2008-02-26 2009-09-10 Nippon Steel Corp 均一冷却性と通板安定性に優れる熱延鋼帯の冷却装置および冷却方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174619A (ja) * 2017-03-31 2018-11-08 三菱電機株式会社 回転電機の固定子およびその製造方法

Also Published As

Publication number Publication date
KR101611118B1 (ko) 2016-04-08
JPWO2014084373A1 (ja) 2017-01-05
KR20140143835A (ko) 2014-12-17
CN104321152A (zh) 2015-01-28
JP5664830B2 (ja) 2015-02-04
CN104321152B (zh) 2016-03-30
IN2014DN07663A (ja) 2015-06-26

Similar Documents

Publication Publication Date Title
US7523631B2 (en) Cooling device, manufacturing method, and manufacturing line for hot rolled steel band
JP4586682B2 (ja) 鋼板の熱間圧延設備および熱間圧延方法
KR101162070B1 (ko) 열연 강판의 냉각 장치
TWI446976B (zh) 熱軋鋼板之冷卻裝置及冷卻方法、以及熱軋鋼板之製造裝置及製造方法
WO2007026906A1 (ja) 鋼板の冷却設備および冷却方法
TWI553124B (zh) Hot - rolled steel strip cooling method and cooling device
KR101514932B1 (ko) 냉각 장치, 열연 강판의 제조 장치, 및 열연 강판의 제조 방법
JP4774887B2 (ja) 鋼板の冷却設備および製造方法
JP5515483B2 (ja) 厚鋼板の冷却設備および冷却方法
KR101490663B1 (ko) 열연 강판용 냉각수 제거 장치 및 제거 방법
JP5664830B2 (ja) 熱延通板ガイド
JP2002239623A (ja) 熱延鋼帯の冷却装置
JP2011073054A (ja) 熱延鋼板の冷却方法及び冷却装置
JP5906712B2 (ja) 熱鋼板のデスケーリング設備およびデスケーリング方法
JP6699808B1 (ja) 熱延鋼板の冷却装置および熱延鋼板の冷却方法
EP1889671B1 (en) Cooling apparatus for hot rolled steel strip, manufacturing method for hot rolled steel strip, and production line for hot rolled steel strip
TWI446975B (zh) 鋼板之冷卻裝置、熱軋鋼板之製造裝置以及鋼板之製造方法
JP5015034B2 (ja) 均一冷却性と通板安定性に優れる熱延鋼帯の冷却装置および冷却方法
JP5663848B2 (ja) 熱延鋼板の冷却装置及びその動作制御方法
JP5515440B2 (ja) 厚鋼板の冷却設備およびその冷却方法
JP2011011222A (ja) 熱延鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP5556087B2 (ja) 熱延鋼板の冷却設備および冷却方法
JP2014083578A (ja) 熱間圧延鋼材のデスケ―リング用ノズル
JP2014050875A (ja) 熱延鋼板の冷却装置、製造装置、及び、製造方法
JP2012218007A (ja) 厚鋼板のデスケーリング設備およびデスケーリング方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380026277.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014526329

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147031380

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858412

Country of ref document: EP

Kind code of ref document: A1