WO2014083614A1 - インプラントねじ - Google Patents

インプラントねじ Download PDF

Info

Publication number
WO2014083614A1
WO2014083614A1 PCT/JP2012/080627 JP2012080627W WO2014083614A1 WO 2014083614 A1 WO2014083614 A1 WO 2014083614A1 JP 2012080627 W JP2012080627 W JP 2012080627W WO 2014083614 A1 WO2014083614 A1 WO 2014083614A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
bone
implant screw
implant
shaft
Prior art date
Application number
PCT/JP2012/080627
Other languages
English (en)
French (fr)
Inventor
山下 修
美之 桜井
昇平 栗本
Original Assignee
日東精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東精工株式会社 filed Critical 日東精工株式会社
Priority to PCT/JP2012/080627 priority Critical patent/WO2014083614A1/ja
Publication of WO2014083614A1 publication Critical patent/WO2014083614A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape

Definitions

  • the present invention relates to an implant screw that is embedded in a bone tissue of a living body.
  • Patent Document 1 discloses an implant body having a screw portion embedded in a jawbone, an abutment corresponding to a crown portion for fixing a denture, a fixing screw for connecting the abutment and the implant body, and an upper end portion of the abutment. Shown is a dental implant construction consisting of a healing cap for screwing and capping.
  • Patent Document 2 discloses an intraosseous implant having at least one intraosseous portion intended for placement in bone tissue.
  • the intra-osseous portion of the intra-osseous implant has a thread on its circumference, and the thread is divided into a plurality of thread portions by a plurality of grooves extending in the longitudinal direction.
  • this Patent Document 2 also shows that the intra-bone part is configured in a polygonal cross section.
  • Japanese Unexamined Patent Publication No. 7-313529 Japanese Patent No. 4417957 Tomoki Nakashima, Mikihito Hayashi, Takanobu Fukunaga, Kosaku Kurata, Masatsugu Oh-hora, Jian Q Feng, Lynda F Bonewald, Tatsuhiko Kodama, Anton Wutz, Erwin F Wagner through RANKL expression ", Nature Medicine, October 2011, Volume 17 No 10, p.1231-1234 Takako Negishi-Koga, Masahiro Shinohara, Noriko Komatsu, Haruhiko Bito, Tatsuhiko Kodama, Roland H Friedel & Hiroshi Takayanagi, "Suppression of bone formation by osteoclastic expression of semaphorin 4, 1473-1480 Takayuki Ota, Yuki Yanano, Masayoshi Higa, Noboru Ohata, “Stress analysis of bone around titanium implant using three-dimensional finite element method-Effect of difference in diameter and major axis of implant body on
  • the present invention was created in view of the above problems, and an object of the present invention is to provide an implant screw that shortens a period until it is fixed after being embedded in a bone tissue.
  • the present invention is an implant screw having a screw shaft portion formed with a screw thread on the outer periphery, and screwing the screw shaft portion into a bone of a living body so as to be coupled to the bone.
  • the screw shaft portion has a shaft main body having a polygonal cross section perpendicular to the axis, and the screw thread is integrally formed on the surface of the shaft main body in a spiral shape.
  • the cross-sectional shape of the shaft main body has a polygonal shape over the entire length of the part where the threads are integrally formed.
  • the polygonal cross-sectional shape of the shaft body is preferably a rounded shape formed by connecting the top and sides of the polygon to an arc shape and connecting them.
  • the screw shaft portion may be provided with a groove extending in the longitudinal direction thereof.
  • the implant screw of the present invention since the cross-sectional shape of the shaft main body of the screw shaft portion is polygonal, mechanical stress acting on the bone tissue from the implant screw after implantation can be reduced, As a result, the regeneration of the bone tissue can be promoted, and the rotational resistance around the axis can be increased with the regeneration of the bone tissue. Thereby, there are advantages that the implant screw can be stabilized earlier than before, and the implant treatment period can be shortened.
  • reference numeral 1 denotes a dental implant screw that is used by being screwed into the alveolar bone of the maxilla and mandible, and is a highly biocompatible metal material such as pure titanium, titanium alloy, titanium / nickel alloy, or oxidation. It is formed by cutting or forging from a ceramic material such as alumina.
  • an implant screw 1 made of pure titanium which is said to have the highest affinity with human bone tissue, will be described.
  • the present implant screw 1 corresponds to a component generally called a fixture, and is composed of a tapered head 2 and a screw shaft portion 3 integrally connected to the head 2.
  • a joint 4 for mounting the abutment 8 is provided on the end surface of the head 2.
  • the joint 4 includes a tapered inlay hole 5 that opens to the end face of the head 2, a polygonal recess 6 that is provided continuously in the back of the inlay hole 5, and a cable provided in the back of the polygonal recess 6. It consists of a female screw 7 at the bottom.
  • FIG. 4 shows a cross section taken along line AA in FIG. 1.
  • the cross section of the screw shaft portion 3 is shown in Japanese Industrial Standard.
  • the screws and screw parts of B0002 are simply drawn according to the method shown in the figure. The same applies to the sectional views (including those of other embodiments) of other screw shaft portions.
  • the implant screw 1 is an artificial tooth root for mounting the denture 9 in a set with an abutment 8 and the like, and is drilled in the alveolar bone 10 in advance as shown in FIG. It is screwed into the prepared pilot hole 11 and embedded.
  • a wrench is engaged with the polygonal recess 6 of the implant screw 1, and the rotational drive of the wrench is transmitted to the implant screw 1.
  • the implant screw 1 is screwed into the alveolar bone 10 while forming the female screw 12.
  • the present implant screw 1 is screwed into the alveolar bone 10 while forming the female screw 12, it is not necessary to form a female screw in the alveolar bone 10 in advance.
  • the cross-sectional shape of the shaft main body 3a of the present implant screw 1 is triangular, there are only three points of contact between the screw thread 3b and the pilot hole 11 at the time of screwing, that is, the triangular equivalent portion 3t. Therefore, the screwing torque (rotational resistance value at the time of screwing) is reduced, and even a pilot hole 11 with a smaller diameter (a pilot hole about the circumscribed circle of the shaft body 3a) can be screwed without difficulty.
  • Table 1 shows the results of a screwing test carried out to investigate the proper pilot hole diameter for screwing the implant screw.
  • pilot holes with different diameters were drilled in the swine jawbone, and the present implant screw 1 and the conventional implant screw 20 (with the cross-sectional shape of the shaft body of the screw shaft portion being circular) were screwed in, respectively.
  • the starting torque Ts, breaking torque Tm, and idling torque ratio k were measured.
  • the starting torque Ts refers to an initial torque value when a screw thread bites into a pilot hole of a jawbone and a female screw starts to be formed on the jawbone at the stage of starting tightening of an implant screw.
  • the breaking torque Tm means that when the tightening torque of the implant screw after fastening is increased, the screw thread of the implant screw destroys the female screw of the jaw bone, and the like before the implant screw starts to idle with respect to the jaw bone.
  • the idling torque ratio k refers to the ratio of the breaking torque Tm to the starting torque Ts: Tm / Ts.
  • ⁇ type indicates the present implant screw 1
  • ⁇ type indicates the conventional implant screw 20.
  • the implant screw 1 When the implant screw 1 is screwed in, the surrounding alveolar bone 10 is shaved by the female thread forming action of the screw thread 3b, and the contact points with the alveolar bone 10 become three places on the outer periphery of the screw shaft portion 3 as described above. . For this reason, the implant screw 1 immediately after the screwing into the alveolar bone is not in a state of being stably and firmly fixed, although the fastening effect by the screw thread 3b is obtained. In order for the implant screw 1 to be firmly fixed, it is necessary to establish osseointegration by regenerating the alveolar bone 10 around the implant screw 1.
  • the implant screw 1 screwed into the alveolar bone 10 is left for a period until it is stably supported by the regeneration of the alveolar bone 10.
  • the abutment 8 is fastened to the implant screw 1 with an abutment screw and the denture 9 is fixed to the abutment 8 as shown in FIG. Is done.
  • bone is continuously destroyed by osteoclasts and renewed or regenerated by osteoblasts.
  • Osteoclasts were grown by osteoclast differentiation-inducing factors (Receptorivatactivator of nuclearfactor kappa B ligand: RANKL) expressed by bone cells that had been subjected to mechanical stress, and osteoblasts were destroyed by osteoclasts. It is considered that bone regeneration, such as bone space, is recognized (see Non-Patent Documents 1 and 2). According to this bone destruction (bone resorption) and regeneration mechanism by osteoclasts and osteoblasts, by suppressing the perception of mechanical stress in bone cells, It is thought that bone regeneration can be activated.
  • the screw shaft portion 3 itself including a screw thread integrally formed on the surface thereof also has a triangular shape in a bottom view. Therefore, after the implant screw 1 is screwed in, as shown in FIG. 8, the three triangular-like top portions 3t come into contact with the alveolar bone 10, but the three triangular-like side portions 3s. Will have a corresponding gap with the alveolar bone. As a result, mechanical stress acts on the alveolar bone 10 from the implant screw 1 at the top equivalent portion 3t, but it is possible to suppress the mechanical stress from acting on the side equivalent portion 3s.
  • the growth of osteoclasts is suppressed on the surface of the alveolar bone 10 facing the side equivalent portion 3s, and it becomes possible to predominate bone regeneration by osteoblasts.
  • the alveolar bone 10 can be regenerated at an early stage as compared with the implant screw.
  • bone powder Pb shown by dots in FIG. 8 of the alveolar bone 10 that was shaved when the implant screw 1 was screwed in this gap portion, osteoblasts contained in this bone powder Pb It is thought that early regeneration of bone is also promoted.
  • the gap is filled with the bone powder Pb in this way, it is possible to prevent the generation of soft tissue such as fibrous tissue in the gap portion, so that it is possible to obtain good osseointegration here.
  • FIG. 8 in order to make it easy to understand the presence of the bone powder Pb, hatching of the cross section of the thread 3b portion is omitted.
  • FIG. 9 shows the respective return torques (maximum rotational resistance value when rotation in the direction opposite to the time of screwing) is applied to the present implant screw 1 and the conventional implant screw 20 that have been inserted into a living body for a certain period of time.
  • the experimental results are shown.
  • This experiment (1) Prepare 12 living beagle dogs as living bodies, (2) The implant screw 1 and the conventional implant screw 20 are screwed into the alveolar bone of these mandibles, and two are inserted per head. (3) One week, two weeks, and four weeks after implantation, the implant screws for four heads were reversed, the return torque was measured, and each average value was obtained.
  • the specifications of the implant screw used in the experiment are the same as the specifications of the implant screw used for the screw-in test on the porcine jawbone.
  • “ ⁇ type” indicates the present implant screw 1
  • ⁇ type indicates the conventional implant screw 20.
  • the return torque after one week after implantation is higher in the conventional implant screw 20 than in the present implant screw 1, but after two weeks and four weeks after implantation, the present implant screw 20 has a higher return torque. It can be seen that the screw 1 is higher. From this, one week after implantation, the situation immediately after screwing in which only the three apex-corresponding portions 3t of the present implant screw 1 are in contact with the alveolar bone 10 has not improved. It is thought that it can be reversed more easily than the conventional implant screw 20 having a large contact area.
  • the present implant screw 1 regeneration of the alveolar bone 10 is promoted, and the abutment 8 and the denture 9 can be attached to the implant screw 1 in a shorter period than before.
  • the period required for so-called dental implant treatment can be shortened and the burden on the patient can be reduced.
  • the present implant screw 1 can be screwed into a pilot hole having a smaller diameter than the conventional implant screw 20 as described above, this also leads to a reduction in the burden on the patient.
  • FIG. 10 shows the bone surface stress when the present implant screw 1 and the conventional implant screw 20 are screwed into a bone and a concentrated load 20N in a direction (horizontal direction) perpendicular to the axis is applied to the end of each joint.
  • This is a simulation of the distribution.
  • it is assumed that the entire circumference of each screw shaft portion of each implant screw 1 and 20 is in contact with the bone, that is, a state in which good osseointegration is obtained, and the stress distribution is observed.
  • the location is the boundary with the implant screw on the bone surface.
  • the width m in the load direction of the stress distribution region of the present implant screw 1 shown in FIG. 10A is about 90 of the width m of the conventional implant screw 20 shown in FIG.
  • the width w of the stress distribution area in the direction perpendicular to the load direction is about 108% of the width w of the stress distribution area of the conventional implant screw.
  • Non-Patent Document 3 shows that the maximum stress acting on the cortical bone decreases as the diameter of the implant screw increases, but in the conventional implant screw 20 having a circular cross-sectional shape, the diameter is There is a limit to increasing the size.
  • the curvature of the side equivalent portion 3s to which the load is applied can be sufficiently reduced.
  • the alveolar bone 10 and the jaw bone are embedded in the thin side of the alveolar bone 10 so that the side corresponding portion 3s is positioned, so that the alveolar alveoli even when the implant screw 1 is loaded. It becomes possible to suppress the fracture of bones and jawbones.
  • FIG. 11 and FIG. 12 show a second embodiment of the implant screw according to the present invention.
  • the implant screw 100 is formed by extending, in the longitudinal direction, a groove 3c in which a thread 3b and a part of the shaft body 3a are cut out at the other end portion of the screw shaft portion 3 of the implant screw 1.
  • the grooves 3c are provided over a length of 60 to 80% of the length of the screw shaft portion 3, and are arranged in three equal parts on the circumference of the screw shaft portion 3 circumference.
  • the cross-sectional shape of the shaft body 3a and the bottom view shape of the screw shaft portion 3 are polygonal shapes in which each side corresponding portion 3s in a triangular shape is constricted.
  • the implant screw 101 When the implant screw 101 is screwed into the alveolar bone 10, the alveolar bone 10 is cut at the edge of the groove 3 c, so that the amount of bone powder present in the gap between the screw shaft 3 and the alveolar bone 10 is reduced. It can be increased.
  • FIG. 13 shows a third embodiment of the implant screw according to the present invention.
  • the cross-sectional shape of the shaft main body 31a and the bottom view shape of the screw shaft portion 31 including the screw thread 31b are originally circular, and a groove 31c is formed in the longitudinal direction on the outer peripheral portion thereof. Three are arranged equally. Therefore, in the portion where the groove 31c is cut, the cross-sectional shape of the shaft body 31a and the bottom view shape of the screw shaft portion 31 are configured like a trident polygon.
  • the implant screw 102 can be supported more stably with the regeneration.
  • the cross-sectional shape of the shaft body of the implant screw may be a polygonal shape other than the triangular shape, and the effects obtained thereby are the same as described above.
  • the implant screw 102 shown in the fourth embodiment is configured so that it is all triangular over the entire length of the shaft body 32a, although the cross-sectional shape of the shaft body 32a gradually changes.
  • the cross-sectional shape of the shaft body may gradually change from one polygonal shape to another.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Prosthetics (AREA)

Abstract

  【課題】骨組織への埋入後、骨が再生して固定されるまでの期間を短縮するインプラントねじを提供する。 【解決手段】 本発明は、外周にねじ山3bが形成されたねじ軸部3を有し、このねじ軸部3を生体の骨にねじ込んで当該骨との結合を図るインプラントねじにおいて、前記ねじ軸部3は、軸線に直交する横断面形状が三角形等の多角形様の軸本体3aを有し、この軸本体3a表面に前記ねじ山3bを螺旋状に一体形成して構成されている。このため、骨への埋入後、骨に接しない多角形様の辺部相当部位3sにおいて骨へのメカニカルストレスを抑え、当該部位での骨の早期再生を図ることが可能になる。

Description

インプラントねじ
 本発明は、生体の骨組織に埋入されるインプラントねじに関する。
 従来、人体等の生体の骨接ぎ、骨の補強あるいは義歯装着時の人工歯根として、広くインプラントねじが使用されている。このインプラントねじは、骨に直接ねじ込んで固定されるねじ部品であり、例えば、特許文献1および特許文献2に示されるものが知られている。
 特許文献1には、顎骨に埋め込まれるねじ部を有するインプラント本体、義歯を固定する歯冠部に対応するアバットメント、このアバトメントと該インプラント本体を連結する固定スクリュウ、並びに該アバットメントの上端部にねじ止めされキャップするためのヒーリングキャップからなる歯科用インプラント構成体が示されている。
 特許文献2には、骨組織への配置を目的とする少なくとも一つの骨内部分を有する骨内インプラントが示されている。この骨内インプラントの前記骨内部分は、その円周上にネジ山を備えており、このネジ山は長手方向に延びて設けられた複数の溝によって複数のネジ山部分に分断されている。また、この特許文献2には、骨内部分を多角形の断面に構成することも示されている。
特開平7-313529号公報 特許第4417957号公報 Tomoki Nakashima, Mikihito Hayashi, Takanobu Fukunaga, Kosaku Kurata, Masatsugu Oh-hora, Jian Q Feng, Lynda F Bonewald, Tatsuhiko Kodama, Anton Wutz, Erwin F Wagner, Josef M Penninger & Hiroshi Takayanagi、"Evidence for osteocyte regulation of bone homeostasis through RANKL expression"、Nature Medicine、October 2011、Volume 17 No 10、p.1231-1234 Takako Negishi-Koga, Masahiro Shinohara, Noriko Komatsu, Haruhiko Bito, Tatsuhiko Kodama, Roland H Friedel & Hiroshi Takayanagi、"Suppression of bone formation by osteoclastic expression of semaphorin 4D"、Nature Medicine、November 2011、Volume 17 No 11、p.1473-1480 太田 貴之,谷野 之紀,比嘉 昌,大畑 昇、"3次元有限要素法を用いたチタンインプラント周囲骨の応力解析 - インプラント体の直径と長径の違いが下顎骨の応力分布に与える影響 -"、北海道歯学雑誌、2012-03、32(2)、p.156-165
 インプラントねじを骨組織に埋入した場合、インプラントねじのねじ部のねじ込みによってインプラント周辺の骨組織が破壊される。このため、埋入された直後のインプラントねじは不安定な状態にあり、これにアバットメント等の他の人工器官を接続することはできない。インプラントねじにアバットメント等の他の人工器官を接続するためには、インプラントねじを取り巻く骨組織が再生し、インプラントねじが安定して支持されるまで待たねばならない。無論、その間、インプラントねじに外的な負荷が作用しないよう養生する必要もある。通常、インプラントねじを取り巻く骨組織の再生には3ヶ月以上を要すると言われており、その後の再手術等を含めるとインプラント治療に要する期間は非常に長くなっているのが現状である。このことから、インプラントねじ埋入後、インプラントねじが安定して固定されるまでの期間を短縮することは、インプラント治療分野における大きなテーマとなっている。また、特許文献1および2に示されるような、ねじ山が形成された軸部におけるねじ山を含まない部分の断面形状が円形を成しているインプラントねじにあっては、骨組織へねじ込む時の接触面積が大きくなる。このため、予め骨組織に空けておく下穴を比較的大きな径にしておかねばならず、患者への負担が大きくなるとともに、骨が薄い部位では骨の欠損、割れを生じる可能性が高くなることから埋入が困難となる問題が発生していた。
 本発明は、上記課題に鑑みて創成されたものであり、骨組織への埋入後、固定されるまでの期間を短縮するインプラントねじの提供を目的とする。この目的を達成するために本発明は、外周にねじ山が形成されたねじ軸部を有し、このねじ軸部を生体の骨にねじ込んで当該骨との結合を図るインプラントねじであって、前記ねじ軸部は、軸線に直交する横断面形状が多角形様の軸本体を有し、この軸本体表面に前記ねじ山を螺旋状に一体形成して成ることを特徴とする。
 前記軸本体の横断面形状は、ねじ山が一体形成される部位の全長に渡って多角形様を成すことが望ましい。また、前記軸本体の多角形様の横断面形状は、多角形の頂部および辺部をそれぞれ円弧状と成しこれらを結ぶことで丸みを帯びた形状と成したものであることが望ましい。さらに、前記ねじ軸部には、その長手方向に延びて溝が設けられていてもよい。
 本発明のインプラントねじによれば、ねじ軸部の軸本体の横断面形状が多角形様となっているため、埋入後のインプラントねじから骨組織に作用するメカニカルストレスを軽減することができ、これによって骨組織の再生を促進させることが可能になるとともに、骨組織の再生に伴って軸線回りの回転抵抗を高めることが可能になる。これにより、従来よりも早期にインプラントねじを安定させることができ、インプラント治療期間の短縮を図ることができる等の利点がある。また、特許文献1や特許文献2に示された軸本体の横断面形状が円形の従来のインプラントねじに比べ、より小さな径の下穴であってもインプラントねじをねじ込むことが可能になり、かつインプラントねじに負荷がかかった場合にもねじ軸部表面から骨組織に作用する応力を分散することが可能となる。このことから、より薄く割れやすい部位に対しても、インプラントねじを安定して埋設することが可能となる。また、下穴径を小さくできることから患者の負担も軽減できる。
本発明に係るインプラントねじの第1の実施形態の正面図である。 本発明に係るインプラントねじの第1の実施形態の平面図である。 本発明に係るインプラントねじの第1の実施形態の底面図である。 図1のA-A線断面図である。 図2のB-B線断面図である。 本発明に係るインプラントねじの第1の実施形態の使用状態を示す説明図である。 本発明に係るインプラントねじの第1の実施形態の使用状態を示す説明図である。 図7のC-C線に係る要部拡大断面図である。 本発明に係るインプラントねじの第1の実施形態と従来のインプラントねじの戻しトルクを測定した実験結果を示す説明図である。 本発明に係るインプラントねじの第1の実施形態と従来のインプラントねじの応力解析結果を示す説明図である。 本発明に係るインプラントねじの第2の実施形態の正面図である。 本発明に係るインプラントねじの第2の実施形態の底面図である。 本発明に係るインプラントねじの第3の実施形態の底面図である。 本発明に係るインプラントねじの第4の実施形態の正面図である。 図14のD-D線断面図である。 図14のE-E線断面図である。
 以下、本発明に係るインプラントねじの第1の実施形態を図面を用いて説明する。図1ないし図5において、1は上下顎骨の歯槽骨にねじ込んで使用される歯科用のインプラントねじであり、純チタン、チタン合金、チタン・ニッケル合金などの生体適合性の高い金属材料、あるいは酸化アルミナなどのセラミック材料から切削、あるいは圧造によって成形される。本例では、最も人間の骨組織との親和性が高いといわれる純チタンから成るインプラントねじ1について述べる。
 本インプラントねじ1は、一般にフィクスチャーと呼ばれる部品に相当するものであり、テーパ状の頭部2と、この頭部2に一体に連なるねじ軸部3とから構成されている。頭部2の端面には、アバットメント8を装着するための接合部4が設けられている。この接合部4は、頭部2端面に開口するテーパ状のインロー穴5と、このインロー穴5の奥に連設された多角形凹部6と、この多角形凹部6の奥に設けられた有底のめねじ7とから成る。インプラントねじ1にアバットメントを装着する場合は、前記多角形凹部6にアバットメント8端部の多角形凸部(図示せず)を合致嵌合させ、めねじ7にアバットメントスクリュー(図示せず)をねじ込んでアバットメント8を締結する。なお、前記多角形凹部6は、インプラントねじ1を歯槽骨10にねじ込む際にレンチを係合させる駆動部としても機能する。
 前記ねじ軸部3は、軸本体3aと、この軸本体3aの表面に沿って螺旋状に一体形成されたねじ山3bとから構成されている。軸本体3aは、先端が丸くなった先絞り形状を成しており、その軸線に直交する横断面が全長に渡って多角形様に構成されている。具体的には、軸本体3aの横断面形状は、ルーローの三角形に準じる三角形様に構成されている。ここで軸本体3aの横断面形状を「多角形様」、「三角形様」と表現しているのは、軸本体3aの横断面形状が、多角形(三角形)の角部および辺部を外周方向に凸な円弧状と成し、これらを滑らかに接続した形、すなわち多角形(三角形)が膨らんで角のない丸みを帯びた形になっているためである。なお、図4は図1のA-A線断面を示すものであるが、同図においては、軸本体3aが三角形様であることを明確にするため、ねじ軸部3の断面を日本工業規格B0002のねじ及びねじ部品を図に表す方法に準じて単純に描いている。これは、他のねじ軸部の断面図(他の実施形態のものも含む)についても同様である。
 また、前記ねじ山3bは、リードに直交する断面形状が三角形を成しており、そのねじ山角は頭部2側のフランク角が先端側のフランク角より小さい不等角の45°に構成されている。
 次に、本発明に係るインプラントねじ1の作用について述べる。インプラントねじ1は、図6に示すように、アバットメント8等とセットで義歯9を装着するための人工歯根となるものであり、図7に示すように、歯槽骨10に予めドリルで空けられた下穴11にねじ込んで埋入される。このねじ込みに当たっては、インプラントねじ1の多角形凹部6にレンチを係合させ、レンチの回転駆動をインプラントねじ1に伝達する。これにより、インプラントねじ1は歯槽骨10にめねじ12を形成しながらねじ込まれる。このように、本インプラントねじ1は歯槽骨10にめねじ12を形成しながらねじ込まれるものであるため、予め歯槽骨10にめねじを成形する作業が必要ない。しかも、本インプラントねじ1の軸本体3aの横断面形状は三角形様であるため、ねじ込み時のねじ山3bと下穴11のと接触箇所が三角形様の頂部相当部位3tの3箇所だけとなる。よって、ねじ込みトルク(ねじ込み時の回転抵抗値)が小さくなり、より小さい直径の下穴11(軸本体3aの外接円程度の下穴)であっても無理なくねじ込むことが可能になる。
Figure JPOXMLDOC01-appb-T000001
 表1は、インプラントねじをねじ込むための適正下穴径を調べるために実施したねじ込み試験結果を示すものである。このねじ込み試験では、豚の顎骨に異なる直径の下穴を空け、これらに本インプラントねじ1と従来のインプラントねじ20(ねじ軸部の軸本体の横断面形状が円形のもの)をそれぞれねじ込んだ時の始動トルクTs、破断トルクTm、空転トルク比kを測定した。始動トルクTsとは、インプラントねじの締付け開始段階においてねじ山が顎骨の下穴に食い付いて顎骨にめねじが成形され始める時の初期トルク値をいう。また、破断トルクTmとは、締結後のインプラントねじの締付けトルクを高めていった時にインプラントねじのねじ山が顎骨のめねじを破壊する等し、インプラントねじが顎骨に対して空転し始める前の最大トルク値をいう。さらに、空転トルク比kとは、破断トルクTmと始動トルクTsの比:Tm/Tsをいう。なお、表1においては、「△型」が本インプラントねじ1を指し、「○型」が従来のインプラントねじ20を指す。
 表1のデータを得るためのねじ込み試験では、純チタン2種TW35のφ3.75mm線材に、ピッチ0.8mm、ねじ軸部の外径(本インプラントねじ1にあっては三角形様のねじ軸部の外接円の直径)φ4.02~4.08mmとなるねじ山を転造したインプラントねじを使用した。
 工業分野で使用されるセルフタッピンねじ等、被締結物にめねじを加工しながらねじ込まれる種類のねじ部品においては、空転トルク比kが最大となる下穴径を適正な下穴径として選定する。このセルフタッピンねじの適正下穴径の選定方法に照らすと、表1に示すように、本インプラントねじ1の適正下穴径はφ3.3mm、従来のインプラントねじ20の適正下穴径はφ3.6mmとなり、同サイズ相当のインプラントねじであれば、本発明に係るインプラントねじ1の方がより小さい下穴径でねじ込み、埋入できることが明白となっている。
 インプラントねじ1のねじ込み時には、ねじ山3bのめねじ成形作用によってその周囲の歯槽骨10が削られ、また上記のように歯槽骨10との接触箇所がねじ軸部3外周上の3箇所となる。このため、歯槽骨にねじ込みが完了した直後のインプラントねじ1は、ねじ山3bによる締結効果は得られるものの、安定して強固に固定されている状態にはない。インプラントねじ1が強固に固定されるためには、インプラントねじ1周辺の歯槽骨10の再生により、オッセオインテグレーションが確立される必要がある。従って、歯槽骨10にねじ込まれたインプラントねじ1は、歯槽骨10の再生により安定支持されるまでの期間、放置されることとなる。オッセオインテグレーションによりインプラントねじ1が歯槽骨10に強固に固定されると、図6に示すように、インプラントねじ1にアバットメントスクリューでアバットメント8を締結し、さらにアバットメント8に義歯9が固定される。
 一般に、骨は破骨細胞による破壊と骨芽細胞による新生または再生が絶えず繰り返されている。破骨細胞は、メカニカルストレスを感受した骨細胞が発現する破骨細胞分化誘導因子(Receptor activator of nuclear factor kappa B ligand:RANKL)によって育成され、また骨芽細胞は、破骨細胞によって破壊された骨の空間等、骨の欠損を認知して骨の再生を行うのではないかと考えられている(非特許文献1および2参照)。この破骨細胞と骨芽細胞による骨の破壊(骨吸収)、再生メカニズムによれば、骨細胞におけるメカニカルストレスの感受を抑制して、骨芽細胞による骨の欠損認識を優勢にすることで、骨の再生を活性化することが可能になると考えられる。
 本インプラントねじ1においては、軸本体3aの横断面形状が三角形様であることから、その表面に一体形成されているねじ山を含む、ねじ軸部3自体も底面視三角形様となる。従って、インプラントねじ1がねじ込まれた後、図8に示すように、その三角形様の3つの頂部相当部位3tは歯槽骨10と接触することとなるが、三角形様の3つの辺部相当部位3sは、歯槽骨と相応の隙間を有することになる。これにより、頂部相当部位3tではインプラントねじ1から歯槽骨10にメカニカルストレスが作用するが、辺部相当部位3sにおいてはメカニカルストレスが作用するのを抑制することが可能になる。この結果、辺部相当部位3sに対向する歯槽骨10の表面においては破骨細胞の育成が抑えられ、骨芽細胞による骨の再生を優勢となすことが可能になり、従来の円筒形軸本体のインプラントねじに比べて、早期に歯槽骨10の再生を図ることが可能になる。しかも、この隙間部分にはインプラントねじ1のねじ込み時に削られた歯槽骨10の骨粉Pb(図8中にドットで表示したもの)が存在していることから、この骨粉Pbに含まれる骨芽細胞によっても、骨の早期再生が促されると考えられる。また、このように隙間が骨粉Pbで埋められることにより、隙間部分に線維組織などの軟組織が生成されることを防止できることから、ここでの良好なオッセオインテグレーションを得ることが可能となる。なお、図8においては、骨粉Pbの存在をわかりやすくするため、ねじ山3b部分の断面へのハッチングは省略してある。
 図9は、生体に埋入して一定時間が経過した本インプラントねじ1と従来のインプラントねじ20の各戻しトルク(ねじ込む時とは逆方向の回転を付与した時の最大回転抵抗値)を測定した実験結果を示すものである。この実験は、
(1)生体として生きたビーグル犬12頭を用意し、
(2)これらの下顎骨の歯槽骨に本インプラントねじ1と従来のインプラントねじ20を1頭当たりそれぞれ2本ずつねじ込んで埋入し、
(3)埋入1週間後、2週間後、4週間後にそれぞれ4頭分のインプラントねじを逆転させて戻しトルクを測定し、それぞれの平均値を求める
という手順により実施した。実験に使用したインプラントねじの仕様は、上記豚顎骨へのねじ込み試験に用いたインプラントねじの仕様と同じである。なお、図9においては、「△型」が本インプラントねじ1を指し、「○型」が従来のインプラントねじ20を指す。
 前記実験結果によれば、埋入1週間後の戻しトルクは、本インプラントねじ1よりも従来のインプラントねじ20の方が高くなっているが、埋入2週間後、4週間後では、本インプラントねじ1の方が高くなっていることがわかる。このことから、埋入1週間後においては、本インプラントねじ1における3つの頂部相当部位3tだけが歯槽骨10に接しているねじ込み直後の状況が改善しておらず、本インプラントねじ1は、骨との接触面積が大きい従来のインプラントねじ20よりも簡単に逆転させることが可能となっていると考えられる。しかし、それ以降は歯槽骨10の再生が進み、埋入2週間後以降は、再生した歯槽骨が本インプラントねじ1の辺部相当部位3sと歯槽骨10との隙間を埋めるため、三角形様の軸本体横断面形状と相まって逆転させるためには従来のインプラントねじ20よりも大きな力が必要となっていると考えられる。また、図9で特に注目すべきは、埋入2週間後と4週間後とで、本インプラントねじ1と従来のインプラントねじ20の戻しトルクの差が大きく開いていく傾向を示し、しかも、埋入1週間後から4週間後までの戻しトルクの増加率も本インプラントねじ1の方が従来のインプラントねじ20よりも格段に大きくなっていることである。これは、再生した歯槽骨が、本インプラントねじ1の辺部相当部位3sと歯槽骨10との隙間を急速に埋めていることの証左である。従来のインプラントねじ20においても、ねじ軸部の軸本体と歯槽骨10との間にはある程度の隙間が存在するはずであるが、戻しトルクの増加率は本インプラントねじのように大きくない。これは従来のインプラントねじ20の軸本体と歯槽骨の間では歯槽骨の再生が進んでいるものの、全周で歯槽骨と接触状態にあるねじ山表面部分では、当該接触によるメカニカルストレスにより、骨芽細胞が破骨細胞に対して十分に優勢になれず、歯槽骨の再生が進んでいないことが原因であると考えられる。
 以上の結果から、本インプラントねじ1においては歯槽骨10の再生を促進し、従来よりも短い期間でインプラントねじ1にアバットメント8および義歯9を装着可能となる。つまりは、いわゆるデンタルインプラント治療に要する期間を短縮し、患者の負担を軽減することが可能になるのである。また、上記のように本インプラントねじ1は従来のインプラントねじ20よりも小径の下穴にねじ込むことが可能であるため、この点においても患者の負担軽減に繋がる。
 図10は、本インプラントねじ1と従来のインプラントねじ20とを骨にねじ込み、それぞれの接合部の端部に軸線と直交する方向(水平方向)の集中荷重20Nを負荷した時の骨表面の応力分布をシミュレーションしたものである。このシミュレーションにおいては、各インプラントねじ1,20の各ねじ軸部全周が骨と接している状態、すなわち良好なオッセオインテグレーションが得られている状態を想定しており、また、応力分布を見る箇所は骨表面のインプラントねじとの境界部分としている。このシミュレーション結果によると、図10(a)に示した本インプラントねじ1の応力分布域の荷重負荷方向の幅mが、同図(b)に示した従来のインプラントねじ20の幅mの約90%になり、応力分布域の荷重負荷方向と直交する方向の幅wは、従来のインプラントねじの応力分布域の幅wの約108%となっている。これにより、本インプラントねじ1においては、2つの頂部相当部位3tおよびこれに挟まれた辺部相当部位3sにかけて広く応力が分散していることが明らかとなっている。
 また、非特許文献3には、インプラントねじの直径を大きくするほど皮質骨に作用する最大応力が下がることが示されているが、横断面形状が円形の従来のインプラントねじ20では、その直径を大きくするにも限界がある。これに対し本インプラントねじ1では、荷重がかかる辺部相当部位3sの曲率を十分に小さくすることができる。例えば、辺部相当部位3sの曲率を、従来のインプラントねじ20を顎骨に埋入できない程大きな直径に構成した場合に相当する曲率とすることも容易である。このことから、本インプラントねじ1においては、歯槽骨に作用する最大応力を十分に小さくすることが可能である。
 以上の応力に関する検証結果からすると、歯槽骨10や顎骨の薄い側に辺部相当部位3sが位置するようにインプラントねじ1を埋入することにより、インプラントねじ1に負荷がかかった場合にも歯槽骨や顎骨の割れを抑えることが可能になる。
 図11および図12は、本発明に係るインプラントねじの第2の実施形態を示したものである。このインプラントねじ100は、上記インプラントねじ1のねじ軸部3の他端部に、ねじ山3bおよび軸本体3aの一部を切り欠く溝3cを長手方向に延びて形成したものである。この溝3cは、ねじ軸部3の長さの60~80%の長さに渡って設けられ、ねじ軸部3円周上に3本等分配置されている。この溝3cを設けることにより、軸本体3aの横断面形状およびねじ軸部3の底面視形状(底面から見た形状)は、三角形様の各辺部相当部位3sがくびれた多角形様となっている(図12参照)。このインプラントねじ101を歯槽骨10にねじ込む際には、前記溝3cの縁部分で歯槽骨10が削られることとなるため、ねじ軸部3と歯槽骨10との隙間部分に介在する骨粉量を増加させることが可能となる。
 また、図13は、本発明に係るインプラントねじの第3の実施形態を示したものである。このインプラントねじ101は、その軸本体31aの横断面形状、およびねじ山31bを含むねじ軸部31の底面視形状が元々円形を成すものであり、その外周部分には、溝31cが長手方向に3本等分配置されている。従って、この溝31cが削設された部分において、軸本体31aの横断面形状およびねじ軸部31の底面視形状は、三叉状の多角形様に構成されている。
 また、図14ないし図16は、本発明に係るインプラントねじの第4の実施形態を示したものである。このインプラントねじ102は、その軸本体32aの横断面形状が、ねじ軸部32先端側で三角形様であり(図15参照)、ここから頭部2側に向かうに従って辺部相当部位32sが徐々に膨らむ(図16参照)ように構成されている。生体の歯根は、概観として歯側の横断面形状と歯根先端部の横断面形状とが異なり、歯根先端部ほど横断面の面積が小さくなる先細りの形状である。従って、インプラントねじ102のような横断面形状として、先端部から首下部分にかけてねじ軸部32aの横断面積が徐々に大きくなる多角形様とすることにより、インプラントねじ102埋入後の歯槽骨の再生に伴って、インプラントねじ102をより安定的に支持することが可能になると考えられる。
 なお、以上説明した実施形態以外にも、インプラントねじの軸本体の横断面形状は、三角形様以外の他の多角形様とすることもでき、これによって得られる効果も上記同様である。また、第4の実施形態で示したインプラントねじ102は、軸本体32aの横断面形状が徐々に変化するものの、軸本体32a全長に渡って全て三角形様となるように構成されているが、これ以外にも、軸本体の横断面形状が、ある多角形様から別の多角形様に徐々に変化するようにしてもよい。
  1   インプラントねじ
  2   頭部
  3   ねじ軸部
  3a   軸本体
  3b   ねじ山
  3c   溝
  3t   頂部相当部位
  3s   辺部相当部位
  4   接合部
  5   インロー穴
  6   多角形凹部
  7   めねじ
  8   アバットメント
  9   義歯
 10   歯槽骨
 11   下穴
 12   めねじ

Claims (4)

  1.  外周にねじ山が形成されたねじ軸部を有し、このねじ軸部を生体の骨にねじ込んで当該骨との結合を図るインプラントねじであって、
     前記ねじ軸部は、軸線に直交する横断面形状が多角形様の軸本体を有し、この軸本体表面に前記ねじ山を螺旋状に一体形成して成ることを特徴とするインプラントねじ。
  2.  軸本体の横断面形状は、ねじ山が一体形成される部位の全長に渡って多角形様を成すことを特徴とする請求項1に記載のインプラントねじ。
  3.  軸本体の多角形様の横断面形状は、多角形の頂部および辺部をそれぞれ円弧状と成しこれらを結ぶことで丸みを帯びた形状と成したものであることを特徴とする請求項1または請求項2に記載のインプラントねじ。
  4.  ねじ軸部には、その長手方向に延びて溝が設けられていることを特徴とする請求項1から請求項3の何れかに記載のインプラントねじ。
PCT/JP2012/080627 2012-11-27 2012-11-27 インプラントねじ WO2014083614A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080627 WO2014083614A1 (ja) 2012-11-27 2012-11-27 インプラントねじ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080627 WO2014083614A1 (ja) 2012-11-27 2012-11-27 インプラントねじ

Publications (1)

Publication Number Publication Date
WO2014083614A1 true WO2014083614A1 (ja) 2014-06-05

Family

ID=50827290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080627 WO2014083614A1 (ja) 2012-11-27 2012-11-27 インプラントねじ

Country Status (1)

Country Link
WO (1) WO2014083614A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017129826A3 (en) * 2016-01-29 2017-09-08 Nobel Biocare Services Ag Dental implant, insertion tool for dental implant and combination of dental implant and insertion tool
CN113349965A (zh) * 2020-03-05 2021-09-07 上海交通大学医学院附属第九人民医院 一种用于维持骨高度的种植体体部
US20210315670A1 (en) * 2016-01-29 2021-10-14 Nobel Biocare Services Ag Dentistry tool
CN113813064A (zh) * 2020-11-25 2021-12-21 广州市弘健生物医用制品科技有限公司 一种适用于超声焊接的人体骨面重建定位器
RU2791007C2 (ru) * 2016-01-29 2023-03-01 Нобель Биокэр Сервисиз Аг Зубной имплантат, инструмент для вставки зубного имплантата и комбинация зубного имплантата и инструмента для вставки

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002666A1 (en) * 1980-03-26 1981-10-01 Scient Advances Inc Improved tooth implants
FR2508307A1 (fr) * 1981-09-16 1982-12-31 Lonca Philippe Nouveaux implants dentaires et materiel ancillaire pour leur mise en place
DE4342468A1 (de) * 1992-12-24 1994-06-30 Nikon Corp Zylindrisches, endostales Eindrück-Implantat
WO1997025933A1 (en) * 1996-01-18 1997-07-24 Implant Innovations, Inc. Reduced friction screw-type dental implant
WO1999023971A1 (en) * 1997-11-11 1999-05-20 Nobel Biocare Ab (Publ) Arrangement for obtaining reliable anchoring of a threaded implant in bone
US6039568A (en) * 1998-06-02 2000-03-21 Hinds; Kenneth F. Tooth shaped dental implants
EP1911412A1 (en) * 2006-10-11 2008-04-16 Astra Tech AB Implant

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002666A1 (en) * 1980-03-26 1981-10-01 Scient Advances Inc Improved tooth implants
US4293302A (en) * 1980-03-26 1981-10-06 Scientific Advances, Inc. Tooth implants
JPS57500416A (ja) * 1980-03-26 1982-03-11
FR2508307A1 (fr) * 1981-09-16 1982-12-31 Lonca Philippe Nouveaux implants dentaires et materiel ancillaire pour leur mise en place
EP0075525A1 (fr) * 1981-09-16 1983-03-30 Philippe Lonca Nouveaux implants dentaires
JPS58112536A (ja) * 1981-09-16 1983-07-05 フイリツプ・ロンカ 義歯
US4722688A (en) * 1981-09-16 1988-02-02 Philippe Lonca Dental implants and accessories therefor
DE4342468A1 (de) * 1992-12-24 1994-06-30 Nikon Corp Zylindrisches, endostales Eindrück-Implantat
JPH06189977A (ja) * 1992-12-24 1994-07-12 Nikon Corp 骨内インプラント
JPH11502454A (ja) * 1996-01-18 1999-03-02 インプラント・イノヴェーションズ・インコーポレーテッド 低摩擦のねじ式歯科用インプラント
US5902109A (en) * 1996-01-18 1999-05-11 Implant Innovations, Inc. Reduced friction screw-type dental implant
WO1997025933A1 (en) * 1996-01-18 1997-07-24 Implant Innovations, Inc. Reduced friction screw-type dental implant
DE69729993T2 (de) * 1996-01-18 2004-12-09 Implant Innovations, Inc., Palm Beach Gardens Zahnimplantat zur schraubmontage mit verringerter reibung
DE69833559T2 (de) * 1997-11-11 2006-12-21 Nobel Biocare Ab (Publ) Implantat mit gewinde womit eine sichere verankerung im knochen erzielt wird
WO1999023971A1 (en) * 1997-11-11 1999-05-20 Nobel Biocare Ab (Publ) Arrangement for obtaining reliable anchoring of a threaded implant in bone
JP2001522637A (ja) * 1997-11-11 2001-11-20 ノベル バイオケアー アーベー (パブル) 骨内への螺条付きインプラントの信頼性ある固定を得るための構成
US6039568A (en) * 1998-06-02 2000-03-21 Hinds; Kenneth F. Tooth shaped dental implants
EP1911412A1 (en) * 2006-10-11 2008-04-16 Astra Tech AB Implant
WO2008043462A1 (en) * 2006-10-11 2008-04-17 Astra Tech Ab Implant
US20080091208A1 (en) * 2006-10-11 2008-04-17 Astra Tech Ab Implant
KR20090085604A (ko) * 2006-10-11 2009-08-07 아스트라 테크 에이비 임플란트
CN101522131A (zh) * 2006-10-11 2009-09-02 艾斯特勒科技公司 植入物
JP2010505564A (ja) * 2006-10-11 2010-02-25 アストラ・テック・アクチエボラーグ インプラント

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017129826A3 (en) * 2016-01-29 2017-09-08 Nobel Biocare Services Ag Dental implant, insertion tool for dental implant and combination of dental implant and insertion tool
JP2019503236A (ja) * 2016-01-29 2019-02-07 ノベル バイオケア サーヴィシィズ アーゲー 歯科インプラント、歯科インプラントのための埋入ツール、ならびに歯科インプラントと埋入ツールの組み合わせ
RU2687575C1 (ru) * 2016-01-29 2019-05-15 Нобель Биокэр Сервисиз Аг Зубной имплантат, инструмент для вставки зубного имплантата и комбинация зубного имплантата и инструмента для вставки
US20210315670A1 (en) * 2016-01-29 2021-10-14 Nobel Biocare Services Ag Dentistry tool
AU2017213174B2 (en) * 2016-01-29 2022-03-03 Nobel Biocare Services Ag Dental implant, insertion tool for dental implant and combination of dental implant and insertion tool
RU2791007C2 (ru) * 2016-01-29 2023-03-01 Нобель Биокэр Сервисиз Аг Зубной имплантат, инструмент для вставки зубного имплантата и комбинация зубного имплантата и инструмента для вставки
US11602417B2 (en) 2016-01-29 2023-03-14 Nobel Biocare Services Ag Dental implant, insertion tool for dental implant and combination of dental implant and insertion tool
US11857391B2 (en) * 2016-01-29 2024-01-02 Nobel Biocare Services Ag Dentistry tool
CN113349965A (zh) * 2020-03-05 2021-09-07 上海交通大学医学院附属第九人民医院 一种用于维持骨高度的种植体体部
CN113349965B (zh) * 2020-03-05 2023-05-02 上海交通大学医学院附属第九人民医院 一种用于维持骨高度的种植体体部
CN113813064A (zh) * 2020-11-25 2021-12-21 广州市弘健生物医用制品科技有限公司 一种适用于超声焊接的人体骨面重建定位器

Similar Documents

Publication Publication Date Title
US20200229904A1 (en) Dental implant
AU2019203708B2 (en) Dental implant with improved prosthetic interface
EP3539504B1 (en) Condensing skeletal implant that facilitates insertion
US5759035A (en) Bone fusion dental implant with hybrid anchor
JP4278305B2 (ja) インプラント
RU2612487C2 (ru) Зубной имплантат
KR101646603B1 (ko) 소형 치과 임플란트
EP2521510B1 (en) Dental implant with an improved structure
JP4212239B2 (ja) 歯科用インプラント
US20120178048A1 (en) Dental implant with multiple thread patterns
US20140087331A1 (en) Dental implant having a first, conical, screw part and a second, cylindrical, screw part
US20120237898A1 (en) Multi-stage dental implant
EP2145600A1 (en) Improved fixture of two-piece dental implants
JPS618043A (ja) 義歯保持体を取付けるための顎骨内植込み子
JP2004538084A (ja) インプラント、インプラントを含む配置およびインプラントを骨組織に挿入する方法
US20100304335A1 (en) Post-extraction dental implant
WO2014083614A1 (ja) インプラントねじ
WO2012059908A1 (en) Multi-threaded dental implant
US20130344458A1 (en) Process for securing a dental implant and dental implant
WO2013186765A1 (en) Modular dental implant
US20230157793A1 (en) Dental implant
RU2593349C1 (ru) Разборный дентальный имплантат
US20190336250A1 (en) Dental implant
RU2314059C1 (ru) Винтовой стоматологический имплантат
JP2011135975A (ja) 歯科用インプラントのフィクスチャー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP