WO2014080723A1 - 吸気温度センサ装置および流量測定装置 - Google Patents

吸気温度センサ装置および流量測定装置 Download PDF

Info

Publication number
WO2014080723A1
WO2014080723A1 PCT/JP2013/078899 JP2013078899W WO2014080723A1 WO 2014080723 A1 WO2014080723 A1 WO 2014080723A1 JP 2013078899 W JP2013078899 W JP 2013078899W WO 2014080723 A1 WO2014080723 A1 WO 2014080723A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
intake air
air temperature
sensor device
integrated circuit
Prior art date
Application number
PCT/JP2013/078899
Other languages
English (en)
French (fr)
Inventor
松本 昌大
中野 洋
半沢 恵二
哲 浅野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/647,031 priority Critical patent/US20160003686A1/en
Priority to CN201380067561.7A priority patent/CN104884919B/zh
Priority to EP13856314.3A priority patent/EP2924405B1/en
Publication of WO2014080723A1 publication Critical patent/WO2014080723A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/25Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • G01K2205/02Application of thermometers in motors, e.g. of a vehicle for measuring inlet gas temperature

Definitions

  • the present invention relates to an intake air temperature sensor device for detecting an intake air temperature and a flow rate measuring device including the intake air temperature sensor device.
  • Patent Document 1 a resistance measurement device, a resistance measurement integrated circuit, and a resistance measurement method described in JP-A-2005-3596 (Patent Document 1) are known.
  • a thermistor whose resistance value changes according to temperature and a reference resistor having a highly accurate resistance value are provided outside the IC (integrated circuit).
  • the thermistor is connected to the channel CH1 of the A / D converter provided in the IC, and the reference resistor is electrically connected to the channel CHref of the A / D converter.
  • a pull-up resistor R1 is connected via a switch SW1.
  • the electrical wiring drawn from the connection between the switch SW1 and the pull-up resistor R1 is connected via the switch SW2.
  • the pull-up resistor R1, the switch SW1, and the switch SW2 are provided inside the IC.
  • the switch SW1 is on and the switch SW2 is off, and the voltage at the connection point between the switch SW1 and the thermistor is input to the channel CH1 of the A / D converter.
  • the switch SW1 is turned off and the switch SW2 is turned on, and the voltage at the connection point between the switch SW2 and the reference resistor is input to the channel CHref of the A / D converter.
  • this resistance value measuring apparatus by calculating the voltage value input to the channel CH1 and the voltage value input to the channel CHref, there is a variation in resistance value of the pull-up resistor R1 and a resistance value change due to temperature characteristics. Also, the resistance value of the thermistor can be obtained with high accuracy (see summary).
  • the pull-up resistor R1 (fixed resistor) connected in series to the thermistor when the switch SW1 is turned on can be integrated in an integrated circuit.
  • the reference resistor is not integrated into the integrated circuit, and it is difficult to integrate it into the integrated circuit.
  • the on resistances of the switches SW1 and SW2 that switch between the thermistor and the reference resistor and are connected in series to the pull-up resistor R1 must be sufficiently smaller than the resistance of the thermistor. In particular, when a thermistor is used, the resistance is reduced by about two orders of magnitude at high temperatures compared to normal temperatures.
  • the changeover switch when considering use at a high temperature, it is necessary to sufficiently increase the size of the changeover switch to reduce the on-resistance. Further, when the changeover switch is constituted by a semiconductor switch, the on-resistance of the changeover switch increases at a high temperature. This change in on-resistance may cause an error in the resistance value measurement of the thermistor.
  • an intake air temperature sensor device can be configured using the thermistor and pull-up resistor (fixed resistor) described above.
  • the thermistor is used as a temperature detection element, but the temperature detection element is not limited to the thermistor, and any resistance value may be used as long as the resistance value changes depending on the temperature.
  • An object of the present invention is to provide a highly accurate intake air temperature sensor device.
  • an intake air temperature sensor device of the present invention includes a temperature detection element whose resistance value changes according to the intake air temperature, an integrated circuit that processes a signal of the temperature detection element, and an integrated circuit integrated with the integrated circuit.
  • a resistance element connected in series with the temperature detection element, and a writable memory for storing information relating to a resistance value of the resistance element, and the temperature detection element based on the information stored in the writable memory This is achieved by correcting the signal detected in (1). At this time, it is preferable to correct the curve of the characteristic curve of the signal detected by the temperature detecting element.
  • FIG. 3 is a detailed diagram showing in detail the configuration of a flow rate detection unit configured by an air flow rate detection element 17 and an air flow rate signal adjustment circuit 18.
  • FIG. 1 is a diagram showing the configuration of the intake air temperature sensor device in the present embodiment.
  • FIG. 2 is a graph showing the relationship between the intake air temperature and Vsen / Vref.
  • FIG. 3 is a diagram showing input / output characteristics of the bending correction processing unit 6.
  • the intake air temperature sensor device of this embodiment includes a temperature detection element 2 whose resistance value changes according to the intake air temperature, an integrated circuit 1 that processes a signal of the temperature detection element 2, and an integrated circuit that is connected in series with the temperature detection element 2. 1 to an AD converter 4 that performs analog / digital conversion on a signal (a voltage across the temperature detection element 2) detected by the temperature detection element 2, and the resistance element 3 and the AD converter 4.
  • the reference voltage source 5 that supplies the reference voltage Vref, the writable memory 7 that stores information according to the resistance value of the resistance element 3, and the output of the AD converter 4 based on the information in the writable memory (PROM) 7.
  • the bend correction processing unit 6 outputs the intake air temperature output by correcting the bend.
  • the temperature detecting element 2 whose resistance value changes according to the intake air temperature includes a thermistor, a platinum resistor, and the like. In this embodiment, the thermistor will be described as an example.
  • the temperature detection element 2 and the resistance element 3 whose resistance value changes according to the intake air temperature are connected in series, and the voltage Vref is supplied from the reference voltage source 5.
  • the ratio between the both-end voltages Vsen and Vref of the temperature detection element 2 changes as shown in FIG. 2 according to the intake air temperature, but the characteristic (bending) changes due to the influence of the resistance value Rs of the resistance element 3.
  • the voltage Vsen is digitized by the AD converter 4 that performs analog-to-digital conversion with the voltage Vref as a reference voltage, and the digital value is corrected based on the information in the writable memory 7 with the curve shown in FIG. Do. This bend correction is performed by the bend correction processing unit 6.
  • the input / output characteristics (characteristics of FIG. 3) of the bending correction processing unit 6 are Vin as input, Vout as output, Rr as the reference resistance value of the resistance element 3, and Rs as the actual resistance value of the resistance element 3.
  • Vout Rs ⁇ Vin / ⁇ Rr + Vin ⁇ (Rs ⁇ Rr) ⁇ (Equation (1)) and can be easily calculated by digital calculation.
  • the input / output characteristics of the curve correction processing unit 6 are as shown in FIG. 3, and when Rs is larger than the standard value, it protrudes upward in the signal input / output range. The correction which gives the bend which becomes becomes will be performed. Further, when Rs is smaller than the standard value, correction for giving a downward convex curve in the signal input / output range is performed.
  • the input / output characteristics of the bending correction processing unit 6 draw a curve when Rs deviates from the standard value, and deviate from the straight line when Rs is the standard value. That is, the curve correction processing unit 6 corrects the curve of the characteristic curve of the output signal of the temperature detection element 2 with respect to the intake air temperature according to the magnitude of the variation from the standard value in Rs by this input / output characteristic. . Even if there is variation in Rs, it is possible to match the characteristic curve of the standard value by correcting the curve of the characteristic curve.
  • equation (1) can also be performed using a map.
  • PROM is used as the writable memory 7, it is not restricted to PROM, What is necessary is just a writable memory.
  • FIG. 4 is a diagram showing the configuration of the intake air temperature sensor device in the present embodiment.
  • FIG. 5 is a diagram showing input / output characteristics of the bending correction processing unit 6 and the linearization processing unit 8.
  • the intake air temperature sensor device of the present embodiment has basically the same configuration as the intake air temperature sensor device of Embodiment 1, but has the following improvements.
  • symbol is attached
  • the straightening processing unit 8 is provided after the bending correction processing unit 6 to linearize the nonlinear characteristic with respect to the intake air temperature shown in FIG.
  • the resistance value Rs of the resistance element 3 changes, the input / output characteristics of the linearization processing unit 8 change as shown in FIG.
  • the linearization processing unit 8 employs map processing because the thermistor has an exponential function.
  • the map used for this map processing represents the relationship between the input and output of the linearization processing unit 8.
  • map processing it is necessary to change the map in accordance with changes in the resistance value Rs (resistance variation due to object variations or temperature changes), which requires very complicated processing.
  • the straightening processing unit 8 can be realized by a simple map operation by correcting the bending due to the variation of the resistance element 3 in advance by the bending correction processing unit 6 as in the present embodiment.
  • map used for the map processing is stored in the writable memory 7.
  • FIG. 6 is a diagram showing the configuration of the intake air temperature sensor device in the present embodiment.
  • FIG. 7 is a diagram showing a pattern of the resistance element 3.
  • the intake air temperature sensor device of the present embodiment has basically the same configuration as the intake air temperature sensor device of Embodiment 1, but has the following improvements.
  • symbol is attached
  • an integrated circuit temperature sensor (LSI temperature sensor) 9 for detecting the temperature of the integrated circuit 1
  • a writable memory 10 for storing information corresponding to the resistance value and resistance temperature coefficient of the resistance element 3
  • the integrated circuit A resistance value estimation unit (Rs estimation unit) 11 that estimates the resistance value of the resistance element 3 based on the information stored in the temperature sensor 9 and the writable memory 10 is provided.
  • the integrated circuit temperature sensor 9 and the resistance element 3 are arranged close to each other so that the temperatures of the integrated circuit temperature sensor 9 and the resistance element 3 are substantially the same.
  • the temperature of the integrated circuit temperature sensor 9 and the resistance element 3 is substantially the same” means that the resistance value of the resistance element 3 estimated using the temperature detected by the integrated circuit temperature sensor 9 is corrected for bending. It means that the temperature of the resistance element 3 can be detected by the integrated circuit temperature sensor 9 so as to be within an allowable error range that can be used for the bending correction in the processing unit 6.
  • a resistance element in an integrated circuit has a temperature coefficient of resistance of 1000 to 3000 ppm / ° C. For this reason, since the temperature of the resistance element 3 changes by 100 ° C. or more due to a change in ambient temperature or self-heating of the integrated circuit 1 itself, the resistance value of the resistance element 3 changes by 10 to 30%. This causes an error in the output of the intake air temperature sensor device. Therefore, in this embodiment, information corresponding to the resistance value Rs of the resistance element 3 and the resistance temperature coefficient TCR is stored in the writable memory 10, and the resistance value of the resistance element 3 is processed by the resistance value estimation unit processing 11 based on this information. Estimate Rs.
  • the bend correction processing unit 6 performs the bend correction using the estimated resistance value Rs, thereby eliminating the influence of the resistance value Rs of the resistance element 3.
  • the output Rs of the resistance value estimation processing unit 11 is Rs0 as the resistance value of the resistance element 3 at 0 ° C.
  • the resistance temperature coefficient of the resistance element 3 is TCR
  • the output of the integrated circuit temperature sensor 9 is Tlsi.
  • Rs Rs0 ⁇ ⁇ 1 + TCR ⁇ Tlsi ⁇ (2) It can be easily calculated by digital calculation.
  • the equation (2) is calculated on the basis of this information, so that the variation of the resistance element 3 can be calculated.
  • a fixed resistor or the like connected in series to the intake air temperature detecting element can be integrated in the integrated circuit.
  • the pattern of the resistance element 3 is as shown in FIG.
  • the resistance element 3 is configured by providing a plurality of unit resistance patterns including diffusion regions 13 and contacts 12 and 14 and connecting these unit resistance patterns with aluminum wirings 15 and 16.
  • the resistance temperature coefficient of the diffusion region is 100 to 3000 ppm / ° C., but the resistance temperature coefficient of the contact resistance has a negative value of ⁇ 3000 ppm / ° C.
  • the influence of contact resistance can be increased, and the resistance temperature coefficient of the resistance element 3 can be reduced.
  • the temperature change of the resistance value of the resistance element 3 can be reduced, so that the estimation accuracy of the resistance value estimation processing unit 11 can be improved, and the intake air temperature can be detected with higher accuracy.
  • FIG. 8 is a figure which shows the structure of the air flow rate measuring apparatus in a present Example.
  • FIG. 9 is a detailed diagram showing in detail the configuration of a flow rate detection unit constituted by the air flow rate detection element 17 and the air flow rate signal adjustment circuit 18.
  • the sensor device of this embodiment includes an intake air temperature sensor device having basically the same configuration as the intake air temperature sensor device of Embodiment 3. Further, in this embodiment, in order to configure the air flow rate measuring device, the air flow rate detection element 17 for detecting the air flow rate of the intake air and the output of the air flow rate detection element 17 incorporated (integrated) in the integrated circuit 1 are adjusted. An air flow rate signal adjustment processing unit 18 that performs (processing) and outputs a flow rate output is provided.
  • the apparatus of the third embodiment is used as the intake air temperature sensor apparatus, but the intake air temperature sensor apparatus of the first or second embodiment may be used.
  • the air flow rate measuring device of this embodiment is a thermal type measuring device that measures the air flow rate by generating heat by controlling the heating element (heating resistor).
  • the thermal air flow rate measuring device it is necessary to detect the temperature of the flowing air, and the air temperature is detected using the intake air temperature sensor device described in the above-described embodiment.
  • air particularly, intake air sucked into the internal combustion engine
  • a thermal fluid flow rate measurement device using other fluid as a measurement target may be used.
  • the air flow measurement device, the air flow signal adjustment processing unit 18 and the air flow detection element 17 will be described as a flow measurement device, a flow signal adjustment processing unit 18 and a flow detection element 17, respectively.
  • the flow rate detection element 17 includes a heating element 21, a heater temperature detection bridge circuit 22 including a heater temperature detection resistor 23 whose resistance value changes according to the temperature of the heating element 21, and fixed resistors 24, 25, and 26.
  • the temperature detection resistors 28 and 31 disposed on the windward side of the heating element 21 and the temperature detection resistors 29 and 30 disposed on the leeward side, and a temperature difference for detecting a temperature difference between the windward and leeward side of the heating element 21.
  • a detection bridge circuit 9 is arranged.
  • the flow rate signal adjustment processing unit 18 integrated in the integrated circuit 1 includes a differential amplifier 32 that receives the output of the heater temperature detection bridge circuit 22 and supplies the drive voltage Vh to the heating element 2, and a temperature difference detection bridge.
  • a differential amplifier 34 that receives the output of the circuit 9 and generates a flow rate output is disposed.
  • the differential amplifier 32 amplifies the voltage difference between the voltage V1 of the connection portion 35 between the heater temperature detection resistor 23 and the fixed resistor 24 and the voltage V2 of the connection portion 36 between the fixed resistor 25 and the fixed resistor 26 to heat the heating element.
  • a drive voltage Vh to 2 is generated.
  • the differential amplifier 34 amplifies the voltage difference between the voltage V3 at the connection portion 37 between the temperature detection resistor 28 and the temperature detection resistor 29 and the voltage V4 at the connection portion 38 between the temperature detection resistor 30 and the temperature detection resistor 31. Generate a flow output.
  • the flow rate signal adjustment processing unit 18 is provided with a flow rate signal processing unit 39 including an arithmetic unit in order to correct and adjust the output of the differential amplifier 34.
  • the correction and adjustment performed by the flow signal processing unit 39 includes signal linearization processing and correction processing for various error factors.
  • the detected flow signal may be affected by the intake air temperature.
  • a flow rate signal detected using a heating resistor is easily affected by the intake air temperature. Therefore, the intake air temperature output of the intake air temperature sensor device is input to the flow rate signal processing unit 39, and the flow rate signal processing unit 39 corrects and adjusts the influence of the intake air temperature on the output of the differential amplifier 34, and then the flow rate output. Output as.
  • the flow rate detection element 17 using a heating element there are elements in which the configuration of the heating element or the bridge circuit is changed in addition to the above-described configuration, and a flow rate detection element having another configuration may be used.
  • the air flow rate signal can be adjusted with high accuracy using this intake air temperature output signal.
  • this invention is not limited to each above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the linearization processing unit 8 described in the second embodiment may be added to the third and fourth embodiments.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Nonlinear Science (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

 本発明の目的は、温度検出素子に直列接続される固定抵抗を集積回路へ集積化し、リファレンス抵抗や、固定抵抗をこのリファレンス抵抗に接続するための切り換えスイッチを不要にすることで、より小型で高精度な吸気温度センサ装置を提供することにある。吸気温度に応じて抵抗値の変化する温度検出素子2と、温度検出素子2と電気的に接続された集積回路1と、集積回路1に集積化され、温度検出素子2と直列に接続された抵抗素子3と、抵抗素子3の抵抗値に応じた補正情報を記憶する書き込み可能メモリ7と、書き込み可能メモリ7に記憶された補正情報に基づいて、温度検出素子2の出力信号に含まれる、抵抗素子3の抵抗値に基づく誤差を補正する補正処理部6と、を有する。

Description

吸気温度センサ装置および流量測定装置
 本発明は吸気温度を検出する吸気温度センサ装置及び吸気温度センサ装置を備えた流量測定装置に関する。
 従来、特開2005-3596号公報(特許文献1)に記載された抵抗値測定装置、抵抗測定用集積回路及び抵抗測定方法が知られている。
 この抵抗値測定装置では、IC(集積回路)の外部に温度に応じて抵抗値が変化するサーミスタと高精度な抵抗値を有するリファレンス抵抗とが設けられている。サーミスタはICの内部に設けたA/D変換器のチャンネルCH1に接続され、リファレンス抵抗はA/D変換器のチャンネルCHrefに電気的に接続されている。サーミスタをチャンネルCH1に接続する電気配線の途中には、スイッチSW1を介してプルアップ抵抗R1が接続されている。リファレンス抵抗をチャンネルCHrefに接続する電気配線の途中には、スイッチSW1とプルアップ抵抗R1との接続部から引き出された電気配線がスイッチSW2を介して接続されている。プルアップ抵抗R1、スイッチSW1及びスイッチSW2はICの内部に設けられている。
 通常時は、スイッチSW1がオン、スイッチSW2がオフとなっており、スイッチSW1とサーミスタとの接続点の電圧がA/D変換器のチャンネルCH1に入力される。プルアップ抵抗R1の抵抗値補正時には、スイッチSW1がオフ、スイッチSW2がオンとなり、スイッチSW2とリファレンス抵抗との接続点の電圧がA/D変換器のチャンネルCHrefに入力される。この抵抗値測定装置では、チャンネルCH1に入力される電圧値とチャンネルCHrefに入力される電圧値とを演算することにより、プルアップ抵抗R1の抵抗値のばらつきや温度特性による抵抗値変化があっても、サーミスタの抵抗値を高精度に求めることができる(要約参照)。
特開2005-3596号公報
 特許文献1に記載されている従来技術では、スイッチSW1がオンされることによりサーミスタに直列接続されるプルアップ抵抗R1(固定抵抗)は、集積回路への集積化が可能である。しかし、リファレンス抵抗は集積回路へ集積化されておらず、集積回路へ集積化することは困難であった。また、サーミスタとリファレンス抵抗とを切り換えてプルアップ抵抗R1に直列接続するスイッチSW1,SW2のオン抵抗はサーミスタの抵抗に比べて十分に小さくする必要があり、集積回路の大型化を招く。特に、サーミスタを使用した場合、高温では常温に比べて抵抗が2桁程度小さくなる。このため、高温での使用を考えた場合は、切り換えスイッチのサイズを十分に大きくして、オン抵抗を小さくする必要がある。また、切り換えスイッチが半導体スイッチで構成される場合、切り換えスイッチのオン抵抗は高温で大きくなる。このオン抵抗の変化はサーミスタの抵抗値測定に誤差を生じさる可能性がある。
 例えば、上述したサーミスタとプルアップ抵抗(固定抵抗)とを用いて、吸気温度センサ装置を構成することができる。この場合、サーミスタは温度検出素子として用いられるが、温度検出素子としては、サーミスタに限定されるものではなく、温度によって抵抗値が変化するものであればよい。
 本発明の目的は、温度検出素子に直列接続される固定抵抗を集積回路へ集積化し、リファレンス抵抗や、固定抵抗をこのリファレンス抵抗に接続するための切り換えスイッチを不要にすることで、より小型で高精度な吸気温度センサ装置を提供することにある。
 上記課題を解決するために、本発明の吸気温度センサ装置は、吸気温度に応じて抵抗値の変化する温度検出素子と、前記温度検出素子の信号を処理する集積回路と、前記集積回路に集積化され前記温度検出素子に直列に接続された抵抗素子と、前記抵抗素子の抵抗値に関する情報を記憶する書き込み可能メモリとを備え、前記書き込み可能メモリに記憶された情報に基づいて前記温度検出素子で検出される信号を補正することにより達成される。このとき、前記温度検出素子で検出される信号の特性カーブの曲がりを補正するようにすると良い。
 本発明によれば、集積回路に集積化され、温度検出素子に直列に接続された抵抗素子の抵抗値のバラツキを補正することができ、抵抗素子の抵抗値を補正するためのリファレンス抵抗を設ける必要がなくなる。これにより、抵抗素子を集積回路内に集積化した小型で高精度な吸気温度センサを提供することができる。
上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
本発明に係る実施例1の吸気温度センサ装置の構成を示す図。 吸気温度とVsen/Vrefの関係を示す図。 曲がり補正処理6の入出力特性を示す図。 本発明に係る実施例2のセンサ装置の構成を示す図。 曲がり補正処理6及び直線化処理8の入出力特性を示す図。 本発明に係る実施例3のセンサ装置の構成を示す図。 抵抗素子3のパターンを示す図。 センサ装置の一例として、実施例3の吸気温度センサ装置を用いた空気流量測定装置の構成を示す図。 空気流量検出素子17と空気流量信号調整回路18とによって構成される流量検出部の構成を詳細に示した詳細図。
 以下、本発明の実施例について、図面を参照して説明する。
 まず、本発明の第1の実施例である吸気温度センサ装置を図1~3により説明する。なお、図1は本実施例における吸気温度センサ装置の構成を示す図である。図2は吸気温度とVsen/Vrefとの関係を示す図である。図3は曲がり補正処理部6の入出力特性を示す図である。
 本実施例の吸気温度センサ装置は、吸気温度に応じて抵抗値の変化する温度検出素子2と、温度検出素子2の信号を処理する集積回路1と、温度検出素子2と直列接続され集積回路1に集積化された抵抗素子3と、温度検出素子2で検出される信号(温度検出素子2の両端電圧)をアナログ・デジタル変換するAD変換器4と、抵抗素子3とAD変換器4へ基準電圧Vrefを供給する基準電圧源5と、抵抗素子3の抵抗値に応じた情報を記憶する書き込み可能メモリ7と、AD変換器4の出力を書き込み可能メモリ(PROM)7の情報に基づいて曲がり補正して吸気温度出力を出力する曲がり補正処理部6により構成される。なお、吸気温度に応じて抵抗値の変化する温度検出素子2にはサーミスタ、白金抵抗などがあるが本実施例ではサーミスタを例に挙げて説明する。
 本実施例では、吸気温度に応じて抵抗値の変化する温度検出素子2と抵抗素子3とを直列に接続して、基準電圧源5から電圧Vrefを供給する。この時、温度検出素子2の両端電圧VsenとVrefとの比は吸気温度に応じて図2の様に変化するが、抵抗素子3の抵抗値Rsの影響を受け特性(曲がり)が変化する。本実施例では、電圧Vrefを基準電圧として電圧Vsenをアナログ・デジタル変換するAD変換器4でデジタル化し、このデジタル値を書き込み可能メモリ7の情報に基づいて、図3に示すカーブで曲がり補正を行う。この曲がり補正は、曲がり補正処理部6で実施する。この曲がり補正により、抵抗素子3の抵抗値Rsの影響を無くす様にした。なお、曲がり補正処理部6の入出力特性(図3の特性)は、入力をVin、出力をVout、抵抗素子3の基準抵抗値をRr、抵抗素子3の実際の抵抗値をRsとすると、
 Vout=Rs×Vin/{Rr+Vin×(Rs-Rr)}…(1)式
の様に表わされ、デジタル演算で容易に計算できる。
 つまり、抵抗素子3の実際の抵抗値Rsを書き込み可能メモリ7に保存しておくことで、この情報に基づいて(1)式を計算することにより、抵抗素子3のバラツキによる特性変動を無くすことができる。
 (1)式を用いて曲がり補正を行う場合、曲がり補正処理部6の入出力特性は図3のようになり、Rsが標準値よりも大きい場合は、信号の入出力範囲において、上側に凸となる曲がりを与える補正を行うことになる。また、Rsが標準値よりも小さい場合は、信号の入出力範囲において、下側に凸となる曲がりを与える補正を行うことになる。
 図3に示すように、曲がり補正処理部6の入出力特性は、Rsが標準値からずれた場合に、曲線を描くようになり、Rsが標準値の場合の直線に対してずれている。すなわち、曲がり補正処理部6では、この入出力特性により、Rsにおける標準値からのバラツキの大きさに応じて、吸気温度に対して温度検出素子2の出力信号が有する特性曲線の曲がりを補正する。Rsにバラツキが生じていても、特性曲線の曲がりを補正することにより、標準値の特性曲線に一致させることができる。
 なお、(1)式の計算はマップを利用して計算することも可能である。なお、書き込み可能メモリ7としてPROMを用いているが、PROMに限られるものではなく、書き込み可能なメモリであれば良い。
 次に、本発明の第2の実施例であるセンサ装置を図4,5により説明する。なお、図4は本実施例における吸気温度センサ装置の構成を示す図である。図5は曲がり補正処理部6及び直線化処理部8の入出力特性を示す図である。
 本実施例の吸気温度センサ装置は、実施例1の吸気温度センサ装置と基本的に同じ構成であるが、以下の改良を加えた。なお、実施例1と同じ構成には同じ符号を付しており、これらについては説明を省略する。
 本実施例では、曲がり補正処理部6の後に直線化処理部8を設けて、図2に示した吸気温度に対して非線形な特性を直線化した。抵抗素子3の抵抗値Rsが変化すると、直線化処理部8の入出力特性は図5に示す様に変化する。温度検出素子2にサーミスタを用いた場合、サーミスタの特性は指数関数なので直線化処理部8ではマップ処理を採用する。このマップ処理に用いるマップは、直線化処理部8の入力と出力との関係を表す。マップ処理を採用した場合、抵抗値Rsの変化(物のバラツキや温度変化による抵抗変化)に応じてマップを変更する必要があり非常に複雑な処理を必要する。しかし、本実施例の様に曲がり補正処理部6により抵抗素子3のバラツキによる曲がりの補正を事前に行うことで、直線化処理部8を単純なマップ演算で実現できる。
 なお、マップ処理に用いるマップは書き込み可能メモリ7に保存しておく。
 次に、本発明の第3の実施例である吸気温度センサ装置を図6,7により説明する。なお、図6は本実施例における吸気温度センサ装置の構成を示す図である。図7は抵抗素子3のパターンを示す図である。
 本実施例の吸気温度センサ装置は、実施例1の吸気温度センサ装置と基本的に同じ構成であるが、以下の改良を加えた。なお、他の実施例と同じ構成には同じ符号を付しており、これらについては説明を省略する。
 本実施例では、集積回路1の温度を検出する集積回路温度センサ(LSI温度センサ)9と、抵抗素子3の抵抗値と抵抗温度係数に応じた情報を記憶する書き込み可能メモリ10と、集積回路温度センサ9と書き込み可能メモリ10に記憶した情報に基づいて抵抗素子3の抵抗値を推定する抵抗値推定部(Rsの推定部)11を設けた。なお、集積回路温度センサ9と抵抗素子3とは近接して配置し、集積回路温度センサ9と抵抗素子3の温度が実質的に同じになる様にした。この場合、「集積回路温度センサ9と抵抗素子3の温度が実質的に同じ」であるとは、集積回路温度センサ9により検出した温度を用いて推定した抵抗素子3の抵抗値が、曲がり補正処理部6における曲がり補正に使用できる程度の許容誤差範囲内に収まるよう、抵抗素子3の温度を集積回路温度センサ9により検出できることを意味する。
 一般に、集積回路における抵抗素子は1000~3000ppm/℃の抵抗温度係数を持つ。この為、周囲温度の変化や集積回路1自体の自己発熱により、抵抗素子3の温度は100℃以上変化するので、抵抗素子3の抵抗値は10~30%変化する。このことにより吸気温度センサ装置の出力に誤差を生じさせてしまう。そこで、本実施例では、書き込み可能メモリ10に抵抗素子3の抵抗値Rsと抵抗温度係数TCRに応じた情報を記憶させ、この情報に基づいて抵抗値推定部処理11により抵抗素子3の抵抗値Rsを推定する。そして、推定した抵抗値Rsを用いて曲がり補正処理部6で曲がり補正を実施することで、抵抗素子3の抵抗値Rsの影響を無くす様にした。なお、抵抗値推定処理部11の出力Rsは0℃での抵抗素子3の抵抗値をRs0、抵抗素子3の抵抗温度係数をTCR、集積回路温度センサ9の出力をTlsiとすると、
 Rs=Rs0×{1+TCR×Tlsi}…(2)式
の様に表わされ、デジタル演算で容易に計算できる。
 つまり、抵抗素子3の0℃での抵抗値Rs0と抵抗温度係数TCRを書き込み可能メモリ10に保存しておくことで、この情報に基づいて(2)式を計算することで抵抗素子3のバラツキおよび温度変化による抵抗変化によって生じる吸気温度センサ装置の特性変動を無くすことができる。このことにより、吸気温度検出素子に直列接続される固定抵抗などを集積回路へ集積化できる。
 また、本実施例では、抵抗素子3のパターンを図7に示す様にした。抵抗素子3は、拡散領域13とコンタクト12,14とで構成される単位抵抗パターンを複数設け、これらの単位抵抗パターンをアルミ配線15,16で接続することで構成した。拡散領域の抵抗温度係数は100~3000ppm/℃であるが、コンタクトの抵抗の抵抗温度係数は-3000ppm/℃と負の値を持つ。この為、本実施例の様に単位抵抗パターンを複数設けて抵抗素子3を構成することで、コンタクト抵抗の影響を大きくして、抵抗素子3の抵抗温度係数を小さくすることができる。このことにより、抵抗素子3の抵抗値の温度変化を小さくできるので抵抗値推定処理部11の推定精度の向上を図ることができ、より高精度に吸気温度を検出することができる。
 次に、センサ装置の一実施例として、実施例3の吸気温度センサ装置を用いた空気流量測定装置の実施例(実施例4)を、図8,9により説明する。なお、図8は本実施例における空気流量測定装置の構成を示す図である。図9は空気流量検出素子17と空気流量信号調整回路18とによって構成される流量検出部の構成を詳細に示した詳細図である。
 本実施例のセンサ装置は、実施例3の吸気温度センサ装置と基本的に同じ構成の吸気温度センサ装置を備えている。さらに、本実施例では、空気流量測定装置を構成するために、吸気の空気流量を検出する空気流量検出素子17と、集積回路1に内蔵(集積化)され空気流量検出素子17の出力を調整(処理)して流量出力を出力する空気流量信号調整処理部18とを設けている。
 なお、本実施例では、吸気温度センサ装置として実施例3の装置を用いているが、実施例1又は2の吸気温度センサ装置を用いても良い。
 本実施例の空気流量測定装置は、発熱体(発熱抵抗体)を加熱制御することにより発熱させて空気流量を測定する熱式の測定装置である。熱式の空気流量測定装置では、流れる空気の温度を検出する必要があり、上述の実施例に記載した吸気温度センサ装置を用いて空気温度を検出する。本実施例では、空気(特に、内燃機関に吸入される吸気)を測定対象としているが、その他の流体を測定対象とする熱式の流体流量測定装置としても良い。また、熱式以外の流体流量測定装置であっても、流体の温度を検出する場合に、上述の各実施例の吸気温度センサ装置を組み合わせて使用することにより、流体温度を高精度に検出し、かつ装置を小型化することができる。以下の説明では、空気流量測定装置、空気流量信号調整処理部18及び空気流量検出素子17をそれぞれ流量測定装置、流量信号調整処理部18及び流量検出素子17として説明する。
 流量検出素子17には、発熱体21と、発熱体21の温度に応じて抵抗値の変化するヒータ温度検出抵抗23と固定抵抗24,25,26とで構成されるヒータ温度検出ブリッジ回路22と、発熱体21の風上に配置される温度検出抵抗28,31と風下に配置される温度検出抵抗29,30とで構成され、発熱体21の風上と風下の温度差を検出する温度差検出ブリッジ回路9とが配置されている。また、集積回路1に集積化された流量信号調整処理部18には、ヒータ温度検出ブリッジ回路22の出力を受けて発熱体2に駆動電圧Vhを供給する差動増幅器32と、温度差検出ブリッジ回路9の出力を受けて流量出力を生成する差動増幅器34とが配置されている。
 差動増幅器32は、ヒータ温度検出抵抗23と固定抵抗24との接続部35の電圧V1と、固定抵抗25と固定抵抗26との接続部36の電圧V2との電圧差を増幅して発熱体2への駆動電圧Vhを発生する。差動増幅器34は、温度検出抵抗28と温度検出抵抗29との接続部37の電圧V3と、温度検出抵抗30と温度検出抵抗31との接続部38の電圧V4との電圧差を増幅して流量出力を生成する。
 流量信号調整処理部18には、差動増幅器34の出力に対して補正や調整を行うために、演算器を含む流量信号処理部39が設けられている。流量信号処理部39で行う補正及び調整には、信号の線形化処理や種々の誤差要因に対する補正処理が含まれる。検出される流量信号は吸気温度の影響を受ける場合がある。特に発熱抵抗体を用いて検出される流量信号は吸気温度の影響を受け易い。そこで、吸気温度センサ装置の吸気温度出力を流量信号処理部39に入力し、流量信号処理部39で差動増幅器34の出力に対して吸気温度の影響に対する補正及び調整を行った後、流量出力として出力する。
 発熱体を用いた流量検出素子17としては、上述した構成以外にも、発熱体やブリッジ回路の構成を変えた素子が存在しており、他の構成の流量検出素子を用いても良い。
 本実施例では、高精度に調整された吸気温度出力信号を持つので、この吸気温度出力信号を使用して空気流量信号を高精度に調整することができる。
 上述の各実施例によれば、温度検出素子に直列接続される抵抗素子として特に高精度な抵抗素子を用いる必要がなく、抵抗素子を集積回路内に集積化することができる。また、抵抗素子の抵抗値を補正するためのリファレンス抵抗を設ける必要もない。これにより、抵抗素子を集積回路内に集積化した小型で高精度な吸気温度センサを提供することができる。
 なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。例えば、実施例2で説明した直線化処理部8を、実施例3及び4に追加してもよい。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1…集積回路、2…温度検出素子、3…抵抗素子、4…AD変換器、5…基準電圧源、6…曲がり補正処理部、7…書き込み可能メモリ、8…直線化処理部、9…集積回路温度センサ、10…書き込み可能メモリ、11…抵抗値推定処理部、12…コンタクト、13…拡散領域、14…コンタクト、15…アルミ配線、16…アルミ配線、17…空気流量検出素子、18…空気流量信号調整処理部。

Claims (8)

  1.  吸気温度に応じて抵抗値の変化する温度検出素子と、
     前記温度検出素子と電気的に接続された集積回路と、
     前記集積回路に集積化され、前記温度検出素子と直列に接続された抵抗素子と、
     前記抵抗素子の抵抗値に応じた補正情報を記憶する書き込み可能メモリと、
     前記書き込み可能メモリに記憶された補正情報に基づいて、前記温度検出素子の出力信号に含まれる、前記抵抗素子の抵抗値に基づく誤差を補正する補正処理部と、
    を有する吸気温度センサ装置。
  2.  請求項1に記載の吸気温度センサ装置において、
     前記補正処理部は、吸気温度に対する前記温度検出素子の出力信号の特性カーブの曲がりを補正することを特徴とする吸気温度センサ装置。
  3.  請求項2に記載の吸気温度センサ装置において、
     前記書き込み可能メモリに、前記特性カーブを直線化するための直線化情報を記憶すると共に、前記書き込み可能メモリに記憶された直線化情報に基づいて前記特性カーブを直線化する直線化処理部を備えたことを特徴とする吸気温度センサ装置。
  4. 請求項2に記載の吸気温度センサ装置において、
     前記集積回路の温度を検出する集積回路温度センサと、前記集積回路温度センサの出力から前記抵抗素子の抵抗値を推定する抵抗値推定処理部と、を備え、
     前記補正処理部は、前記前記抵抗値推定処理部の出力に基づいて、前記特性カーブの曲がりを補正することを特徴とする吸気温度センサ装置。
  5.  請求項4に記載の吸気温度センサ装置において、
     前記書き込み可能メモリに、前記抵抗素子の抵抗温度係数に応じた情報を記憶したことを特徴とする吸気温度センサ装置。
  6.  請求項4に記載の吸気温度センサ装置において、
     前記集積回路温度センサによって検出する温度が前記抵抗素子の温度と実質的に一致する位置に前記集積回路温度センサが配置されるように、前記集積回路温度センサを前記抵抗素子に対して近接して配置したことを特徴とする吸気温度センサ装置。
  7.  請求項2に記載の吸気温度センサ装置において、
     前記抵抗素子は、拡散領域とコンタクトとで構成される単位抵抗が複数個直列接続されて構成されたことを特徴とする吸気温度センサ装置。
  8.  発熱抵抗体を加熱制御して前記発熱抵抗体の周囲を流れる流体流量に基づいて流量検出を行う流量測定装置において、
     請求項1乃至7のいずれか1項に記載の吸気温度センサ装置と、前記吸気温度センサ装置の出力を用いて流量出力の調整を行う流量信号調整処理部を備えたことを特徴とする流量測定装置。
PCT/JP2013/078899 2012-11-22 2013-10-25 吸気温度センサ装置および流量測定装置 WO2014080723A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/647,031 US20160003686A1 (en) 2012-11-22 2013-10-25 Intake air temperature sensor and flow measurement device
CN201380067561.7A CN104884919B (zh) 2012-11-22 2013-10-25 进气温度传感装置和流量测量装置
EP13856314.3A EP2924405B1 (en) 2012-11-22 2013-10-25 Intake air temperature sensor and flow measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012255830A JP5981319B2 (ja) 2012-11-22 2012-11-22 吸気温度センサ装置および流量測定装置
JP2012-255830 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014080723A1 true WO2014080723A1 (ja) 2014-05-30

Family

ID=50775911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078899 WO2014080723A1 (ja) 2012-11-22 2013-10-25 吸気温度センサ装置および流量測定装置

Country Status (5)

Country Link
US (1) US20160003686A1 (ja)
EP (1) EP2924405B1 (ja)
JP (1) JP5981319B2 (ja)
CN (1) CN104884919B (ja)
WO (1) WO2014080723A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201901B2 (ja) * 2014-06-04 2017-09-27 株式会社デンソー 空気流量測定装置
CN105698967B (zh) * 2016-02-15 2018-04-06 浪潮电子信息产业股份有限公司 一种rack产品进风温度检测实现方法
NL2017179B1 (en) * 2016-07-15 2017-07-17 Intermodal Telematics B V Temperature measuring circuit obviating calibration
JP6733508B2 (ja) 2016-11-09 2020-08-05 株式会社デンソー 電圧測定システム
US10596054B2 (en) * 2017-06-28 2020-03-24 General Electric Company Infant warming system and method
CN108225498B (zh) * 2018-01-26 2023-12-26 杭州先锋电子技术股份有限公司 一种民用智能燃气表整机功能检测设备的控制系统
JP2019135465A (ja) * 2018-02-05 2019-08-15 株式会社デンソー センサ装置
US11021950B2 (en) * 2019-06-06 2021-06-01 Probe Technology Services, Inc. Production-logging sensor
JP6818919B1 (ja) 2020-02-06 2021-01-27 三菱電機株式会社 温度センサモジュール
US20230304870A1 (en) * 2022-03-24 2023-09-28 Semiconductor Components Industries, Llc Systems and methods for temperature measurements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868633A (ja) * 1981-10-20 1983-04-23 Citizen Watch Co Ltd 温度補償回路
JPS6035213U (ja) * 1979-01-17 1985-03-11 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− 直線化回路
JPS618846U (ja) * 1984-06-22 1986-01-20 カシオ計算機株式会社 電子式温度測定装置
JP2005003596A (ja) 2003-06-13 2005-01-06 Fujitsu Ten Ltd 抵抗測定装置、抵抗測定用集積回路及び抵抗測定方法
JP2008014774A (ja) * 2006-07-05 2008-01-24 Sharp Corp 温度測定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3940341A1 (de) * 1989-12-06 1991-06-13 Bosch Gmbh Robert Einrichtung zur verbesserung der genauigkeit einer messwerterfassung
TW527738B (en) * 1998-02-12 2003-04-11 Winbond Electronics Corp Voltage-temperature conversion device using a thermistor
JP2003106887A (ja) * 2001-09-28 2003-04-09 Yamatake Corp 流量計測装置
AU2003284593A1 (en) * 2003-11-20 2005-06-08 Hitachi Car Engineering Co., Ltd. Thermal flowmeter of fluid
US7036351B2 (en) * 2004-04-28 2006-05-02 Delphi Technologies, Inc. Compensated open-loop control of oxygen sensor heater
JP4274385B1 (ja) * 2008-07-28 2009-06-03 株式会社オーバル 流量計における温度計測回路
JP5350413B2 (ja) * 2011-01-31 2013-11-27 日立オートモティブシステムズ株式会社 吸気温度センサおよびそれを有する熱式空気流量計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035213U (ja) * 1979-01-17 1985-03-11 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− 直線化回路
JPS5868633A (ja) * 1981-10-20 1983-04-23 Citizen Watch Co Ltd 温度補償回路
JPS618846U (ja) * 1984-06-22 1986-01-20 カシオ計算機株式会社 電子式温度測定装置
JP2005003596A (ja) 2003-06-13 2005-01-06 Fujitsu Ten Ltd 抵抗測定装置、抵抗測定用集積回路及び抵抗測定方法
JP2008014774A (ja) * 2006-07-05 2008-01-24 Sharp Corp 温度測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2924405A4

Also Published As

Publication number Publication date
US20160003686A1 (en) 2016-01-07
JP5981319B2 (ja) 2016-08-31
EP2924405B1 (en) 2017-04-26
CN104884919B (zh) 2017-03-08
CN104884919A (zh) 2015-09-02
JP2014102218A (ja) 2014-06-05
EP2924405A4 (en) 2016-07-20
EP2924405A1 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5981319B2 (ja) 吸気温度センサ装置および流量測定装置
JP5414788B2 (ja) 非線形センサを線形化するための装置
JP6153646B2 (ja) 熱電対を用いた温度測定装置の温度ドリフト補正方法
US8874387B2 (en) Air flow measurement device and air flow correction method
JP6818919B1 (ja) 温度センサモジュール
EP1441206B1 (en) Sensor temperature control in a thermal anemometer
JP5577198B2 (ja) 気体流量測定装置
JP5520020B2 (ja) 赤外線センサ
JP5680178B1 (ja) 流量センサおよび内燃機関の制御システム
KR100959829B1 (ko) 나노 소자 가스 센서를 이용하고 온도 보상이 가능한 가스측정 장치
CN111954793B (zh) 热式流量计
JP5437654B2 (ja) 温度測定装置
JP2010216906A (ja) 自動車用流量計
JP6489081B2 (ja) センサ装置
JP6579378B2 (ja) 異常温度検出回路
JP4820174B2 (ja) ヒータ制御回路及び熱伝導率測定装置
JP6549235B2 (ja) 空気流量計
WO2014024621A1 (ja) 熱式流量測定装置及びこれを用いた制御装置
JP5062720B2 (ja) 流れ検出装置
JP5521498B2 (ja) 風速センサ
JP2023042745A (ja) ガスセンサ
JP2011153972A (ja) 力学量センサ
JP2021103137A (ja) ガスセンサ
JP2019138823A (ja) 異常温度検出回路
JPS6319003A (ja) 温度調節装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013856314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013856314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14647031

Country of ref document: US