WO2014082461A1 - 独居石渣的分离回收方法 - Google Patents

独居石渣的分离回收方法 Download PDF

Info

Publication number
WO2014082461A1
WO2014082461A1 PCT/CN2013/080002 CN2013080002W WO2014082461A1 WO 2014082461 A1 WO2014082461 A1 WO 2014082461A1 CN 2013080002 W CN2013080002 W CN 2013080002W WO 2014082461 A1 WO2014082461 A1 WO 2014082461A1
Authority
WO
WIPO (PCT)
Prior art keywords
monazite
acid
rare earth
thorium
solution
Prior art date
Application number
PCT/CN2013/080002
Other languages
English (en)
French (fr)
Inventor
王�琦
陈月华
崔小震
任萍
刘克勤
许鸽鸣
郭卫权
朱焱
Original Assignee
益阳鸿源稀土有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 益阳鸿源稀土有限责任公司 filed Critical 益阳鸿源稀土有限责任公司
Priority to US14/647,368 priority Critical patent/US9657369B2/en
Priority to AU2013351773A priority patent/AU2013351773B2/en
Publication of WO2014082461A1 publication Critical patent/WO2014082461A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/0234Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors sulfurated ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/0239Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors nitric acid containing ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/026Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries liquid-liquid extraction with or without dissolution in organic solvents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/0265Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries extraction by solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0291Obtaining thorium, uranium, or other actinides obtaining thorium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for separating and recovering radioactive waste residue, in particular to a method for separating and recovering monazite slag, in particular to separating and recovering valuable elements uranium, thorium, rare earth and monazite from monazite slag.
  • Method of mineral and zircon concentrate is provided.
  • Monazite is one of the four major raw materials for China's rare earth industry. Monazite is mainly found in the coastal sand mines of Guangdong, Guangxi and Hainan Island. It is mainly associated with minerals such as zirconium and titanium. There are also monazite mines in the interior. For example, there is a large monolithic mine in the mouth of Yueyang, Hunan. Monazite belongs to light rare earth ore.
  • the current production process is: The monazite concentrate is decomposed by alkali, extracting useful rare earth and phosphorus from the liquid, and the remaining solid product contains about 16 ⁇ 28% of Th0 2 , 0.6 ⁇ 1.2% of 11 and 9 ⁇ 20% of REO, as well as useful minerals such as monazite, zircon, rutile, etc. that are not decomposed. Because the most abundant strontium did not find a large-scale use, the recycling of these resources was not taken seriously, and it became a bunch of headaches of radioactive waste, which was not conducive to environmental management, and also became a rare earth plant living with monazite as raw material. Develop insurmountable obstacles. At present, there are about 50,000 tons of solitary gravel in the country, and nearly 10,000 tons of slag is produced every year. If the management is not standardized, it will cause great harm to the environment.
  • the object of the present invention is:
  • a separation and recovery method for monazed slag in which a valuable component of monazite is separated into a liquid phase (a filtrate containing uranium, thorium, and rare earth) and a solid phase (filter residue) from monazite slag.
  • a method for separating and recycling monazite residue which comprises the following steps:
  • the mixed aqueous solution contains uranium, cerium and a rare earth element, and the secondary slag is a filter residue containing monazite, zircon and residual uranium, cerium, and rare earth compounds.
  • the siphon supernatant is combined with the supernatant containing uranium, thorium and rare earth elements obtained in step (1) in.
  • the above-mentioned cooling standing time is preferably 4 hours or longer, more preferably 4 to 8 hours.
  • the inorganic strong acid is preferably sulfuric acid or nitric acid.
  • the mixed aqueous solution containing uranium, cerium and rare earth elements obtained in the step (3) is subjected to extraction of valuable components:
  • A. Lifting uranium Extracting uranium from the mixed aqueous solution obtained in step (3) by ion exchange adsorption method to obtain solid sodium diuranate and a solution containing cerium and rare earth;
  • the waste acid solution produced in the step C is preferably returned to the step ⁇ for the acid immersion liquid.
  • the secondary slag is subjected to beneficiation to obtain a monazite concentrate, a zircon concentrate and a tailings, and the tailings are alkali-decomposed and sent to the monazite.
  • the concentrate treatment process, the monazite slag produced by the monazite concentrate treatment process is sent to the step (1) to realize the radioactive material.
  • the closed loop recycling is carried out, and no radioactive waste is discharged in the production process.
  • the beneficiation is a prior art, and the beneficiation step of the monazite slag is the same, except that the raw materials for the beneficiation are different, and the secondary slag in the step (3) is replaced by a beneficiation.
  • the specific steps are as follows: the secondary slag is re-elected (shake Bed or centrifugal concentrator) sorting out heavy ore (mineral sand) and tailings (compound), heavy ore is re-selected (centrifugal concentrator, shaker) to eliminate gangue in heavy ore, and then magnetic separation-electrical selection , zircon and monazite concentrates are sorted.
  • the invention separates and extracts U, Th and RE by leaching, refining uranium-P204 extracting ⁇ N1923, extracting RE ⁇ removing liquid, and returning to the leaching combination process, and the whole combined process solution is continuously and smoothly carried out without arranging, simplifying the process.
  • Process while reducing wastewater discharge.
  • the remaining liquid after the extraction of U is extracted by P204, and the combined process of N1923 is used to obtain Th and RE products.
  • the raffinate (waste acid) can be returned to the acid leaching process because it contains very low impurities, which reduces the discharge of waste water, saves the amount of acid leaching acid and new water, reduces the cost of treating wastewater, and reduces production. cost.
  • the conventional method is to first extract Th with N1923 and then extract RE with P204.
  • the disadvantage is that with the expensive N1923 to extract a large amount of Th, the extractant is expensive and the cost is not cost effective.
  • P204 to extract rare earth.
  • the cost of extractant is reduced a little, the residual liquid has low rare earth content, high acidity, need to reduce acidity, and can be extracted. It is necessary to consume acidity (the problem of extracting rare earth with N1923 is not the problem).
  • the acid solution having a reduced acidity after extraction of the rare earth by P204 has a low acidity and cannot be returned for acid leaching, and can only be discharged after treatment, thereby increasing the discharge of wastewater and the cost of treating wastewater. It is even more difficult to save acid and raw water in the acid leaching process.
  • Monza slag is chemically treated to extract valuable elements such as uranium, thorium and rare earths.
  • the ore dressing method is used to recover valuable minerals such as monazite and zircon which are not decomposed in the slag. No radioactive waste water or waste residue is discharged. A green cycle is achieved.
  • the specific principles are as follows:
  • the invention adopts a low acid and low temperature leaching process to selectively leaching the decomposed valuable elements uranium, thorium and rare earth compounds in the monazite slag into the solution, so that no colloidal solution and slag are produced in the solution.
  • the colloidal compound does not appear, and the liquid phase and the solid phase are easily separated, and a clear aqueous solution containing uranium, thorium, and rare earth and a secondary slag are obtained.
  • the acid-soluble compound in the monazite residue is sufficiently dissolved, and the dissolution of other poorly soluble compounds is minimized, so that the solid-liquid separation of the acid-soluble slag can be smoothly performed.
  • the acid-soluble reaction of Th and RE is more sufficient than other impurities (Zr, Ti, Fe, Si, etc.).
  • P204 has different ion extraction capabilities, and uses the difference in extraction capacity to extract by Th solvent and achieve the purpose of Th and RE separation.
  • the rare earth in the raw material is extracted by a primary amine and separated from the impurities (
  • the secondary slag is beneficiated by the beneficiation process to obtain monazite, zircon and tailings. After the alkali decomposition and acid dissolution of the tailings by the alkali decomposition process, the tailings are returned to the main process of the decomposition of monazite.
  • the waste acid water is degreased and used to leach monazite.
  • Alkali anti-mother liquor alkali water can be returned to the base after the alkalinity.
  • the wastewater to be discharged has a large amount of sulfate (so 4 2 — ), and caustic soda is used as a neutralizing agent. It also provides convenience for extracting valuable elements from these wastes in the future.
  • the acid-containing wastewater is first degreased, and then the anion-cation resin is exchanged and adsorbed once to ensure that the drainage reaches the standard, and then the neutralization treatment is performed.
  • the process comprehensively recovers uranium, thorium, rare earth, zircon and monazite, and emits no radioactive waste water or waste residue.
  • the process is connected to the monazite decomposition process, which can greatly reduce production costs and investment costs. Has considerable economic benefits.
  • the secondary slag is beneficiated and alkali decomposed, and the closed loop recycling of uranium, thorium and rare earth is realized; after the ore dressing is decomposed by alkali decomposition, the solution returns to the main decomposition principal of monazite concentrate.
  • the zirconia tailings produced by the recovery of uranium, thorium and rare earths can be sold directly as zircon concentrate. The discharge of radioactive waste is eliminated, and the comprehensive recovery rate of U, Th and RE is improved. 4.
  • the invention is further illustrated by the following examples.
  • the percentages stated in the examples all refer to the mass percentage.
  • the analysis method of rare earth and strontium adopts GB/T18114.1-2000, and the analytical method of uranium adopts EJ/T266 standard, and is determined by ferrous sulfate reduction/potassium dichromate oxidation titration.
  • a method for separating and recycling monazite residue which comprises the following steps:
  • the filter residue is washed with water, and the water is stopped when the pH value of the filtrate is 3, the filter residue is dried, and the filtrate is washed and sent to a storage tank to obtain a clear aqueous solution containing uranium, thorium and rare earth, stirred and mixed, and sampled and analyzed (rare earth and lanthanum).
  • the analytical method is GB/T18114.1--2000; the analytical method of uranium adopts EJ/T266 standard, ferrous sulfate reduction/potassium dichromate oxidation titration), and the uranium leaching rate is calculated to be 78%.
  • the leaching rate is 80% and the rare earth leaching rate is 45%.
  • Resin treatment Take strong alkaline anion resin, wash it with pure water until no pigment, soak it in pure water for 24h, stir it regularly; soak it with 5% NaOH for 24h, stir it regularly, wash away the alkali-soluble impurities in the resin, use pure Washed to neutral; soaked in 5% H 2 S0 4 for 24 h, stirring constantly, washing away the acid-soluble impurities in the resin, and washing to neutral with pure water.
  • the resin was soaked with 0.15 mol/L of H 2 SO 4 to acidity, and the resin was separately charged into two series of columns ( ⁇ 600 ⁇ , length 1500 mm), and the resin height was 1100 mm.
  • Resin adsorption The clear aqueous solution containing uranium, thorium and rare earth obtained in step (3) flows through the resin from the storage tank at a linear velocity of 3 mm/min, and the uranium is adsorbed to the resin to be saturated.
  • the effluent is rare earth-containing and antimony-containing. In addition to uranium.
  • Washing To wash the free rare earth and lanthanum in the resin, wash the resin with 0.25mol/L H 2 SO 4 , and analyze the effluent and analyze the ruthenium and rare earth. The washing liquid is combined with the upper effluent, and the extract is separated and extracted. use.
  • Leaching prepare 1 mol/L NaCl plus 5% H 2 S0 4 solution (ie, the eluent is a mixed solution of NaCl and H 2 S0 4 , the concentration of NaCl in the mixed solution is 1 mol/L, H 2 S0 4 The mass concentration is 5%.) Rinse the uranium in the resin until the eluent is not yellow.
  • the extracting agent is an organic reagent composed of a mixture of bis(2-ethylhexylphosphoric acid) and kerosene, that is, 25% to 35% of P204 is used (the mass content or volume content of P204 in the organic reagent is 25). % ⁇ 35 %), the rest is kerosene, and the organic reagent is stirred and mixed.
  • extracting rare earth extracting rare earth from the above rare earth solution by extraction method, obtaining rare earth chloride solution and waste acid solution;
  • the extracting agent is an organic reagent prepared by mixing primary amine, sec-octanol and kerosene as an extracting agent, that is, using 5% to 15% of N1923 (N1923 has a mass content or volume content of 25 in an organic reagent. % ⁇ 35 %), octanol 3% to 6% (the mass content or volume content of octanol in the organic reagent is 3% ⁇ 6 %), the rest is kerosene, and the organic reagent is stirred and mixed.
  • the present invention returns the waste acid solution, i.e., the raffinate, produced in the step (4) to the step ⁇ as an acid immersion liquid.
  • the secondary slag treatment obtained in the step (3) of the first embodiment is subjected to beneficiation to obtain a monazite concentrate, a zircon concentrate and a tailings, and the tailings are alkali-decomposed and then fed.
  • the treatment of the monazite concentrate treatment process, the monazite slag produced by the monazite concentrate treatment process is sent to the step (1) for treatment, thereby achieving closed loop recycling of the radioactive material, and no radioactive waste residue is discharged in the production process.
  • lOOKg filter residue is re-selected, electrified, and magnetically selected to obtain 11.5 Kg of monazite concentrate with a grade of 60%, 32.5 Kg of 60% zircon concentrate, 54 kg of tailings, and a monazite concentrate for single residence.
  • the concentrate concentrate treatment process, zircon concentrate can be directly sold.
  • the monazite slag produced by the monazite concentrate treatment process is sent to the step (1) for treatment, thereby achieving closed loop recycling of the radioactive material, and no radioactive waste slag is discharged in the production process.
  • the tailings are decomposed by alkali, washed with water, acid-soluble and filtered, and the filtrate and slag containing uranium, thorium and rare earth are obtained.
  • the filtrate is returned to the monazite concentrate treatment process to realize closed loop; 11kg of filter residue is zircon (through The phase analysis was carried out, which contained 91.52% zircon, which can be directly sold.
  • the siphon supernatant was combined with the supernatant obtained in step (1) to obtain a solution containing valuable elements of uranium, thorium and rare earth, solid phase retention In the reaction kettle.
  • the mixture is heated to 40 ° C ⁇ 100 ° C, stirred for 0.5 hour ⁇ 1 hour, cooled and clarified for 4 hours ⁇ 8 hours, siphon supernatant and the supernatant obtained in step (1)
  • the solution is combined to obtain a valuable element containing uranium, thorium and rare earth.
  • the siphon supernatant was combined with the supernatant obtained in step (1) to obtain a solution containing valuable elements of uranium, thorium and rare earth, solid phase retention reaction In the kettle.
  • the secondary slag after the dry pressing in the step (3) is treated: the lOOKg secondary slag is subjected to re-election, electric selection, magnetic separation to obtain a vitreous concentrate of 60% grade, 12.4 Kg, 60% zircon fine.
  • the mine is 34.8Kg, and the tailings are 52kg.
  • the monazite concentrate is sent to the monazite concentrate treatment process, and the zircon concentrate can be directly sold.
  • the monazite concentrate treatment process produces the monazite residue and sends it to the step (1). In this way, the radioactive material is closed and recycled, and no radioactive waste is discharged in the production process.
  • the tailings are decomposed by alkali, washed with water, acid-soluble and filtered, and the filtrate and slag containing uranium, thorium and rare earth are obtained.
  • the filtrate is returned to the monazite concentrate treatment process to realize closed circuit cycle.
  • the produced filter residue is 11.3 kg of zircon ( By doing phase analysis, which contains 91.52% zircon, it can be directly sold.
  • the siphon supernatant is combined with the supernatant obtained in step (1) to obtain a solution containing valuable elements of uranium, thorium and rare earth, solid phase Leave in the reaction kettle.
  • the filter residue is washed with water, and the water is stopped when the pH value of the filtrate is 2.5, the filter residue is dried, and the filtrate is washed and sent to a storage tank to obtain a clear aqueous solution containing uranium, thorium and rare earth, and stirred and mixed.
  • Sampling analysis showed that the leaching rate of uranium was 83.5 %, the leaching rate of strontium was 87.2%, and the leaching rate of rare earth was 61.0%.
  • the filter residue after the press-drying in the step (3) is treated: the lOOKg filter residue is subjected to re-election, electro-selection, and magnetic separation to obtain a gypsum concentrate of 60% of 12.7 Kg and a 60% zircon concentrate of 36.7 Kg. 49.6kg of tailings, the monazite concentrate is sent to the monazite concentrate treatment process, and the zircon concentrate can be directly sold.
  • the monazite slag produced by the monastic concentrate treatment process is sent to the step (1) for treatment, so that the radioactive material is closed and recycled, and no radioactive waste is discharged in the production process.
  • the tailings are decomposed by alkali, washed with water, acid-soluble and filtered, and the filtrate and slag containing uranium, thorium and rare earth are obtained.
  • the filtrate is returned to the monazite concentrate treatment process to realize closed loop; the produced filter residue is 11.5kg of zircon ( By doing phase analysis, which contains 91.52% zircon, it can be directly sold.
  • the siphon supernatant was combined with the supernatant obtained in step (1) to obtain a solution containing valuable elements of uranium, thorium and rare earth, solid phase retention In the reaction kettle.
  • the filter residue is washed with water, and the water is stopped when the pH value of the filtrate is 2.0, the filter residue is dried, and the filtrate is washed and sent to a storage tank to obtain a clear aqueous solution containing uranium, thorium and rare earth, and stirred and mixed.
  • Sampling analysis showed that the leaching rate of uranium was 85.5 %, the leaching rate of strontium was 88.0%, and the leaching rate of rare earth was 65.5 %.
  • the filter residue after the dry pressing in the step (3) is treated: the lOOKg filter residue is subjected to re-election, electric selection and magnetic separation to obtain 12.9 Kg of a monazite concentrate having a grade of 60%, and 36.4 Kg of a 60% zircon concentrate.
  • the tailings mine is 49.3kg, and the monazite concentrate is sent to the monazite concentrate treatment process.
  • the zircon concentrate can be directly sold.
  • the monazite slag produced by the monastic concentrate treatment process is sent to the step (1) for treatment, so that the radioactive material is closed and recycled, and no radioactive waste is discharged in the production process.
  • the tailings are decomposed by alkali decomposition, washed with water, acid-soluble and filtered, and the filtrate and slag containing uranium, thorium and rare earth are obtained.
  • the filtrate is returned to the monazite concentrate treatment process to realize closed circuit circulation.
  • the produced filter residue is 11.8 kg of zircon ( By doing phase analysis, which contains 91.52% zircon, it can be directly sold.
  • the siphon supernatant was combined with the supernatant obtained in step (1) to obtain a solution containing valuable elements of uranium, thorium and rare earth, solid phase retention In the reaction kettle.
  • the siphon supernatant was combined with the supernatant obtained in step (1) to obtain a solution containing valuable elements of uranium, thorium and rare earth, solid phase retention In the reaction kettle.
  • the filter is washed with water, and the water is stopped when the pH value of the filtrate is 3.0, and the filter is dried.
  • the slag and the washing filtrate are sent to the storage tank to obtain a clear aqueous solution containing uranium, thorium and rare earth.
  • the mixture is stirred and mixed, and sampled and analyzed.
  • the leaching rate of uranium is 88.5 %, and the leaching rate of lanthanum is 89.0%.
  • the leaching rate was 67.0%.
  • the filter residue after the pressure drying in the step (3) is treated: the lOOKg filter residue is subjected to re-election, electro-selection, magnetic separation to obtain a monochali concentrate of 13.0 Kg with a grade of 60%, and a zircon concentrate of 36.8 Kg of 60%. 49kg of tailings, the monazite concentrate is sent to the monazite concentrate treatment process, and the zircon concentrate can be directly sold.
  • the monazite concentrate treatment process produces the monazite residue and sends it to the step (1). In this way, the radioactive material is closed and recycled, and no radioactive waste is discharged in the production process.
  • the tailings are decomposed by alkali, washed with water, acid-soluble and filtered, and the filtrate and slag containing uranium, thorium and rare earth are obtained.
  • the filtrate is returned to the monazite concentrate treatment process to realize closed loop; the produced filter residue is 11.9kg of zircon ( By doing phase analysis, which contains 91.52% zircon, it can be directly sold.

Abstract

一种独居石渣的分离回收方法,包括如下步骤:酸浸、压滤、水洗、有价成分提取、滤渣处理。在酸浸步骤中采用低温、低酸浸出,使得液相和固相容易分离,在提取步骤中采用树脂提取铀,P204萃取钍,N1923萃取RE的组合工艺,实现了萃取余液废酸的循环利用。

Description

独居石渣的分离回收方法
技术领域
本发明涉及一种放射性废渣的分离回收方法,具体地说是一种独居石渣的分 离回收方法, 特别是涉及一种从独居石渣中分离回收有价元素铀、钍、稀土及独 居石精矿和锆英石精矿的方法。
背景技术
独居石是我国稀土工业四大主要原料之一。 独居石主要蕴藏于广东、 广西、 海南岛的海滨砂矿中, 主要与锆、 钛等矿物伴生, 内陆也有独居石矿, 如湖南岳 阳的筻口就有一个特大型的独居石矿。独居石属于轻稀土矿,目前的生产工艺是: 独居石精矿经碱分解, 从料液中提取有用的稀土和磷, 剩下的固态产物中含有约 16〜28 %的 Th02 、 0.6〜1.2 %的 11和 9〜20 %的 REO,还有未被分解的独居石、 锆英石、 金红石等有用矿物。 因其中含量最多的钍没有找到大的用途, 这些资源 的回收未被重视, 而成了一堆让人头疼的放射性废渣, 不利于环保管理, 也成了 以独居石为原料的稀土厂生存和发展难以逾越的障碍。 目前, 全国已有约 5万吨 独居石渣, 每年还有近 1万吨矿渣产出, 如管理不规范, 将会对环境造成极大的 危害。
发明内容
针对现有技术的不足, 本发明的目的是:
1、 提供一种独居石渣的分离回收方法, 从独居石渣中将独居石渣中有价成 分分离成液相 (含有铀、 钍、 稀土的滤液) 和固相 (滤渣)。
2、 提供一种独居石渣的分离回收方法, 从上述液相中回收有价元素铀、 钍、 稀土。
3、 提供一种独居石渣的分离回收方法, 对上述固相进行选矿处理, 得到独 居石精矿和锆英石精矿和尾矿, 并实现放射性物质闭路循环, 所产生的少量滤渣 为 (锆石), 整个工艺中无放射性废水、 废渣排出。
为实现上述目的, 本发明的技术方案是:
一种独居石渣的分离回收方法, 它包括下列步骤:
(1)酸浸: 按独居石渣:酸 =1 kg : ( 1〜15 ) L的比例, 将独居石渣加入到浓度 为 0.25mol/L〜0.5mol/L的无机强酸溶液中,加热至 40°C〜100°C,搅拌 5小时〜 8小时, 冷却静置, 虹吸上清液, 得到含有铀、 钍和稀土元素的上清液和料浆;
(2)压滤: 将料浆过滤, 得滤渣和滤液, 滤液与步骤 (1)中的上清液合并; (3)水洗: 将步骤(2)所述滤渣加水洗涤, 至水洗液 pH值为 2〜3时停止洗 涤, 压干滤渣, 得到水洗液和二次渣; 所得水洗液与步骤 (1)中的上清液合并, 得 到混合水溶液。
所述混合水溶液中含有铀、 钍和稀土元素, 所述二次渣为含有独居石、 锆 英石及残留铀、 钍、 稀土化合物的滤渣。
为提高有价元素铀、 钍、 稀土回收率, 优选在步骤 (1)后进行二次酸浸, 按独 居石渣:酸 =1 kg; ( 1〜3 ) L的比例, 将浓度为 0.25mol/L〜0.5mol/L的无机强酸溶 液加入到所述料浆中, 加热至 40°C〜100°C, 搅拌 5小时〜 8小时, 冷却静置, 虹吸上清液合并到步骤 (1)所得含有铀、 钍和稀土元素的上清液中。
进一步优选在二次酸浸后进行酸洗, 按独居石渣:酸 =1 kg: ( 1〜3 ) L的比例, 将浓度为 0.10mOl/L〜0.25mol/L 的无机强酸溶液加入到所述料浆中, 加热至 40°C〜100°C, 搅拌 0.5小时〜 1小时, 冷却静置, 虹吸上清液合并到步骤 (1)所得 含有铀、 钍和稀土元素的上清液中。
上述所述冷却静置的时间均优选为 4小时以上, 更优选为 4-8小时。
所述无机强酸优选为硫酸或者硝酸。
更进一步优选对步骤 (3 ) 所得含有铀、 钍和稀土元素的混合水溶液进行有 价成分的提取:
A、提铀: 采用离子交换吸附法从步骤 (3)得到的混合水溶液中提取铀, 得到 固体重铀酸钠和含钍和稀土的溶液;
B、 提钍: 用二 (2-乙基己基磷酸)与煤油混合后的有机试剂 a作为萃取剂, 其中二 (2-乙基己基磷酸)在有机试剂 a中的质量含量为 25%-35%, 采用萃取法从 步骤 A中所述含钍和稀土的溶液中提钍, 得到固体氢氧化钍和稀土溶液;
C、 提稀土: 用伯胺、 仲辛醇和煤油混合后的有机试剂 b作为萃取剂,采用 萃取法从步骤 B中所述稀土溶液中提取稀土, 得到氯化稀土溶液和废酸溶液;所 述有机试剂 b中伯胺所占的质量百分比为 5%-15%, 仲辛醇所占的质量百分比为 3%-6%, 其余为煤油。
其中, 为减少工业废水排出, 节约生产成本, 将步骤 C中产生的废酸溶液 优选返回步骤 ω作酸浸液用。
接下来再进一步优选对步骤 (3 ) 中的二次渣进行处理: 将二次渣进行选 矿, 得到独居石精矿、锆英石精矿和尾矿, 尾矿经碱分解后送入独居石精矿处理 工艺处理,独居石精矿处理工艺所产独居石渣又送入步骤 (1)处理, 实现放射性物 质闭路循环回收, 生产工艺中无放射性废渣排出。
所述选矿为现有技术,与独居石渣的选矿步骤相同,只是选矿的原料不同, 改为对步骤 (3 ) 中的二次渣进行选矿, 具体步骤为: 二次渣经重选 (摇床或离 心选矿机)分选出重矿 (矿砂)和尾矿 (化合物), 重矿再经重选(离心选矿机、 摇床) 淘汰重矿中的脉石, 再用磁选-电选, 分选出锆英石和独居石精矿。
下面对本发明做进一步解释和说明:
本发明通过浸矿→树脂提铀一P204萃取钍一N1923萃取 RE→萃余液返回浸 矿组合工艺分离提取 U、 Th和 RE, 整个组合工艺溶液不经调配, 连续、 顺畅进 行, 简化了工艺流程, 同时减少了废水排放。 将提 U后的余液采用 P204萃取提 Th, N1923捞 RE的组合工艺得到 Th和 RE两种产品。 同时萃余液 (废酸) 因含 杂质很低, 可以返回酸浸工序再利用, 减少了废水的排放量, 节约了酸浸的酸和 新水的用量, 减少处理废水的费用, 降低了生产成本。
而常规的方法是先用 N1923萃取 Th, 然后用 P204萃取 RE。其缺点是, 用昂 贵的 N1923去萃取量大的 Th, 萃取剂消耗大, 成本不合算。 再用 P204萃稀土, 虽然萃取剂成本降低一点,但提后的余液稀土含量低,酸度较高,需要降低酸度, 才能萃取, 要消耗调酸度的碱 (用 N1923萃取稀土没有这个问题)。而且降了酸度 的溶液经 P204萃取稀土后的萃余液酸度低, 不能返回作酸浸用, 只能经处理后 排放,增加了废水排放量和处理废水的费用。更无从节约酸浸工序中的酸和生水。 我们巧妙地把两种萃取剂使用对象调换过来, 形成一个组合工艺, 收到了很好的 效果, 是本工艺的又一个创新点。
本发明的技术原理是:
独居石渣采用化学方法处理, 提取铀、 钍、 稀土等有价元素。 用选矿的方法 回收渣中未被分解的独居石、 锆英石等有价矿物。 无放射性废水、 废渣排出。 实 现绿色循环。 具体原理如下:
一、 酸溶: 本发明采用低酸、 低温浸取工艺, 选择性地将独居石渣中已分解 的有价元素铀、钍、稀土化合物浸出到溶液中, 使溶液中不产生胶体溶液和渣中 不出现胶体状化合物, 液相和固相容易分离, 得到含铀、 钍、 稀土的清亮水溶液 和二次渣。通过控制酸度, 充分溶解出独居石渣中的酸溶性化合物, 尽量减少其 它难溶性化合物的溶解, 使其能顺利地进行酸溶渣的固液分离。 a 2 E(OH)3 ÷ 3U,S04 Λ E SO- ). + 6H,0
@T|iiOH),÷2H2SO, T¾(S04}2 ÷ 4¾0
(l:Na2 07÷5¾SO, 2 ,U -.O、",..^'('.S04 1■― + a,一S04 1 ÷ ―
4H一 ÷ 2ϋΟ,(80 - 2— · 其中还有一些杂质溶解到酸溶液中, 在浸出过程中尽量控制反应条件使 u、
Th、 RE的酸溶反应比其它杂质 (Zr、 Ti、 Fe、 Si等) 更充分。
二、 提取有价元素: 通过浸矿→树脂提铀一P204萃取钍一N1923萃取 RE→ 萃余液返回浸矿组合工艺分离提取 U、 Th和 RE, 整个组合工艺溶液不经调配, 连续、 顺畅进行, 简化了工艺流程, 同时减少了废水排放。
1、 提铀
Figure imgf000005_0001
利用 717阴离子交换树脂: , 吸附提取 U。
① 交换反应:
【(R4N 'S04s + U02(SQ4):: [(R4N)2. ·υθ2(504)2]5 + SCV-, ② 水解:
m 、、、、 、U■■'、O■、、■■'(■ 04h、 ÷ !ONaOH A »Na.一U,:0 丄 + 4Na一.S04, ÷ 7 ¾0,
2、 提 Th
① 萃取
P204对离子萃取能力不同, 利用萃取能力差异, 采用双溶剂萃取, 达到 Th、 RE分离目的。
[Τΐι· (ΗΑ2)1。
Figure imgf000005_0002
[腿' 3(ΗΑ2)] 萃合物中含 Th4+、 RE3+、 Ti4+、 Zr4 Fe3+、 Ti02+、 Zr02+, 等离子, 为了纯 化 Th,用硫酸优先将稀土离子和其之后的离子洗涤下来。从而纯化含 Th萃合物。
③ 富钍有机用 NaOH反萃得氢氧化钍富集物。
L¾(HA2) ÷德 OH Δ
Figure imgf000005_0003
4Na(HA2).
3、 提 RE
利用伯胺将原料中的稀土提取出来, 与杂质分离 (
① 缔合萃取: RE2(S04)¾ 十 3 [ (RN¾)2S04]^ 2 [卿¾)3 RE(S04)3] 0 ② 反萃稀土:
[(RN )3 RE(S.04)3] ΰ HCL 1.5 [(RN¾)2S04] 。+ RE3- +1,. 04 2 三、 滤渣进行处理: 通过选矿工艺对二次渣进行选矿, 得到独居石、 锆英石 和尾矿。用碱分解工艺对尾矿进行碱分解、 酸溶后, 返回到独居石碱分解主体工 艺中。
四、 废水处理
① 循环使用
将废酸水除油后用来浸取独居石渣。
铀水解母液调酸度后可返回铀的淋洗步骤, 减少废水排放。
碱反母液碱水调碱度后可以返回继续碱反用。
② 中和处理:
要排放的废水中除含酸外, 还有大量的硫酸根(so4 2— ), 用烧碱作为中和剂。 也为以后从这些废物中提取有价元素提供方便。为确保废水达标排放,在中和前, 含酸废水先除油、 再进行阴阳离子树脂交换吸附一次, 保证排水达标, 然后再进 行中和处理。
本工艺综合回收铀、钍、稀土、锆英石和独居石, 无放射性废水、废渣排放。 本工艺与独居石碱分解工艺相连, 可以大量降低生产成本和投资费用。具有可观 的经济效益。
与现有技术相比, 本发明的优势在于:
1、 对独居石渣采用低酸、 低温浸出, 将独居石渣中已分解的有价元素 (U、 Th、 RE)浸出到溶液中,液相和固相易分离,溶液清亮。直浸出率 Th02大于 86%, REO大于 58%, U308大于 82%。 浸出渣易压滤、 易洗涤。
2、 通过浸矿→树脂提铀→P204萃取钍一N1923萃取 RE→萃余液返回浸矿 组合工艺分离提取 U、 Th和 RE, 整个组合工艺溶液不经调配, 连续、顺畅进行。 简化了工艺流程, 同时减少了废水排放。
3、 采用选矿工艺对二次渣进行选矿并碱分解后, 实现了铀、 钍、 稀土的闭 路循环回收; 对选矿后的尾矿经碱分解酸溶后, 溶液返回独居石精矿碱分解主体 工艺中, 回收铀、 钍和稀土, 产生的富锆尾渣, 可作为锆英石精矿, 直接销售。 消除了放射性废渣的排出, 提高了 U、 Th、 RE的综合回收率。 4、 循环利用萃取余液废酸, 减少了废水排放, 降低了硫酸和新水消耗以及 废水处理费用, 降低了生产成本, 有价元素铀、 钍、 稀土的回收率大于 97 %, 整个工艺中无放射性废水、 废渣排出。
具体实施方式
下面结合实施例对本发明作进一步说明。实施例中所述百分含量均指质量百 分含量。 稀土和钍的分析方法采用 GB/T18114.1— 2000, 铀的分析方法采用 EJ/T266标准, 用硫酸亚铁还原 /重铬酸钾氧化滴定。
实施例 1 :
一种独居石渣的分离回收方法, 它包括下列步骤:
(1)酸浸: 按独居石渣 (kg ): 酸 (L) =1: 1〜15 的比例, 将独居石渣加入 到浓度为 0.25mol/L〜0.5mol/L的硫酸溶液中, 加热至 40°C〜100°C, 搅拌 5小 时〜 8小时, 冷却静置澄清 4小时〜 8小时, 虹吸上清液得到含有铀、 钍、 稀土 有价元素的溶液;
本实施例按独居石渣 (kg ): 酸 (L) =1: 10的比例, 将独居石渣 (¾0: 30.80 % , Th02 % : 24.2 % , REO % : 9.65 % , U% : 0.77 % ) 加入盛装有浓度为 0.25mol/L硫酸溶液的反应釜中, 加热至 55 °C, 搅拌 5小时, 冷却静置澄清至上 清液清亮, 静置时间为 5h, 虹吸上清液至储槽中, 固相留反应釜中。
(2)压滤: 将虹吸上清液后的料浆用泵打入板框压滤机压滤至无溶液流出, 滤液与步骤 ω中的上清液合并;
(3)水洗: 将板框压滤机的滤渣加水洗涤, 至滤液 ρΗ值 2〜3时停止进水, 压干滤渣, 水洗液与步骤 (1)中的上清液合并, 得到含有铀、 钍、 稀土的清亮水溶 液和含有独居石、 锆英石等矿石及残留铀、 钍、 稀土化合物的滤渣;
本实施例用水洗涤滤渣, 至滤液 ρΗ值 3时停止进水, 压干滤渣, 洗涤滤液 送至储槽中, 得到含有铀、 钍、 稀土的清亮水溶液, 搅拌混匀, 取样分析 (稀土 和钍的分析方法采用 GB/T18114.1--2000; 铀的分析方法采用 EJ/T266标准, 用 硫酸亚铁还原 /重铬酸钾氧化滴定),计算得出铀的浸取率为 78 %, 钍的浸取率为 80 % , 稀土的浸取率为 45 %。
实施例 2
对实施例 1步骤 (3 ) 所得含有铀、 钍和稀土元素的混合水溶液进行有价成 分的提取:
①提铀: 采用离子交换吸附法从歩骤 (3)得到的清亮水溶液中提取铀, 得到 固体重铀酸钠和含钍和稀土的溶液;
树脂处理: 取强碱性阴离子树脂, 经纯水洗涤至无色素, 用纯水浸泡 24h, 期间定时搅拌; 用 5 %NaOH浸泡 24h, 期间定时搅拌, 洗去树脂中的碱溶性杂 质, 用纯水洗至中性; 用 5 %的 H2S04浸泡 24h, 期间不断搅拌, 洗去树脂中的 酸溶性杂质, 用纯水洗至中性。 再用 0.15mol/L的 H2S04浸泡树脂至酸性, 把树 脂分别装入 (Φ600 ΙΜ, 长 1500 mm) 的两根串连柱子中待用, 树脂高度为 1100 mm。
树脂吸附: 将步骤 (3)得到的含有铀、 钍、 稀土的清亮水溶液从储槽中以 3 mm/min的线速度流经树脂中,吸附铀至树脂饱和,流出液为含稀土和钍的除铀料。
洗涤: 为洗涤树脂中游离的稀土和钍, 用 0.25mol/L的 H2S04洗涤树脂, 至流出液取样分析无钍和稀土结束,洗涤液与上步流出液合并, 待萃取分离提钍 用。
淋洗:配制 lmol/L的 NaCl加 5 %的 H2S04溶液(即淋洗液为 NaCl和 H2S04 的混合溶液, 混合溶液中 NaCl的浓度为 lmol/L, H2S04的质量浓度为 5 % ) 淋 洗树脂中的铀, 至淋洗液无黄色结束。
水解与烘干: 将上步所得淋洗液加热搅拌至 80°C, 加入 4mol/L的 NaOH溶 液至 PH=10, 有重铀酸钠沉淀析出, 恒温搅拌 30 min, 静置 20min, 过滤。 用 80°C热水洗涤重铀酸钠沉淀物,离心脱水得晶体重铀酸钠,晶体重铀酸钠在 90°C 下烘干, 得固体重铀酸钠产品, 铀的收率为 99 %。
②提钍: 采用萃取法从上步含钍和稀土的溶液中提钍, 得到固体氢氧化钍 和稀土溶液;
本发明在萃取钍中,萃取剂为二 (2-乙基己基磷酸)和煤油混合组成的有机试 剂, 即采用 25 %〜35 %的 P204 (P204在有机试剂中的质量含量或者体积含量为 25 %〜35 % ), 其余为煤油, 搅拌混匀得有机试剂。
萃取: 将有机试剂与上步除铀料和硫酸 (2mol/L〜3mol/L) 按流比有机试 剂: 除铀料: 硫酸 = 45 : 110: 2(Kml/min)分别加入第 1级、 第 6级和第 10级已 平衡的 1.5L萃取槽中进行串级萃取和洗涤, 得到负载钍的有机相和不含钍的萃 余液稀土溶液。
反萃: 配制 3 mol/L 的 NaOH溶液加热至 75 °C, 在搅拌条件下把加热的 NaOH加入热的负载钍的有机相中, 搅拌 30min, 静置分层, 分出下部的沉淀物, 过滤, 碱水保留循环使用, 有机相用 2mol/L的 H2S04酸法后循环使用。 滤饼用 热水洗涤脱水得氢氧化钍, 钍的收率大于 98 %。
③提稀土: 采用萃取法从上步稀土溶液中提取稀土, 得到氯化稀土溶液和 废酸溶液;
本发明在萃取稀土中, 萃取剂为伯胺、 仲辛醇与煤油混合后的有机试剂作 为萃取剂, 即采用 5 %〜15 %的 N1923 (N1923在有机试剂中的质量含量或者体 积含量为 25 %〜35 % )、仲辛醇 3 %〜6 % (仲辛醇在有机试剂中的质量含量或者 体积含量为 3 %〜6 % ), 其余为煤油, 搅拌混匀得有机试剂。
萃取: 将有机试剂与上步所得萃余液稀土溶液和盐酸 (lmol/L〜2mol/L) 按流比有机试剂: 萃余液: 盐酸 = 40: 120: 25(ml/min)分别加入第 1 级、 第 6 级和第 10级已平衡的萃取槽中进行串级萃取和反萃, 得到反萃液为氯化稀土溶 液, 稀土收率大于 99 %。
为减少工业废水排出, 节约生产成本, 本发明将步骤 (4)产生的废酸溶液即 萃余液返回步骤 ω作酸浸液用。
实施例 3:
对实施例 1步骤 (3 ) 所得二次渣处理: 将步骤 (3)中的二次渣进行选矿, 得 到独居石精矿、锆英石精矿和尾矿, 尾矿经碱分解后送入独居石精矿处理工艺处 理,独居石精矿处理工艺所产独居石渣又送入步骤 (1)处理, 如此实现放射性物质 闭路循环回收, 生产工艺中无放射性废渣排出。
本实施例将 lOOKg滤渣通过重选、 电选、 磁选得到品位为 60 %的独居石精 矿 11.5Kg, 60 %的锆英石精矿 32.5Kg, 得尾矿 54kg, 独居石精矿送独居石精矿 处理工艺处理,锆英石精矿可直接销售。独居石精矿处理工艺所产独居石渣又送 入步骤 (1)处理, 如此实现放射性物质闭路循环回收, 生产工艺中无放射性废渣排 出。
尾矿经碱分解一水洗一酸溶一压滤, 得含铀、 钍、 稀土的滤液和滤渣, 滤液 返回独居石精矿处理工艺处理, 实现闭路循环; 所产滤渣 11kg为锆英石 (通过 做物相分析, 其中含锆石为 91.52%), 可直接销售。
实施例 4:
为提高有价元素铀、 钍、 稀土回收率, 本发明在实施例 1步骤 (1)后进行二次 酸浸,按独居石渣(kg ):酸(L) =l : 1〜3的比例,将浓度为 0.25mol/L〜0.5mol/L 的硫酸溶液加入到虹吸上清液后的料浆中, 加热至 40°C〜100°C, 搅拌 5小时〜
8小时, 冷却静置澄清 4小时〜 8小时, 虹吸上清液与步骤 (1)所得上清液合并得 到含有铀、 钍、 稀土有价元素的溶液。
本实施例在实施例 1步骤 (1)后, 按独居石渣 (kg ): 酸 (L) =1: 2的比例, 将浓度为 0.25mol/的硫酸溶液加入到虹吸上清液后的料浆中,加热至 60°C,搅拌 5小时,冷却静置澄清 6小时,虹吸上清液与步骤 (1)所得上清液合并得到含有铀、 钍、 稀土有价元素的溶液, 固相留反应釜中。
本发明在二次酸浸后进行酸洗, 按独居石渣 (kg ): 酸 (L) =1: 1〜3 的比 例, 将浓度为 0.10mol/L〜0.25mol/L的硫酸溶液加入到虹吸上清液后的料浆中, 加热至 40°C〜100°C, 搅拌 0.5小时〜 1小时, 冷却静置澄清 4小时〜 8小时, 虹 吸上清液与步骤 (1)所得上清液合并得到含有铀、 钍、 稀土有价元素的溶液。
本实施例在二次酸浸后, 按独居石渣 (kg ): 酸 (L) =1: 1的比例, 将浓度 为 O.lOmol/L的硫酸溶液加入到虹吸上清液后的料浆中, 加热至 50°C, 搅拌 0.5 小时, 冷却静置澄清 4小时, 虹吸上清液与步骤 (1)所得上清液合并得到含有铀、 钍、 稀土有价元素的溶液, 固相留反应釜中。
取样分析,铀的浸取率为 82.5 %,钍的浸取率为 86 %,稀土的浸取率为 58.8 。
实施例 5:
对步骤(3 )中压干后的二次渣进行处理: 将 lOOKg二次渣通过重选、 电选、 磁选得到品位为 60 %的独居石精矿 12.4Kg, 60 %的锆英石精矿 34.8Kg, 得尾矿 52kg, 独居石精矿送独居石精矿处理工艺处理, 锆英石精矿可直接销售。独居石 精矿处理工艺所产独居石渣又送入步骤 (1)处理,如此实现放射性物质闭路循环回 收, 生产工艺中无放射性废渣排出。
尾矿经碱分解一水洗一酸溶一压滤, 得含铀、 钍、 稀土的滤液和滤渣, 滤液 返回独居石精矿处理工艺处理, 实现闭路循环; 所产滤渣 11.3kg为锆英石 (通 过做物相分析, 其中含锆石为 91.52%), 可直接销售。
余同实施例 1。
实施例 6:
本实施例在步骤 (1)中, 按独居石渣 (kg ): 酸 (L) =1: 12 的比例, 将独居 石渣加入盛装有浓度为 0.25mol/L硫酸溶液的反应釜中, 加热至 60°C, 搅拌 6小 时, 冷却静置澄清至上清液清亮, 静置时间为 6h, 虹吸上清液至储槽中, 固相 留反应釜中。
本发明为提高有价元素铀、 钍、 稀土回收率, 本发明在步骤 (1)后进行二次 酸浸, 按独居石渣 (kg ): 酸 (L) =1 : 1.5的比例, 将浓度为 0.35mol/L的硫酸溶 液加入到虹吸上清液后的料浆中, 加热至 80°C, 搅拌 5小时, 冷却静置澄清 6 小时, 虹吸上清液与步骤 (1)所得上清液合并得到含有铀、钍、稀土有价元素的溶 液, 固相留反应釜中。
本发明在二次酸浸后进行酸洗, 按独居石渣 (kg ): 酸 (L) =1 :2的比例, 将浓度为 O. lOmol/L的硫酸溶液加入到虹吸上清液后的料浆中, 加热至 80°C, 搅 拌 1.0小时, 冷却静置澄清 8小时, 虹吸上清液与步骤 (1)所得上清液合并得到含 有铀、 钍、 稀土有价元素的溶液, 固相留反应釜中。
本发明在步骤 (3)中, 用水洗涤滤渣, 至滤液 pH值 2.5时停止进水, 压干滤 渣, 洗涤滤液送至储槽中, 得到含有铀、 钍、 稀土的清亮水溶液, 搅拌混匀, 取 样分析, 计算得出铀的浸取率为 83.5 %, 钍的浸取率为 87.2 %, 稀土的浸取率为 61.0 %。
对步骤 (3 ) 中压干后的滤渣进行处理: 将 lOOKg滤渣通过重选、 电选、 磁 选得到品位为 60 %的独居石精矿 12.7Kg, 60 %的锆英石精矿 36.7Kg, 得尾矿 49.6kg, 独居石精矿送独居石精矿处理工艺处理, 锆英石精矿可直接销售。 独居 石精矿处理工艺所产独居石渣又送入步骤 (1)处理,如此实现放射性物质闭路循环 回收, 生产工艺中无放射性废渣排出。
尾矿经碱分解一水洗一酸溶一压滤, 得含铀、 钍、 稀土的滤液和滤渣, 滤液 返回独居石精矿处理工艺处理, 实现闭路循环; 所产滤渣 11.5kg为锆英石 (通 过做物相分析, 其中含锆石为 91.52%), 可直接销售。
余同实施例 1。
实施例 7:
本实施例在步骤 (1)中, 按独居石渣 (kg ): 酸 (L) =1: 8 的比例, 将独居 石渣加入盛装有浓度为 0.3mol/L硫酸溶液的反应釜中, 加热至 65 °C, 搅拌 7小 时, 冷却静置澄清至上清液清亮, 静置时间为 7h, 虹吸上清液至储槽中, 固相 留反应釜中。
本发明为提高有价元素铀、 钍、 稀土回收率, 本发明在步骤 (1)后进行二次 酸浸, 按独居石渣 (kg ): 酸 (L) =1 :3的比例, 将浓度为 0. 5mol/L的硫酸溶液 加入到虹吸上清液后的料浆中, 加热至 90°C, 搅拌 5小时, 冷却静置澄清 6小 时,虹吸上清液与步骤 (1)所得上清液合并得到含有铀、钍、稀土有价元素的溶液, 固相留反应釜中。 本发明在二次酸浸后进行酸洗, 按独居石渣 (kg ): 酸 (L) =1 :2的比例, 将浓度为 0.25mol/L的硫酸溶液加入到虹吸上清液后的料浆中, 加热至 90°C, 搅 拌 1.0小时, 冷却静置澄清 8小时, 虹吸上清液与步骤 (1)所得上清液合并得到含 有铀、 钍、 稀土有价元素的溶液, 固相留反应釜中。
本发明在步骤 (3)中, 用水洗涤滤渣, 至滤液 pH值 2.0时停止进水, 压干滤 渣, 洗涤滤液送至储槽中, 得到含有铀、 钍、 稀土的清亮水溶液, 搅拌混匀, 取 样分析, 计算得出铀的浸取率为 85.5 %, 钍的浸取率为 88.0 %, 稀土的浸取率为 65.5 %。
对步骤 (3 ) 中压干后的滤渣进行处理: 将 lOOKg滤渣通过重选、 电选、 磁 选得到品位为 60 %的独居石精矿 12.9Kg, 60 %的锆英石精矿 36.4Kg, 得尾矿 49.3kg, 独居石精矿送独居石精矿处理工艺处理, 锆英石精矿可直接销售。 独居 石精矿处理工艺所产独居石渣又送入步骤 (1)处理,如此实现放射性物质闭路循环 回收, 生产工艺中无放射性废渣排出。
尾矿经碱分解一水洗一酸溶一压滤, 得含铀、 钍、 稀土的滤液和滤渣, 滤液 返回独居石精矿处理工艺处理, 实现闭路循环; 所产滤渣 11.8kg为锆英石 (通 过做物相分析, 其中含锆石为 91.52%), 可直接销售。
余同实施例 1。
实施例 8:
本实施例在步骤 (1)中, 按独居石渣 (kg ): 酸 (L) =1: 7 的比例, 将独居 石渣加入盛装有浓度为 0.45mol/L硫酸溶液的反应釜中, 加热至 70 °C, 搅拌 8小 时, 冷却静置澄清至上清液清亮, 静置时间为 8h, 虹吸上清液至储槽中, 固相 留反应釜中。
在步骤 (1)后进行二次酸浸, 按独居石渣 (kg ): 酸 (L) =1 :3的比例, 将浓 度为 0.5mol/L的硫酸溶液加入到虹吸上清液后的料浆中, 加热至 90°C, 搅拌 5 小时, 冷却静置澄清 8小时, 虹吸上清液与步骤 (1)所得上清液合并得到含有铀、 钍、 稀土有价元素的溶液, 固相留反应釜中。
本发明在二次酸浸后进行酸洗, 按独居石渣 (kg ): 酸 (L) =1 :2的比例, 将浓度为 0.25mol/L的硫酸溶液加入到虹吸上清液后的料浆中, 加热至 90°C, 搅 拌 1.0小时, 冷却静置澄清 8小时, 虹吸上清液与步骤 (1)所得上清液合并得到含 有铀、 钍、 稀土有价元素的溶液, 固相留反应釜中。
本发明在步骤 (3)中, 用水洗涤滤濟, 至滤液 pH值 3.0时停止进水, 压干滤 渣, 洗涤滤液送至储槽中, 得到含有铀、 钍、 稀土的清亮水溶液, 搅拌混匀, 取 样分析, 计算得出铀的浸取率为 88.5 %, 钍的浸取率为 89.0 %, 稀土的浸取率为 67.0 %。
对步骤 (3 ) 中压干后的滤渣进行处理: 将 lOOKg滤渣通过重选、 电选、 磁 选得到品位为 60 %的独居石精矿 13.0Kg, 60 %的锆英石精矿 36.8Kg, 得尾矿 49kg, 独居石精矿送独居石精矿处理工艺处理, 锆英石精矿可直接销售。独居石 精矿处理工艺所产独居石渣又送入步骤 (1)处理,如此实现放射性物质闭路循环回 收, 生产工艺中无放射性废渣排出。
尾矿经碱分解一水洗一酸溶一压滤, 得含铀、 钍、 稀土的滤液和滤渣, 滤液 返回独居石精矿处理工艺处理, 实现闭路循环; 所产滤渣 11.9kg为锆英石 (通 过做物相分析, 其中含锆石为 91.52%), 可直接销售。
余同实施例 1。

Claims

权 利 要 求
1、 一种独居石渣的分离回收方法, 其特征是, 它包括下列步骤:
( 1 ) 酸浸: 按独居石渣:酸 =1 kg: ( 1〜15 ) L的比例, 将独居石渣加入到浓 度为 0.25mol/L〜0.5mol/L的无机强酸溶液中, 加热至 40°C〜100°C, 搅拌 5小 时〜 8小时, 冷却静置, 虹吸上清液, 得到含有铀、 钍和稀土元素的上清液和料 浆;
(2) 压滤: 将料浆过滤, 得滤渣和滤液, 滤液与步骤 (1)中的上清液合并;
( 3 ) 水洗: 将步骤 (2) 所述滤渣加水洗涤, 至水洗液 pH值为 2〜3时停 止洗涤,压干滤渣,得到水洗液和二次渣;所得水洗液与步骤 (1)中的上清液合并, 得到混合水溶液。
2、 根据权利要求 1所述独居石渣的分离回收方法, 其特征是, 在步骤 (1) 后进行二次酸浸, 按独居石渣:酸 =1 kg; ( 1〜3) L的比例, 将浓度为 0.25mol/L〜 0.5mol/L的无机强酸溶液加入到所述料浆中,加热至 40°C〜100°C,搅拌 5小时〜 8小时, 冷却静置, 虹吸上清液合并到步骤 (1)所得含有铀、 钍和稀土元素的上清 液中。
3、 根据权利要求 2所述独居石渣的分离回收方法, 其特征是, 在二次酸 浸后进行酸洗, 按独居石渣:酸 =1 kg: ( 1〜3 ) L的比例, 将浓度为 0.10mol/L〜 0.25mol/L的无机强酸溶液加入到所述料浆中, 加热至 40°C〜100°C, 搅拌 0.5小 时〜 1小时, 冷却静置, 虹吸上清液合并到步骤 (1)所得含有铀、 钍和稀土元素的 上清液中。
4、 根据权利要求 1-3之一所述独居石渣的分离回收方法, 其特征是, 所 述冷却静置的时间为 4小时以上。
5、 根据权利要求 1-3之一所述独居石渣的分离回收方法, 其特征是, 所 述无机强酸为硫酸或者硝酸。
6、 根据权利要求 1-3之一所述独居石渣的分离回收方法, 其特征是, 对步 骤 (3 ) 所得含有铀、 钍和稀土元素的混合水溶液进行有价成分的提取:
A、提铀: 采用离子交换吸附法从步骤 (3)得到的混合水溶液中提取铀, 得到 固体重铀酸钠和含钍和稀土的溶液; B、 提钍: 用二 (2-乙基己基磷酸)与煤油混合后的有机试剂 a作为萃取剂, 其中二 (2-乙基己基磷酸)在有机试剂 a中的质量含量为 25%-35%, 采用萃取法从 步骤 A中所述含钍和稀土的溶液中提钍, 得到固体氢氧化钍和稀土溶液;
C、 提稀土: 用伯胺、仲辛醇和煤油混合后的有机试剂 b作为萃取剂, 采用 萃取法从步骤 B 中所述稀土溶液中提取稀土, 得到氯化稀土溶液和废酸溶液; 所述有机试剂 b中伯胺所占的质量百分比为 5%-15%, 仲辛醇所占的质量百分比 为 3%-6%, 其余为煤油。
7、 根据权利要求 6所述的独居石渣的分离回收方法, 其特征是, 将步骤 C中产生的废酸溶液返回步骤 (1)作酸浸液用。
8、 根据权利要求 6所述的独居石渣的分离回收方法, 其特征是, 对步骤
( 3 ) 中的二次渣进行处理: 将二次渣进行选矿, 得到独居石精矿、 锆英石精矿 和尾矿,尾矿经碱分解后送入独居石精矿处理工艺处理, 独居石精矿处理工艺所 产独居石渣又送入步骤 (1)处理, 实现放射性物质闭路循环回收, 生产工艺中无放 射性废渣排出。
PCT/CN2013/080002 2012-11-27 2013-07-24 独居石渣的分离回收方法 WO2014082461A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/647,368 US9657369B2 (en) 2012-11-27 2013-07-24 Monazite ballast separation and recovery method
AU2013351773A AU2013351773B2 (en) 2012-11-27 2013-07-24 Monazite ballast separation and recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210489704.0A CN103014359B (zh) 2012-11-27 2012-11-27 独居石渣的分离回收方法
CN201210489704.0 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014082461A1 true WO2014082461A1 (zh) 2014-06-05

Family

ID=47963469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080002 WO2014082461A1 (zh) 2012-11-27 2013-07-24 独居石渣的分离回收方法

Country Status (5)

Country Link
US (1) US9657369B2 (zh)
CN (1) CN103014359B (zh)
AU (1) AU2013351773B2 (zh)
MY (1) MY170254A (zh)
WO (1) WO2014082461A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575485A (zh) * 2020-05-09 2020-08-25 湛江市红日稀土有限公司 一种降低稀土渣放射性的回收处理方法
CN115818694A (zh) * 2022-12-09 2023-03-21 包头稀土研究院 独居石的处理方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014359B (zh) * 2012-11-27 2014-03-19 益阳鸿源稀土有限责任公司 独居石渣的分离回收方法
CN103589866B (zh) * 2013-11-29 2015-06-10 上海交通大学 利用硅基阴离子交换树脂对钍和铀进行分离回收的方法
CN104498739B (zh) * 2014-12-02 2016-03-09 益阳鸿源稀土有限责任公司 一种稀土矿分解余渣中铀、钍、稀土的分离回收方法
US9896744B2 (en) * 2015-06-01 2018-02-20 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada Process for metals leaching and recovery from radioactive wastes
CN107475542B (zh) * 2017-07-17 2021-03-16 中国恩菲工程技术有限公司 处理稀土精矿的方法
CN107267784B (zh) * 2017-07-17 2022-09-20 中国恩菲工程技术有限公司 处理稀土精矿的系统
CN108034816A (zh) * 2017-12-20 2018-05-15 宁波市鄞州智伴信息科技有限公司 一种独居石中的稀土元素分离方法
CN108118165A (zh) * 2017-12-20 2018-06-05 宁波市鄞州智伴信息科技有限公司 一种黑稀金矿中的稀土钇的提取和分离方法
CN108396146A (zh) * 2018-03-01 2018-08-14 常熟理工学院 稀土废渣中钍元素的吸附处理方法及装置
CN110983072B (zh) * 2019-11-28 2022-07-22 江西理工大学 离子型稀土矿山原地浸矿的浸矿剂溶液注入时长计算方法
CN111004933A (zh) * 2019-12-26 2020-04-14 湖南中核金原新材料有限责任公司 一种独居石优溶渣的六级连续全溶方法
CN112941323B (zh) * 2021-01-26 2022-11-25 江西晶安高科技股份有限公司 一种氧氯化锆生产过程中排放废酸中和废渣减量化方法
CN114277265A (zh) * 2021-12-29 2022-04-05 湖南中核金原新材料有限责任公司 一种利用独居石优溶渣制备氧化钍的方法
CN115074531B (zh) * 2022-06-17 2023-05-09 湖南中核金原新材料有限责任公司 一种具有内回流设计的优溶渣中铀提取方法
CN115591676B (zh) * 2022-10-31 2023-07-04 湖南中核金原新材料有限责任公司 热活化过硫酸盐去除独居石浮选精矿表面有机药剂的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783628A (en) * 1955-01-13 1957-09-25 Atomic Energy Authority Uk Improvements in or relating to recovery of thorium from monazite
US2815264A (en) * 1953-10-09 1957-12-03 George D Calkins Processing of monazite sand
CN1721559A (zh) * 2004-12-15 2006-01-18 北京有色金属研究总院 从稀土矿中综合回收稀土和钍工艺方法
CN101886175A (zh) * 2010-07-02 2010-11-17 湘潭市天添矿业有限公司 从含铀稀土渣中提取铀生产重铀酸盐的方法
CN103014359A (zh) * 2012-11-27 2013-04-03 益阳鸿源稀土有限责任公司 独居石渣的分离回收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374096A (en) * 1979-08-01 1983-02-15 Canadian Patents & Development Limited Uranium ore processing
FR2515630B1 (fr) * 1981-10-30 1985-10-04 Rhone Poulenc Spec Chim Procede d'extraction et de separation de l'uranium, du thorium et des terres rares par traitement de solutions aqueuses de chlorures de ces elements
CN101619397B (zh) * 2009-07-17 2011-03-16 云南佰盾环保新技术咨询有限公司 一种从提锗煤渣中湿法回收铀的方法
CN102220488B (zh) * 2011-05-31 2012-10-17 北京矿冶研究总院 一种从磷矿中分离稀土的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2815264A (en) * 1953-10-09 1957-12-03 George D Calkins Processing of monazite sand
GB783628A (en) * 1955-01-13 1957-09-25 Atomic Energy Authority Uk Improvements in or relating to recovery of thorium from monazite
CN1721559A (zh) * 2004-12-15 2006-01-18 北京有色金属研究总院 从稀土矿中综合回收稀土和钍工艺方法
CN101886175A (zh) * 2010-07-02 2010-11-17 湘潭市天添矿业有限公司 从含铀稀土渣中提取铀生产重铀酸盐的方法
CN103014359A (zh) * 2012-11-27 2013-04-03 益阳鸿源稀土有限责任公司 独居石渣的分离回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZOU, DONG;: "Research on separation of uranium, thorium and rear earth in monazite by extraction", JOURNAL OF GUANGDONG NON-FERROUS METALS, vol. 2, no. 1, May 1992 (1992-05-01), pages 16 - 21 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575485A (zh) * 2020-05-09 2020-08-25 湛江市红日稀土有限公司 一种降低稀土渣放射性的回收处理方法
CN115818694A (zh) * 2022-12-09 2023-03-21 包头稀土研究院 独居石的处理方法
CN115818694B (zh) * 2022-12-09 2024-01-23 包头稀土研究院 独居石的处理方法

Also Published As

Publication number Publication date
CN103014359A (zh) 2013-04-03
AU2013351773B2 (en) 2016-05-26
CN103014359B (zh) 2014-03-19
US20150307958A1 (en) 2015-10-29
AU2013351773A1 (en) 2015-01-15
MY170254A (en) 2019-07-13
US9657369B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
WO2014082461A1 (zh) 独居石渣的分离回收方法
CN103014333B (zh) 独居石渣中铀、钍、稀土的分离回收方法
CN104498739B (zh) 一种稀土矿分解余渣中铀、钍、稀土的分离回收方法
CN103397213B (zh) 包头稀土矿混合碱焙烧法分解提取稀土方法
CN104928475B (zh) 一种含稀土的铝硅废料的回收方法
CN102146512B (zh) 一种氟碳铈矿冶炼分离工艺
US20200262712A1 (en) A Method of Pretreatment and Bromine Recovery of PCB Incineration Ash
CN104876250B (zh) 一种硫酸处理锂云母提锂除铝的方法
CN104831073B (zh) 一种从失效汽车催化剂中回收铂钯铑的工艺
CN106611841B (zh) 一种利用镍钴渣料制备镍钴锰三元材料前驱体的方法
CN106319218A (zh) 从含稀土的铝硅废料中回收稀土、铝和硅的方法
CN101392332B (zh) 一种硫酸稀土焙烧矿直接转化提取稀土清洁化生产工艺
CN108893617B (zh) 一种从净化钴渣中高效分离和回收锌、钴的方法
WO2012171481A1 (zh) 全面综合回收和基本无三废、零排放的湿法冶金方法
CN114318008B (zh) 一种硝酸二次逆向浸出锂辉石提锂的方法
CN102925681B (zh) 独居石渣有价成分的分离方法
CN104745821B (zh) 基于酸洗污泥中回收镍、铜金属的方法
CN103060581A (zh) 钛白生产废酸中钪的萃取回收方法
CN110902703A (zh) 一种粉煤灰盐酸法生产氧化铝并回收稀土元素的方法
CN113149075A (zh) 一种从低品位铌矿中制备五氧化二铌的方法
CN105200248A (zh) 一种利用电石渣一步中和钛白废酸制备高纯度钪的方法
CN103014358B (zh) 独居石渣分离回收后尾矿的处理方法
CN115852177A (zh) 一种从熔盐氯化收尘渣中回收钪的方法
CN103773953A (zh) 一种采用离子交换法富集低稀土浓度洗出液的方法
CN106636684A (zh) 一种从钛白废水中富集钪的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013351773

Country of ref document: AU

Date of ref document: 20130724

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14647368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858893

Country of ref document: EP

Kind code of ref document: A1