CN107512754B - 一种用于水处理的粉末活性炭加药自动控制系统 - Google Patents

一种用于水处理的粉末活性炭加药自动控制系统 Download PDF

Info

Publication number
CN107512754B
CN107512754B CN201710885520.9A CN201710885520A CN107512754B CN 107512754 B CN107512754 B CN 107512754B CN 201710885520 A CN201710885520 A CN 201710885520A CN 107512754 B CN107512754 B CN 107512754B
Authority
CN
China
Prior art keywords
activated carbon
cod
monitor
plc
dosing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710885520.9A
Other languages
English (en)
Other versions
CN107512754A (zh
Inventor
史惠祥
史宇滨
方荣业
蒋婷
李威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710885520.9A priority Critical patent/CN107512754B/zh
Publication of CN107512754A publication Critical patent/CN107512754A/zh
Application granted granted Critical
Publication of CN107512754B publication Critical patent/CN107512754B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

本发明公开一种用于水处理的粉末活性炭加药自动控制系统,包括数据采集装置、控制装置和变频加药装置;数据采集装置包括第一COD监测仪、流量监测仪和第二COD监测仪,控制装置包括PLC和上位机,上位机包括基于BP神经网络预测模型的前馈控制器、以及PID反馈控制器,变频加药装置包括变频器和计量泵。本发明不仅克服活性炭加药传统模型中存在的准确性低和模型失配的问题,且弥补了前馈中各参数在传感器和炭浆浓度等方面的误差,有效提高模型预测精度和灵活性,提高投药的准确性,节省药耗;实现活性炭投加系统的自动化控制,取代了以往的手动操作投加,建立PLC和上位机之间的实时数据传递,实现计量泵的精准加药,减少人工调节时间,保证出水COD稳定达标。

Description

一种用于水处理的粉末活性炭加药自动控制系统
技术领域
本发明涉及一种污水深度处理的粉末活性炭加药自动控制系统,属于污水处理领域。
背景技术
污水处理领域中传统的自动控制系统要求建立精确的数学模型,并且必须遵循一些严格的线性化假设。然而实际水处理系统存在复杂性、时变性和不确定性等特性,一般无法获得与假设相符的精确数学模型,因此采用传统控制理论建立的水处理自动控制系统,在实际工程应用上仍存在着出水水质波动较大等问题,这也是粉末活性炭投加系统亟需解决的问题。
国内的活性炭投加系统都比较简单,由于资金不足、技术力量薄弱以及生产的季节性等原因,加药手段是靠取样后测定,再根据测定结果去调整设备运行状态,由于是非连续监测,且设备运行状态调整滞后,常常导致投药量准确性不高、出水水质不稳定,而要保证出水水质的稳定达标,需要投加过量的活性炭,这就提高了污水处理厂运行和管理费用。可以看出,目前的控制系统存在自动化水平低、工人劳动强度大和药耗大等一系列问题。
发明内容
本发明的目的是提供一种用于水处理的粉末活性炭加药自动控制系统,以提高投药量的准确性。
为实现上述目的,本发明所采取的技术方案是:本发明用于水处理的粉末活性炭加药自动控制系统包括数据采集装置、控制装置和变频加药装置;数据采集装置包括第一COD监测仪、流量监测仪和第二COD监测仪,控制装置包括PLC和上位机,上位机包括基于BP神经网络预测模型的前馈控制器、以及PID反馈控制器,变频加药装置包括变频器和计量泵;第一COD监测仪、流量监测仪分别与处理池的进水端口连通,第二COD监测仪与处理池的出水端口连通,第一COD监测仪、流量监测仪、第二COD监测仪分别与PLC连接;前馈控制器、PID反馈控制器分别与PLC连接,PLC与变频器连接,变频器与计量泵连接。
进一步地,本发明将第一COD监测仪检测到的COD监测值通过PLC输入到前馈控制器,经BP神经网络预测模型计算后将得到的前馈控制器的输出值作为活性炭预测投加量;第二COD监测仪检测到的COD监测值通过PLC输入到PID反馈控制器,将PID反馈控制器的输出值作为投药量修正值,上位机利用公式计算后得到活性炭投加流量M并发送到PLC,其中,Δk表示投药量修正值,m表示活性炭预测投加量,c表示活性炭炭浆浓度,Q表示进水流量;PLC根据活性炭投加流量控制变频器,再由变频器控制计量泵,从而控制粉末活性炭投加量。
进一步地,本发明还包括储液池,储液池与所述计量泵连通,所述储液池内盛有活性炭炭浆。
进一步地,本发明所述计量泵与活性炭反应池的进水口连通。
与现有技术相比,本发明具有以下优点:
(1)由于采用了基于BP神经网络预测模型的前馈控制器和PID反馈控制器复合控制的方式,将BP神经网络的自学习能力和PID修正误差能力有机结合起来,不仅克服了活性炭加药传统模型中存在的准确性低和模型失配的问题,又能根据出水COD及时修正当前的活性炭投加量,可弥补前馈中各参数在传感器和炭浆浓度等方面的误差,有效提高了模型预测精度和灵活性,提高了投药的准确性,节省了药耗。
(2)实现了活性炭投加系统的自动化控制,取代了以往的手动操作投加,建立了PLC和上位机之间的实时数据传递,上位机结合前馈预测活性炭投加量和反馈控制参数误差的功能,进而通过公式计算实现了计量泵的精准加药,减少了原先的人工调节时间,降低了技术人员的劳动强度,且保证了出水COD实现稳定达标。
附图说明
图1是本发明加药自动控制系统的结构示意框图。
图2是本发明加药自动控制系统中的控制装置的结构示意框图。
图3是使用本发明加药自动控制系统的加药工艺流程图。
具体实施方式
下面通过具体的实施例并结合附图对本发明做进一步的详细描述。
本发明的用于水处理的粉末活性炭加药自动控制系统,可用于污水的深度处理。如图1所示,本发明的用于水处理的粉末活性炭加药自动控制系统主要包括数据采集装置、控制装置、变频加药装置三部分。
在本发明中,数据采集装置包括第一COD监测仪、流量监测仪和第二COD监测仪。控制装置包括PLC和上位机,上位机包括基于BP神经网络预测模型的前馈控制器、以及PID反馈控制器。上位机可装有Matlab软件。变频加药装置包括变频器和计量泵。第一COD监测仪、流量监测仪分别与处理池的进水端口连通,第二COD监测仪与处理池的出水端口连通,第一COD监测仪、流量监测仪、第二COD监测仪分别与PLC连接;前馈控制器、PID反馈控制器分别与PLC连接,PLC与变频器连接,变频器与计量泵连接;将第一COD监测仪检测到的COD监测值(以下简称“第一COD”)通过PLC输入到前馈控制器,经BP神经网络预测模型计算后将得到的前馈控制器的输出值作为活性炭预测投加量;第二COD监测仪检测到的COD监测值(以下简称“第二COD”)通过PLC输入到PID反馈控制器,将PID反馈控制器的输出值作为投药量修正值,上位机利用公式计算后得到活性炭投加流量M并发送到PLC,其中,Δk表示投药量修正值,m表示活性炭预测投加量,c表示活性炭炭浆浓度,Q表示进水流量;PLC根据活性炭投加流量控制变频器,再由变频器控制计量泵,从而控制粉末活性炭投加量。
进一步地,本发明还可包括储液池,储液池与计量泵连通,所述储液池内盛有活性炭炭浆。计量泵可与活性炭反应池的进水口连通。
建立前馈控制器的BP神经网络预测模型时,将第一COD作为控制参量,活性炭投加量作为目标函数,同时把目标函数和控制参量输入计算机,进行离线学习训练。具体包括以下步骤:
步骤1-1,将第一COD监测仪的数字信号X=(x1,x2,···,xn)T作为输入向量,活性炭投加量Y=(y1,y2,···,ym)T作为输出向量,O=(o1,o2,···,ol)T作为隐含层的输出向量,d=(d1,d2,···,dm)作为BP神经网络的期望输出向量,W=(W1,W2,···,Wn)作为输入层和隐含层之间权值矩阵,V=(V1,V2,···,Vl)作为隐含层和输出层之间的权值矩阵,对权值矩阵W和V赋予随机初值,将样本模式计数器p、训练次数计数器q均置为1,误差置为0,给定最小误差Emin
步骤1-2,输入训练样本,计算输入层、隐含层和输出层的输出,利用当前样本Xp、dp,根据权值矩阵选取的初始权值,经过激励函数的转换,对向量数组X、d赋值,计算O和Y中的分量;
步骤1-3,计算网络输出误差,网络对应p对训练样本的不同误差为Ep
步骤1-4,计算输入层、隐含层和输出层的误差信号,根据各层误差信号调整对应的权值,得到新的权值;
步骤1-5,判断所有的输入样本是否被训练过一次,如果都训练过则进行步骤1-6,否则进行步骤1-1;
步骤1-6,判断均方误差是否小于给定最小误差Emin,如果是则结束,得到BP神经网络模型,否则进行步骤1-1。
前馈控制器根据实时采集的第一COD,输入BP神经网络预测模型进行计算,输出当前状态下所需的活性炭投加量m(kg/L)。
PID反馈控制器需要进行参数整定,具体包括以下步骤:
步骤2-1,得到粉末活性炭加药自动控制系统被控对象的传递函数;
步骤2-2,在Matlab的CommandWindow环境下初始化相应的PID参数变量:如Kp=1,Ki=0,Kd=0;仿真时系统稳定运行;
步骤2-3,不断增大比例系数,直到系统出现临界振荡过程,记录下临界振荡增益和临界振荡周期;
步骤2-4,按照比例临界度法参数整定的计算公式表的经验公式和校正转置的类型确定相应的PID参数,再进行仿真校验。
PID反馈控制器根据实时采集的第一COD、进水流量和第二COD等监测信息,输出活性炭投加量补偿值△k(kg/L)。
根据前馈控制器输出的活性炭投加量m、反馈控制器输出的活性炭投加量补偿值△k、活性炭炭浆浓度c(kg/m3)以及进水流量Q,根据公式得到活性炭投加流量,将其输入到变频加药系统,通过PLC调节变频器实现对计量泵的控制。
本发明加药自动控制系统包括以下部分:1.数据采集装置:包括安装于活性炭反应池前的第一COD监测仪、流量监测仪、安装于出水口的第二COD监测仪;2.控制装置:由PLC和计算机组成。3.变频加药装置包括变频器和计量泵。在图3所示的本实施例中,第一、二COD监测仪、进水流量监测仪的数字信号都先通过PLC传至计算机,利用BP神经网路模型和PID反馈控制器计算所得的活性炭投加流量传送回PLC,经过PLC后将控制信号传输至变频加药装置,这样做可将BP神经网络的自学习能力和PID修正误差能力有机结合起来,不仅克服了活性炭加药传统模型中存在的准确性低和模型失配的问题,又能根据出水COD及时修正当前的活性炭投加量,可弥补前馈中各参数在传感器和炭浆浓度等方面的误差,大大提高了投药的准确性,结果表明,本发明水处理粉末活性炭加药自动控制系统在保证了出水COD(第二COD)达到一级A标准的前提下,大幅度减少了药耗,极大地降低了成本。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种用于水处理的粉末活性炭加药自动控制系统,其特征在于:包括数据采集装置、控制装置和变频加药装置;数据采集装置包括第一COD监测仪、流量监测仪和第二COD监测仪,控制装置包括PLC和上位机,上位机包括基于BP神经网络预测模型的前馈控制器、以及PID反馈控制器,变频加药装置包括变频器和计量泵;第一COD监测仪、流量监测仪分别与处理池的进水端口连通,第二COD监测仪与处理池的出水端口连通,第一COD监测仪、流量监测仪、第二COD监测仪分别与PLC连接;前馈控制器、PID反馈控制器分别与PLC连接,PLC与变频器连接,变频器与计量泵连接;建立前馈控制器的BP神经网络预测模型时,将第一COD监测仪实时检测到的COD监测值作为控制参量、活性炭预测投加量作为目标函数进行离线学习训练;第一COD监测仪检测到的COD监测值通过PLC输入到前馈控制器,经BP神经网络预测模型计算后将得到的前馈控制器的输出值作为活性炭预测投加量;第二COD监测仪检测到的COD监测值通过PLC输入到PID反馈控制器,将PID反馈控制器的输出值作为投药量修正值,上位机利用公式M=·Q计算后得到活性炭投加流量M并发送到PLC,其中,/>表示投药量修正值,m表示活性炭预测投加量,c表示活性炭炭浆浓度,Q表示进水流量;PLC根据活性炭投加流量控制变频器,再由变频器控制计量泵,从而控制粉末活性炭投加量。
2.根据权利要求1所述的一种水处理粉末活性炭加药自动控制系统,其特征在于:还包括储液池,储液池与所述计量泵连通,所述储液池内盛有活性炭炭浆。
3.根据权利要求1或2所述的一种水处理粉末活性炭加药自动控制系统,其特征在于:所述计量泵与活性炭反应池的进水口连通。
CN201710885520.9A 2017-09-26 2017-09-26 一种用于水处理的粉末活性炭加药自动控制系统 Active CN107512754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710885520.9A CN107512754B (zh) 2017-09-26 2017-09-26 一种用于水处理的粉末活性炭加药自动控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710885520.9A CN107512754B (zh) 2017-09-26 2017-09-26 一种用于水处理的粉末活性炭加药自动控制系统

Publications (2)

Publication Number Publication Date
CN107512754A CN107512754A (zh) 2017-12-26
CN107512754B true CN107512754B (zh) 2023-07-21

Family

ID=60726309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710885520.9A Active CN107512754B (zh) 2017-09-26 2017-09-26 一种用于水处理的粉末活性炭加药自动控制系统

Country Status (1)

Country Link
CN (1) CN107512754B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143840A (zh) * 2018-09-18 2019-01-04 湖南柿竹园有色金属有限责任公司 一种尾矿废水处理加药闭环配方控制技术
CN109264840A (zh) * 2018-11-19 2019-01-25 山信软件股份有限公司 一种平流沉淀池加药控制系统
CN110377880A (zh) * 2019-07-30 2019-10-25 中国科学院生态环境研究中心 基于回归模型的粉末活性炭吸附量的预测方法
CN113985727A (zh) * 2021-08-02 2022-01-28 江苏海澜正和环境科技有限公司 一种基于pid控制方式的烟气净化物料喷射系统
CN113800583A (zh) * 2021-10-22 2021-12-17 桂润环境科技股份有限公司 一种自动加药控制系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833314B (zh) * 2010-03-30 2012-07-25 深圳达实智能股份有限公司 污水处理控制系统及污水处理控制方法
EP2497750B1 (en) * 2011-03-11 2013-10-30 HUSTY M. Styczen, J. Hupert Spolka Jawna Water treatment system, a method of its automatic regeneration and a controller for the water treatment system
CN103011356B (zh) * 2012-08-15 2014-02-12 重庆水务集团股份有限公司 一种高浊度水系自动投药控制方法
KR101621495B1 (ko) * 2015-11-23 2016-05-16 주식회사 에스아이시스템 Pid 제어를 통한 실시간 수처리 시스템 및 수처리 방법
CN105425592B (zh) * 2016-01-05 2017-12-08 大唐环境产业集团股份有限公司 一种水处理加药数字化在线控制系统
CN207699239U (zh) * 2017-09-26 2018-08-07 浙江大学 一种用于水处理的粉末活性炭加药自动控制系统

Also Published As

Publication number Publication date
CN107512754A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
CN107512754B (zh) 一种用于水处理的粉末活性炭加药自动控制系统
CN107601632B (zh) 一种混凝自动加药控制方法及系统
CN110182924B (zh) 全自动配氨加氨一体机装置及全自动配氨加氨方法
EP1321836A1 (en) Controller, temperature controller and heat processor using same
CN102171620B (zh) 具有用于工业过程变送器的在线和离线测试计算的过程控制系统
CN103011356A (zh) 一种高浊度水系自动投药控制方法
CN112216354A (zh) 一种基于cfd数值模拟和机器学习的智能加药系统和方法
CA2890620C (en) Acid concentration control method and device for cold rolling pickling production line
CN107649079A (zh) 一种碳纤维生产聚合反应控制装置及方法
CN105807615A (zh) 模糊前馈反馈控制器
CN107720946B (zh) Sbr污水处理工艺中的串级控制方法
CN114538612A (zh) 一种外加碳源精确加药系统及其控制方法
CN105986118A (zh) 烧结机混合料自动加水装置及其控制方法
CN114380379B (zh) 一种煤泥水的加药控制方法及系统
CN109999527B (zh) 一种多流体智能配料控制方法
CN207699239U (zh) 一种用于水处理的粉末活性炭加药自动控制系统
CN207596676U (zh) 一种自动加药系统
CN109634104A (zh) 水泥生料配料过程的智能优化控制装置及其控制方法
CN113126682A (zh) 设备的运行控制方法及装置
CN101995845A (zh) 基于fpga的自调匀整控制系统及控制方法
CN112875830A (zh) 一种二级反渗透系统入口pH值的自动控制方法及系统
CN105785760A (zh) 一种退火炉净环水硬度自动控制系统及其方法
CN113655816B (zh) 钢包底吹氩系统流量控制方法及计算机可读存储介质
CN102053568A (zh) 意外建模和数据驱动的水质控制系统及诱导干预控制方法
CN107191154B (zh) 井口回压调控方法与装置

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant