WO2014082189A1 - 冷轧酸洗酸浓度控制方法和装置 - Google Patents

冷轧酸洗酸浓度控制方法和装置 Download PDF

Info

Publication number
WO2014082189A1
WO2014082189A1 PCT/CN2012/001603 CN2012001603W WO2014082189A1 WO 2014082189 A1 WO2014082189 A1 WO 2014082189A1 CN 2012001603 W CN2012001603 W CN 2012001603W WO 2014082189 A1 WO2014082189 A1 WO 2014082189A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
acid concentration
tank
pickling
concentration
Prior art date
Application number
PCT/CN2012/001603
Other languages
English (en)
French (fr)
Inventor
唐安详
申屠理锋
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US14/649,429 priority Critical patent/US10274975B2/en
Priority to EP12888991.2A priority patent/EP2927772B1/en
Priority to JP2015544286A priority patent/JP6063058B2/ja
Priority to PCT/CN2012/001603 priority patent/WO2014082189A1/zh
Priority to CA2890620A priority patent/CA2890620C/en
Priority to KR1020157014240A priority patent/KR101722405B1/ko
Publication of WO2014082189A1 publication Critical patent/WO2014082189A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0269Cleaning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Definitions

  • the invention relates to a method and a device for controlling the pickling acid concentration of a cold rolled strip. Background technique
  • the iron oxide scales (Fe 2 O 3 , Fe , , FeO ) on the strip surface are alkaline oxides that do not dissolve in water. When they are immersed in an acid solution, these basic oxides react with the acid. chemical reaction.
  • the iron oxide scale on the surface of carbon steel or low alloy steel has the characteristics of looseness, porosity and crack. These iron oxide scales are straightened, stretched and conveyed together with the strip steel, and are repeatedly bent to further increase the gaps, so the acid solution It reacts with the iron oxide scale and also chemically reacts with the matrix iron of the outline strip.
  • the purpose of pickling is to remove the oxide layer on the surface of the strip.
  • Conventional pickling generally has hysteresis of acid concentration control, and it is impossible to achieve stable control of hydrochloric acid concentration.
  • the concentration of hydrochloric acid in the actual production process fluctuates greatly, resulting in the quality of strip cleaning. It is stable, and the amount of acid used is too large, causing waste of hydrochloric acid.
  • most of the existing pickling units in the world use manual acid concentration control. The main reason is that the accuracy of real-time measurement of acid concentration is difficult to guarantee, and there is no mature measurement and control scheme.
  • it is manually timed sampling and titration is used to analyze the acid concentration of the sample, and then the acid concentration is manually controlled according to practical experience.
  • the biggest disadvantage of this method is the hysteresis of the control, because the actual acid concentration changes. It is closely related to many factors, such as the running speed of the unit, the width of the strip, the degree of oxidation of the strip surface, and the steel type. Therefore, the manual control method will inevitably cause the acid concentration to fluctuate greatly and fluctuate greatly. Quality causes instability.
  • Chinese Patent Publication No. CN1462321 discloses a continuous pickling method and a continuous pickling apparatus, wherein the continuous pickling method is to supply an acid to two or more pickling tanks in a plurality of pickling tanks constituting the continuous pickling apparatus, respectively.
  • the liquid is used to pickle the conveyed steel strip, and the total thickness of the acid liquid is determined by the thickness of the iron oxide scale on the steel strip, the width of the steel strip, and the conveying speed of the steel strip.
  • the pickling mode of the steel strip and the conveying speed of the steel strip described above are determined as a distribution ratio of the respective acid liquid supply amounts to the two or more pickling tanks.
  • the pickling line control device predicts the amount of acid consumed during pickling of the pickling liquid stored in the third tank and the final tank of the continuous pickling apparatus, and determines the amount of acid picking liquid supplied to the third tank and the final tank, respectively.
  • the acid supply system is supplied to the acid solution.
  • the acid concentration continuous measuring device continuously measures the acid concentration of the pickling liquid stored in the third tank and the final tank of the acid supply solution, respectively, and according to the continuously measured acid concentration value measured by
  • the acid supply system supplies the acid to the third tank and the final tank so that the acid concentrations of the pickling liquid stored in the third tank and the final tank are matched with the target values, respectively. This increases the limited acid concentration of the pickling liquor from the final tank to 12% while increasing the acid concentration of the pickling stock stored in other pickling tanks.
  • Chinese Patent Publication No. CN1280633 discloses an apparatus for continuously measuring an acid concentration, in which a body provided with a pickling liquid contained in a pickling tank continuously passing through a passage in one direction is provided, which is disposed on the body and is actually continuously measured. A densitometer, a thermometer, and a conductivity meter for the pickling solution flowing through the passage, and a calculation device for calculating the acid concentration of the pickling liquid based on these measurement results. Using this acid concentration continuous measuring device, feedback control controls the concentration of hydrochloric acid in the final pickling tank in the plurality of pickling tanks of the continuous pickling apparatus.
  • the above-disclosed document relates to an acid concentration measuring apparatus which employs a temperature measurement method, a density measurement, and a conductivity measurement, and uses the temperature, density, and conductivity to estimate the acid concentration.
  • the method of univariate control of the acid concentration is adopted, and the entire measurement time is long and takes 1 hour, which is an intermittent measurement method. Due to the hysteresis of acid concentration control, stable control of hydrochloric acid concentration cannot be achieved. In the actual production process, the concentration of hydrochloric acid fluctuates greatly, resulting in unstable cleaning quality of the strip steel, and the use of acid is too large, resulting in waste of hydrochloric acid. Summary of the invention
  • the object of the present invention is to provide a cold rolling acid pickling acid concentration control method and device according to the present invention, which adopts a multivariable decoupling control method to realize acid concentration closed-loop control, thereby saving hydrochloric acid dosage, reducing waste acid regeneration quantity, and reducing environment. Pollution.
  • the present invention adopts the following technical scheme - a cold rolling pickling acid concentration control method, three acid tanks are arranged on the acid circulation tank of the pickling line, and the three acid tanks are connected to each other. , an acid concentration measuring device is connected in series on each acid acid tank and the acid solution reflux pipe of the acid circulation tank, and the actual acid concentration value of the acid solution in the acid circulation tank on the production line is measured by the acid concentration measuring device through the acid concentration analyzer.
  • the expression of the acid tank transfer function matrix of the controlled object of the production line acid circulation tank is -
  • the inverse function CT expression of the acid tank transfer function matrix is:
  • ⁇ , ⁇ is the cross-sectional area of three acid tanks, the three acid addition volumes are the same, and helium and neon are the deviations of the acid flow allowed by the process;
  • the second step according to the first step of the acid tank transfer function matrix design pre-compensator transfer function matrix K p (s), so that the diagonal advantage matrix, the steps are as follows -
  • the Ness diagram with the G. sorghum zone is drawn. According to the Nessler stability criterion, the closed loop system is ensured to be stable, and the acid concentration feedback gain value E ( ⁇ .
  • the third step through several parameters to try, can get:
  • the acid concentration feedback gain F(s) in the fourth step is taken as -
  • the sixth step, closed-loop control system simulation, through the existing simulation software can get the unit step response curve of the system, adjust the system parameters: including input parameter set value, pre-compensator transfer function matrix p (, dynamic compensator transfer function Matrix e ( ⁇ and acid concentration feedback gain E), so that each main channel has no overshoot phenomenon, to meet the system's steady state error and response speed requirements.
  • a cold rolling pickling acid concentration control device comprising an acid concentration analyzer, a sensor, a meter setting and display system, a controller, an actuator;
  • the sensor comprises a conductivity sensor and a temperature sensor, and the conductivity sensor measures a production line acid cycle
  • the solution conductivity at the outlet end of the tank, the temperature sensor measures the temperature of the solution at the outlet end of the acid circulation tank; the signal of the temperature sensor and the conductivity sensor is output to the acid concentration analyzer, and the concentration of the solution in the acid circulation tank is calculated in the acid concentration analyzer.
  • the concentration is fed to the controller;
  • the controller is a multivariable controller, and the multivariable controller comprises a dynamic compensation controller and a precompensation controller, and the multivariable controller performs multivariate solution according to the acid concentration signal input by the operator and the actual value of the acid concentration measured by the sensor. Coupling calculation, calculate the control variable output to the actuator; the actuator controls the infusion pump and the infusion valve on each acid tank, and each acid tank is connected to each other, and the acid concentration of the acid circulation tank is controlled.
  • the acid tanks are three, respectively located at the inlet of the steel plate into the acid circulation tank, at the outlet and in the middle of the acid circulation tank.
  • the invention directly calculates the acid concentration by real-time measurement of the conductivity and temperature of the acid circulation tank of the cold rolling pickling production line, and adopts the multivariable decoupling control method to realize the closed loop control and optimization of the acid concentration, thereby saving the amount of hydrochloric acid and reducing the amount of waste acid regeneration. , reduce environmental pollution.
  • the cold rolling pickling acid concentration control device of the invention adopts a multivariable controller to realize continuous measurement without interruption, and can realize automatic continuous control; the device has simple structure and stable concentration control of the acid circulation tank, which not only ensures the pickling quality of the strip steel, It also saves acid usage.
  • Figure 1 is a schematic diagram of the process flow of cold rolling pickling acid concentration control
  • FIG. 2 is a schematic view of a cold rolling pickling acid concentration control device of the present invention
  • FIG. 3 is a schematic diagram of modeling of an acid concentration multivariable controller of the present invention.
  • FIG. 4 is a schematic diagram of the acid concentration multivariable controller of the present invention.
  • FIG. 5 is a schematic diagram of a design flow of a Nessler array method according to the present invention.
  • Figure 6 is a block diagram of the acid concentration multivariable closed-loop controller system of the present invention.
  • a cold rolling pickling acid concentration control device comprises an acid concentration analyzer 7, a sensor 6, a meter setting and display system, a multivariable controller and an actuator 8; and the sensor 6 comprises a conductivity sensor.
  • a temperature sensor a conductivity sensor measures the conductivity of the solution at the outlet end of the acid circulation tank 100 (referred to as the acid tank), and the temperature sensor measures the temperature of the solution at the outlet end of the acid tank.
  • the signals of the temperature sensor and the conductivity sensor are output to the acid concentration analyzer 7, and the concentration of the solution in the acid tank 100 is obtained by analysis in the acid concentration analyzer 7, and the concentration is fed to the multivariable controller, and the multivariable controller includes dynamics.
  • the production operator can set the multivariable controller parameters through the meter setting and display system.
  • the multivariable controller performs multivariate decoupling calculation based on the acid concentration signal input by the operator and the actual acid concentration measured by the sensor.
  • the control variable is output to the actuator 8, and the actuator 8 controls the infusion pump and the infusion valve on each of the acid addition tanks 5, and each of the acid addition tanks 5 is in communication with each other, and the acid concentration of the acid circulation tank 100 is controlled. And keep the acid concentration consistent.
  • the acid concentration of the three points on the acid circulation tank 100 of the production line is generally controlled to ensure that the concentration of the solution in the acid tank of the entire production line satisfies the requirements of the production process.
  • the pickling line is equipped with three acid tanks 51, 52, 53, each acid tank 51, 52, 53 and the acid tank between the pickling tanks 100 on the production line
  • an acid concentration measuring device 6 ie, a sensor
  • the actual acid concentration value of the internal acid solution of the acid tank 100 on the production line is measured by the acid concentration measuring device 6 and analyzed by acid concentration.
  • the controller 7 feeds back to the multivariable controller, and compares the value of the acid concentration given by the process with the difference between the controller as the input value of the controller model.
  • the measuring point is generally selected at the inlet of the strip 4 into the acid bath 100, at the outlet and in the middle of the pickling tank. Since the strip 4 enters the pickling tank 100 from the inlet and is output from the outlet at a constant speed, the acid solution inside the acid tank 100 flows from the inlet to the outlet.
  • the three acid addition tanks 51, 52, and 53 are in communication with each other, and the ortho-acid is flowed from the No. 3 acid addition tank 53, and is diluted in the No. 3 acid addition tank 53, and then flows to the inlet of the acid tank 100 and the acid tank of No. 2, respectively.
  • the acid concentrations between the three acid tanks 51, 52, and 53 are mutually influential, that is, the measured acid concentration values are correlated, indicating that the acid concentration controller is a multivariable controller, see FIG.
  • the present invention establishes a mathematical model of the acid circulation tank of the production line by finding the coupling relationship between the acid concentrations of the three measurement points, and performs multivariate decoupling calculation,
  • the multivariable control system is transformed into a single variable control system.
  • the flow chart of the cold rolling pickling acid concentration control process of FIG. 1 is combined with the schematic diagram of the cold rolling pickling acid concentration control device of FIG. 2, which is equivalent to the modeling of the acid concentration multivariable controller of FIG.
  • the mathematical model G ⁇ ) of the controlled object is obtained, and the multivariable controller design is utilized.
  • the Nyquist array method is adopted.
  • the basic design idea is: First introduce a precompensator ⁇ ( ⁇ in front of the controlled object to weaken the coupling between the circuits and make the system open.
  • the loop transfer function matrix becomes a diagonal dominant matrix, which simplifies the design of the entire multivariable system into a compensation design for a set of univariate systems.
  • the dynamic compensator is designed according to the univariate design method. See Figure 4, Figure 4 is a schematic diagram of the acid concentration multivariable controller. After the multivariable controller operation processing, the control variable is calculated and output to the actuator, and the actuator controls the infusion pump and the infusion liquid on each acid tank to control the acid concentration of the acid circulation tank.
  • a cold rolling pickling acid concentration control method the steps of which are:
  • the first step is to establish a multivariate mathematical model of the pickling tank of the controlled object on the pickling line.
  • Figure 3 is a schematic diagram of the modeling of the acid concentration multivariable controller, in which:
  • is the cross-sectional area of the i-th acid tank, and it is known that the cross-sectional area of the acid tank is uniform;
  • h' (t) is the height of the liquid level in the acid tank i at time t;
  • f, (t) is the flow rate of adding the acid tank i to the acid tank i + 1 at time t;
  • the liquid level of the acid tank is / 2, (t) (l ⁇ ⁇ is the output of the system;
  • the flow rate of the output liquid of the acid tank (t) (l ⁇ i ⁇ is the external disturbance amount of the system;
  • Step 2 Design the precompensator transfer function matrix ⁇ : ⁇ according to the mathematical model G ⁇ ) obtained in the first step ( ⁇ ( ⁇ ) becomes the diagonal advantage matrix, see Figure 4 and Figure 5,
  • Figure 4 is the schematic diagram of the acid concentration multivariable controller
  • Figure 5 is the schematic diagram of the Ness Array method design process;
  • K c (s) diag 1 + 1 + 1 + (10) sss
  • the Ness diagram with the G. sorghum belt is drawn.
  • the acid concentration feedback gain E (take -
  • the sixth step is the simulation of the closed-loop control system.
  • the unit step response curve of the system can be obtained through the existing simulation software, and the system parameters are adjusted: including the input parameter set value, the precompensator transfer function matrix ⁇ ), the dynamic compensator transfer function matrix and the acid concentration feedback gain / There is no overshoot in each main channel to meet the system's steady-state error and response speed requirements.
  • the main innovation in the cold rolling pickling acid concentration control method of the present invention ultimately comes down to the determination of each parameter in the acid concentration multivariable controller model, the parameters including the controlled object plus acid tank transfer function matrix G ⁇ ), precompensation Pass Function matrix: P ), dynamic compensator transfer function matrix i ⁇ ) and acid concentration feedback gain multivariable controller operator, block diagram of the closed-loop control system after parameter determination of acid concentration multivariable controller is shown in Fig. 6.
  • the actual acid concentration value of the acid solution in the acid tank on the production line is measured by three acid concentration measuring devices, and is fed to the multivariable controller through the acid concentration analyzer, and the acid concentration value given in the multivariable controller and the process requirement is given. Comparing, the difference is used as the input value of the multivariate controller model; after the multivariable controller is processed, the control variable is output to the actuator, and the actuator controls the infusion pump and the infusion valve on each acid tank, respectively.
  • the acid circulation tank acid concentration is controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Algebra (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

提供一种冷轧酸洗酸浓度控制方法和装置,该方法是在酸循环槽上配置三个互相连通的加酸罐,测量得到酸槽内酸溶液的实际酸浓度值经酸浓度分析器后馈给多变量控制器,利用多变量控制器模型找出三个测量点的酸浓度之间的耦合关系。该控制方法和装置能实现酸浓度闭环控制,节约盐酸用量,减少废酸再生数量,降低环境污染。

Description

冷轧酸洗酸浓度控制方法和装置 技术领域
本发明涉及一种冷轧带钢酸洗酸浓度控制方法和装置。 背景技术
冷轧带钢生产中的一道重要工序就是酸洗, 酸洗是用化学方法除去金属表面氧化铁皮 的化学过程。 带钢表面上的氧化铁皮 (Fe2O3, Fe , , FeO ) 都是不溶解于水的碱性氧 化物, 当它们浸泡在酸液里时, 这些碱性氧化物就与酸发生一系列化学反应。 碳素钢或低 合金钢表面上的氧化铁皮具有疏松、多孔和裂紋的性质,这些氧化铁皮随同带钢一起矫直、 拉矫、 传送, 经过反复弯曲, 使这些缝隙进一步加大, 所以酸溶液与氧化铁皮反应的同时 也与大纲带钢的基体铁发生化学反应。 酸洗的目的是要清除带钢表面的氧化层, 常规的酸 洗普遍存在酸浓度控制的滞后性, 无法实现盐酸浓度的稳定控制, 实际生产过程中盐酸浓 度波动大, 造成带钢清洗质量不稳定, 并且酸的使用量偏大, 造成盐酸的浪费。 目前世界 上现有的酸洗机组大多采用手动酸浓度控制, 主要原因是酸浓度实时测量的准确性很难保 证, 没有成熟的测量及控制方案。 一般是人工定时采样并用滴定法(titration)对样品的酸 浓度进行分析, 再根据实践经验进行补酸实施酸浓度手动控制, 这种方法的最大缺点是控 制的滞后性, 因为实际酸浓度的变化与许多因素密切相关, 例如机组的运行速度、 带钢的 宽度、 带钢表面的氧化程度及钢种等等, 所以人工的控制方法势必造成酸浓度忽高忽低波 动大, 对带钢的清洗质量造成不稳定。
中国专利公开号 CN1462321公开了一种连续酸洗方法和连续酸洗装置, 其连续酸洗方 法是, 一边分别向构成连续酸洗装置的多个酸洗槽中两个以上酸洗槽内供给酸液, 一边对 输送的带钢进行酸洗时, 用所述的带钢上氧化铁皮的厚度、 所述的带钢的宽度和所述的带 钢的输送速度求出酸液总供给量, 用所述的带钢的酸洗模式和所述的带钢的输送速度求出 向所述的两个以上酸洗槽中各自酸液供给量的分配比例。 酸洗管路控制装置预测储存在连 续酸洗装置的第三槽和最终槽中的酸洗液酸洗时消耗的酸量, 确定分别对第三槽和最终槽 中酸洗液的供给量, 使酸液供给系统供给酸液。 酸浓度连续测定装置对分别储存在被供酸 液的第三槽和最终槽中酸洗液的酸浓度作连续测定, 并且根据连续测得的被测酸浓度值由
1
确认本 酸液供给系统向第三槽和最终槽供给酸液, 以便使储存在第三槽和最终槽中酸洗液的酸浓 度分别与目标值互相匹配。 这样可以使从最终槽排出酸洗液的、 受到限制的酸浓度增加到 12 % , 同时使储存在其他酸洗槽中酸洗液的酸浓度增加。
中国专利公开号 CN1280633公开了一种酸浓度连续测定装置, 其中组合有设有能使酸 洗槽中容纳的酸洗液连续沿一个方向通过通路的本体, 设置在本体上并以实际上连续测定 流经通路的酸洗液用的密度计、 温度计和电导率计, 以及根据这些测定结果计算酸洗液酸 浓度用的计算装置。 使用这种酸浓度连续测定装置, 反馈控制构成连续酸洗设备的数个酸 洗槽中最终酸洗槽内的盐酸浓度。
上述公开的文献中, 涉及了酸浓度测量装置, 所采用的测量方法涉及了温度测量、 密 度测量和电导率测量, 利用温度、 密度和电导率推算出酸浓度。 采用的是单变量控制酸浓 度的方法, 整个测量时间较长, 需要 1小时, 是一种间断测量法。 由于酸浓度控制的滞后 性, 无法实现盐酸浓度的稳定控制, 在实际生产过程中盐酸浓度波动大, 造成带钢清洗质 量不稳定, 并且酸的使用量偏大, 造成盐酸的浪费。 发明内容
本发明的目的在于提供一种本发明冷轧酸洗酸浓度控制方法和装置, 该控制方法采用 多变量解耦控制方法实现酸浓度闭环控制, 从而节约盐酸用量, 减少废酸再生数量, 降低 环境污染。
为了实现上述目的, 本发明采用如下技术方案- 一种冷轧酸洗酸浓度控制方法, 在酸洗生产线的酸循环槽上配置三个加酸罐, 三个加 酸罐之间是互相连通的, 在每一个加酸罐与酸循环槽的酸溶液回流管道上串联接一个酸浓 度测量装置, 通过酸浓度测量装置测量得到生产线上酸循环槽内酸溶液的实际酸浓度值经 酸浓度分析器后馈给多变量控制器, 在多变量控制器内与工艺要求给定的酸浓度值比较, 其差值作为多变量控制器模型的输入值; 由于三个加酸罐之间的酸浓度是互相影响的, 即 测量得到的酸浓度值是互相关联的, 因此必须找出三个测量点的酸浓度之间的耦合关系, 建立生产线酸循环槽的数学模型, 并进行多变量解耦合计算, 将多变量控制系统转化为单 变量控制系统; 具体步骤是- 第一步, 建立酸洗生产线上被控对象的酸循环槽的多变量数学模型
生产线酸循环槽的被控对象的加酸罐传递函数矩阵 的表达式为 -
Figure imgf000003_0001
加酸罐传递函数矩阵 的逆函数 CT 表达式为:
Figure imgf000004_0001
式中:
^^,^是三个加酸罐的截面积, 三个加酸体积相同, ,Α,Α是工艺允许的加酸流 量的偏差量;
第二步: 根据第一步得到的加酸罐传递函数矩阵 设计预补偿器传递函数矩阵 Kp(s) , 使得 成为对角优势矩阵,其步骤如下-
1 )运行现有的绘制传递函数 G (^格稀高林带的软件, 在软件弹出的界面中输入传递 函数 G(s),输入完成后点击运行,在界面上得到附有格稀高林带的奈氏图,使得
Figure imgf000004_0002
G(s) 成为对角优势矩阵;
2 )利用现有的对角优势化软件,计算出预补偿器传递函数矩阵 ^ ;绘制出 ρ ( 的 格稀高林带, 得到补偿后的开环系统己经达到对角优势;
第三步, 加酸罐传递函数矩阵 G^)单回路补偿设计, 由于 ρ^)已经达到对角优势, 因 此可以采用单变量的设计方法对三个单回路进行补偿设计, 取 ^ = 1,2,3)为 ΡΙ调节器, 通过几次参数凑试, 得到动态补偿器传递函数矩阵^ (^值;
第四步, 绘制 附有格稀高林带的奈氏图, 根据奈氏稳定判据, 保证闭 环系统稳定, 得到酸浓度反馈增益值 E(^。
所述第一步中,三个加酸罐的截面积取值为: = ^ = «3 = 1.8«22, 工艺允许的加酸流 量的偏差量取值为:
Figure imgf000004_0003
.86
Figure imgf000004_0004
Figure imgf000004_0005
第二步, 计算出预补偿器传递函数矩阵
Figure imgf000005_0001
第三步, 通过几次参数凑试, 能得到:
0.0078 , 0.0021 , 0.0038
Kv (s) = diag 1 + 1 + 1 + ( 10 ) 第四步, 得到酸浓度反馈增益 F(s)值: ^ (ϋ.82) ; 2 = (0.78); /3 = (0.89)。
所述第四步中酸浓度反馈增益 F(s)取值为-
F(s) = diag[l .5 1.5 1.5]。 ( 11 ) 第五步, 调整酸浓度反馈增益 F^), 作闭环系统的阶跃仿真曲线, 调整酸浓度反馈增 益 F(s), 完成多变量闭环控制系统设计。
第六步, 闭环控制系统仿真, 通过现有的仿真软件能得到系统的单位阶跃响应曲线, 调整系统参数: 包括输入参数设定值、 预补偿器传递函数矩阵 p( 、 动态补偿器传递函 数矩阵 e (^和酸浓度反馈增益 E ), 使各个主通道没有超调现象, 满足系统的稳态误差 和响应速度要求。
一种冷轧酸洗酸浓度控制装置, 包括酸浓度分析器、 传感器、 仪表设定和显示系统、 控制器、 执行机构; 所述传感器包括电导率传感器和温度传感器, 电导率传感器测量生产 线酸循环槽出口端的溶液电导率, 温度传感器测量酸循环槽出口端的溶液温度; 温度传感 器和电导率传感器的信号输出给酸浓度分析器, 在酸浓度分析器中计算得到酸循环槽内溶 液的浓度, 这个浓度馈给控制器;
所述控制器为多变量控制器, 多变量控制器包括动态补偿控制器和预补偿控制器, 多 变量控制器根据操作人员输入的酸浓度信号和传感器测量得到的酸浓度实际值进行多变 量解耦计算, 计算出控制变量输出给执行机构; 执行机构分别控制各个加酸罐上的输液泵 和输液阀, 各个加酸罐是互相连通的, 对酸循环槽酸浓度进行输送酸液控制。
所述加酸罐为三个, 分别位于钢板进入酸循环槽的入口处、 出口处和酸循环槽的中间 位置。
本发明通过对冷轧酸洗生产线酸循环槽电导率和温度的实时测量直接演算出酸浓度, 采用多变量解耦控制方法实现酸浓度闭环控制及优化, 从而节约盐酸用量, 减少废酸再生 数量, 降低环境污染。 本发明的冷轧酸洗酸浓度控制装置采用多变量控制器, 实现了无间断连续测量, 可以 实现自动连续控制; 装置结构简单, 酸循环槽浓度控制稳定, 不仅确保了带钢酸洗质量, 而且还可以节约酸的用量。 附图说明
图 1为冷轧酸洗酸浓度控制工艺流程示意图;
图 2为本发明的冷轧酸洗酸浓度控制装置示意图;
图 3为本发明的酸浓度多变量控制器建模示意图;
图 4为本发明的酸浓度多变量控制器原理图;
图 5为本发明的奈氏阵列法设计流程示意图;
图 6为本发明的酸浓度多变量闭环控制器系统框图。
图中: 11- 117阀门, 21-23加热器, 31-311流量计, 41-411泵, 5、 51-53加酸罐; 1 轧辊, 2喷酸头, 3溢流管, 4带钢; 6传感器 (酸浓度测量装置) , 7酸浓度分析器, 8执行 机构, 9预补偿控制器, 10动态补偿控制器, 100生产线酸循环槽 (酸槽、 酸洗槽) 。 具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
参见图 1和图 2, 一种冷轧酸洗酸浓度控制装置, 包括酸浓度分析器 7、 传感器 6、 仪 表设定和显示系统、多变量控制器、执行机构 8;传感器 6包括电导率传感器和温度传感器, 电导率传感器测量生产线酸循环槽 100 (简称酸槽) 出口端的溶液电导率, 温度传感器测 量酸槽出口端的溶液温度。 温度传感器和电导率传感器的信号输出给酸浓度分析器 7, 在 酸浓度分析器 7中进行分析计算得到酸槽 100内溶液的浓度, 这个浓度馈给多变量控制器, 多变量控制器包括动态补偿控制器 10和预补偿控制器 9。 生产操作人员通过仪表设定和显 示系统可对多变量控制器参数进行设定, 多变量控制器根据操作人员输入的酸浓度信号和 传感器测量得到的酸浓度实际值进行多变量解耦计算, 计算出控制变量输出给执行机构 8, 执行机构 8分别控制各个加酸罐 5上的输液泵和输液阀, 各个加酸罐 5是互相连通的, 对酸 循环槽 100酸浓度进行输送酸液控制, 并保持酸浓度一致。
参见图 1,在冷轧酸洗生产线上,一般通过控制生产线酸循环槽 100上三个点的酸浓度, 来保证整条生产线上酸槽中溶液的浓度满足以生产工艺的要求, 为此在酸洗生产线上配置 了三个加酸罐 51、 52、 53, 每一个加酸罐 51、 52、 53与生产线上的酸洗槽 100之间的酸溶 液回流的管路上, 即溢流管 3中串联一个酸浓度测量装置 6 (即传感器), 通过这个酸浓度 测量装置 6测量得到生产线上酸槽 100内部酸溶液的实际酸浓度值经酸浓度分析器 7后馈给 多变量控制器, 在控制器内部与工艺要求给定的酸浓度值比较, 其差值作为控制器模型的 输入值。 测量点一般选择在带钢 4进入酸槽 100的入口处、 出口处和酸洗槽的中间位置。 由 于带钢 4是从入口进入酸洗槽 100, 以一定的速度从出口输出, 因此酸槽 100内部的酸溶液 是从入口向出口方向流动。 三个加酸罐 51、 52、 53是互相连通的, 原酸从三号加酸罐 53中 流入, 在三号加酸罐 53中稀释后分别流向酸槽 100入口处和二号加酸罐 52, 在二号加酸罐 52中再次稀释后分别流向酸槽 100的中间部位和一号加酸罐 51, 在一号加酸罐 51中再次稀 释分别流向酸洗槽 100和废酸罐。 因此三个加酸罐 51、 52、 53之间的酸浓度是互相影响的, 即测量得到的酸浓度值是互相关联的, 表明酸浓度控制器是一个多变量控制器, 参见图 4。
为了能够精确控制生产线酸循环槽 100内部的酸浓度, 本发明通过找出三个测量点的 酸浓度之间的耦合关系, 建立生产线酸循环槽的数学模型, 并进行多变量解耦合计算, 将 多变量控制系统转化为单变量控制系统。 本发明为了建立数学模型, 将图 1冷轧酸洗酸浓 度控制工艺流程图, 结合图 2的冷轧酸洗酸浓度控制装置示意图, 等效为图 3的酸浓度多变 量控制器建模示意图, 根据图 3得到被控对象的数学模型 G^), 利用 进行多变量控制 器设计。 在多变量控制器设计中釆用奈奎斯特阵列法, 基本设计思想是: 先在被控对象前 面引入一个预补偿器 ^(^, 来减弱各个回路之间的耦合作用, 使系统的开环传递函数矩 阵成为对角优势矩阵, 将整个多变量系统的设计简化为一组单变量系统的补偿设计; 其次 按照单变量的设计方法, 设计动态补偿器 )。 参见图 4, 图 4为酸浓度多变量控制器原 理图。 经过多变量控制器运算处理后, 计算出控制变量输出给执行机构, 执行机构分别控 制各个加酸罐上的输液泵和输液阔, 对酸循环槽酸浓度进行控制。
一种冷轧酸洗酸浓度控制方法, 其步骤是:
第一步, 建立酸洗生产线上被控对象酸洗槽的多变量数学模型
参见图 3, 图 3为酸浓度多变量控制器建模示意图, 图中:
α,为第 i个加酸罐的截面积, 已知加酸罐的截面积是均匀的;
h' (t)为在 t时刻加酸罐 i中液面高度;
f, (t)为在 t时刻加酸罐 i到加酸罐 i + 1的流量;
(t)为在 t时刻加酸罐 输出的液体的流量; 为在 t时刻输入到加酸罐 的液体的 流量; 取: 流入加酸罐液体的流速 (1< < 为系统的输入量;
加酸罐的液面高度/ 2,(t) (l< < 为系统的输出量;
加酸罐输出液体的流量 (t)(l < i≤ 为系统的外界干扰量;
于是, 由物理的基本定律, 可以推导出描述该系统的微分方程的一般表达式:
«, h, if) = q, (t) - d, (t) -/,(/)+ J\— (t)(\≤i≤m) (1) 其中:
Figure imgf000008_0001
hl{t) = hi0 +xt{t) (l < < m)
( ,o +",(,) (\≤i≤ m)
dl(t) = dl0 +ll(t) (l≤i≤m) f, (t) = fi0 + A k ( -χΜ ( ] (1≤ ≤ - 1)
其中- h'。 , q'o, d'o, 。分别为 ^ J' ), 的额定稳态值;
X,(t),W,(t),/,(t), c,(t)-X,— ,(t)],分别为 /2,(t ,(t),i,(t)和 /,(t)相对于额定稳态值的 变化量; β, >0, (l≤i≤m);
于是, 可以得到相对于额定稳态值小偏差微分方程:
(0 = (t) - A ( - A k ( -^( 1 ( 2 )
(ή = ", (0 - (ή-Α [Χ, (0 - {ή] + β>―、 Μ (0 (2≤i<m- 1)
为了方便, 设干扰 /,(t)(l≤ ≤ )为零。 额定稳态值小偏差微分方程 (2)可以写成:
Figure imgf000008_0002
其中:
Figure imgf000009_0001
…(神 )〖"],
Figure imgf000009_0002
Ό
0 0 0
0 — T o0 o
=8
0 0 T ο 0 0
ΐ
Figure imgf000009_0003
68ΐ丽 ΟΖ OAV
Figure imgf000010_0001
1 , A和 C-1代入式 (5) 得到一般表达式-
Figure imgf000010_0002
描述了加酸罐开环系统的动态特性。
当 m = 3时:
Figure imgf000010_0003
可以得到加酸罐传递函数:
Figure imgf000010_0004
axa2a^s + α3Α («ι + α2 ))s2 +{β2 + \^\a2s + A (α\ + αι ))s
其中: ^,^是三个加酸罐的截面积, 三个加酸体积相同, =^ =«3 =1.8
Figure imgf000010_0005
=0.5;A=0.36是工艺允许的加酸流量的偏差量, 代入式 (7), 则 .86
Figure imgf000010_0006
Figure imgf000010_0007
第二步: 根据第一步得到的数学模型 G^)设计预补偿器传递函数矩阵^: ^^, 使得 (^(^)成为对角优势矩阵,参见图 4和图 5, 图 4为酸浓度多变量控制器原理图, 图 5为奈 氏阵列法设计流程示意图; 步骤如下-
1)运行绘制 格稀高林带的软件(该软件市场上有售, 是现有技术), 在软件弹出 的界面中输入数学模型 输入完成后点击运行, 在界面上得到附有格稀高林带的奈氏 图, 使得^ (^成为对角优势矩阵;
2)利用对角优势化软件(该软件市场上有售, 是现有技术), 计算出预补偿器传递函 数矩阵 »:
-82.0325 67.2212 0
Figure imgf000011_0001
66.3421 -18.2674 55.9562 (9)
0 57.3965 -17.5638
绘制出 /^(^G (^的格稀高林带, 得到补偿后的开环系统已经达到对角优势。 第三步, G (^单回路补偿设计。 由于 已经达到对角优势, 因此可以采用单 变量的设计方法设计对三个单回路进行补偿设计。 根据生产工艺要求, 酸浓度的超调量要 小, 暂态响应过程要短, 闭环稳态误差为零。 所以取 ^^ 为!^调节器。 通过几次 参数凑试, 得到-
, 0.0078 , 0.0021 , 0.0038
Kc(s)=diag 1 + 1 + 1 + (10) s s s
第四步, 绘制 附有格稀高林带的奈氏图。 根据奈氏稳定判据, 保证闭 环系统稳定, 酸浓度反馈增益 取值: /i =(0.82); 2 =(0.78); /3 =(0.89)。 为了使系 统有较大的稳定裕度, 酸浓度反馈增益 E( 取-
F(s) = diag[l.5 1.5 1.5]。 (11) 第五步, 调整酸浓度反馈增益 F(s)。 作闭环系统的阶跃仿真曲线, 调整酸浓度反馈增 益 F(s), 完成多变量闭环控制系统设计。 完成后的闭环控制系统框图如图 6所示。
第六步,闭环控制系统仿真。通过现有的仿真软件可以得到系统的单位阶跃响应曲线, 调整系统参数: 包括输入参数设定值、 预补偿器传递函数矩阵 ^ )、 动态补偿器传递函 数矩阵 和酸浓度反馈增益/ , 使各个主通道没有超调现象, 满足系统的稳态误差 和响应速度要求。
本发明的冷轧酸洗酸浓度控制方法中的主要创新点最终归结为对于酸浓度多变量控 制器模型中各参数的确定, 参数包括被控制对象加酸罐传递函数矩阵 G^)、 预补偿器传递 函数矩阵 :P )、动态补偿器传递函数矩阵 i^ )和酸浓度反馈增益 多变量控制器运 算器, 酸浓度多变量控制器的参数确定后的闭环控制系统框图参见图 6。
通过三个酸浓度测量装置测量得到生产线上酸槽内酸溶液的实际酸浓度值, 经酸浓度 分析器后馈给多变量控制器, 在多变量控制器内与工艺要求给定的酸浓度值比较, 其差值 作为多变量控制器模型的输入值; 经过多变量控制器运算处理后, 计算出控制变量输出给 执行机构, 执行机构分别控制各个加酸罐上的输液泵和输液阀, 对酸循环槽酸浓度进行控 制。
以上仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范围, 因此, 凡在本 发明的精神和原则之内所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范 围之内。

Claims

权 利 要 求 书
1、 一种冷轧酸洗酸浓度控制方法, 其特征是: 在酸洗生产线的酸循环槽上配 置三个加酸罐, 三个加酸罐之间是互相连通的, 在每一个加酸罐与酸循环槽的酸 溶液回流管道上串联接一个酸浓度测量装置, 通过酸浓度测量装置测量得到生产 线上酸循环槽内酸溶液的实际酸浓度值经酸浓度分析器后馈给多变量控制器, 在 多变量控制器内与工艺要求给定的酸浓度值比较, 其差值作为多变量控制器模型 的输入值; 由于三个加酸罐之间的酸浓度是互相影响的, 即测量得到的酸浓度值 是互相关联的, 因此必须找出三个测量点的酸浓度之间的耦合关系, 建立生产线 酸循环槽的数学模型, 并进行多变量解耦合计算, 将多变量控制系统转化为单变 量控制系统; 具体步骤是- 第一步, 建立酸洗生产线上被控对象的酸循环槽的多变量数学模型
生产线酸循环槽的被控对象的加酸罐传递函数矩阵 的表达式为:
Figure imgf000013_0001
加酸罐传递函数矩阵 G (^的逆函数 G-1^)表达式为-
o -
Figure imgf000013_0002
式中-
,^是三个加酸罐的截面积, 三个加酸体积相同, Α,?2,Α是工艺允许的 加酸流量的偏差量;
第二步: 根据第一步得到的加酸罐传递函数矩阵 设计预补偿器传递函数 矩阵 W, 使得 G (^成为对角优势矩阵,其步骤如下-
1 )运行现有的绘制传递函数 格稀高林带的软件, 在软件弹出的界面中输 入传递函数 G(s), 输入完成后点击运行, 在界面上得到附有格稀高林带的奈氏图, 使得^ 成为对角优势矩阵;
2 ) 利用现有的对角优势化软件, 计算出预补偿器传递函数矩阵 绘制 出 β (^的格稀高林带, 得到补偿后的开环系统已经达到对角优势; 第三步, 加酸罐传递函数矩阵 G( 单回路补偿设计, 由于 ρ( 已经达到对角 优势,因此可以采用单变量的设计方法对三个单回路进行补偿设计,取^ ^(/ = 1,2,3) 为 ΡΙ调节器, 通过几次参数凑试, 得到动态补偿器传递函数矩阵 / 值;
第四步, 绘制 G ^^ )^^^附有格稀高林带的奈氏图, 根据奈氏稳定判据, 保证闭环系统稳定, 得到酸浓度反馈增益值 F ( 。
2、 根据权利要求 1所述的冷轧酸洗酸浓度控制方法, 其特征是: 所述第一步 中, 三个加酸罐的截面积取值为: ai =a2 =iz3 =1.8 2, 工艺允许的加酸流量的偏 差量取值为: A=0.6;A=0.5;A=0.36;代入式(7),则加酸罐传递函数矩阵 值-
1.8s + 0.6 -0.6 0
Figure imgf000014_0001
Figure imgf000014_0002
第二步, 计算出预补偿器传递函数矩阵 p ( -
82.0325 67.2212 0
Figure imgf000014_0003
66.3421 -18.2674 55.9562 (9)
0 57.3965 •17.5638
第三步, 通过几次参数凑试, 能得到:
Figure imgf000014_0004
第四步, 得到酸浓度反馈增益 值: ;=(0.82); /2 =(0.78); /3 =(0.89)。
3、 根据权利要求 2所述的冷轧酸洗酸浓度控制方法, 其特征是: 所述第四步 中酸浓度反馈增益 F (^取值为:
F(s) = diag[l.5 1.5 1.5]。 (11)
4、 根据权利要求 1或 2或 3所述的冷轧酸洗酸浓度控制方法, 其特征是: 第五步, 调整酸浓度反馈增益 F(s), 作闭环系统的阶跃仿真曲线, 调整酸浓 度反馈增益 F( , 完成多变量闭环控制系统设计。
5、 根据权利要求 4所述的冷轧酸洗酸浓度控制方法, 其特征是:
第六步, 闭环控制系统仿真, 通过现有的仿真软件能得到系统的单位阶跃响 应曲线, 调整系统参数: 包括输入参数设定值、 预补偿器传递函数矩阵^ ) ( 、动 态补偿器传递函数矩阵^ ^)和酸浓度反馈增益 F^), 使各个主通道没有超调现 象, 满足系统的稳态误差和响应速度要求。
6、 一种冷轧酸洗酸浓度控制装置, 包括酸浓度分析器、 传感器、 仪表设定和 显示系统、 控制器、 执行机构; 其特征是: 所述传感器包括电导率传感器和温度 传感器, 电导率传感器测量生产线酸循环槽出口端的溶液电导率, 温度传感器测 量生产线酸循环槽出口端的溶液温度; 温度传感器和电导率传感器的信号输出给 酸浓度分析器, 在酸浓度分析器中计算得到酸循环槽内溶液的浓度, 该浓度馈给 控制器;
所述控制器为多变量控制器, 多变量控制器包括动态补偿控制器和预补偿控 制器, 多变量控制器根据输入的酸浓度信号设定值和传感器测量得到的酸浓度实 际值进行多变量解耦计算, 计算出控制变量输出给执行机构;
执行机构分别控制各个加酸罐上的输液泵和输液阀, 各个加酸罐是互相连通 的, 对酸循环槽酸浓度进行输送酸液控制。
7、 根据权利要求 6所述的冷轧酸洗酸浓度控制装置, 其特征是: 所述加酸罐 为三个, 分别位于钢板进入酸循环槽的入口处、 出口处和酸循环槽的中间位置。
PCT/CN2012/001603 2012-11-30 2012-11-30 冷轧酸洗酸浓度控制方法和装置 WO2014082189A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/649,429 US10274975B2 (en) 2012-11-30 2012-11-30 Method and apparatus for controlling acid concentration for pickling in cold rolling
EP12888991.2A EP2927772B1 (en) 2012-11-30 2012-11-30 Method and apparatus for controlling acid concentration for pickling in cold rolling
JP2015544286A JP6063058B2 (ja) 2012-11-30 2012-11-30 冷間圧延における酸洗のための酸濃度制御方法および装置
PCT/CN2012/001603 WO2014082189A1 (zh) 2012-11-30 2012-11-30 冷轧酸洗酸浓度控制方法和装置
CA2890620A CA2890620C (en) 2012-11-30 2012-11-30 Acid concentration control method and device for cold rolling pickling production line
KR1020157014240A KR101722405B1 (ko) 2012-11-30 2012-11-30 냉간압연 피클링 생산라인용 산농도 제어방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/001603 WO2014082189A1 (zh) 2012-11-30 2012-11-30 冷轧酸洗酸浓度控制方法和装置

Publications (1)

Publication Number Publication Date
WO2014082189A1 true WO2014082189A1 (zh) 2014-06-05

Family

ID=50827004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001603 WO2014082189A1 (zh) 2012-11-30 2012-11-30 冷轧酸洗酸浓度控制方法和装置

Country Status (6)

Country Link
US (1) US10274975B2 (zh)
EP (1) EP2927772B1 (zh)
JP (1) JP6063058B2 (zh)
KR (1) KR101722405B1 (zh)
CA (1) CA2890620C (zh)
WO (1) WO2014082189A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198801A (zh) * 2020-11-18 2021-01-08 兰州理工大学 一种矿山充填浆料浓度鲁棒控制方法
CN113136584A (zh) * 2021-04-01 2021-07-20 本钢板材股份有限公司 一种冷轧带钢酸洗生产线
CN114178328A (zh) * 2021-10-28 2022-03-15 本钢板材股份有限公司 一种清洗段碱液精细化控制的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937747A1 (de) * 2014-04-24 2015-10-28 Siemens Aktiengesellschaft Auf Modellierung einer Beizlinie beruhende Optimierung einer Sequenz von zu beizenden Bändern
CN105648461B (zh) * 2016-03-07 2018-06-22 首钢京唐钢铁联合有限责任公司 一种冷轧酸轧机组中酸槽和酸罐的漏酸处理系统及方法
CN110109488B (zh) * 2019-04-29 2021-11-02 杭州电子科技大学 一种城市河道水位的低增益反馈控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280633A (zh) 1997-11-06 2001-01-17 住友金属工业株式会社 酸浓度测定和自动控制的方法和装置
CN1462321A (zh) 2001-04-27 2003-12-17 住友金属工业株式会社 连续酸洗方法和连续酸洗装置
JP2007321174A (ja) * 2006-05-30 2007-12-13 Jfe Steel Kk 酸洗プロセスの酸濃度制御方法・装置、及びこれらを用いた鋼板製造方法
CN102286751A (zh) * 2011-06-04 2011-12-21 首钢总公司 一种在冷轧酸洗工艺中判定酸洗速度的方法
CN102929303A (zh) * 2011-08-12 2013-02-13 宝山钢铁股份有限公司 冷轧酸洗酸浓度控制方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091558A (en) * 1957-10-30 1963-05-28 Wean Engineering Co Inc Method of pickling
WO1992014197A1 (en) * 1991-02-08 1992-08-20 Kabushiki Kaisha Toshiba Model forecasting controller
JP3319780B2 (ja) * 1992-06-09 2002-09-03 東燃ゼネラル石油株式会社 末端変性ポリオレフィン
JPH06126322A (ja) * 1992-10-16 1994-05-10 Kobe Steel Ltd 噴流酸洗設備における酸濃度制御方法
US5408406A (en) * 1993-10-07 1995-04-18 Honeywell Inc. Neural net based disturbance predictor for model predictive control
US5493631A (en) * 1993-11-17 1996-02-20 Northrop Grumman Corporation Stabilized adaptive neural network based control system
US5822740A (en) * 1996-06-28 1998-10-13 Honeywell Inc. Adaptive fuzzy controller that modifies membership functions
US6532454B1 (en) * 1998-09-24 2003-03-11 Paul J. Werbos Stable adaptive control using critic designs
KR100762151B1 (ko) * 2001-10-31 2007-10-01 제이에프이 스틸 가부시키가이샤 딥드로잉성 및 내이차가공취성이 우수한 페라이트계스테인리스강판 및 그 제조방법
ITMI20062187A1 (it) * 2006-11-14 2008-05-15 Sviluppo Materiali Spa Processo di ricottura e decapaggio
FR2925530B1 (fr) * 2007-12-21 2010-08-27 Siemens Vai Metals Tech Sas Installation et procede pour le decapage en continu de bandes d'acier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280633A (zh) 1997-11-06 2001-01-17 住友金属工业株式会社 酸浓度测定和自动控制的方法和装置
CN1462321A (zh) 2001-04-27 2003-12-17 住友金属工业株式会社 连续酸洗方法和连续酸洗装置
JP2007321174A (ja) * 2006-05-30 2007-12-13 Jfe Steel Kk 酸洗プロセスの酸濃度制御方法・装置、及びこれらを用いた鋼板製造方法
CN102286751A (zh) * 2011-06-04 2011-12-21 首钢总公司 一种在冷轧酸洗工艺中判定酸洗速度的方法
CN102929303A (zh) * 2011-08-12 2013-02-13 宝山钢铁股份有限公司 冷轧酸洗酸浓度控制方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198801A (zh) * 2020-11-18 2021-01-08 兰州理工大学 一种矿山充填浆料浓度鲁棒控制方法
CN112198801B (zh) * 2020-11-18 2021-07-23 兰州理工大学 一种矿山充填浆料浓度鲁棒控制方法
CN113136584A (zh) * 2021-04-01 2021-07-20 本钢板材股份有限公司 一种冷轧带钢酸洗生产线
CN114178328A (zh) * 2021-10-28 2022-03-15 本钢板材股份有限公司 一种清洗段碱液精细化控制的方法
CN114178328B (zh) * 2021-10-28 2023-11-17 本钢板材股份有限公司 一种清洗段碱液精细化控制的方法

Also Published As

Publication number Publication date
CA2890620A1 (en) 2014-06-05
CA2890620C (en) 2018-08-28
US20150316938A1 (en) 2015-11-05
KR101722405B1 (ko) 2017-04-04
EP2927772A4 (en) 2016-11-23
JP6063058B2 (ja) 2017-01-18
EP2927772A1 (en) 2015-10-07
EP2927772B1 (en) 2017-10-18
US10274975B2 (en) 2019-04-30
JP2016506302A (ja) 2016-03-03
KR20150080601A (ko) 2015-07-09

Similar Documents

Publication Publication Date Title
WO2014082189A1 (zh) 冷轧酸洗酸浓度控制方法和装置
CN101836173B (zh) 真空容器的压力控制方法及压力控制装置
JP3374844B2 (ja) 酸濃度測定および自動制御方法と装置
TWI286165B (en) Continuous pickling method and continuous pickling apparatus
Schroer et al. Gas/liquid oxygen-transfer to flowing lead alloys
CN107512754B (zh) 一种用于水处理的粉末活性炭加药自动控制系统
CN113325702B (zh) 一种曝气控制方法及装置
Xie et al. Optimal setting and control for iron removal process based on adaptive neural network soft-sensor
CN109507884B (zh) 空氧混合器压力控制方法、装置、计算机设备和存储介质
CN112782975A (zh) 一种基于深度学习的污水处理曝气智能控制方法及系统
Guo et al. Measurements in the vicinity of a stagnation point
CN202734516U (zh) 一种钟罩炉用前馈式气氛控制系统
CN106054951B (zh) 一种溶解氧浓度的控制方法和系统
Wang et al. Precise control of water and wastewater treatment systems with non-ideal heterogeneous mixing models and high-fidelity sensing
CN102929303B (zh) 冷轧酸洗酸浓度控制方法和装置
CN111651876B (zh) 工业循环冷却水腐蚀状况在线分析方法及检测系统
JP5050410B2 (ja) 酸洗プロセスの酸濃度制御方法・装置、及びこれらを用いた鋼板製造方法
Levisauskas et al. Simple control systems for set-point control of dissolved oxygen concentration in batch fermentation processes
Fei et al. Multi-mode acid concentration prediction models of cold-rolled strip steel pickling process
JP3356112B2 (ja) 酸濃度自動制御装置および酸濃度自動制御方法
CN105618490B (zh) 一种冷轧电工钢的边降自动控制方法
CN110501042B (zh) 一种检测和控制脱硫吸收液氧化率的方法
JP3591366B2 (ja) 連続酸洗方法および連続酸洗装置
CN113778141A (zh) 一种分段pid控制的流体管道流量控制系统
JP6098601B2 (ja) 酸濃度制御方法、酸濃度制御装置、および金属板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2890620

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012888991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012888991

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157014240

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015544286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14649429

Country of ref document: US