WO2014083609A1 - 整流装置の製造方法及び整流装置 - Google Patents

整流装置の製造方法及び整流装置 Download PDF

Info

Publication number
WO2014083609A1
WO2014083609A1 PCT/JP2012/080593 JP2012080593W WO2014083609A1 WO 2014083609 A1 WO2014083609 A1 WO 2014083609A1 JP 2012080593 W JP2012080593 W JP 2012080593W WO 2014083609 A1 WO2014083609 A1 WO 2014083609A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
heat sink
rectifying element
fitting
hole
Prior art date
Application number
PCT/JP2012/080593
Other languages
English (en)
French (fr)
Inventor
横山 正
篤哉 岩本
清作 今川
俊之 大西
譲 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12889352.6A priority Critical patent/EP2928058B1/en
Priority to JP2014549662A priority patent/JP5972396B2/ja
Priority to CN201280077181.7A priority patent/CN104798295B/zh
Priority to PCT/JP2012/080593 priority patent/WO2014083609A1/ja
Priority to US14/411,597 priority patent/US10069432B2/en
Publication of WO2014083609A1 publication Critical patent/WO2014083609A1/ja
Priority to US16/046,535 priority patent/US10263531B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4093Snap-on arrangements, e.g. clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to a rectifier manufacturing method and a rectifier including a rectifying element that is press-fitted and held in a heat radiating heat sink. It is suitable for application to a generator.
  • the outer diameter of the cylindrical heat sink of the rectifying element is set to be the heat radiating heat sink so that the rectifying element does not fall off from the heat radiating heat sink after press fitting.
  • the press-fitting allowance is provided to be larger than the inner diameter of the press-fitting hole formed in.
  • the inner diameter of the press-fitting hole is gradually reduced in the press-fitting direction (from one side to the other), and the (cylindrical or cylindrical) heat sink of the diode is deformed obliquely (conically) along the inner peripheral surface of the press-fitting hole.
  • Patent Document 1 FIG. 3
  • a press-fitting rod having a flat tip surface is press-fitted with a load evenly applied to the pressing surface.
  • the tip surface of the press-fitting jig is a spherical concave surface, and is mainly brought into contact with the outer peripheral portion of the pressing surface to suppress deformation of the rectifying element.
  • the taper of the diode receiving side press-fitting hole is 0.2 to 2.5 degrees, preferably 0.3 to 2 degrees, so that the diode is joined without exceeding the maximum allowable pressure input (Patent Document 2 and FIG. 2).
  • the diode outer peripheral knurl is considerably deformed at a large depth on the small diameter side of the diode receiving side press-fitting hole.
  • the press-fitting process is controlled by considering the offset degree and the pressing force.
  • the inner peripheral surface of the press-fitting hole of the radiating fin is tapered so that the inner diameter on the press-fitting start side is larger than the inner diameter on the counter-pressing start side (Patent Documents 3 and 5).
  • the inner diameter of the press-fitting hole of the radiating fin is constant, and the outer diameter of the outer peripheral surface of the rectifying element subjected to knurling is configured to be smaller on the driving start side than on the counter driving side (Patent Documents 3 and 3). This prevents a decrease in heat dissipation due to a decrease in contact area due to galling on the press-fitting start side and a decrease in thermal fatigue life of the element.
  • the radial height of the knurled large-diameter convex portion is made lower on the side opposite to the driving side than the driving start side, and the large-diameter convex portion is formed at the time of driving (start). In this way, the heat sink fin is driven well while being deformed.
  • the receiving hole is formed by a punching die formed on an aluminum plate having a thickness of about 6 mm, and a diode is press-fitted.
  • the contact range between the diode and the aluminum plate is relatively small (Patent Document 4, FIG. 6).
  • the punched member can be recycled if it is normal.
  • Patent Document 5 the press-fitting member and the press-fitting member are sandwiched between the upper presser part and the lower presser part, and the lower presser part is brought into contact with the press-fitting member from below to raise the press-fitting member.
  • a method of press-fitting into a member is shown.
  • the upper pressing portion is provided with a centering pin whose outer peripheral surface is tapered, and the centering pin is engaged with the press-fitting hole of the press-fitted member.
  • Japanese Patent No. 3675767 (FIG. 3) German Patent Invention DE 10 2006 019 315A1 specification (Fig. 2) Japanese Patent No. 4626665 (FIGS. 3 and 5) US Patent No. US 6,476,527B2 (FIG. 6) Japanese Patent No. 4122907
  • the press-fit holes in many conventional examples have a desired shape obtained by processing the inner peripheral edge thereof. This is because of the necessity of holding the rectifying element so as to withstand the vibration applied thereto, and the necessity of positional accuracy for the subsequent electrical connection. In processing, the material removed by cutting is wasted and the manufacturing process increases. For example, as the processing steps of the inner peripheral edge portion of the press-fitting hole, four steps of (a) processing with a cutter, (b) face removal processing, (c) processing fluid processing (cleaning), and (d) confirmation can be considered. In particular, in a model using twelve rectifying elements including one on the positive electrode side and one on the negative electrode side per generator, the number of man-hours is large. In addition, the processing liquid cannot be easily discarded, and energy is required for the processing, which is against the global environment protection such as CO 2 reduction in recent years.
  • the hole cross section has a convex shape only at the center as shown in FIG. 6, for example, and the range is not suitable for holding and contacting. Always occurs. Since only a part of the base of the diode is in contact, the heat dissipation efficiency is low, and it cannot cope with the recent trend of higher efficiency and higher output. In addition, if a complicated shape such as a large number of fins for improving generator cooling performance is to be obtained with a punching die, each must be punched with a separate die, and the productivity is extremely inferior, making it difficult to employ.
  • the present invention provides a rectifier manufacturing method and a rectifier that reduce the number of processing steps and cost. Moreover, the manufacturing method of the reliable rectifier which does not apply an excessive load to the semiconductor pellet of a rectifier is provided.
  • the method of manufacturing a rectifier according to the present invention includes a rectifying element having a cylindrical heat sink and mounted with a semiconductor pellet for converting an alternating current into a direct current into a press-fitting hole of a heat radiating heat sink, and the shaft of the rectifying element and the press-fitting hole.
  • a load receiving jig, and the shaft of the rectifying element of the insertion guide is aligned with the shaft of the press-fitting hole of the heat sink, and the press-fitting head is moved to the heat sink.
  • the heat-dissipating heat sink is sandwiched between the press-fitting head and the insertion guide, and the protruding portion of the load receiving jig is opposed to the cylindrical heat sink of the rectifying element in the through hole of the insertion guide.
  • the head is pressed around the press-fitting hole of the heat radiating heat sink, the load applied to the cylindrical heat sink of the rectifying element is received by the protruding portion of the load receiving jig, and the rectifying element is press-fitted into the press-fitting hole of the heat radiating heat sink. Is.
  • the load receiving jig has an annular receiving surface having a concave portion at a central portion at a tip portion of the protruding portion, and the rectifying element is formed on the annular receiving surface. The load applied to the outer peripheral edge portion of the cylindrical heat sink is received.
  • the rectifying device of the present invention has a cylindrical heat sink, a lead at one end, and a rectifying element equipped with a semiconductor pellet for converting an alternating current into a direct current, and
  • the inner peripheral surface of the press-fitting hole of the heat dissipation heat sink is a casting skin surface
  • the outer peripheral part of the columnar heat sink of the rectifying element is A knurl is provided, and the height of the knurl from the valley of the knurl is 1 ⁇ 2 or more of the press-fit hole diameter tolerance of the heat sink.
  • the rectifier manufacturing method includes the heat dissipation heat sink having the press-fitting hole whose inner peripheral surface is a cast skin surface, the press-fitting head is opposed to the heat-dissipation heat sink, and the heat dissipation heat sink is the press-fitting head.
  • the protruding portion of the load receiving jig is opposed to the cylindrical heat sink of the rectifying element of the through hole of the insertion guide, and the press-fitting head presses the periphery of the press-fitting hole of the heat sink.
  • the load receiving jig has an annular receiving surface having a concave portion at a center portion at a tip portion of the protruding portion, and the rectifying is performed on the annular receiving surface. Since the load applied to the outer peripheral edge of the columnar heat sink of the element is received, a reliable method of manufacturing a rectifier that does not apply an excessive load to the semiconductor pellet of the rectifier element can be obtained.
  • an inner peripheral surface of the press-fitting hole of the heat radiating heat sink is a cast skin surface, and a knurl is provided on an outer peripheral portion of the columnar heat sink of the rectifying element, Since the height from the trough is 1/2 or more of the press-fit hole diameter tolerance of the heat dissipation heat sink, the cylindrical heat sink can be stably held in the press-fit hole formed by the casting skin surface, and the contact area is also stable. Thus, a highly reliable rectifier can be obtained, and the rectifier has a reduced number of processing steps and cost.
  • FIG. 5 is an assembly schematic diagram in the exploded perspective view of the main part of FIG. 4.
  • FIG. 5 is an assembly schematic diagram in the exploded perspective view of the main part of FIG. 4.
  • FIG. 6 is a process cross-sectional view illustrating the assembly of the rectifying element to the heat dissipation heat sink in the first embodiment.
  • FIG. 2 is a schematic diagram for explaining the relationship between a knurl of a cylindrical heat sink of the rectifying element and a press-fitting hole of the heat sink in Embodiment 1, and a schematic cross-sectional view perpendicular to the axis.
  • FIG. 3 is a schematic diagram for explaining a relationship between a knurl of a cylindrical heat sink of the rectifying element and a press-fitting hole of the heat radiating heat sink in the first embodiment, and is a cross-sectional view parallel to the axis.
  • FIG. 3 is a schematic diagram illustrating details of a knurl portion of a cylindrical heat sink in the first embodiment.
  • FIG. 1 is a cross-sectional view showing a vehicular AC generator to which a rectifier according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a rear view showing a mounted state of the rectifier in the vehicular AC generator. Indicates the removed state.
  • FIG. 3 is an exploded perspective view of the rectifier of FIG.
  • the vehicle alternator 1 in FIG. 1 includes a casing 4 made of a substantially bowl-shaped aluminum front bracket 2 and rear bracket 3.
  • the vehicle alternator 1 includes a shaft 6 rotatably supported by a casing 4 via a pair of bearings 5, and a pulley 7 fixed to an end of the shaft 6 extending to the front side of the casing 4.
  • the pair of slip rings 15 that are fixed to the stator 12 and the extending portion of the shaft 6 that extends to the rear side of the casing 4 and supplies current to the rotor 8, and slide on the surface of each slip ring 15.
  • a pair of brushes 16 and a brush holder 17 that accommodates these brushes 16 are provided.
  • the vehicle alternator 1 is attached to a heat sink 18 disposed on the outer diameter side of the brush holder 17, a voltage adjusting device 19 that adjusts the magnitude of the AC voltage generated in the stator 12, a battery, and the like.
  • a protective cover 25 attached to the rear bracket 3 so as to cover the brush holder 17, the voltage adjusting device 19, and the rectifying device 21.
  • the rotor 8 is a Landel-type rotor, and is provided with a field winding 9 that generates a magnetic flux when an excitation current is passed, and a pole core 10 that is provided so as to cover the field winding 9 and forms a magnetic pole by the magnetic flux. It has.
  • the stator 12 is wound around a cylindrical stator iron core 13 and the stator iron core 13, and an AC electromotive force is induced by a change in magnetic flux from the field winding 9 as the rotor 8 rotates. And a stator winding 14.
  • the stator 12 is disposed so as to surround the rotor 8 with the stator iron core 13 sandwiched between the opening ends of the front bracket 2 and the rear bracket 3 from both axial ends.
  • the rectifier 21 (FIGS. 2 and 3) includes a positive heat sink 22 on which a plurality of positive rectifier elements 22a are mounted, a negative heat sink 23 on which a plurality of negative rectifier elements 23a are mounted, and a circuit board. 24.
  • the circuit board 24 is sandwiched between the positive-side heat sink 22 and the negative-side heat sink 23, and is configured in a substantially C shape in the axial direction.
  • the positive side rectifying element 22a and the negative side rectifying element 23a are connected via the circuit board 24 so as to constitute a predetermined bridge circuit. At this time, as shown in the exploded view of FIG.
  • the positive side heat sink 22, the circuit board 24, and the negative side heat sink 23 are laminated around the shaft 6 with the leads 28 of the rectifying elements 22 a and 23 a extending long.
  • the lead 28 is electrically connected by welding, caulking, or the like at the distal end portion thereof.
  • the rectifying device 21 configured as described above is arranged in a fan shape centered on the shaft 6 on a plane orthogonal to the axis of the shaft 6 on the outer peripheral side of the slip ring 15, and is outside the rear bracket 3 by screws 40. Fastened to the end face. Then, the lead wire 14a (FIG. 1) of the stator winding 14 is drawn from the rear bracket 3 and connected to the terminal of the circuit board 24, and the rectifier 21 and the stator winding 14 are electrically connected.
  • FIG. 4 is an exploded perspective view of the main part around the rectifying element of the rectifying device of FIG.
  • the heat sinks 22 and 23 of the rectifier are press-fitted with respective cylindrical heat sinks 27 (described later) of the rectifier elements 22a (23a), as partially shown in the sectional view of FIG.
  • This is a cast part comprising a flat plate portion (flat plate portion) 22b (23b) and a plurality of fins 22c (23c) extending integrally from the flat plate portion.
  • the rectifying element 22a (23a) has a cylindrical heat sink 27 at one end, an electrical lead (lead wire) at the other end, and converts alternating current into direct current within the outer peripheral edge. Semiconductor pellets are mounted.
  • FIG. 5 is a cross-sectional view of an example of a rectifying element that can be applied to the first embodiment.
  • the columnar heat sink 27 has a knurl 27b (FIG. 8) on the outer peripheral portion, and the outer peripheral edge portion 27a on the bottom surface is formed in an annular plane.
  • the annular flat surface of the outer peripheral edge portion 27a is a portion with which an annular receiving surface of a load receiving jig 101 (described later) comes into contact.
  • the upper outer peripheral edge 27c is also formed in an annular plane.
  • a concave portion 27d is formed in the upper half of the central portion away from the outer peripheral edge in the vertical direction, and the semiconductor pellet 31 is mounted in the concave portion 27d.
  • the semiconductor pellet 31 is fixedly connected to the bottom of the recess 27 d of the cylindrical heat sink 27 with a solder layer 32, and fixedly connected to the lead 28 with a solder layer 33.
  • Reference numeral 34 denotes a protective layer made of resin or silicon rubber to protect the semiconductor pellet 31.
  • the flat plate portion 22b (23b) has an axial dimension L sufficient for holding the rectifying element 22a (23a) to be press-fitted and conducting heat with the cylindrical heat sink 27 of the rectifying element.
  • a plurality of fins 22c (23c) extend in the axial direction from at least one end face of the flat plate portion 22b (23b), have a dimension larger than the axial dimension L, are provided for heat dissipation, and a plurality are arranged at a predetermined pitch in the circumferential direction.
  • the A rectifying element 22a (23a) is mounted in each of the plurality of press-fit holes 26 provided in the flat plate portion 22b (23b) so that the centers of the cylindrical heat sink 27, the lead 28, and the press-fit holes 26 are aligned.
  • the press-fit holes 26 are not processed, and the flat plate portions 22b (23b) and the fins 22c (23c) are basically commercialized in a shape obtained by a casting mold while the cast skin surface remains unchanged.
  • FIG. 6 is an assembly schematic diagram in an exploded perspective view of the main part around the rectifying element shown in FIG.
  • FIG. 7 is a process cross-sectional view illustrating the assembly of the rectifying element to the heat dissipation heat sink in the first embodiment.
  • the outer peripheral edge portion 27a of the bottom surface of the cylindrical heat sink 27 is received from below by the annular receiving surface 101a of the load receiving jig 101 and the non-insertion of the press-fit hole 26 through which the lead 28 is penetrated.
  • the flat plate portion 22b is pushed downward by the press-fitting jig from the opposite surface side ("press-fit operation side" in FIG. 6).
  • the press-fitting head 102a of the press-fitting jig is a cylindrical body having, for example, a cylindrical hollow hole so as not to buffer the lead 28.
  • the press-fitting head press-fitting marks 30 having a ring shape and a width W are left on the flat plate portion 22b on the press-fitting operation side.
  • the assembly process will be described with reference to FIGS. FIG. 7A:
  • the rectifying element 22a is held by the through hole 103a of the insertion guide 103 with the cylindrical heat sink 27 (the outer peripheral edge 27a in FIG. 5) side as the bottom, and the lead 28 of the rectifying element 22a is press-fitted.
  • the rectifying element 22a is guided so that the axis of the rectifying element 22a is aligned with the axis of the press-fitting hole 26 of the opposing heat radiating heat sink 22, and the flat plate portion 22b of the radiating heat sink 22 is placed on the insertion guide 103. To place.
  • the load receiving jig 101 is disposed below, and the press-fitting head 102a is disposed on the upper side so that the respective axes are opposed to the axis of the rectifying element 22a.
  • FIG. 7B The press-fitting head 102 a is lowered, the heat radiation heat sink 22 is sandwiched between the insertion guide 103, and the heat radiation heat sink 22 is fixed at a predetermined position on the insertion guide 103. At this time, the cylindrical hollow hole of the press-fitting head 102a faces the press-fitting hole 26 of the heat dissipation heat sink 22, and the lead 28 of the rectifying element 22a protrudes into the cylindrical hollow hole.
  • FIG. 7C The insertion guide 103, the flat plate portion 22b, and the press-fitting head 102a in a state where the rectifying element 22a is guided are lowered integrally, and the outer peripheral edge portion 27a on the bottom surface of the cylindrical heat sink 27 is moved to the circle of the load receiving jig 101. Opposing and abutting against the annular receiving surface 101a.
  • FIG. 7D Until the bottom surface of the insertion guide 103 comes into contact with the axial positioning surface 101b of the shoulder portion of the load receiving jig 101, the press-fitting hole 26 of the flat plate portion 22b is formed on the annular surface at the lower end of the press-fitting head 102a.
  • the flat plate portion 22b and the insertion guide 103 are pressed and loaded. At this time, the load applied to the outer peripheral edge portion 27 a of the bottom surface of the cylindrical heat sink 27 is received by the annular receiving surface 101 a of the load receiving jig 101. As a result, the rectifying element 22 a is press-fitted into the press-fitting hole 26.
  • the insertion guide 103 suppresses the inclination of the rectifying element 22a, and oblique press-fitting is avoided.
  • the used load receiving jig 101 has a ring-shaped receiving surface 101a having a protruding portion formed at one end and a concave portion at the center at the tip of the protruding portion.
  • An annular receiving surface 101a of the load receiving jig 101 is an annular plane.
  • the annular receiving surface 101 a having this annular plane receives a load applied to the outer peripheral edge portion 27 a of the bottom surface of the cylindrical heat sink 27.
  • An axial positioning surface 101b is provided on the shoulder portion of the projecting portion having the annular receiving surface 101a, and the distance between the annular receiving surface 101a and the axial positioning surface 101b is the insertion guide shaft length, the heat sink heat sink plane portion axis.
  • the rectifying element 22a is set to a desired depth in the press-fitting hole 26 of the heat sink 22 by pressing until the bottom surface of the insertion guide 103 comes into contact with the axial positioning surface 101b. Press fit.
  • the rectifying element 22a is held by the through hole 103a of the insertion guide 103 with the cylindrical heat sink 27 (the outer peripheral edge 27a in FIG. 5) side as the bottom side.
  • the rectifying element 22a may be held by the through-hole 103a of 103, with the lead 28 disposed below and the outer peripheral edge 27c (FIG. 5) side of the cylindrical heat sink 27 facing the bottom.
  • a cylindrical hollow hole is formed in the shaft part of the load receiving jig 101 having a protruding part formed at one end so that the lead 28 of the rectifying element 22a protrudes into the cylindrical hollow hole.
  • the load applied to the outer peripheral edge portion 27c of the cylindrical heat sink 27 is received by the annular receiving surface 101a of the load receiving jig 101.
  • the rectifying element 22a press-fitted into the heat sink 22 by the assembly process described above can ensure the positional accuracy required for connection with an insert terminal (not shown) of the circuit board 24.
  • the tip of the press-fitting head 102a is a flat annular surface, and since the press-fitting hole is not pressed from above with a tapered outer peripheral slope like the centering pin shown in Patent Document 5, the press-fitting hole does not tilt left and right. The verticality of the press-fit hole can be secured.
  • the heat sink 22 is sandwiched between the press-fitting head 102a and the insertion guide 103 from above and below and moved to the press-fitting process, the heat sink 22 is not likely to be deformed even with a press-fit load reaching 10000 N (1000 kgf).
  • the upper surface of the press-fit member is not necessarily pressed by a flat surface, and there is a high possibility that the centering pin will sunk into the hole or the press-fit member is bent, and reliability cannot be ensured.
  • the flat insertion guide 103 (perpendicular to the axis) and the axial direction of the load receiving jig 101 are made parallel to the flat plate portion 22b of the heat sink 22 having a plane perpendicular to the press-fitting hole 26.
  • the tip height (relative height) of the lead 28 of the rectifying element 22a is stabilized, and the subsequent electrical connection lead Bonding defects are suppressed.
  • the press-in depth can be easily controlled.
  • the accuracy of the press-fitting hole 26 used in the above (casting surface) is lower than that by processing and higher than that by punching. That is, it does not require energy during processing, and can be provided with a hole with moderate accuracy by a complex multiple fin integrated heat sink.
  • FIG. 8 is a schematic diagram for explaining the relationship between the knurl 27b of the cylindrical heat sink 27 of the rectifying element 22a and the press-fitting hole 26 of the heat dissipation heat sink 22 in the first embodiment, and is a schematic cross-sectional view perpendicular to the axis.
  • FIG. 9 is a schematic view for explaining the relationship between the knurl 27b of the cylindrical heat sink 27 of the rectifying element 22a and the press-fitting hole 26 of the heat dissipation heat sink 22 in the first embodiment, and is a cross-sectional view parallel to the axis.
  • C ⁇ b> 1 is the central axis of the press-fitting hole 26
  • D is the inner diameter of the press-fitting hole 26
  • h is the height from the valley of the knurl 27 b of the cylindrical heat sink 27.
  • a knurl 27 b is provided on the outer peripheral portion of the cylindrical heat sink 27.
  • the standard to be specified is a configuration corresponding to the minimum inner diameter dimension Dmin to the maximum inner diameter dimension Dmax of the inner diameter D including the gradient and tolerance due to the casting mold in the press-fitting hole 26 of the heat sink 22, and from the mountain valley of the knurle 27b.
  • the cylindrical heat sink 27 is stably press-fitted into the press-fitting hole 26 formed by the casting surface.
  • a highly reliable rectifier that can be held and has a stable contact area can be obtained.
  • the diameter of the valley of the knurl 27b is smaller than the minimum inner diameter Dmin of the press-fit hole 26 of the heat sink 22, and the diameter of the peak is larger than the maximum inner diameter Dmax of the press-fit hole 26 of the heat sink 22. Yes. That is, the press-fitting is completed only by the deformation of the mountain of the nar 27b.
  • Patent Document 1 the outer peripheral wall portion is not obliquely deformed as the diode heat sink itself is deformed, and the influence on the semiconductor pellet mounted on the rectifying element 22a is minimized.
  • the taper configuration of Patent Documents 2 and 3 was intended to eliminate damage to the inner peripheral surface of the mounting hole due to squeezing at the press-fitting tip and the press-fitting start side. In addition, it is possible to reduce cracks and chips on the entire inner surface of the press-fitting hole 26 by making contact only with the knurl portion. Furthermore, since the knurles 27b themselves are not large and small in the axial direction, they can be manufactured by a normal manufacturing method, and it is only necessary to change the dimension designation.
  • the knurls 27b applied to the outer peripheral portion are also arranged uniformly on the outer peripheral portion. It is preferable to avoid the risk of being pressed in with respect to the press-fitting hole 26.
  • the distortion analysis result for the semiconductor pellet mounted on the rectifying element 22a was also good with almost no distortion.
  • the knurl 27b shown in FIG. 8 is schematic and a detailed example is shown in FIG. 10, FIG. 10 is the schematic which shows the detail of the knurl 27b of the cylindrical heat sink 27 in Embodiment 1.
  • FIG. n is the number of hills of Nar. It is preferable that the knurl portion is constituted by an arc. With this shape, both contact areas can be stably obtained, and variations and reductions in heat dissipation efficiency can be reduced.
  • the height of the knurl to the standard defined above, it is possible to cope with a change in the dimensions of the environment on the press-fitting hole 26 side.
  • the aluminum linear expansion coefficient of the heat sink 22 is 23.6 ⁇ 10 ⁇ 6 mm / K and the temperature change is 200 Kelvin
  • a deformation of 23.6 ⁇ 10 ⁇ 6 ⁇ 200 4.72 ⁇ m is predicted.
  • the holding force becomes unstable.
  • a good result was obtained by setting the knurl height to a value of 4.72 ⁇ m ⁇ 20 times or more with respect to the deformation allowance as described above.
  • Quality control as a product in which the cylindrical heat sink 27 precisely defined in the above-described standard is press-fitted into the press-fitting hole 26 of the heat radiation heat sink 22 having a draft by a casting mold is performed by the final press-fitting load in the step of FIG. Perform by detection. That is, the contact between the insertion guide 103 and the axial positioning surface 101 b of the load receiving jig 101 is detected by a press-fit load that press-fits the rectifying element 22 a into the press-fit hole 26 of the heat sink 22. Monitor the load during press-fitting.
  • the distance between the annular receiving surface 101a of the load receiving jig 101 and the axial positioning surface 101b is set to a desired value in consideration of the insertion guide shaft length and the heat sink flat plate portion axial length. Only by load management, the heat radiation heat sink 22 in which the rectifying element press-fitting is completed at a certain axial position can be obtained.
  • the press-fitting hole 26 side of the heat radiating heat sink 22 has no management or additional processing beyond the finished product.
  • the control is mainly performed by the press-fitting load. Quality maintenance is easy.
  • the projecting portion of the load receiving jig 101 is an annular receiving surface 101a having a concave portion at the center thereof, the range in which the semiconductor pellet is mounted (the outer surface where the annular receiving surface 101a of the columnar heat sink 27 of the rectifying element hits) The center part excluding the peripheral part) is not subjected to press-fitting load from the back side, and it does not affect the semiconductor pellets. it can. For this reason, there is no problem that “cass” is caught in the production line. Since the annular upper surface is flat, the annular receiving surface 101a causes non-uniform contact that is likely to occur at the time of contact with the outer peripheral portion of the pressing surface in the spherical concave press-fitting jig shown in Patent Document 1.
  • the range of the annular receiving surface 101a of the load receiving jig 101 is only the central portion aiming at preventing tilting or only the outer diameter portion, distortion is inevitably applied to the cylindrical heat sink 27. It is desirable to receive a wide range from the outside diameter of the pellet to the full diameter of the press-fitting hole. Therefore, in the load receiving jig 101, the outer diameter of the annular receiving surface 101 a that presses the outer peripheral edge portion 27 a of the cylindrical heat sink 27 of the rectifying element 22 a is substantially the same as the inner diameter of the through hole of the insertion guide 103. It is not good.
  • the processing process of the inner periphery of the press-fitting hole 26 becomes unnecessary, and energy required for processing can be saved for processing waste liquid that cannot be discarded as it is. It is not necessary to use the power required to recycle the punched out parts, making it more environmentally friendly.
  • the present invention is not limited to this example.
  • the upper half as a cylindrical component for tilt prevention and the outer peripheral edge 27a of the bottom surface of the columnar heat sink 27 are supported. It is possible to appropriately select a type in which the lower half of the supporting component is configured separately.
  • the configuration around the press-fitting head 102a is not limited to the cylindrical shape as shown in the figure, and a centering mechanism for aligning the rectifying element inside the cylinder to improve the assembling accuracy is possible.
  • the front end surface of the press-fitting head 102a is formed in an annular shape, the shape of other parts is not limited.
  • the embodiments can be appropriately modified and omitted within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Rectifiers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 内周面が鋳造肌面である圧入孔を有する放熱ヒートシンクを備え、前記圧入孔の軸に、挿入ガイドの整流素子の軸を合わせると共に、圧入ヘッドを前記放熱ヒートシンクに対向させて、前記放熱ヒートシンクを前記圧入ヘッドと前記挿入ガイドで挟み、前記挿入ガイドの前記整流素子に荷重受け治具の突出部を対向させ、前記圧入ヘッドで前記放熱ヒートシンクの圧入孔の周囲を押圧し、前記荷重受け治具の突出部で前記整流素子にかかる荷重を受けて、前記整流素子を前記放熱ヒートシンクの圧入孔に圧入する。

Description

整流装置の製造方法及び整流装置
 この発明は、放熱ヒートシンクに圧入保持される整流素子を備える整流装置の製造方法と整流装置に関するもので、特に、整流素子の放熱ヒートシンクへの圧入方法に係わり、車両等に搭載される車両用交流発電機に適用して好適なものである。
 従来の整流装置、特に、車両に搭載中に振動を常に受ける整流装置においては、圧入装着後に整流素子が、放熱ヒートシンクから脱落しないようにするため、整流素子の円柱状ヒートシンクの外径を放熱ヒートシンクに形成される圧入孔の内径より大きくして、圧入代を設けている。この際、押圧面である整流素子の円柱状ヒートシンクの底外面に高荷重を加えることとなり、円柱状ヒートシンク底内面に備える半導体ペレットが変形する課題がある。
 前記課題に対する対策として考えられる手法には、下記のようなものが挙げられる。
1.圧入孔の内径を圧入方向に(一方側から他方側に)漸減する構成とし、圧入孔の内周面に沿って、ダイオードの(円筒又は円柱状)ヒートシンクを斜めに(円錐状に)変形させ(特許文献1,図3)、先端面が平面である圧入棒で押圧面に均等に荷重をかけて圧入する。あるいは、圧入治具の先端面を球状凹面とし、押圧面の外周部と主に接触させ、整流素子の変形を抑制する。
2.ダイオード受け側圧入孔のテーパは0.2から2.5度、好ましくは0.3から2度とすることで最大許容圧入力を超えることなくダイオードを接合する(特許文献2,図2)。ダイオード外周ローレットは、ダイオード受け側圧入孔の小径側で、大きい深さでかなり変形する。圧入工程は、オフセット度合いと押力とを考慮することで制御する。
3.放熱フィンの圧入孔内周面をテーパ形状にして、圧入開始側の内径を反圧入開始側の内径より大きくする(特許文献3,図5)。又は、放熱フィンの圧入孔の内径は一定で、ローレットを施した整流素子の外周面の外径が、打ち込み開始側が反打ち込み側より小さい構成とする(特許文献3,図3)。これらにより圧入開始側のかじりなどによる接触面積減少による放熱性の低下や、素子の熱疲労寿命低下を防止している。特許文献3の図3では、前述と同時に、ローレット形状の大径凸部の径方向高さを、打ち込み開始側よりも反打ち込み側の方を低くさせ、打ち込み(開始)時に大径凸部が、より変形しつつ放熱フィンになじみよく打ち込まれるものである。
4.受け孔を、厚さ6mm程のアルミ板材に施す抜き型による構成とし、ダイオードを圧入する。ダイオードとアルミ板材との接触範囲が比較的小さい(特許文献4,図6)。打ち抜いた部材は通常であればリサイクルが可能である。
 一方、特許文献5には、上側押え部と下側押え部とで被圧入部材及び圧入部材を挟持し、下側押え部を下から圧入部材と当接させて上昇させ、圧入部材を被圧入部材に圧入する工法が示される。被圧入部材の位置決め精度向上のために、上側押え部には、外周面がテーパ状にされたセンタリングピンを設け、そのセンタリングピンを被圧入部材の圧入孔と係合させる構成である。
特許第3675767号公報(図3) 独国特許発明第DE 10 2006 019 315A1号明細書(図2) 特許第4626665号公報(図3,図5) 米国特許第US 6,476,527B2号明細書(図6) 特許第4122907号公報
 従来の多数の例にある圧入孔は、その内周縁部を加工して所望の形状を得ている。それは、整流素子を、それに加わる振動に耐え得るよう保持する必要性と、その後の電気的接続のための位置精度の必要性とからである。加工では、切削除去分の材料が無駄であり、製造工程も増加する。例えば、圧入孔の内周縁部の加工工程として、(a)刃物で加工、(b)切子の除去処理、(c)加工液の処理(洗浄)、(d)確認の4工程が考えられる。特に発電機1台あたり整流素子を正極側と負極側合わせて12個用いる機種においては、多大な工数となってしまっていた。また、加工液については容易に廃棄ができず、処理に別にエネルギーが必要となり、近年のCO削減などの地球環境保護に反するものとなっている。
 前述の特許文献1ないし3に示される、圧入孔の圧入方向に所望のテーパを設ける場合でも、基本的には同じである。ヒートシンク成形後に、圧入孔内周縁部に切削加工を施し、安定したテーパ面を得て、整流素子の保持と位置精度を確保すると考えられる。特許文献3の図3に示される、整流素子のローレット側でテーパ形状を備える場合、通常製造メーカから入手する共通部品である整流素子(ダイオード)は、その製造手法からもテーパ形成は容易でなく、個別仕様・個別製法を指定することとなり、大量生産品である発電機の部品としては、汎用性に欠け、製造コストが低減できない問題が考えられる。
 また、特許文献4に示される抜き型による孔構成では、孔断面が、例えば図6に示されるような中央部のみ凸形状などであり、どうしてもダレ等ができ、保持や接触に適しない範囲が必ず生じる。ダイオードのベースの一部分しか接触しないため放熱効率が低く、近年の高効率化、高出力化の流れに対応できないものとなっている。また、発電機冷却性を改善する多数枚のフィンなど、複雑な形状を抜き型で得ようとすると、それぞれを別体の型で打ち抜くしかなく、生産性が極端に劣るため、採用し難い。
 この発明は、前述の問題点に鑑み、加工工程数とコストを低減する整流装置の製造方法及び整流装置を提供するものである。また、整流素子の半導体ペレットに過度な荷重をかけない、信頼性のある整流装置の製造方法を提供するものである。
 この発明の整流装置の製造方法は、円柱状ヒートシンクを有し、交流電流を直流電流に変換する半導体ペレットを搭載した整流素子を、放熱ヒートシンクの圧入孔に、前記整流素子の軸と前記圧入孔の軸を合わせて圧入する整流装置の製造方法において、内周面が鋳造肌面である前記圧入孔を有する前記放熱ヒートシンクと、前記放熱ヒートシンクに荷重をかける圧入ヘッドと、貫通孔を有しその貫通孔で前記整流素子を保持し、対向する前記放熱ヒートシンクの圧入孔の軸に、前記整流素子の軸を合わせるように、前記整流素子をガイドする挿入ガイドと、突出部が一端部に形成された荷重受け治具とを備え、前記放熱ヒートシンクの圧入孔の軸に、前記挿入ガイドの整流素子の軸を合わせると共に、前記圧入ヘッドを前記放熱ヒートシンクに対向させて、前記放熱ヒートシンクを前記圧入ヘッドと前記挿入ガイドで挟み、前記挿入ガイドの貫通孔の前記整流素子の前記円柱状ヒートシンクに前記荷重受け治具の突出部を対向させ、前記圧入ヘッドで前記放熱ヒートシンクの圧入孔の周囲を押圧し、前記荷重受け治具の突出部で前記整流素子の前記円柱状ヒートシンクにかかる荷重を受け、前記整流素子を前記放熱ヒートシンクの圧入孔に圧入するものである。
 また、この発明の整流装置の製造方法は、前記荷重受け治具が、その突出部の先端部に、中央部に凹部がある円環状受け面を有し、前記円環状受け面で前記整流素子の前記円柱状ヒートシンクの外周縁部にかかる荷重を受けるものである。
 また、この発明の整流装置は、円柱状ヒートシンクを有し、一端部にリードを有し、交流電流を直流電流に変換する半導体ペレットを搭載した整流素子が、放熱ヒートシンクの圧入孔に、前記整流素子の軸と前記圧入孔の軸を合わせて圧入された整流装置において、前記放熱ヒートシンクの前記圧入孔の内周面が鋳造肌面であり、前記整流素子の円柱状ヒートシンクの外周部には、ナールを設け、前記ナールの山の谷からの高さは、前記放熱ヒートシンクの圧入孔孔径公差の1/2以上である。
 この発明に係る整流装置の製造方法は、内周面が鋳造肌面である前記圧入孔を有する前記放熱ヒートシンクを備え、前記圧入ヘッドを前記放熱ヒートシンクに対向させて、前記放熱ヒートシンクを前記圧入ヘッドと前記挿入ガイドで挟み、前記挿入ガイドの貫通孔の前記整流素子の前記円柱状ヒートシンクに前記荷重受け治具の突出部を対向させ、前記圧入ヘッドで前記放熱ヒートシンクの圧入孔の周囲を押圧し、前記荷重受け治具の突出部で前記整流素子の前記円柱状ヒートシンクにかかる荷重を受け、前記整流素子を前記放熱ヒートシンクの圧入孔に圧入するので、加工工程数とコストを低減することができる。
 また、この発明に係る整流装置の製造方法は、前記荷重受け治具が、その突出部の先端部に、中央部に凹部がある円環状受け面を有し、前記円環状受け面で前記整流素子の前記円柱状ヒートシンクの外周縁部にかかる荷重を受けるので、前記整流素子の半導体ペレットに過度な荷重をかけない、信頼性のある整流装置の製造方法を得ることができる。
 また、この発明に係る整流装置は、前記放熱ヒートシンクの前記圧入孔の内周面が鋳造肌面であり、前記整流素子の円柱状ヒートシンクの外周部には、ナールを設け、前記ナールの山の谷からの高さは、前記放熱ヒートシンクの圧入孔孔径公差の1/2以上であるので、前記円柱状ヒートシンクを鋳造肌面で構成される圧入孔に安定的に保持でき、接触面積も安定して得られる信頼性の高い整流装置が得られると共に、前記整流装置は加工工程数とコストが低減されたものである。
 この発明の前記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
この発明の実施の形態1による整流装置を適用した車両用交流発電機を示す断面図である。 図1の車両用交流発電機における整流装置の装着状態を示す背面図で、保護カバーを取り除いた状態を示す。 図1の整流装置の分解斜視図で、フィンを省いて示す。 図1の整流装置の整流素子周辺の要部分解斜視図である。 実施の形態1に適用し得る整流素子の一例における断面図である。 図4の要部分解斜視図における組立概略図である。 実施の形態1における、整流素子の放熱ヒートシンクへの組立を示す工程断面図である。 実施の形態1における、整流素子の円柱状ヒートシンクのナールと放熱ヒートシンクの圧入孔との関係を説明する概略図で、軸に直角な概略断面図である。 実施の形態1における、整流素子の円柱状ヒートシンクのナールと放熱ヒートシンクの圧入孔との関係を説明する概略図で、軸に平行な断面図である。 実施の形態1における、円柱状ヒートシンクのナール部の詳細を示す概略図である。
実施の形態1.
 図1はこの発明の実施の形態1による整流装置を適用した車両用交流発電機を示す断面図、図2はこの車両用交流発電機における整流装置の装着状態を示す背面図で、保護カバーを取り除いた状態を示す。図3は図1の整流装置の分解斜視図で、フィンを省いて示す。
 図1の車両用交流発電機1は、それぞれ略椀形状のアルミニウム製フロントブラケット2とリヤブラケット3とからなるケーシング4を備える。車両用交流発電機1は、そのケーシング4に一対の軸受5を介して回転自在に支持されたシャフト6と、そのケーシング4のフロント側に延出するシャフト6の端部に固着されたプーリ7と、シャフト6に固定されてケーシング4内に配設された回転子8と、この回転子8の軸方向の両端面に固定されたファン11と、回転子8を囲むようケーシング4に固定された固定子12と、ケーシング4のリヤ側に延出するシャフト6の延出部に固定され、回転子8に電流を供給する一対のスリップリング15と、各スリップリング15の表面に摺動する一対のブラシ16と、これらのブラシ16を収容するブラシホルダ17とを備える。
 さらに、車両用交流発電機1は、ブラシホルダ17の外径側に配されるヒートシンク18に取り付けられて、固定子12で生じた交流電圧の大きさを調整する電圧調整装置19と、バッテリなどの外部装置(図示せず)との信号の入出力を行うコネクタ20と、リヤブラケット3のリヤ側に配置されて、固定子12で生じる交流起電力を直流の出力電圧に変換する整流装置21と、ブラシホルダ17,電圧調整装置19,整流装置21を覆うようにリヤブラケット3に装着された保護カバー25とを備えている。
 回転子8は、ランデル型回転子で、励磁電流が流されて磁束を発生する界磁巻線9と、界磁巻線9を覆うよう設けられ、その磁束によって磁極が形成されるポールコア10とを備えている。また、固定子12は、円筒状の固定子鉄心13と、固定子鉄心13に巻装され、回転子8の回転に伴い、界磁巻線9からの磁束の変化で交流起電力が誘起される固定子巻線14とを備えている。固定子12は、固定子鉄心13をフロントブラケット2及びリヤブラケット3の開口端に軸方向両端から挟持されて回転子8を取り囲むよう配設されている。
 整流装置21(図2,図3)は、複数個の正極側整流素子22aが実装された正極側ヒートシンク22と、複数個の負極側整流素子23aが実装された負極側ヒートシンク23と、サーキットボード24とを備え、正極側ヒートシンク22と負極側ヒートシンク23との間にサーキットボード24を挟んで積層し軸方向視略C字状に構成されている。そして、正極側整流素子22aと負極側整流素子23aとがサーキットボード24を介して所定のブリッジ回路を構成するように接続される。この際、図3の分解図に示すように整流素子22a、23aのリード28をそれぞれ長く延出させた状態で、正極側ヒートシンク22、サーキットボード24、負極側ヒートシンク23をシャフト6周りに積層し、リード28夫々の先端部において溶接やカシメなどによる電気的接続がされる。
 このように構成された整流装置21は、スリップリング15の外周側に、シャフト6の軸心と直交する平面上にシャフト6を中心とする扇状に配置されて、ネジ40によりリヤブラケット3の外側端面に締着固定されている。そして、固定子巻線14のリード線14a(図1)がリヤブラケット3から引き出されてサーキットボード24の端子に結線され、整流装置21と固定子巻線14とが電気的に接続される。
 図4は図1の整流装置の整流素子周辺の要部分解斜視図である。図4に示されるように、整流装置の放熱ヒートシンク22、23は、図1の断面図内に一部示されるように、整流素子22a(23a)それぞれの円柱状ヒートシンク27(後述)が圧入される平板部(平板状部)22b(23b)と、その平板部から一体に延出する複数のフィン22c(23c)とからなる鋳造製部品である。実施の形態では、整流素子22a(23a)は一端部に円柱状ヒートシンク27を有し、他端部に電気的リード(リード線)を有し、外周縁部内に交流電流を直流電流に変換する半導体ペレットが搭載されている。
 図5は、実施の形態1に適用し得る整流素子の一例における断面図である。整流素子には種々の形体があるが、その一例を示す。円柱状ヒートシンク27は、外周部にナール27b(図8)を有し、底面の外周縁部27aは円環状平面に形成されている。外周縁部27aの円環状平面は、荷重受け治具101(後述)の円環状受け面が当接される部分である。上部の外周縁部27cも円環状平面に形成されている。円柱状ヒートシンク27は上半部に縦方向外周縁部から外れた中央部に凹部27dが形成され、凹部27d内に半導体ペレット31が搭載される。半導体ペレット31は、半田層32で円柱状ヒートシンク27の凹部27dの底に固定接続され、リード28とは、半田層33で固定接続される。34は樹脂あるいはシリコンゴムからなる保護層で半導体ペレット31を保護している。
 図4で、平板部22b(23b)は、圧入される整流素子22a(23a)の保持と、整流素子の円柱状ヒートシンク27との熱伝導に供されるに十分な軸寸法Lを備える。フィン22c(23c)は、平板部22b(23b)の少なくとも一方の端面から軸方向に複数延びて、軸寸法Lより大きい寸法を備え、放熱に供され、周方向に複数が所定ピッチで配される。平板部22b(23b)に設けられる複数の圧入孔26にはそれぞれ整流素子22a(23a)が、円柱状ヒートシンク27、リード28、圧入孔26の中心を一致させて装着される。圧入孔26に加工は施さず、鋳造肌面のままで、基本的に平板部22b(23b)、フィン22c(23c)も鋳造型で得られる形状で製品化される。
 次に、整流素子22a(23a)の放熱ヒートシンク22、23への組立工程を詳述する。便宜のため正極側組立について述べるが、負極側組立についても工程は同様である。図6は図4に示した整流素子周辺の要部分解斜視図における組立概略図である。図7は実施の形態1における、整流素子の放熱ヒートシンクへの組立を示す工程断面図である。
 整流素子22aへの荷重については、円柱状ヒートシンク27の底面の外周縁部27aを下方から荷重受け治具101の円環状受け面101aで受け、かつ、リード28を貫通させた圧入孔26の非対向面側(図6の「圧入動作側」)から平板部22bを圧入治具で下方に押す。圧入治具の圧入ヘッド102aはリード28と緩衝しないよう例えば円柱状中空孔を有した円筒体である。圧入後、圧入動作側の平板部22bにはリング状で幅Wの圧入ヘッド圧入痕30が残される。
 組立工程を、図7(a)から(d)に沿って説明する。
図7(a);挿入ガイド103の貫通孔103aで整流素子22aを、円柱状ヒートシンク27(図5の外周縁部27a)側を底側にして保持し、整流素子22aのリード28を圧入孔26から突出させた状態で、対向する放熱ヒートシンク22の圧入孔26の軸に、整流素子22aの軸を合わせるように、整流素子22aをガイドし、放熱ヒートシンク22の平板部22bを挿入ガイド103上に配置する。下方に荷重受け治具101と、上方に圧入ヘッド102aを、それぞれの軸を、整流素子22aの軸に合わせて対向して配置する。
図7(b);圧入ヘッド102aを下降させ、挿入ガイド103との間で放熱ヒートシンク22を挟み、放熱ヒートシンク22を挿入ガイド103上の所定位置に固定する。このとき、圧入ヘッド102aの円柱状中空孔は放熱ヒートシンク22の圧入孔26に対向し、円柱状中空孔内に整流素子22aのリード28を突出させている。
図7(c);整流素子22aをガイドした状態の挿入ガイド103、平板部22b、圧入ヘッド102aを一体で下降させ、円柱状ヒートシンク27の底面の外周縁部27aを荷重受け治具101の円環状受け面101aに対向させ当接する。
図7(d);荷重受け治具101の肩部の軸方向位置決め面101bに挿入ガイド103の底面が当接するまで、圧入ヘッド102aの下端の円環状面で、平板部22bの圧入孔26の周囲から、平板部22bと挿入ガイド103を押圧し荷重する。このとき、荷重受け治具101の円環状受け面101aで、円柱状ヒートシンク27の底面の外周縁部27aにかかる荷重を受ける。これにより、整流素子22aが圧入孔26に圧入される。挿入ガイド103が整流素子22aの傾きを抑止し、斜め圧入が回避される。
 使用された荷重受け治具101は、一端部に突出部が形成され、その突出部の先端部に、中央部に凹部がある円環状受け面101aを有している。荷重受け治具101の円環状受け面101aは、円環状平面である。この円環状平面を有する円環状受け面101aが、円柱状ヒートシンク27の底面の外周縁部27aにかかる荷重を受ける。円環状受け面101aを有する突出部の肩部には、軸方向位置決め面101bが設けられ、円環状受け面101aと軸方向位置決め面101bとの距離が、挿入ガイド軸長、放熱ヒートシンク平面部軸長を考慮した所望の値に設定され、軸方向位置決め面101bに挿入ガイド103の底面が当接するまで、押圧することにより、整流素子22aが放熱ヒートシンク22の圧入孔26に規定どおりの深さに圧入される。
 なお、前述の、図7(a)で、挿入ガイド103の貫通孔103aで整流素子22aを、円柱状ヒートシンク27(図5の外周縁部27a)側を底側にして保持したが、挿入ガイド103の貫通孔103aで整流素子22aを、リード28を下側に配置し、円柱状ヒートシンク27の外周縁部27c(図5)側を底側にして保持するようにしてもよい。このときは、一端部に突出部が形成された荷重受け治具101には、その軸部に円柱状中空孔を形成して、円柱状中空孔内に整流素子22aのリード28を突出させるようにし、荷重受け治具101の円環状受け面101aで、円柱状ヒートシンク27の外周縁部27cにかかる荷重を受けるようにする。
 前述の組立工程により、放熱ヒートシンク22に圧入された整流素子22aは、サーキットボード24の図示しないインサートターミナルとの接続で要求される位置精度を確保できる。圧入ヘッド102a先端は平面の円環状面で、特許文献5に示されるセンタリングピンのようにテーパ状の外周斜面で圧入孔を上方から押さえることがないので、圧入孔が左右に傾くことがなく、圧入孔の鉛直度を確保できる。また、放熱ヒートシンク22を圧入ヘッド102aと挿入ガイド103で上下から平面で挟み込んで圧入工程に移動させるので、10000N(1000kgf)に達する圧入荷重であっても、放熱ヒートシンク22が変形する恐れが無い。従来のセンタリングピン係合では、被圧入部材の上面が必ず平面で押さえられないこととなり、センタリングピンが孔にめり込んだり、被圧入部材が曲がったりする恐れが高く、信頼性を確保できなかった。
 また、特に、圧入孔26に対して直角平面が出ている放熱ヒートシンク22の平板部22bと平行にされる、例えば平板状挿入ガイド103(軸に直交)、及び荷重受け治具101の軸方向位置決め面101bを、軸方向位置決めに用いることで、あらかじめ長さを規定した整流素子22aのリード28の、組付け後の先端高さ(相対高さ)が安定し、その後の電気的接続のリード接合不具合が抑制される。圧入深さの制御も容易である。
 前記で用いる圧入孔26の孔(鋳造肌面)精度については、加工による場合より低く、打ち抜きによる場合よりも高い。つまり加工の際のエネルギーを必要とせず、かつ、複雑な多数枚フィン一体放熱ヒートシンクで、適度な精度の孔を備えることができる。
 図8は実施の形態1における、整流素子22aの円柱状ヒートシンク27のナール27bと放熱ヒートシンク22の圧入孔26との関係を説明する概略図で、軸に直角な概略断面図である。図9は実施の形態1における、整流素子22aの円柱状ヒートシンク27のナール27bと放熱ヒートシンク22の圧入孔26との関係を説明する概略図で、軸に平行な断面図である。図9のC1は圧入孔26の中心軸、Dは圧入孔26の内径、hは円柱状ヒートシンク27のナール27bの山の谷からの高さである。整流素子22aについては、円柱状ヒートシンク27の外周部に、ナール27bを設けている。規定する基準としては、放熱ヒートシンク22の圧入孔26における鋳造型による勾配や公差を含めた内径Dの最小内径寸法Dminから最大内径寸法Dmaxまでに対応する構成で、ナール27bの山の谷からの高さhは、放熱ヒートシンク22の圧入孔26の孔径公差(Dmax―Dmin)の1/2以上とすることにより、円柱状ヒートシンク27を鋳造肌面で構成される圧入孔26に安定的に圧入保持でき、接触面積も安定して得られる信頼性の高い整流装置が得られる。さらに、ナール27bの谷の径寸法は放熱ヒートシンク22の圧入孔26の最小内径寸法Dminより小さく(図9)、山の径寸法は放熱ヒートシンク22の圧入孔26の最大内径寸法Dmaxより大きくしている。つまり、ナール27bの山の変形だけで圧入を完遂する構成である。
 特許文献1のように、ダイオードヒートシンク自体が変形するほど外周壁部を斜めに変形させることがなく、整流素子22aに搭載する半導体ペレットへの影響を最小限に抑えている。特許文献2や3のテーパ構成は、圧入先端や圧入開始側のかじりによる取り付け孔内周面の損傷をなくす目的であったが、それとは異なり、実施の形態1では、圧入開始から終了まで確実にナール山部のみで接触することによる圧入孔26内周全面の割れ・欠け低減がより可能である。さらにナール27b自体はその軸方向に大径小径ではないので通常の製造手法で製作が可能であり、寸法指定を変えるだけでよい。
 また、円柱状ヒートシンク27の底面の外周縁部27a全周が、荷重受け治具101の円環状受け面101aで均等に支持されるので、外周部に施すナール27bも、外周部に均等配置されるのが好ましく、圧入孔26に対して傾いて圧入される恐れが回避できる。整流素子22aに搭載する半導体ペレットへの歪解析結果も歪みがほとんどなく良好であった。なお、図8に示すナール27bは概略であり、詳細例を図10に示す、図10は、実施の形態1における、円柱状ヒートシンク27のナール27bの詳細を示す概略図である。nはナールの山の数である。ナール山部が円弧で構成されるものが好適である。この形状により、双方の接触面積も安定して得られ、放熱効率のばらつきや低下が低減できる。
 また、ナールの高さを前述に規定する基準にすることで、圧入孔26側での対環境寸法変化にも対応できる。例えば、放熱ヒートシンク22のアルミ線膨張率23.6×10-6mm/Kで、温度変化を200ケルビンとした場合、23.6×10-6×200=4.72μmの変形が予測される。これに対し、ナール高さが十分に高くないと、保持力が不安定になってしまう。実施の形態1では、前述のような変形代に対し、ナール高さを4.72μm×20倍以上の値とすることで良好な結果が得られた。
 前述の基準に正確に規定した円柱状ヒートシンク27を、鋳造型による抜き勾配からなる放熱ヒートシンク22の圧入孔26に圧入する製品としての品質管理は、前記図7(d)工程での圧入最終荷重検知で行う。つまり、挿入ガイド103と荷重受け治具101の軸方向位置決め面101bが当接したことを、整流素子22aを放熱ヒートシンク22の圧入孔26に圧入する圧入荷重で検出する。また、圧入途中荷重もモニタリングする。軸方向で、荷重受け治具101の円環状受け面101aと軸方向位置決め面101bとの距離が、挿入ガイド軸長、放熱ヒートシンク平板部軸長を考慮した所望の値に設定されることで、荷重管理だけで、一定の軸方向位置に整流素子圧入が完了した放熱ヒートシンク22が得られる。
 円柱状ヒートシンク27のナール部を前述に規定する基準にして、かつ、荷重を管理することにより、放熱ヒートシンク22の圧入孔26側には、型での出来上がり以上の管理や追加工をしなくても、高品位の整流装置部品を得ることが可能である。従来行われた圧入孔径チェックによる管理では、ロット毎や製造場所によって微妙に鋳造製品が異なっている場合には管理が難しかったが、実施の形態1では、主に圧入荷重で管理するので統一して品質維持が容易にできる。例えば、従来の特許文献5での圧入装置のように、加圧具が上昇下降する機構の中にバネを組み込む(特許文献5の図面)と、圧入途中の荷重管理ができず、圧入行き過ぎ等の不良品回避のため、他の管理方法を検討しなくてはならなかった。
 荷重受け治具101の突出部は、その中央部に凹部がある円環状受け面101aであるので、半導体ペレットが搭載される範囲(整流素子の円柱状ヒートシンク27の円環状受け面101aが当たる外周縁部を除く中央部)に裏面から圧入時の荷重がかかることが無く、半導体ペレットへ影響を与えることが少ないだけでなく、圧入時に、ある程度削り合って生じるアルミヒートシンク“カス”を取り込むことができる。そのため、“カス”が製造ライン内に噛み込まれて起こる不具合も生じることがない。円環状受け面101aは、円環状上面が平面状であるので、特許文献1に示される球状凹型圧入治具における、押圧面外周部への接触の際に生じやすい不均一な接触を、引き起こすことがない。また、荷重受け治具101の円環状受け面101aの範囲として、傾き防止を目指した中央部だけのものや、外径部だけのものだと、円柱状ヒートシンク27に必ず歪が加わるので、半導体ペレットの外径際から圧入孔径いっぱいまで広く受けるのが望ましい。そのため、荷重受け治具101は、整流素子22aの円柱状ヒートシンク27の外周縁部27aを押圧する円環状受け面101aの外径が、挿入ガイド103の貫通孔の内径とほぼ同じであることがのぞましい。
 また、圧入孔26内周の加工工程は不要になると共に、そのまま廃棄ができない加工廃液については、処理に必要なエネルギが節約できる。抜き型で抜いた箇所のリサイクルに要する電力も使わなくて済み、地球環境に優しくなる。
 前述では、挿入ガイド103の一例を説明したが、これに限るものでなく、例えば、傾き防止目的の筒状構成部としての上半分と、円柱状ヒートシンク27の底面の外周縁部27aを支持するような支持構成部としての下半分とで別体構成するタイプなど、適宜選択することが可能である。同様に、圧入ヘッド102a周りの構成も、図示のような円筒状に限らず、円筒内部に、整流素子の芯合わせをする芯出し機構を備えて、組立精度を向上させるものなどが可能である。圧入ヘッド102aの先端面が円環状に構成されていれば、その他の部位の形状に限定はない。
 なお、この発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。

Claims (12)

  1.  円柱状ヒートシンクを有し、交流電流を直流電流に変換する半導体ペレットを搭載した整流素子を、放熱ヒートシンクの圧入孔に、前記整流素子の軸と前記圧入孔の軸を合わせて圧入する整流装置の製造方法において、
    内周面が鋳造肌面である前記圧入孔を有する前記放熱ヒートシンクと、
    前記放熱ヒートシンクに荷重をかける圧入ヘッドと、
    貫通孔を有しその貫通孔で前記整流素子を保持し、対向する前記放熱ヒートシンクの圧入孔の軸に、前記整流素子の軸を合わせるように、前記整流素子をガイドする挿入ガイドと、
    突出部が一端部に形成された荷重受け治具とを備え、
    前記放熱ヒートシンクの圧入孔の軸に、前記挿入ガイドの整流素子の軸を合わせると共に、前記圧入ヘッドを前記放熱ヒートシンクに対向させて、前記放熱ヒートシンクを前記圧入ヘッドと前記挿入ガイドで挟み、
    前記挿入ガイドの貫通孔の前記整流素子の前記円柱状ヒートシンクに前記荷重受け治具の突出部を対向させ、
    前記圧入ヘッドで前記放熱ヒートシンクの圧入孔の周囲を押圧し、前記荷重受け治具の突出部で前記整流素子の前記円柱状ヒートシンクにかかる荷重を受け、前記整流素子を前記放熱ヒートシンクの圧入孔に圧入する整流装置の製造方法。
  2.  前記荷重受け治具は、その突出部の先端部に、中央部に凹部がある円環状受け面を有し、前記円環状受け面で前記整流素子の前記円柱状ヒートシンクの外周縁部にかかる荷重を受ける請求項1記載の整流装置の製造方法。
  3.  前記荷重受け治具の前記円環状受け面は、円環状平面である請求項2記載の整流装置の製造方法。
  4.  前記荷重受け治具は、軸方向位置決め面を有し、前記円環状受け面と前記軸方向位置決め面間の距離が所望の値に設定され、
    前記圧入ヘッドで前記放熱ヒートシンクの圧入孔の周囲を押圧し、前記荷重受け治具の円環状受け面で前記整流素子の前記円柱状ヒートシンクの外周縁部にかかる荷重を受け、前記挿入ガイドと前記荷重受け治具の軸方向位置決め面が当接するまで押圧して、前記整流素子を前記放熱ヒートシンクの圧入孔に圧入する請求項2又は請求項3記載の整流装置の製造方法。
  5.  前記整流素子は一端部に突出するリードを有し、
    前記圧入ヘッドは、円柱状中空孔を有し、前記圧入ヘッドの円柱状中空孔を前記放熱ヒートシンクの圧入孔に対向させ、前記円柱状中空孔内に前記整流素子のリードを突出させて、前記放熱ヒートシンクに荷重をかけ、
    前記圧入ヘッドで前記放熱ヒートシンクの圧入孔の周囲を押圧し、前記荷重受け治具の円環状受け面で前記整流素子の前記円柱状ヒートシンクの外周縁部にかかる荷重を受け、前記整流素子を前記放熱ヒートシンクの圧入孔に圧入する請求項2~請求項4のいずれか1項に記載の整流装置の製造方法。
  6.  前記荷重受け治具は、前記整流素子の前記円柱状ヒートシンクの外周縁部にかかる荷重を受ける前記円環状受け面の外径が、前記挿入ガイドの貫通孔の内径とほぼ同じである請求項2~請求項4のいずれか1項に記載の整流装置の製造方法。
  7.  前記挿入ガイドと前記荷重受け治具の軸方向位置決め面が当接したことを、前記整流素子を前記放熱ヒートシンクの圧入孔に圧入する圧入荷重で検出する請求項4記載の整流装置の製造方法。
  8.  前記整流素子は、その円柱状ヒートシンクの外周部にナールを設け、前記ナールの山の谷からの高さは、前記放熱ヒートシンクの圧入孔孔径公差の1/2以上であり、
    前記ナールの谷部の最小外径は、前記放熱ヒートシンクの圧入孔の最小内径より小さく、前記ナールの山部の最大外径は前記放熱ヒートシンクの圧入孔の最大内径より大きい請求項1~請求項7のいずれか1項に記載の整流装置の製造方法。
  9.  円柱状ヒートシンクを有し、一端部にリードを有し、交流電流を直流電流に変換する半導体ペレットを搭載した整流素子が、放熱ヒートシンクの圧入孔に、前記整流素子の軸と前記圧入孔の軸を合わせて圧入された整流装置において、
    前記放熱ヒートシンクの前記圧入孔の内周面が鋳造肌面であり、
    前記整流素子の円柱状ヒートシンクの外周部には、ナールを設け、前記ナールの山の谷からの高さは、前記放熱ヒートシンクの圧入孔孔径公差の1/2以上である整流装置。
  10.  前記整流素子の円柱状ヒートシンクの外周部に設けられた前記ナールの谷部の最小外径は、前記放熱ヒートシンクの圧入孔の最小内径より小さく、前記ナールの山部の最大外径は前記放熱ヒートシンクの圧入孔の最大内径より大きい請求項9記載の整流装置。
  11.  前記整流素子の円柱状ヒートシンクの外周部に設けられた前記ナールは、ナール山部が円弧で構成されている請求項9又は請求項10記載の整流装置。
  12.  前記整流素子のリード側における前記放熱ヒートシンクの圧入孔の周囲には、圧入痕がある請求項9~請求項11のいずれか1項に記載の整流装置。
PCT/JP2012/080593 2012-11-27 2012-11-27 整流装置の製造方法及び整流装置 WO2014083609A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12889352.6A EP2928058B1 (en) 2012-11-27 2012-11-27 Method for manufacturing rectifier
JP2014549662A JP5972396B2 (ja) 2012-11-27 2012-11-27 整流装置の製造方法
CN201280077181.7A CN104798295B (zh) 2012-11-27 2012-11-27 整流装置的制造方法及整流装置
PCT/JP2012/080593 WO2014083609A1 (ja) 2012-11-27 2012-11-27 整流装置の製造方法及び整流装置
US14/411,597 US10069432B2 (en) 2012-11-27 2012-11-27 Method for manufacturing rectifier and rectifier
US16/046,535 US10263531B2 (en) 2012-11-27 2018-07-26 Method for manufacturing rectifier and rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080593 WO2014083609A1 (ja) 2012-11-27 2012-11-27 整流装置の製造方法及び整流装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/411,597 A-371-Of-International US10069432B2 (en) 2012-11-27 2012-11-27 Method for manufacturing rectifier and rectifier
US16/046,535 Division US10263531B2 (en) 2012-11-27 2018-07-26 Method for manufacturing rectifier and rectifier

Publications (1)

Publication Number Publication Date
WO2014083609A1 true WO2014083609A1 (ja) 2014-06-05

Family

ID=50827285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080593 WO2014083609A1 (ja) 2012-11-27 2012-11-27 整流装置の製造方法及び整流装置

Country Status (5)

Country Link
US (2) US10069432B2 (ja)
EP (1) EP2928058B1 (ja)
JP (1) JP5972396B2 (ja)
CN (1) CN104798295B (ja)
WO (1) WO2014083609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026427A1 (ja) * 2018-08-03 2020-02-06 三菱電機株式会社 整流装置及びそれを備えた車両用交流発電装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2928058B1 (en) * 2012-11-27 2018-03-21 Mitsubishi Electric Corporation Method for manufacturing rectifier
EP3065269B1 (en) * 2013-10-31 2020-01-01 Mitsubishi Electric Corporation Vehicle rotating electric machine
JP6433585B2 (ja) * 2015-05-15 2018-12-05 三菱電機株式会社 車両用交流発電機
CN107996016B (zh) * 2015-08-06 2020-01-17 三菱电机株式会社 车用旋转电机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2322474A (en) * 1997-02-25 1998-08-26 Mitsubishi Electric Corp Mounting rectifiers in heat sinks
JP2002119028A (ja) * 2000-10-04 2002-04-19 Denso Corp 車両用交流発電機
JP2002261215A (ja) * 2001-02-28 2002-09-13 Denso Corp 半導体装置およびダイオードの圧入方法
US6476527B2 (en) 1999-05-24 2002-11-05 Unit Parts Company Alternator system
EP1437770A2 (en) * 2002-12-16 2004-07-14 Denso Corporation Press-fitting method and rectifying device having press-fitted member
JP3675767B2 (ja) 2002-02-14 2005-07-27 株式会社日本自動車部品総合研究所 ダイオード、ダイオード圧入方法、ダイオード装着方法、及びフィン
DE102006019315A1 (de) 2006-04-26 2007-10-31 Robert Bosch Gmbh Gleichrichter für eine Elektromaschine
JP4122907B2 (ja) 2002-09-12 2008-07-23 株式会社デンソー 圧入装置
JP2010166764A (ja) * 2009-01-19 2010-07-29 Mitsubishi Electric Corp 回転電機
CN101938193A (zh) * 2009-07-01 2011-01-05 三菱电机株式会社 旋转电机
JP4626665B2 (ja) 2007-08-31 2011-02-09 株式会社デンソー 整流装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118134A (en) * 1974-04-08 1978-10-03 Lescoa, Inc. Fastener joint and method thereof
DE19517258A1 (de) * 1995-05-11 1996-11-14 Alpha Getriebebau Gmbh Wellen-Befestigung
FR2768261B1 (fr) * 1997-09-08 2002-11-08 Valeo Equip Electr Moteur Embase pour diode de puissance d'alternateur de vehicule automobile
US6642078B2 (en) * 2000-08-28 2003-11-04 Transpo Electronics, Inc. Method for manufacturing diode subassemblies used in rectifier assemblies of engine driven generators
JP3949369B2 (ja) * 2000-10-20 2007-07-25 三菱電機株式会社 車両用交流発電機
JP3944357B2 (ja) * 2001-02-08 2007-07-11 三菱電機株式会社 車両用交流発電機
US20050097721A1 (en) * 2003-11-06 2005-05-12 Bratek Daniel J. High pressure sensor with knurl press-fit assembly
JP4600366B2 (ja) * 2006-08-29 2010-12-15 株式会社デンソー 車両用交流発電機
US7855480B2 (en) 2007-08-31 2010-12-21 Denso Corporation Rectifier device for automotive alternator
EP2928058B1 (en) * 2012-11-27 2018-03-21 Mitsubishi Electric Corporation Method for manufacturing rectifier

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2322474A (en) * 1997-02-25 1998-08-26 Mitsubishi Electric Corp Mounting rectifiers in heat sinks
JPH10242671A (ja) * 1997-02-25 1998-09-11 Mitsubishi Electric Corp 整流装置
US5828564A (en) * 1997-02-25 1998-10-27 Mitsubishi Denki Kabushiki Kaisha Rectifier heat dissipation
US6476527B2 (en) 1999-05-24 2002-11-05 Unit Parts Company Alternator system
JP2002119028A (ja) * 2000-10-04 2002-04-19 Denso Corp 車両用交流発電機
JP2002261215A (ja) * 2001-02-28 2002-09-13 Denso Corp 半導体装置およびダイオードの圧入方法
JP3675767B2 (ja) 2002-02-14 2005-07-27 株式会社日本自動車部品総合研究所 ダイオード、ダイオード圧入方法、ダイオード装着方法、及びフィン
JP4122907B2 (ja) 2002-09-12 2008-07-23 株式会社デンソー 圧入装置
US20040150273A1 (en) * 2002-12-16 2004-08-05 Denso Corporation Press-fitting method and rectifying device having press-fitted member
JP2004195567A (ja) * 2002-12-16 2004-07-15 Denso Corp 圧入材、整流素子の圧入方法および整流装置
EP1437770A2 (en) * 2002-12-16 2004-07-14 Denso Corporation Press-fitting method and rectifying device having press-fitted member
DE60326810D1 (de) * 2002-12-16 2009-05-07 Denso Corp Gleichrichteranordnung mit Pressverbindungselement
DE102006019315A1 (de) 2006-04-26 2007-10-31 Robert Bosch Gmbh Gleichrichter für eine Elektromaschine
JP4626665B2 (ja) 2007-08-31 2011-02-09 株式会社デンソー 整流装置
JP2010166764A (ja) * 2009-01-19 2010-07-29 Mitsubishi Electric Corp 回転電機
CN101938193A (zh) * 2009-07-01 2011-01-05 三菱电机株式会社 旋转电机
KR20110002401A (ko) * 2009-07-01 2011-01-07 미쓰비시덴키 가부시키가이샤 회전 전기기계
JP2011015513A (ja) * 2009-07-01 2011-01-20 Mitsubishi Electric Corp 回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2928058A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026427A1 (ja) * 2018-08-03 2020-02-06 三菱電機株式会社 整流装置及びそれを備えた車両用交流発電装置
EP3832875A4 (en) * 2018-08-03 2021-07-28 Mitsubishi Electric Corporation RECTIFIER AND VEHICLE AC GENERATOR EQUIPPED WITH IT
US11932111B2 (en) 2018-08-03 2024-03-19 Mitsubishi Electric Corporation Rectifier and vehicle AC generator provided therewith

Also Published As

Publication number Publication date
US10069432B2 (en) 2018-09-04
EP2928058B1 (en) 2018-03-21
CN104798295A (zh) 2015-07-22
US20190036460A1 (en) 2019-01-31
EP2928058A1 (en) 2015-10-07
JP5972396B2 (ja) 2016-08-17
US20150162846A1 (en) 2015-06-11
US10263531B2 (en) 2019-04-16
JPWO2014083609A1 (ja) 2017-01-05
EP2928058A4 (en) 2016-08-17
CN104798295B (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
US10263531B2 (en) Method for manufacturing rectifier and rectifier
JP6263014B2 (ja) 半導体装置、並びにそれを用いたオルタネータ及び電力変換装置
US6731030B2 (en) High performance bridge rectifier for diode-rectified alternating current generator
US20160010649A1 (en) Adhesive joint features
JP2010025087A (ja) 軸流ファン
KR20070026069A (ko) 고강도 히트싱크를 갖는 정류기를 구비한 차량용교류발전기
JP4600366B2 (ja) 車両用交流発電機
US7855480B2 (en) Rectifier device for automotive alternator
US7741742B2 (en) Alternator
US7282824B2 (en) Press-fitting method and rectifying device having press-fitted member
JP3671534B2 (ja) 車両用交流発電機
JP4626665B2 (ja) 整流装置
JP5924142B2 (ja) 車両用交流発電機
JP5159658B2 (ja) 回転電機
JP4389974B2 (ja) 車両用交流発電機
JP2006127695A (ja) 光ピックアップ装置およびレーザダイオードの取り付け方法
JP4710800B2 (ja) 車両用交流発電機
JP2019041579A (ja) 回転電機の整流装置
JP2014171367A (ja) 車両用交流発電機の整流装置
US20110285255A1 (en) Alternator
JP4886815B2 (ja) 回転電機の整流装置及び整流素子の固定方法
JP2003243589A (ja) ダイオード、ダイオード圧入方法、ダイオード装着方法、及びフィン
JP2016082613A (ja) 回転電機の整流装置
JP2009112149A (ja) 車両用交流発電機
US20080259571A1 (en) Semiconductor device used for a rectifier of a vehicle alternator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549662

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411597

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012889352

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE