WO2014083667A1 - サンドイッチ法による抗原抗体反応測定方法 - Google Patents

サンドイッチ法による抗原抗体反応測定方法 Download PDF

Info

Publication number
WO2014083667A1
WO2014083667A1 PCT/JP2012/081001 JP2012081001W WO2014083667A1 WO 2014083667 A1 WO2014083667 A1 WO 2014083667A1 JP 2012081001 W JP2012081001 W JP 2012081001W WO 2014083667 A1 WO2014083667 A1 WO 2014083667A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
antibody
concentration
reaction
specimen
Prior art date
Application number
PCT/JP2012/081001
Other languages
English (en)
French (fr)
Inventor
宣行 笠間
政也 上原
Original Assignee
ミライアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミライアル株式会社 filed Critical ミライアル株式会社
Priority to PCT/JP2012/081001 priority Critical patent/WO2014083667A1/ja
Publication of WO2014083667A1 publication Critical patent/WO2014083667A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing

Definitions

  • the present invention relates to a method for measuring an antigen-antibody reaction by a sandwich method.
  • a solid phase antibody is prepared in advance on the wall surface of a container such as a microplate or the surface of a spherical bead of about 10 ⁇ m to 40 ⁇ m. Then, the solid phase antibody is reacted with the antigen in the specimen containing the antigen to be measured. Thereafter, the labeled antibody and the solid phase antibody are bound in a state where the antigen is sandwiched by reacting the antibody with a labeled antibody modified with a hydrogen peroxide-degrading enzyme or a fluorescent substrate as a label. At this time, the labeled antibody that is not bound to the antigen remains dispersed in the reaction solution.
  • the labeled antibody not bound to the antigen is washed away by a washing step.
  • the antigen, the solid-phase antibody, and the labeled antibody are bound together so that the antigen is sandwiched (sandwiched) between the solid-phase antibody and the labeled antibody.
  • the labeled antibody in such a state is subjected to a treatment for detecting the label, whereby the number of antigens or the concentration of antigen in the specimen can be measured.
  • HRP hydrogen peroxide-degrading enzyme
  • a luminescent substrate containing luminol and hydrogen peroxide can be used to generate luminescence by the luminol reaction and to obtain luminescence with an intensity proportional to the antigen concentration.
  • fluorescence with an intensity proportional to the antigen concentration can be obtained by irradiating the labeled antibody with excitation light.
  • the solid phase antibody modified on the bottom of the microplate or the bead surface is not necessarily precisely modified, and the antibody is often further modified by the modified solid phase antibody.
  • a solid phase antibody is formed on the wall surface of a microplate or the like, it is possible to increase the surface modification density of the modified antibody by increasing the antibody concentration, but there is a problem that a large amount of expensive antibody must be used. ing.
  • the measured value rises with respect to the low concentration antigen, and the low concentration antigen cannot be measured substantially. That is, as shown in FIG. 7, the relationship between the antigen concentration in the specimen and the measured value (light intensity of luminescence or fluorescence) is not a simple increase function, and the measured value decreases as the antigen concentration increases (antigen concentration). Is less than 0.01 ng / mL). As a result, the calculation of the antigen concentration from the measured value cannot be uniquely determined, and the concentration cannot be accurately measured for a low concentration antigen. In particular, when it is desired to detect an early cancer patient at an early stage, it is a big problem that low concentration antigens cannot be measured.
  • An object of the present invention is to provide a method for measuring an antigen-antibody reaction by a sandwich method capable of measuring a low concentration antigen.
  • the present invention binds the solid phase antibody and the labeled antibody so that the antigen is sandwiched between the solid phase antibody and the labeled antibody having an antibody with a modified identification label in a medium containing a specimen having the antigen.
  • An antigen-antibody reaction measurement method using a sandwich method comprising: an antigen-antibody reaction step to be performed; and an antigen concentration measurement step for measuring the concentration of the antigen by identifying the identification label, wherein the antigen-antibody reaction step includes the step Before the antigen contained in the specimen is bound to the solid phase antibody and / or the labeled antibody, the specimen having an antigen concentration suitable for measurement of the antigen concentration in the antigen concentration measurement step has a high antigen concentration.
  • the present invention relates to a method for measuring an antigen-antibody reaction by a sandwich method, comprising an antigen addition step of adding the antigen.
  • the antigen is composed of a VEGF antigen, and in the antigen addition step, the amount of the antigen to be added to the specimen is a value after the addition of the antigen with respect to the antigen concentration of the specimen before the addition of the antigen. It is preferable that the antigen concentration of the specimen is 0.01 ng / mL higher.
  • a method for measuring an antigen-antibody reaction by a sandwich method capable of measuring a low concentration antigen can be provided.
  • FIG. 4 is a schematic diagram showing a state in which an antigen 24 bound to a solid phase antibody 32 is bound to a labeled antibody 23 in an antigen-antibody reaction measurement method by a sandwich method according to the present embodiment.
  • FIG. 1 is a flowchart showing an antigen-antibody reaction measuring method by the sandwich method according to this embodiment.
  • FIG. 2A is a schematic diagram showing a state in which a base material (96-well microplate 3) is modified with a solid phase antibody 32 in the antigen-antibody reaction measurement method by the sandwich method according to the present embodiment.
  • FIG. 2B is a schematic diagram showing a state in which the antigen 24 is bound to the solid phase antibody 32 that modifies the base material in the antigen-antibody reaction measurement method by the sandwich method according to the present embodiment.
  • FIG. 2C is a schematic diagram showing a state in which the antigen 24 bound to the solid phase antibody 32 is bound to the labeled antibody 23 in the antigen-antibody reaction measurement method by the sandwich method according to the present embodiment.
  • the antigen-antibody reaction measurement method by the sandwich method includes a preparation step, an antigen-antibody reaction step, and an antigen concentration measurement step.
  • a solid phase antibody 32 is prepared (step ST11).
  • a specimen having the antigen 24 is prepared (step ST31).
  • a diluent for diluting the prepared specimen having the antigen 24 is prepared (step ST32).
  • This diluted solution uses a solution to which the same antigen 24 as the measurement target is added in order to increase the antigen concentration so that the antigen concentration is suitable for the measurement of the concentration of the antigen 24 of the sample that is the measurement target.
  • the antibody 21 is modified with the identification label 22 (see FIG. 2C and the like) to prepare a labeled antibody 23 having the antibody 21 modified with the identification label 22 (step ST21).
  • the preparation step has a solid phase antibody fixing step.
  • the prepared solid phase antibody 32 is modified on a predetermined substrate (96-well microplate 3) (step ST12).
  • a predetermined substrate 96-well microplate 3
  • FIGS. 2A to 2C show a 96-well microplate 3 described later as a base material.
  • the substrate is not limited to the 96-hole microplate 3.
  • spherical beads having an average particle size of about 10 ⁇ m to 40 ⁇ m may be used. The above is the preparation process.
  • an antigen-antibody reaction step is performed.
  • the antigen 24 to be measured is VEGF (vascular endothelial growth factor)
  • the amount of the antigen 24 added to the diluent is the concentration of the antigen added to the diluent when mixed with the sample to be measured. The amount becomes 0.01 ng / mL higher as a whole.
  • the amount of the antigen 24 added to the diluted solution is such an amount that the concentration becomes 0.02 ng / ml.
  • the amount of the antigen 24 added to the specimen is not limited to this amount. If the antigen 24 is other than the VEGF antigen, it may have a different value.
  • an antigen-antibody reaction between the antigen 24 and the solid phase antibody 32 is caused in a medium containing a specimen having the antigen 24 (step ST34).
  • the antigen 24 is bound to the solid phase antibody 32.
  • the solid phase antibody 32 and the labeled antibody 23 are sandwiched between the solid phase antibody 32 and the labeled antibody 23 having the antibody with the identification label 22 modified. Are combined (step ST13). The above is the antigen-antibody reaction step.
  • an antigen concentration measurement step is performed.
  • the labeled antibody 23 bound to the solid phase antibody 32 in the antigen-antibody reaction step is identified (step ST14). Thereby, the concentration of the antigen 24 is measured.
  • the above is the antigen concentration measurement step.
  • an antigen concentration suitable for measuring the concentration of the antigen 24 in the antigen concentration measurement step is set before the antigen contained in the specimen and the solid phase antibody 32 are combined in the antigen-antibody reaction step.
  • the antigen 24 is added to the specimen having a high antigen concentration.
  • the antigen 24 is composed of a VEGF antigen
  • the amount of the antigen 24 to be added to the specimen in the antigen addition step is the same as the antigen concentration of the specimen before the addition of the antigen 24 by the diluent.
  • the amount of the antigen after the addition of 24 is 0.01 ng / mL higher.
  • the measurement result cannot be obtained accurately when the concentration of the antigen 24 is measured in the antigen concentration measurement step.
  • the antigen 24 is composed of a VEGF antigen and the amount of luminescence is measured by causing luminescence by the luminol reaction in the antigen concentration measurement step, the lower the antigen concentration of the specimen is, as shown in FIG.
  • the amount of luminescence, which is the measurement result decreases, but when the concentration becomes lower than 0.01 ng / mL, the amount of luminescence increases as the antigen concentration of the specimen decreases.
  • the antigen concentration of the specimen when the antigen concentration of the specimen is 0.01 ng / mL, the amount of luminescence is the smallest. Therefore, by increasing the antigen concentration of the specimen in advance by 0.01 ng / mL and measuring the concentration of the antigen 24 in the antigen concentration measurement step based on this value, the antigen concentration of the specimen is actually Measurements can be made when lower than 0.01 ng / mL.
  • FIG. 3 is a perspective view showing a 96-well microplate 3 used in the antigen-antibody reaction measurement method by the sandwich method according to the first embodiment.
  • a 96-well microplate 3 is used as a base material on which the solid phase antibody 32 is fixed. Further, HRP (hydrogen peroxide degrading enzyme) is used as a label, and luminol is used as a luminescent substrate. As the antigen 24, VEGF is used. Details are as follows.
  • the necessary reagents in this example are as follows.
  • Water soluble carbodiimide (WSC) WSC 1mg + HCl aqueous solution (pH5) 1mL Carbonate buffer (CB) 25mM NaHCO3, 25mM Na2C3 (ph9.7)
  • Tris buffer (TB) 0.1M Tris-HCl (ph8.6), 0.1M NaCl (Wash Buffer) WB 0.05% Tween in PBS Blocking agent Block Ace 400ng / mL (ion exchange water) VEGF antigen 100 ⁇ g / ml 0.1% BSA (Bovine Serum Albumin) Reconstituted in PBS.
  • BSA Bovine Serum Albumin
  • an anti-VEGF monoclonal antibody is prepared (step ST11), and the anti-VEGF monoclonal antibody is modified on the bottom surface of each well 31 of the 96-well microplate 3 (step ST12).
  • an anti-VEGF monoclonal antibody (100 ⁇ g / ml, reconstituted with PBS) is diluted with CB, and an anti-VEGF antibody solution having a concentration of 20 ⁇ g / ml is applied to the bottom surface of each well 31 of the 96-well microplate 3. Inject and incubate overnight at 4 ° C, then wash. If necessary, a blocking process is performed to prevent unnecessary antigens and antibodies from adhering to the bottom surface of each well 31. As a result, an antibody modified plate in which the solid phase antibody 32 is modified on the bottom surface of each well 31 of the 96-well microplate 3 is generated.
  • a specimen having the antigen 24 (VEGF antigen) to be measured is prepared (step ST31).
  • a VEGF antigen added to a phosphate buffer containing 0.1% BSA so that the antigen concentration in the diluent is 0.02 ng / mL is used (step ST32).
  • the above-described buffer is used as a diluted solution (stock solution)
  • the present invention is not limited to this, and other types of buffers, ion-exchanged water, and the like can be used.
  • an anti-VEGF polyclonal antibody with HRP label is prepared (step ST21).
  • the antigen-antibody reaction step first, the specimen is diluted twice with the diluent prepared earlier, and the specimen and the diluent are mixed (step ST33). Next, 200 ⁇ L of the diluted specimen is put into each well of the antibody-modified plate, and antigen-antibody reaction is performed (step ST34). The reaction time is 2 hours. After the reaction, the antibody-modified plate is washed with a phosphate buffer, and all the solution is discarded. Thereafter, 200 ⁇ L each of HRP-labeled anti-VEGF antibody solution is added to cause an antigen-antibody reaction (step ST13). The reaction time is 2 hours. After the reaction, an antigen concentration measurement step is performed.
  • the antibody-modified plate is washed with a phosphate buffer, and the entire solution is discarded.
  • a luminescent substrate is inserted to emit light, and the luminescence intensity is detected by a high-sensitivity photodetector such as photomal (step ST14).
  • FIG. 4 is a graph showing the results obtained by the antigen-antibody reaction measurement method by the sandwich method according to the first example.
  • the antigen concentration increases from 0.00 ng / mL to 100 ng / mL
  • the value of the luminescence amount increases. Therefore, it can be seen that even when the antigen concentration is between 0.00 ng / mL and 0.01 ng / mL, the amount of luminescence can be accurately detected in the antigen concentration measurement step.
  • FIG. 5 is a plan view showing the microchannel chip 101 used in the antigen-antibody reaction measuring method by the sandwich method according to the second embodiment.
  • FIG. 6 is a plan view showing the microchannel 110 used in the antigen-antibody reaction measurement method by the sandwich method according to the second embodiment.
  • the microchannel chip 101 is constituted by a disk-shaped front disk-shaped plate in which a plurality of microchannels 110 having the same shape through which a fluid can flow are formed.
  • a later-described liquid reservoir 116 of the microchannel 110 is arranged in the radial direction of the microchannel chip 101 so that the later-described input port 111 of the microchannel 110 is closest to the center of the microchannel chip 101.
  • the microchannels 110 are arranged radially from the center of the microchannel chip 101 so as to be farthest from the center of the channel chip 101.
  • the back side disk-like plate (not shown) is affixed on the surface of the front side disk-like plate on which the micro flow path 110 is formed, and a two-layer structure inspection disk is formed by these.
  • the front disk-shaped plate is made of silicone resin
  • the back disk-shaped plate (not shown) is made of glass.
  • the disc-shaped inspection disk can be driven to rotate about the axis of the inspection disk as a rotation axis so that centrifugal force acts.
  • each of the plurality of micro flow paths 110 includes an input port 111, a reaction tank 113, a liquid reservoir 116, a first flow path 121, and a second flow path 122.
  • the input port 111 is configured by a chamber formed at a position closest to the center of the microchannel chip 101 in the microchannel chip 101 in which the microchannel 110 is formed. As shown in FIG. 6, the input port 111 has a circular shape in plan view, and communicates with the outside through a hole (not shown) formed in the front disk-like plate (not shown).
  • the first flow path 121 is outward in the radial direction of the micro flow path chip 101 as a direction in which the centrifugal force acts on the input port 111 when the inspection disk is rotated and the micro flow path chip 101 is rotated. , Extending from the input port 111.
  • the reaction tank 113 is composed of a chamber formed in a position radially outward of the microchannel chip 101 from the input port 111 in the microchannel chip 101 in which the microchannel 110 is formed. As shown in FIG. 6, the reaction tank 113 has an oval shape in plan view. The reaction tank 113 communicates with the input port 111 via the first flow path 121.
  • the second flow path 122 extends from the reaction tank 113 outward in the radial direction of the micro flow path chip 101 as a direction in which centrifugal force acts in the reaction tank 113 when the micro flow path chip 101 is rotationally driven. Put out.
  • the liquid reservoir 116 is configured by a chamber formed at a position radially outward of the microchannel chip 101 from the reaction tank 113 in the microchannel chip 101 in which the microchannel 110 is formed. As shown in FIG. 5, the liquid reservoir 116 has a rectangular shape in plan view. The liquid reservoir 116 is connected to the extending end of the second flow path 122. The liquid reservoir 116 communicates with the reaction tank 113 via the second flow path 122.
  • the channel width of the first channel 121 is 100 ⁇ m. Further, the channel depth of the first channel 121, that is, the depth in the normal direction of the paper surface of FIG. 6 is 60 ⁇ m.
  • the channel width of the second channel 122 is 100 ⁇ m, and the channel height of the second channel 122 is 6 ⁇ m.
  • This flow path height is a value of the minimum dimension of the cross section of the second flow path 122. Therefore, solid-phase antibody-modified beads having an average particle diameter of 20 ⁇ m described later cannot pass through.
  • the diameter of the input port 111 having a circular shape in plan view is 1 mm.
  • the reaction tank 113 having an oval shape in plan view has a major axis of 1000 ⁇ m and a minor axis of 500 ⁇ m.
  • the antigen-antibody reaction measurement method by the sandwich method using the microchannel chip 101 described above is as follows.
  • the labeled antibody 23 is prepared as in the first embodiment (step ST21).
  • the same anti-VEGF monoclonal antibody as in the first embodiment is prepared (step ST11), and the surface is modified with polystyrene spherical beads having an average particle diameter of 20 ⁇ m (step ST12). If necessary, the surface of the spherical bead is subjected to a blocking treatment to prevent the antibody from adhering to the surface of the spherical bead. As a result, solid-phase antibody-modified beads in which the solid-phase antibody 32 is modified on the surface of spherical beads having an average particle diameter of 20 ⁇ m are generated.
  • a luminescent substrate similar to that in the first embodiment is prepared.
  • a specimen having antigen 24 (VEGF antigen) as a measurement target is prepared (step ST31).
  • a phosphate buffer containing 0.1% BSA as a diluent is prepared, and in this diluent, VEGF antigen is added so that the antigen concentration is 0.02 ng / mL. (Step ST32).
  • the preparation step 2 ⁇ L of the solid phase antibody-modified bead solution is added from the input port 111 of the microchannel 110, and the centrifugal force is applied by increasing the rotation speed to 5000 rpm.
  • the solution of the solid-phase antibody-modified beads passes through the first flow path 121 and is held in the reaction tank 113 in a state where the solid-phase antibody-modified beads remain.
  • the prepared specimen to be measured and the prepared diluent are mixed in equal amounts (step ST33). Thereafter, the mixed solution is injected into the microchannel 110 from the input port 111. Then, the microchannel chip 101 is rotated at 5000 rpm for 30 seconds, the mixed solution is sent to the reaction tank 113, and the mixed solution and the solid phase antibody-modified beads are incubated for 15 minutes to be reacted (step ST34).
  • the reaction tank 113 is washed to remove the remaining sample components. Specifically, a phosphate buffer is injected from the input port, and the rotating body is rotated at 5000 to 12000 rpm. The injected phosphate buffer flows in the order of the reaction tank 113, the second flow path 122, and the liquid reservoir 116. When all of the phosphate buffer is discharged to the liquid reservoir 116, the first washing of the solid phase antibody-modified beads is completed. Similarly, injection of phosphate buffer is repeated twice, and washing of the solid phase antibody-modified beads is repeated twice, for a total of three washes.
  • the anti-VEGF antibody solution with HRP label is injected into the input port 111 to the input port, and the anti-VEGF antibody solution with HRP label is sent to the reaction tank 113 while rotating the microchannel chip 101.
  • the HRP-labeled anti-VEGF antibody solution and the solid-phase antibody-modified beads are reacted by incubating for 15 minutes (step ST13).
  • the same washing as the washing of the solid-phase antibody-modified beads described above is performed three times on the solid-phase antibody-modified beads.
  • the luminescent substrate is inserted from the input port 111, the microchannel chip 101 is rotated, and the solution is sent to the reaction tank 113. Thereafter, the antigen concentration is measured by measuring the luminescence intensity (step ST14).
  • the channel height of the second channel 122 is 6 ⁇ m, but is not limited to this.
  • the height may be such that the solid phase antibody-modified beads cannot pass.
  • the label of the labeled antibody 23 is a luminescent label, but is not limited thereto.
  • a fluorescent label may be used.
  • the label is a fluorescent protein such as an APC protein
  • the amount of the antigen 24 can be measured by irradiating the reaction tank 113 with excitation light and measuring the fluorescence.
  • the cleaning solution is not limited to the phosphate buffer.
  • the concentration of the antigen 24 in the antigen concentration measurement step is measured before the antigen contained in the specimen and the solid phase antibody 32 are combined in the antigen-antibody reaction step.
  • the present invention is not limited to this, although the antigen 24 is added to a specimen having an antigen concentration suitable for the above so that the antigen concentration becomes high.
  • the specimen having an antigen concentration suitable for the measurement of the concentration of the antigen 24 in the antigen concentration measurement step What is necessary is just to add the antigen 24 so that an antigen concentration may become high.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 サンドイッチ法による抗原抗体反応測定方法は、抗原24を有する検体を含む媒質中で、固相抗体32と、識別標識22が修飾された抗体21を有する標識抗体23とで抗原24を挟むように、固相抗体32と標識抗体23とを結合させる抗原抗体反応工程と、識別標識22を識別することによって抗原24の濃度を測定する抗原濃度測定工程とを有する。また、抗原抗体反応工程において検体に含まれる抗原24と固相抗体32及び/又は標識抗体23とが結合する前に、抗原濃度測定工程における抗原24の濃度の測定に適した抗原濃度を有する検体に、抗原濃度が高くなるように、抗原24を添加する抗原添加工程を備える。

Description

サンドイッチ法による抗原抗体反応測定方法
 本発明は、サンドイッチ法による抗原抗体反応測定方法に関する。
 サンドイッチ法による抗原抗体反応測定方法では、予めマイクロプレートなどの容器の壁面や10μm~40μm程度の球形ビーズの表面に固相抗体をあらかじめ修飾させて準備する。そして、固相抗体と、測定対象となる抗原を含んだ検体中の当該抗原とを反応させる。
 その後、抗体に過酸化水素分解酵素や蛍光基質を標識として修飾した標識抗体を反応させることによって、抗原をサンドイッチした状態で標識抗体と固相抗体とを結合させる。このとき、抗原と結合していない標識抗体は、反応液中に分散したままの状態となっている。
 その後、洗浄工程により、抗原と結合していない標識抗体を洗い流す。このようにして、抗原を固相抗体と標識抗体とで挟む(サンドイッチする)ように、抗原と固相抗体と標識抗体とが結合されている状態となる。
 そして、このような状態の標識抗体に、標識を検出するための処理を施すことによって、抗原の数を測定したり、検体中の抗原濃度を測定したりすることができる。
 具体的には、標識抗体の標識として過酸化水素分解酵素(HRP:Horseradish
Peroxidase)とルミノールと過酸化水素を含む発光基質とを用いて、ルミノール反応による発光を起こさせ、抗原濃度に比例した強度の発光を得ることができる。また、標識抗体の標識として蛍光基質を用いている場合には、標識抗体に励起光を照射することによって抗原濃度に比例した強度の蛍光を得ることができる。これらにより、抗原の数を測定したり、検体中の抗原濃度を測定したりすることができる(特許文献1、特許文献2参照)。
特開2009-156765号公報 特開2010-216947号公報
 しかしながら、マイクロプレートの底面やビーズ表面に修飾された固相抗体は、必ずしも緻密に修飾されている訳ではなく、修飾された固相抗体に、更に抗体が修飾されることが多い。マイクロプレートなどの壁面に固相抗体を形成する場合には、抗体濃度を高めて修飾抗体の表面修飾密度を高めることができるが、高価な抗体を大量に用いなければならないという問題点を有している。
 また、球形ビーズの表面に固相抗体を形成する場合には、抗体濃度を高めて修飾抗体の表面修飾密度を高めようとすると、固相抗体が修飾された球形ビーズ同士が凝集してしまい、球形ビーズそのものの取り扱いが難しくなる。
 また、固相抗体の表面修飾密度が充分でない場合に、上記のサンドイッチ法による抗原抗体反応を行おうとすると、固相抗体の抗体が修飾されていない場所に抗原と反応しているかいないかに拘わらず標識抗体が修飾されてしまい、検体中の抗原濃度よりも高い抗原濃度が検出される。検体中の抗原濃度が低い場合には、この現象が顕著に現れて、低濃度抗原に対して測定値が上昇して、実質的には低濃度抗原の測定はできない。つまり、図7に示すように、検体中の抗原濃度と測定値(発光や蛍光の光強度)の関係が単純な増加関数とならず、抗原濃度が増すと測定値が低くなる場合(抗原濃度が0.01ng/mL未満の場合)が存在する。これにより、測定値から抗原濃度を計算することが一意的に決めることができず、低濃度抗原に対しては、その濃度を正確に測定できないこととなる。特に、初期の癌患者を早期発見したい場合には、低濃度抗原の測定ができないことは、大きな問題である。
 本発明は、低濃度抗原の測定が可能なサンドイッチ法による抗原抗体反応測定方法を提供することを目的とする。
 本発明は、抗原を有する検体を含む媒質中で、固相抗体と、識別標識が修飾された抗体を有する標識抗体とで前記抗原を挟むように、前記固相抗体と前記標識抗体とを結合させる抗原抗体反応工程と、前記識別標識を識別することによって前記抗原の濃度を測定する抗原濃度測定工程とを有するサンドイッチ法を用いた抗原抗体反応測定方法であって、前記抗原抗体反応工程において前記検体に含まれる抗原と前記固相抗体及び/又は前記標識抗体とが結合する前に、前記抗原濃度測定工程における前記抗原の濃度の測定に適した抗原濃度を有する前記検体に、抗原濃度が高くなるように、前記抗原を添加する抗原添加工程を備える、サンドイッチ法による抗原抗体反応測定方法に関する。
 また、前記抗原は、VEGF抗原により構成され、前記抗原添加工程において、前記検体に添加する前記抗原の量は、前記抗原の添加前の前記検体の抗原濃度に対して、前記抗原の添加後の前記検体の抗原濃度が0.01ng/mL高くなる量であることが好ましい。
 本発明によれば、低濃度抗原の測定が可能なサンドイッチ法による抗原抗体反応測定方法を提供することができる。
本実施形態に係るサンドイッチ法による抗原抗体反応測定方法を示すフローチャートである。 本実施形態に係るサンドイッチ法による抗原抗体反応測定方法において、基材3を固相抗体32で修飾した様子を示す模式図である。 本実施形態に係るサンドイッチ法による抗原抗体反応測定方法において、基材3を修飾する固相抗体32に抗原24が結合した様子を示す模式図である。 本実施形態に係るサンドイッチ法による抗原抗体反応測定方法において、固相抗体32に結合した抗原24が標識抗体23に結合した様子を示す模式図である。 第1実施例に係るサンドイッチ法による抗原抗体反応測定方法で用いられる96穴マイクロプレート3を示す斜視図である。 第1実施例に係るサンドイッチ法による抗原抗体反応測定方法により得られた結果を示すグラフである。 第2実施例に係るサンドイッチ法による抗原抗体反応測定方法で用いられるマイクロ流路チップ101を示す平面図である。 第2実施例に係るサンドイッチ法による抗原抗体反応測定方法で用いられるマイクロ流路110を示す平面図である。 従来のサンドイッチ法による抗原抗体反応測定方法により得られた結果を示すグラフである。
 本発明の実施形態によるサンドイッチ法による抗原抗体反応測定方法について、図面を参照しながら説明する。
 図1は、本実施形態に係るサンドイッチ法による抗原抗体反応測定方法を示すフローチャートである。図2Aは、本実施形態に係るサンドイッチ法による抗原抗体反応測定方法において、基材(96穴マイクロプレート3)を固相抗体32で修飾した様子を示す模式図である。図2Bは、本実施形態に係るサンドイッチ法による抗原抗体反応測定方法において、基材を修飾する固相抗体32に抗原24が結合した様子を示す模式図である。図2Cは、本実施形態に係るサンドイッチ法による抗原抗体反応測定方法において、固相抗体32に結合した抗原24が標識抗体23に結合した様子を示す模式図である。
 サンドイッチ法による抗原抗体反応測定方法は、準備工程と抗原抗体反応工程と、抗原濃度測定工程とを有する。
 準備工程では、固相抗体32を用意する(ステップST11)。また、抗原24を有する検体を用意する(ステップST31)。また、用意した抗原24を有する検体を希釈するための希釈液を用意する(ステップST32)。この希釈液は、測定対象である検体の抗原24の濃度の測定に適した抗原濃度になるように、抗原濃度を高めるために、測定対象と同じ抗原24を添加したものを用いる。
 また、識別標識22(図2C等参照)で抗体21を修飾して、識別標識22で修飾された抗体21を有する標識抗体23を用意する(ステップST21)。
 また、準備工程は、固相抗体固定工程を有する。固相抗体固定工程では、図2Aに示すように、用意した固相抗体32を所定の基材(96穴マイクロプレート3)上に修飾させる(ステップST12)。説明の便宜上、図2A~図2Cにおいては、基材として後述の96穴マイクロプレート3を図示する。基材としては、96穴マイクロプレート3に限定されない。例えば、平均粒径が10μm~40μm程度の球形ビーズを用いてもよい。以上が準備工程である。
 次に、抗原抗体反応工程を行う。まず、先ほど作成した希釈液で測定対象の検体を希釈するために混合する(ステップST33)。測定対象の抗原24がVEGF(vascular endothelial growth factor)である場合には、希釈液に添加する抗原24の量は、測定対象の検体と混合した際に、希釈液に添加された抗原の濃度が全体として0.01ng/mL高くなる量である。たとえば、希釈液の量と測定対象である検体の量が同じ場合(2倍希釈)には、希釈液に添加する抗原24の量は、その濃度が0.02ng/mlになる量である。検体に添加する抗原24の量はこの量に限定されず、抗原24がVEGF抗原以外のものの場合には、これとは異なる値となることがある。
 抗原抗体反応工程では、次に、抗原24を有する検体を含む媒質中で、抗原24と固相抗体32との抗原抗体反応を生じさせる(ステップST34)。これにより、抗原24を固相抗体32に結合させる。次に、抗原24を有する検体を含む媒質中で、固相抗体32と、識別標識22が修飾された抗体を有する標識抗体23とで抗原24を挟むように、固相抗体32と標識抗体23とを結合させる(ステップST13)。以上が抗原抗体反応工程である。
 次に、抗原濃度測定工程を行う。抗原濃度測定工程では、抗原抗体反応工程において
固相抗体32に結合した標識抗体23を識別する(ステップST14)。これにより、抗原24の濃度を測定する。以上が抗原濃度測定工程である。
 本実施形態よれば以下のような効果を発揮することができる。
 サンドイッチ法による抗原抗体反応測定方法は、抗原抗体反応工程において前記検体に含まれる抗原と固相抗体32とが結合する前に、抗原濃度測定工程における抗原24の濃度の測定に適した抗原濃度を有する検体に、抗原濃度が高くなるように、抗原24を添加する。そして、抗原24が、VEGF抗原により構成されている場合には、抗原添加工程において、検体に添加する抗原24の量は、抗原24の添加前の検体の抗原濃度に対して、希釈液による抗原24の添加後の検体の抗原濃度が0.01ng/mL高くなる量である。
 検体の抗原濃度が所定量よりも低い場合には、抗原濃度測定工程において抗原24の濃度を測定した場合に、正確に測定結果を得ることができない。
 例えば、抗原24が、VEGF抗原により構成され、抗原濃度測定工程においてルミノール反応による発光を起こさせて発光量を測定した場合には、図7に示すように、検体の抗原濃度が低くなればなるほど、測定結果である発光量は減少するが、0.01ng/mLよりも濃度が低くなると、検体の抗原濃度が低くなればなるほど、発光量が多くなる。
 即ち、検体の抗原濃度が0.01ng/mLの場合に、発光量が最も少なくなる。このため、予め、検体の抗原濃度を0.01ng/mL高めておいて、この値を基準として、抗原濃度測定工程において抗原24の濃度の測定を測定することで、実際に検体の抗原濃度が0.01ng/mLよりも低い場合の測定を可能とすることができる。
(第1実施例)
 本実施例では、抗原抗体反応工程において、癌マーカーVEGF(vascular endothelial growth factor)に対するELISA(酵素免疫吸着測定法)の基本的方法(バイアル中での操作)を、図3に示す96穴マイクロプレート3での抗原抗体反応として行う。図3は、第1実施例に係るサンドイッチ法による抗原抗体反応測定方法で用いられる96穴マイクロプレート3を示す斜視図である。
 本実施例では、固相抗体32を固定する基材として、96穴マイクロプレート3を用いる。また、標識としてHRP(過酸化水素分解酵素:Horseradish peroxidase)を用い、発光基質としてルミノールを用いる。また、抗原24としては、VEGFを用いる。詳細には以下のとおりである。
 本実施例において必要な試薬は以下の通りである。
Water soluble carbodiimide (WSC)   WSC1mg+HCl水溶液(pH5)1mL
カーボネートバッファー(CB)    25mM NaHCO3, 25mM Na2C3
(ph9.7)
リン酸バッファー(PBS)      0.02Mリン酸緩衝液(ph7.0)
トリスバッファー(TB)       0.1M Tris-HCl(ph8.6),
0.1M NaCl
(Wash Buffer) WB         0.05% Tween in PBS
ブロッキング剤 ブロックエース   400ng/mL (イオン交換水)
VEGF抗原   100μg/ml 0.1%BSA(Bovine Serum Albumin) PBS中で復元。
             使用時には、0.1%BSA in PBSで必要濃度に希釈。
酵素標識抗VEGF HRP(Horseradish Peroxidase)標識付き抗VEGFポリクロナール抗体(1mg/mLにイオン交換水で復元)        希釈液0.1%BSA in PBS in 0.15MnaClで1000~5000倍希釈。
希釈溶液(原液)              0.1% BSA in PBS
 準備工程では、抗VEGFモノクロナール抗体を用意し(ステップST11)、抗VEGFモノクロナール抗体を、96穴マイクロプレート3の各ウエル31の底面に修飾させる(ステップST12)。具体的には、抗VEGFモノクロナール抗体(100μg/ml、PBSで再構成したもの)をCBで希釈し、20μg/mlにした抗VEGF抗体溶液を96穴マイクロプレート3の各ウエル31の底面に注入し、4℃で一晩インキュベート後、洗浄する。
 必要に応じて、各ウエル31の底面に不要な抗原や抗体が付かないようにするためのブロッキング処理を行う。これにより、96穴マイクロプレート3の各ウエル31の底面に固相抗体32が修飾された抗体修飾プレートが生成される。
 また、準備工程では、測定対象である抗原24(VEGF抗原)を有する検体を用意する(ステップST31)。また、希釈液としては、0.1%BSA入りリン酸バッファーに当該希釈液における抗原濃度が0.02ng/mLになるように、VEGF抗原を添加したものを用いる(ステップST32)。希釈溶液(原液)として上記のバッファーを用いたが、これに限定されず、他の種類のバッファーやイオン交換水などを用いることもできる。
 また、準備工程では、HRP標識付き抗VEGFポリクロナール抗体を用意する(ステップST21)。また、発光基質を用意する。具体的には、Luminol
(C=177.16) 8.9mg をTB4.8mL、 NaOH
0.2mLに溶かして液体1とする(10mM Luminol)。また、P-p-iophenonol (PIP=C=220.1)11mgをエタノール5mLに溶かして液体2とする(10mM PIP)。そして、TB1842μLに液体1を75μL、液体2を80μL加えて、更に30%Hの12倍希釈溶液3μLを加えて調整することにより発光基質が生成される。
 抗原抗体反応工程では、先ず、検体を先ほど準備した希釈液で2倍に希釈し、検体と希釈液を混合する(ステップST33)。次に、希釈した検体を抗体修飾プレートの各ウエルに200μLずつ入れ、抗原抗体反応させる(ステップST34)。反応時間は2時間である。反応後に、抗体修飾プレートをリン酸バッファーで洗浄し、溶液を全て捨てる。その後、HRP標識抗VEGF抗体溶液を200μLずつ入れ、抗原抗体反応させる(ステップST13)。反応時間は2時間である。反応後、抗原濃度測定工程を行う。
 抗原濃度測定工程では、抗体修飾プレートをリン酸バッファーで洗浄し、溶液を全て捨てる。発光基質を入れて発光させ、発光強度をフォトマルなどの高感度光検出器で検出する(ステップST14)。
 本実施例において、測定対象である検体の抗原濃度を0.00ng/mL~100ng/mLと変えた場合の、発光量の値の変化は、図4に示すとおりである。図4は、第1実施例に係るサンドイッチ法による抗原抗体反応測定方法により得られた結果を示すグラフである。
 図4に示すように、抗原濃度が0.00ng/mLから100ng/mLへと値が大きくなるにつれて、発光量の値も大きくなる増加関数となっている。従って、抗原濃度が0.00ng/mL~0.01ng/mLまでの間においても、抗原濃度測定工程において、正確に発光量を検出することができることが分かる。
(第2実施例)
 本実施例では、上述の抗原抗体反応工程において、96穴マイクロプレート3に代えて、図5に示すマイクロ流路チップ101を用いる。図5は、第2実施例に係るサンドイッチ法による抗原抗体反応測定方法で用いられるマイクロ流路チップ101を示す平面図である。図6は、第2実施例に係るサンドイッチ法による抗原抗体反応測定方法で用いられるマイクロ流路110を示す平面図である。
 マイクロ流路チップ101は、流体が流通可能な同一形状の複数のマイクロ流路110が形成された円盤状の表側ディスク状プレートにより構成されている。マイクロ流路110の後述の入力ポート111がマイクロ流路チップ101の中央に最も近くなるように、且つ、マイクロ流路110の後述の液溜116が、マイクロ流路チップ101の半径方向において、マイクロ流路チップ101の中央から最も遠くなるように、マイクロ流路110は、マイクロ流路チップ101の中央から放射状に配置されている。
 マイクロ流路110が形成された表側ディスク状プレートの面には、裏側ディスク状プレート(図示せず)が、貼り付けられており、これらにより二層構造の検査ディスクが構成される。マイクロ流路チップ101においては、表側ディスク状プレートは、シリコーン樹脂により構成されており、裏側ディスク状プレート(図示せず)は、ガラスにより構成されている。円盤状の検査ディスクは、遠心力が作用するように、検査ディスクの軸心を回転軸心として回転駆動可能である。
 図6に示すように、複数のマイクロ流路110は、それぞれ、入力ポート111と、反応槽113と、液溜116と、第1の流路121と、第2の流路122とを有する。
 入力ポート111は、マイクロ流路110が形成されたマイクロ流路チップ101において、最もマイクロ流路チップ101の中心に近い位置に形成された室により構成されている。図6に示すように、入力ポート111は、平面視で円形を有しており、表側ディスク状プレート(図示せず)に形成された穴(図示せず)を通して、外部と連通している。
 第1の流路121は、検査ディスクが回転駆動されてマイクロ流路チップ101が回転させられるときに、入力ポート111において遠心力が作用する方向としてのマイクロ流路チップ101の半径方向外方へ、入力ポート111から延出する。
 反応槽113は、マイクロ流路110が形成されたマイクロ流路チップ101において、入力ポート111よりも、マイクロ流路チップ101の半径方向外方の位置に形成された室により構成されている。図6に示すように、反応槽113は、平面視で長円形状を有している。反応槽113は、第1の流路121を介して、入力ポート111に連通する。
 第2の流路122は、マイクロ流路チップ101が回転駆動されるときに、反応槽113において遠心力が作用する方向としてのマイクロ流路チップ101の半径方向外方へ、反応槽113から延出する。
 液溜116は、マイクロ流路110が形成されたマイクロ流路チップ101において、反応槽113よりも、マイクロ流路チップ101の半径方向外方の位置に形成された室により構成されている。図5に示すように、液溜116は、平面視で長方形を有している。液溜116は、第2の流路122の延出端部に接続されている。液溜116は、第2の流路122を介して、反応槽113に連通する。
 第1の流路121の流路幅、即ち、図6の紙面に平行な方向における幅は、100μmである。また、第1の流路121の流路深さ、即ち、図6の紙面の法線方向における深さは、60μmである。また、第2の流路122の流路幅は、100μmであり、第2の流路122の流路高さは、6μmである。この流路高さは、第2の流路122の断面の最小寸法の値である。従って、後述の平均粒径20μmの固相抗体修飾ビーズは通り抜けることができない。
 また、平面視で円形状を有する入力ポート111の直径は、1mmである。また、平面視で長円形状を有する反応槽113は、長軸が1000μm、短軸が500μmの寸法を有している。
 上述のマイクロ流路チップ101を用いる、サンドイッチ法による抗原抗体反応測定方法は以下の通りである。
 準備工程では、第1実施例と同様に標識抗体23を用意する(ステップST21)。また、準備工程では、第1実施例と同様の抗VEGFモノクロナール抗体を用意し(ステップST11)、平均粒径20μmのポリスチレン球形ビーズの表面に修飾させる(ステップST12)。必要に応じて、球形ビーズの表面に抗体が付かないようにするためのブロッキング処理を、球形ビーズの表面に行う。これにより、平均粒径20μmの球形ビーズの表面に固相抗体32が修飾された固相抗体修飾ビーズが生成される。
 また、準備工程では、第1実施例と同様の発光基質を用意する。また、準備工程では、測定対象として抗原24(VEGF抗原)を有する検体を用意する(ステップST31)。また、準備工程では、希釈液としての0.1%BSA入りリン酸バッファーを用意し、この希釈液において、抗原濃度が0.02ng/mLになるように、VEGF抗原を添加したものを用意する(ステップST32)。
 また、準備工程では、マイクロ流路110の入力ポート111から、固相抗体修飾ビーズの溶液を2μL入れ、5000rpmまで回転数を上げて、遠心力を加える。これにより、固相抗体修飾ビーズの溶液は、第1の流路121を通過し、反応槽113において固相抗体修飾ビーズが留まった状態で保持される。
 抗原抗体反応工程では、先ず、測定対象である用意した検体と、用意した希釈液を同量ずつ混ぜる(ステップST33)。その後その混合液を、入力ポート111からマイクロ流路110に注入する。そして、マイクロ流路チップ101を5000rpmで30秒回転させ、反応槽113まで上記混合液を送液し、混合液と固相抗体修飾ビーズとを15分間インキュベートして反応させる(ステップST34)。
 次に反応槽113を洗浄して、残留している検体成分を除去する。具体的には、入力ポートからリン酸バッファーを注入し、回転体を5000~12000rpmで回転させる。注入されたリン酸バッファーは、反応槽113、第2の流路122、液溜116の順に流れる。全てのリン酸バッファーが全て液溜116に排出されたときに、固相抗体修飾ビーズの1回目の洗浄が終了する。同様にしてリン酸バッファーの注入を2回繰返して行い、固相抗体修飾ビーズの洗浄を2回繰返して、合計3回の洗浄を行う。
 次に、入力ポートにHRP標識付き抗VEGF抗体溶液を入力ポート111へ注入し、マイクロ流路チップ101を回転させながら、HRP標識付き抗VEGF抗体溶液を反応槽113まで送液する。これにより、HRP標識付き抗VEGF抗体溶液と固相抗体修飾ビーズを15分間インキュベートすることにより反応させる(ステップST13)。次に前述した計3回の固相抗体修飾ビーズの洗浄と同様の洗浄を固相抗体修飾ビーズに対して行う。
 抗原濃度測定工程では、入力ポート111から、発光基質を入れて、マイクロ流路チップ101を回転させて、反応槽113まで送液する。その後、発光強度を測定することで、抗原濃度を測定する(ステップST14)。以上の工程により、第1実施例と同様の効果を得る。
 本発明は、上述した実施形態及び実施例に限定されることはなく、特許請求の範囲に記載された技術的範囲において変形が可能である。
 例えば、第2実施例では、第2の流路122の流路高さは6μmであったが、これに限定されない。固相抗体修飾ビーズが通過できない程度の高さであればよい。
 また、標識抗体23の標識は発光標識であったが、これに限定されない。例えば、蛍光標識であってもよい。標識がAPCたんぱく質等の蛍光タンパク質である場合には、反応槽113に励起光を照射して蛍光を測定することによって、抗原24の量を測定することができる。また、洗浄液は、リン酸バッファーに限られない。
 また、本実施形態のサンドイッチ法による抗原抗体反応測定方法では、抗原抗体反応工程において前記検体に含まれる抗原と固相抗体32とが結合する前に、抗原濃度測定工程における抗原24の濃度の測定に適した抗原濃度を有する検体に、抗原濃度が高くなるように、抗原24を添加したが、これに限定されない。抗原抗体反応工程において前記検体に含まれる抗原と固相抗体32及び/又は標識抗体23とが結合する前に、抗原濃度測定工程における抗原24の濃度の測定に適した抗原濃度を有する検体に、抗原濃度が高くなるように、抗原24を添加すればよい。
22 識別標識
23 標識抗体
24 抗原
32 固相抗体

Claims (2)

  1.  抗原を有する検体を含む媒質中で、固相抗体と、識別標識が修飾された抗体を有する標識抗体とで前記抗原を挟むように、前記固相抗体と前記標識抗体とを結合させる抗原抗体反応工程と、
     前記識別標識を識別することによって前記抗原の濃度を測定する抗原濃度測定工程とを有するサンドイッチ法を用いた抗原抗体反応測定方法であって、
     前記抗原抗体反応工程において前記検体に含まれる抗原と前記固相抗体及び/又は前記標識抗体とが結合する前に、前記抗原濃度測定工程における前記抗原の濃度の測定に適した抗原濃度を有する前記検体に、抗原濃度が高くなるように、前記抗原を添加する抗原添加工程を備える、サンドイッチ法による抗原抗体反応測定方法。
  2.  前記抗原は、VEGF抗原により構成され、
     前記抗原添加工程において、前記検体に添加する前記抗原の量は、前記抗原の添加前の前記検体の抗原濃度に対して、前記抗原の添加後の前記検体の抗原濃度が0.01ng/mL高くなる量である、請求項1に記載のサンドイッチ法による抗原抗体反応測定方法。
PCT/JP2012/081001 2012-11-29 2012-11-29 サンドイッチ法による抗原抗体反応測定方法 WO2014083667A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081001 WO2014083667A1 (ja) 2012-11-29 2012-11-29 サンドイッチ法による抗原抗体反応測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081001 WO2014083667A1 (ja) 2012-11-29 2012-11-29 サンドイッチ法による抗原抗体反応測定方法

Publications (1)

Publication Number Publication Date
WO2014083667A1 true WO2014083667A1 (ja) 2014-06-05

Family

ID=50827339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081001 WO2014083667A1 (ja) 2012-11-29 2012-11-29 サンドイッチ法による抗原抗体反応測定方法

Country Status (1)

Country Link
WO (1) WO2014083667A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207958A (ja) * 1986-03-10 1987-09-12 Hitachi Chem Co Ltd 抗原又は抗体の定量法及び試薬
PT85842A (de) * 1986-10-02 1987-11-01 Hoechst Ag Immunometrisches bestimmungsverfahren
JPH0694716A (ja) * 1992-02-05 1994-04-08 Kanebo Ltd 免疫測定法
EP0640837A2 (de) * 1993-08-26 1995-03-01 Roche Diagnostics GmbH Verfahren zur Bestimmung eines Analyten nach dem Agglutinationsprinzip
WO2006121510A2 (en) * 2005-05-09 2006-11-16 Theranos, Inc. Point-of-care fluidic systems and uses thereof
US20070224084A1 (en) * 2006-03-24 2007-09-27 Holmes Elizabeth A Systems and Methods of Sample Processing and Fluid Control in a Fluidic System

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207958A (ja) * 1986-03-10 1987-09-12 Hitachi Chem Co Ltd 抗原又は抗体の定量法及び試薬
PT85842A (de) * 1986-10-02 1987-11-01 Hoechst Ag Immunometrisches bestimmungsverfahren
FI874280A (fi) * 1986-10-02 1988-04-03 Hoechst Ag Immunometriskt bestaemningsfoerfarande.
DK516387A (da) * 1986-10-02 1988-04-03 Hoechst Ag Fremgangsmaade til immunometrisk bestemmelse
NO874140L (no) * 1986-10-02 1988-04-05 Hoechst Ag Immunometriske bestemmelsesfremgangsmaater.
EP0263401A1 (de) * 1986-10-02 1988-04-13 Hoechst Aktiengesellschaft Immunometrisches Bestimmungsverfahren
DE3633497A1 (de) * 1986-10-02 1988-04-14 Hoechst Ag Immunometrisches bestimmungsverfahren
JPS6396557A (ja) * 1986-10-02 1988-04-27 ヘキスト・アクチエンゲゼルシヤフト 免疫学的測定法
ATE64467T1 (de) * 1986-10-02 1991-06-15 Hoechst Ag Immunometrisches bestimmungsverfahren.
DE3770743D1 (de) * 1986-10-02 1991-07-18 Hoechst Ag Immunometrisches bestimmungsverfahren.
GR3002496T3 (en) * 1986-10-02 1992-12-30 Hoechst Ag Immunometric assay
JPH0694716A (ja) * 1992-02-05 1994-04-08 Kanebo Ltd 免疫測定法
JPH07174761A (ja) * 1993-08-26 1995-07-14 Boehringer Mannheim Gmbh 凝集反応によるアナライトの測定方法
DE4328684A1 (de) * 1993-08-26 1995-03-02 Boehringer Mannheim Gmbh Verfahren zur Bestimmung eines Analyten nach dem Agglutinationsprinzip
EP0640837A2 (de) * 1993-08-26 1995-03-01 Roche Diagnostics GmbH Verfahren zur Bestimmung eines Analyten nach dem Agglutinationsprinzip
US20060264781A1 (en) * 2005-05-09 2006-11-23 Ian Gibbons Calibration of fluidic devices
US20060264780A1 (en) * 2005-05-09 2006-11-23 Holmes Elizabeth A Systems and methods for conducting animal studies
US20060264782A1 (en) * 2005-05-09 2006-11-23 Holmes Elizabeth A Point-of-care fluidic systems and uses thereof
US20060264779A1 (en) * 2005-05-09 2006-11-23 Kemp Timothy M Fluidic medical devices and uses thereof
WO2006121510A2 (en) * 2005-05-09 2006-11-16 Theranos, Inc. Point-of-care fluidic systems and uses thereof
US20060264783A1 (en) * 2005-05-09 2006-11-23 Holmes Elizabeth A Systems and methods for monitoring pharmacological parameters
US20080009766A1 (en) * 2005-05-09 2008-01-10 Holmes Elizabeth A Systems and methods for improving medical treatments
EP1883341A2 (en) * 2005-05-09 2008-02-06 Theranos, Inc. Point-of-care fluidic systems and uses thereof
JP2008544214A (ja) * 2005-05-09 2008-12-04 セラノス, インコーポレイテッド ポイントオブケア流体システムおよびその使用
US20100074799A1 (en) * 2005-05-09 2010-03-25 Kemp Timothy M Fluidic Medical Devices and Uses Thereof
US20100081144A1 (en) * 2005-05-09 2010-04-01 Theranos, Inc. Point-of-care fluidic systems and uses thereof
US20110104826A1 (en) * 2005-05-09 2011-05-05 Ian Gibbons Calibration of fluidic devices
US20070224084A1 (en) * 2006-03-24 2007-09-27 Holmes Elizabeth A Systems and Methods of Sample Processing and Fluid Control in a Fluidic System

Similar Documents

Publication Publication Date Title
US9476874B2 (en) Analyte detection
JP5684899B2 (ja) 全血検体の免疫測定方法および測定キット
US20210072237A1 (en) Method and device for determining biological analytes
Hahn et al. Colorimetric switchable linker-based bioassay for ultrasensitive detection of prostate-specific antigen as a cancer biomarker
US20110116972A1 (en) Microfluidic assays and microfluidic devices
Madaboosi et al. A microfluidic immunoassay platform for the detection of free prostate specific antigen: a systematic and quantitative approach
JP4879067B2 (ja) 免疫測定用検体前処理液、免疫測定用試薬キット及び免疫測定方法
WO2014083667A1 (ja) サンドイッチ法による抗原抗体反応測定方法
JP2013125005A (ja) Ck−mb測定用ラテックス凝集免疫試薬及び測定方法
JP2014228385A (ja) 免疫試験方法および免疫試験キット
WO2014083668A1 (ja) サンドイッチ法による抗原抗体反応測定方法
WO2014083666A1 (ja) サンドイッチ法による抗原抗体反応測定方法及びマイクロ流路チップ
US20100159483A1 (en) Article for assaying target, comprising solid surface on which first binding member, blocking material, and second binding member are immobilized, and use thereof
US20110236262A1 (en) Biological substance detecting apparatus
JP6684545B2 (ja) 検出又は定量方法、共振性添加剤、共振性構造体の使用方法及び容器
JP7369017B2 (ja) コロイド粒子を用いた被検物質検出増感法
JP2016205994A (ja) 検出又は定量方法及び装置
WO2021095790A1 (ja) 固相反応チップを用いた測定方法
WO2023243694A1 (ja) ポリヌクレオチドを用いた被検物質の検出方法
CN116420066A (zh) 目标物质的检测方法和装置、以及试剂
JP2008241698A (ja) 免疫分析方法
KR101622477B1 (ko) 효소 면역 측정용 효소 볼 및 이의 제조방법
WO2010106992A1 (ja) 免疫学的検定法および免疫学的検定法に使用する検査ディスク
JP5902714B2 (ja) 検体中の測定対象物の連続的免疫測定法における非特異反応抑制方法
JP2010204037A (ja) 結合性物質を固定化した乾燥粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP