WO2014076922A1 - ナノインプリント方法およびそれを用いたパターン化基板の製造方法 - Google Patents

ナノインプリント方法およびそれを用いたパターン化基板の製造方法 Download PDF

Info

Publication number
WO2014076922A1
WO2014076922A1 PCT/JP2013/006612 JP2013006612W WO2014076922A1 WO 2014076922 A1 WO2014076922 A1 WO 2014076922A1 JP 2013006612 W JP2013006612 W JP 2013006612W WO 2014076922 A1 WO2014076922 A1 WO 2014076922A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
resist
mold
pattern
atmosphere
Prior art date
Application number
PCT/JP2013/006612
Other languages
English (en)
French (fr)
Inventor
哲史 若松
隆 薬師寺
和晴 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014076922A1 publication Critical patent/WO2014076922A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to a nanoimprint method using a mold having a fine concavo-convex pattern on its surface and a method for producing a patterned substrate using the same.
  • a mold (generally referred to as a mold, stamper, or template) in which a concavo-convex pattern is formed is pressed (imprinted) against a resist applied on a substrate to be transferred, and the resist is mechanically deformed or fluidized to make fine patterns.
  • This is a technology that precisely transfers a pattern to a resist film.
  • the resist when imprinting is performed in a reduced-pressure atmosphere, there may be a problem due to, for example, volatilization of the curable resin constituting the resist.
  • the resist in order to reduce the thickness of the remaining film, the resist is generally applied thinly (for example, several tens of nanometers) on the substrate, but due to volatilization of the curable resin, the curable resin is locally insufficient and the transfer pattern May cause defects.
  • the present invention has been made in view of the above problems, and provides a nanoimprint method capable of reducing the occurrence of unfilled defects while improving the problem of volatilization of a curable resin and a decrease in efficiency in nanoimprint. It is intended.
  • an object of the present invention is to provide a method for manufacturing a patterned substrate that can reduce the occurrence of pattern defects in the manufacture of the patterned substrate.
  • a nanoimprint method includes: In the nanoimprint method using a mold having a fine uneven pattern on the surface, Place the mold and substrate so that the uneven pattern faces the resist applied on the substrate, Of the surface of the space area on the pattern area sandwiched between the mold and the substrate, the area of the portion in contact with the atmosphere is smaller than the surface area of the portion of the resist applied on the substrate existing on the pattern area, and the mold The pressure of the atmosphere is reduced to less than 10 kPa without contacting the resist, and then the mold is pressed against the substrate.
  • the “space area on the pattern area” means a space area sandwiched between the area on the mold surface where the uneven pattern is actually formed and the substrate surface.
  • the atmospheric pressure it is preferable to reduce the atmospheric pressure to 5 kPa or less.
  • the resist is applied to the substrate by an ink jet method.
  • the nanoimprint method according to the present invention it is preferable to carry out in a helium atmosphere.
  • the mold having a mesa structure as the mold.
  • a method for producing a patterned substrate according to the present invention includes: Forming a resist film on which a concavo-convex pattern has been transferred by the nanoimprint method described above on a substrate, By etching the substrate using the resist film as a mask, a concavo-convex pattern corresponding to the concavo-convex pattern transferred to the resist film is formed on the substrate.
  • the portion of the surface of the space region on the pattern region sandwiched between the mold and the substrate that is in contact with the atmosphere is the portion of the resist applied on the substrate that is present on the pattern region.
  • the pressure is reduced after bringing the mold and the substrate close to each other so that the mold does not contact the resist. Accordingly, even if the pressure is reduced to such an extent that the constituent material of the resist volatilizes in the prior art, the volatilization can be suppressed. This is presumably because the concentration distribution of the volatilized material tends to be in an equilibrium state because the space between the mold and the substrate is narrow. And since it can imprint in the pressure-reduced state, generation
  • the uneven pattern is transferred to the resist film by the nanoimprint method, it is possible to reduce the occurrence of pattern defects in the manufacture of the patterned substrate.
  • FIG. 1 is a schematic cross-sectional view showing the positional relationship between a gap region on a pattern region and a resist film.
  • the mold 1 and the substrate 2 are arranged so that the concavo-convex pattern is opposed to the resist film 3 uniformly applied on the substrate 2 by, for example, a spin coating method.
  • the area of the portion 4a in contact with the atmosphere in the surface of the space region (gap region 4) on the sandwiched pattern region P is that of the portion 3a existing on the pattern region P in the resist film 3 applied on the substrate 2.
  • the atmospheric pressure is reduced to less than 10 kPa, and then the mold 1 is pressed against the substrate 2 to cure the resist. Is peeled from the resist film 3.
  • FIG. 2 is a schematic cross-sectional view showing the positional relationship between the gap region on the pattern region and the resist droplet.
  • the resist may be applied by a method of arranging droplets such as an ink jet method.
  • the mold 1 and the substrate 2 are arranged so that the concavo-convex pattern is opposed to the resist droplet 5 arranged on the substrate 2 by, for example, an ink jet method, and the pattern sandwiched between the mold 1 and the substrate 2.
  • the area of the portion 4a in contact with the atmosphere is the total surface area nS 2 of the portion 5a existing on the pattern region P of the droplet 5 applied on the substrate 2.
  • the mold 1 is pressed against the substrate 2 after the atmospheric pressure is reduced to less than 10 kPa in a state where the mold 1 is not in contact with the droplet 5 (FIG. 2).
  • n is the number of droplets 5a
  • S 2 is the surface area per one droplet 5a.
  • the mold 1 used in the present embodiment can be manufactured, for example, by the following procedure. First, a PHS (polyhydroxy styrene) -based chemically amplified resist, a novolac resist, a resist solution mainly composed of an acrylic resin such as PMMA (polymethyl methacrylate), etc. is applied onto a Si substrate by spin coating, A resist layer is formed. Thereafter, the Si substrate is irradiated with laser light (or an electron beam) while being modulated corresponding to the desired concavo-convex pattern, and the concavo-convex pattern is exposed on the resist layer surface. Thereafter, the resist layer is developed, and selective etching is performed by reactive ion etching (RIE) or the like using the developed resist layer pattern as a mask to obtain a Si mold having a predetermined uneven pattern.
  • RIE reactive ion etching
  • the mold is not limited to this, and a quartz mold can also be used.
  • the quartz mold can be manufactured by a method similar to the method for manufacturing the Si mold described above, a method for manufacturing a patterned substrate (compound plate) described later, or the like.
  • the mold 1 may have a mesa structure including a mesa portion 10 (a portion whose upper surface is relatively flat and higher than the periphery) and a flange portion 11 around the mesa portion 10. .
  • the step of the mesa 10 is preferably 1 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, and still more preferably 20 to 100 ⁇ m.
  • a mesa-type mold is used so that the next pattern is transferred to the mold first.
  • the previously transferred pattern can be prevented from being crushed by interference with the pattern.
  • fluorine resins hydrocarbon lubricants, fluorine lubricants, fluorine silane coupling agents and the like can be used.
  • PTFA polytetrafluoroethylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene Ethylene copolymer
  • hydrocarbon lubricants include carboxylic acids such as stearic acid and oleic acid, esters such as butyl stearate, sulfonic acids such as octadecyl sulfonic acid, phosphate esters such as monooctadecyl phosphate, stearyl alcohol and oleyl
  • carboxylic acids such as stearic acid and oleic acid
  • esters such as butyl stearate
  • sulfonic acids such as octadecyl sulfonic acid
  • phosphate esters such as monooctadecyl phosphate
  • alcohols such as alcohol, carboxylic acid amides such as stearamide, and amines such as stearylamine.
  • examples of the fluorine-based lubricant include a lubricant in which part or all of the alkyl group of the hydrocarbon-based lubricant is substituted with a fluoroalkyl group or a perfluoropolyether group.
  • perfluoropolyether groups include perfluoromethylene oxide polymer, perfluoroethylene oxide polymer, perfluoro-n-propylene oxide polymer (CF 2 CF 2 CF 2 O) n , perfluoroisopropylene oxide polymer ( CF (CF 3 ) CF 2 O) n or a copolymer thereof.
  • the subscript n represents the degree of polymerization.
  • the fluorine-based silane coupling agent has at least one, preferably 1 to 10 alkoxysilane groups or chlorosilane groups in the molecule, and preferably has a molecular weight of 200 to 10,000.
  • the alkoxysilane group includes —Si (OCH 3 ) 3 group and —Si (OCH 2 CH 3 ) 3 group
  • the chlorosilane group includes —Si (Cl) 3 group.
  • heptadecafluoro-1,1,2,2-tetra-hydrodecyltrimethoxysilane pentafluorophenylpropyldimethylchlorosilane, tridecafluoro-1,1,2,2-tetra-hydrooctyltriethoxy
  • compounds such as silane and tridecafluoro-1,1,2,2-tetra-hydrooctyltrimethoxysilane.
  • the substrate 2 for imprinting is preferably a quartz substrate for the Si mold in order to enable exposure to a resist.
  • the quartz substrate is appropriately selected according to the purpose without particular limitation as long as it has light transparency and a thickness of 0.3 mm or more.
  • a quartz substrate surface coated with a silane coupling agent, an organic layer made of a polymer for improving adhesion to a resist, and the like, Cr, W, Ti, Ni, Ag, A laminate of metal layers made of Pt, Au, etc., a laminate of metal oxide film layers made of CrO 2 , WO 2 , TiO 2, etc. on a quartz substrate, and the surface of the laminate with a silane coupling agent For example, a coated one.
  • the thickness of the organic material layer, metal layer or metal oxide film layer is usually 30 nm or less, preferably 20 nm or less. This is because if it exceeds 30 nm, the UV transmittance is lowered, and the resist is likely to be hardened.
  • the above-mentioned “having light transparency” specifically means that the resist is sufficiently cured when light is incident from the other surface so as to be emitted from one surface of the substrate 2 on which the resist is formed. It means that at least the transmittance of light having a wavelength of 200 nm or more from the other surface to the one surface is 5% or more.
  • the thickness of the quartz substrate is usually preferably 0.3 mm or more. This is because if it is 0.3 mm or less, it is likely to be damaged by pressing during handling or imprinting.
  • the shape, structure, size, material and the like of the substrate for the quartz mold are not particularly limited, and can be appropriately selected according to the purpose.
  • the shape is a disk shape.
  • the structure may be a single layer structure or a laminated structure.
  • the material can be appropriately selected from those known as substrate materials, and examples thereof include silicon, nickel, aluminum, glass, and resin. These board
  • substrate materials may be used individually by 1 type, and may use 2 or more types together.
  • the substrate may be appropriately synthesized or a commercially available product may be used. Moreover, what coat
  • 0.05 mm or more is preferable and 0.1 mm or more is more preferable. This is because if the thickness of the substrate is less than 0.05 mm, the substrate may be bent when the substrate and the mold are in close contact, and a uniform contact state may not be ensured.
  • the substrate 2 may have a mesa structure so that a region to which the uneven pattern is transferred is located on the mesa portion. Due to the presence of this pedestal, contact with the mold can be limited to the surface of the pedestal, so that contact with the structure existing outside the pattern formation region of the substrate can be avoided. A preferable range of the step of the mesa portion is the same as that of the mold. The effect described above can be obtained if either the mold or the substrate has a mesa structure.
  • the resist is not particularly limited.
  • the resist was prepared by adding a photopolymerization initiator (about 2% by mass) and a fluorine monomer (0.1 to 1% by mass) to a polymerizable compound.
  • a resist can be used.
  • the resist prepared by the above procedure can be cured by ultraviolet light having a wavelength of 360 nm.
  • ultraviolet light having a wavelength of 360 nm.
  • Examples of the polymerizable compound include benzyl acrylate (Biscoat (registered trademark) # 160: manufactured by Osaka Organic Chemical Co., Ltd.), ethyl carbitol acrylate (Biscoat (registered trademark) # 190: manufactured by Osaka Organic Chemical Co., Ltd.), polypropylene glycol di In addition to acrylate (Aronix (registered trademark) M-220: manufactured by Toagosei Co., Ltd.), trimethylolpropane PO-modified triacrylate (Aronix (registered trademark) M-310: manufactured by Toagosei Co., Ltd.), etc. The compound A etc. which are represented can be mentioned. Structural formula 1:
  • the polymerization initiator may be 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (IRGACURE®). 379: manufactured by Toyotsu Chemiplus Co., Ltd.) and the like.
  • the viscosity of the resist material is 8 to 20 cP, and the surface energy of the resist material is 25 to 35 mN / m.
  • the viscosity of the resist material is a value measured at 25 ⁇ 0.2 ° C. using a RE-80L rotational viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the rotation speed at the time of measurement was 100 rpm when 0.5 cP or more and less than 5 cP, 50 rpm when 5 cP or more and less than 10 cP, 20 rpm when 10 cP or more and less than 30 cP, and 10 rpm when 30 cP or more and less than 60 cP.
  • the surface energy of resist materials is “UV nanoimprint materials: Surface energies, residual layers, and imprint quality”, H. Schmitt, L. Frey, H. Ryssel, M. Rommel, C. Lehrer, J. Vac. Sci. The method described in “Technol.” B, “Volume” 25, “Issue” 3, “2007”, “Pages” 785-790.
  • the surface energy of each of the Si substrate that has been subjected to UV ozone treatment and the Si substrate that has been surface-treated by OPTOOL (registered trademark) DSX (manufactured by Daikin Corporation) is obtained, and the resist is determined from the contact angle of the resist material with respect to both substrates. The surface energy of the material was calculated.
  • a compound having strong intermolecular interaction and low volatility for example, a surfactant
  • a surfactant for example, a surfactant
  • a large amount of the compound is distributed at the gas-liquid interface of the resist, and a film covering the resist surface is formed. It is done. This is particularly effective in suppressing volatilization of a polymerizable compound which is a main component of the resist and has high volatility.
  • a resist application method As a resist application method, a predetermined amount of droplets such as an ink jet method or a dispense method can be placed at a predetermined position on a substrate or a mold, or a resist with a uniform film thickness such as a spin coat method or a dip coat method can be used. A method that can be applied can be used. In the case where a uniform thin film is formed on a substrate by spin coating or the like, it is difficult to control the film thickness in accordance with a concavo-convex pattern which will be described later. In addition, the arrangement of minute droplets rather than a uniform thin film reduces the area of the gas-liquid interface when the same volume of resist is applied, and the influence of volatilization of the resist material can be reduced.
  • an ink jet printer or a dispenser may be used depending on the desired droplet amount. For example, there are methods such as using an ink jet printer when the amount of droplets is less than 100 nl, and using a dispenser when the amount is 100 nl or more.
  • Examples of inkjet heads that discharge resist from nozzles include piezo methods, thermal methods, and electrostatic methods. Among these, a piezo method capable of adjusting an appropriate amount of liquid (amount per droplet disposed) and a discharge speed is preferable. Before placing the resist droplets on the substrate, the droplet amount and ejection speed are adjusted in advance. For example, the appropriate amount of liquid may be increased at a position on the substrate corresponding to a region where the spatial volume of the concave / convex pattern of the mold is large, or may be decreased at a position on the substrate corresponding to a region where the spatial volume of the concave / convex pattern of the mold is small. It is preferable to adjust.
  • Such adjustment is appropriately controlled according to the droplet discharge amount (the amount per discharged droplet). Specifically, when the droplet amount is set to 5 pl, the droplet amount is controlled to be ejected five times to the same location using an inkjet head having a droplet ejection amount of 1 pl.
  • the amount of droplets can be obtained, for example, by measuring the three-dimensional shape of droplets discharged on the substrate under the same conditions in advance with a confocal microscope or the like and calculating the volume from the shape.
  • the droplets are arranged on the substrate according to a predetermined droplet arrangement pattern.
  • the droplet arrangement pattern is configured by two-dimensional coordinate information including a lattice point group corresponding to the droplet arrangement on the substrate.
  • the vapor pressure of the constituent material of the resist as listed above varies depending on the molecular structure and mixing ratio of each compound, but is generally in the range of 0.1 kPa or more and less than 10 kPa. This value is a degree of vacuum that can be easily reached by using a general vacuum pump. Therefore, when the resist material is exposed to a reduced pressure atmosphere or a vacuum atmosphere (particularly less than 10 kPa, hereinafter simply referred to as a reduced pressure atmosphere) of vapor pressure or lower by the nanoimprint method in the prior art, the resist material volatilizes, and defects due to the volatilization increase. The problem of end up occurs.
  • the residual gas is reduced by making the gap region sandwiched between the mold 1 and the substrate 2 into a reduced pressure atmosphere.
  • the resist material before curing is volatilized, and it may be difficult to control the film thickness. Therefore, if the amount of volatilization of the resist material in a reduced-pressure atmosphere can be reduced, it is possible to reduce the occurrence of unfilled defects due to residual gas and reduce the occurrence of resist shortage due to volatilization of the resist material. Become.
  • the present inventor has found that the amount of volatilization of the resist material can be reduced even under a reduced pressure atmosphere by making the gap region 4 a reduced pressure atmosphere after bringing the mold 1 and the substrate 2 close to a suitable distance. It was. More specifically, the area of the portion 4 a in contact with the atmosphere in the surface of the gap region 4 on the pattern region P is smaller than the surface area of the resist portion 3 a existing on the pattern region P, and the mold 1 is formed on the resist 3. After the mold 1 and the substrate 2 are brought close to each other so as not to come into contact with each other, the pressure is reduced.
  • the gap region 4 means a space region sandwiched between the surface of the mold 1 where the uneven pattern is actually formed (that is, the pattern region P) and the surface of the substrate 2.
  • the gap region 4 is a region surrounded by a dotted line 4a perpendicular to the mold 1 and the substrate 2 and a dotted line 4b parallel to them. It can be said that it is a columnar body region having the same shape as the region P.
  • the portion 4a in contact with the atmosphere in the surface of the gap region 4 means a portion open to the atmosphere, that is, a side surface of the columnar body.
  • the concave / convex pattern is partitioned by a plurality of cells, if the distance between the cells is small (for example, 5 mm or less), the cells are treated as being continuous, and for the continuous cells, the cells You may handle as one pattern area including the part between them.
  • Equation 1 defines the upper limit of the distance d between the mold 1 and the substrate 2.
  • dL ⁇ S Formula 1
  • S represents the surface area of the resist present on the pattern region P. For example in the case of a uniform resist film 3 as shown in FIG.
  • S is (corresponds to or pattern area P) contained in the gap region 4 becomes the surface area S 1 of the resist portion 3a. Therefore, the resist portion 3b that is not included in the gap region 4 is not considered when determining a specific value of S.
  • S is the total surface area nS 2 of the resist portion 5 a included in the gap region 4. Also in this case, the resist portion 5b that is not included in the gap region 4 is not considered when determining a specific value of S.
  • the atmosphere at this time was 5 kPa.
  • the volatilization rate is a substantial volatilization amount per unit time obtained by subtracting the amount of the volatilized resist material from the amount of resist material that volatilizes.
  • the vertical axis indicates the relative value with respect to the volatilization rate when the resist material volatilizes freely (that is, there is no obstacle around it).
  • the above data is data when the droplets are arranged on the substrate, but the same tendency is shown when the resist film is formed on the substrate.
  • the above data is data when the atmosphere is 5 kPa, but the same tendency is shown at other pressures as long as the pressure is lower than the vapor pressure of the resist material.
  • the concentration of the resist material in the gas phase decreases as the distance from the liquid phase surface increases.
  • concentration gradient increases the volatilization rate.
  • the resist material volatilized in the gas phase reaches a saturated state, the phase change is in an equilibrium state in the vicinity of the interface (the amount of components that volatilizes from the liquid phase to the gas phase is equal to the amount of components that returns from the gas phase to the liquid phase). The closer it is to the state, the lower the volatilization rate.
  • the resist material volatilizes, if the volatilized component is treated so as to contribute to the elimination of the concentration gradient, the resist material volatilizes indefinitely can be avoided, and the occurrence of the aforementioned resist shortage is reduced. It is considered possible.
  • the resist material even if the resist material is volatilized, while it remains in the gap region 4, it contributes to the elimination of the concentration gradient, and in some cases, it may return to the liquid phase resist material. There is no serious impact on nanoimprint.
  • the volatilized resist material deviates from the gap region 4, it does not contribute to the elimination of the concentration gradient, and the possibility of returning to the liquid phase resist material is reduced, which is considered to be a problem.
  • the area dL of the portion 4a in contact with the atmosphere in the surface of the gap region 4 is preferably smaller than the surface area S of the resist layer, and more preferably dL ⁇ 0.2S.
  • the lower limit of the distance d between the mold 1 and the substrate 2 is defined according to the film thickness of the resist film 3 and the height of the resist droplet 5 in the nanoimprint. In general, if the total amount of resist is the same, the height of the resist droplet is higher than the thickness of the resist film. Therefore, when placing the resist droplet, the distance between the mold 1 and the substrate 2 is, for example, The thickness is preferably 1 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the depressurization operation itself may be started before the mold 1 and the substrate 2 are brought close to each other, and the above equation 1 only needs to be satisfied when the atmospheric pressure becomes less than 10 kPa.
  • the residual gas can be more efficiently reduced by making the atmosphere between the mold and the substrate a reduced-pressure helium atmosphere.
  • the reduced pressure atmosphere is preferably 1 kPa or more and less than 10 kPa, and particularly preferably 1 kPa or more and 5 kPa or less.
  • the substrate 2 and the mold 1 on which the resist is formed are brought into contact with each other after aligning them so as to have a predetermined relative positional relationship.
  • An alignment mark is preferably used for alignment.
  • the alignment mark is formed in a concavo-convex pattern that can be detected by an optical microscope, moire interferometry, or the like.
  • the alignment accuracy is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 100 nm or less.
  • the pressing pressure of the mold 1 is in the range of 100 kPa to 10 MPa.
  • the pressure is larger, it is easier to make the surface shapes of the mold 1 and the substrate 2 follow each other, and the resist flow is promoted. Furthermore, when the pressure is high, removal of residual gas, compression, dissolution of the residual gas into the resist, and transmission of He through the quartz substrate are promoted, leading to an improvement in the quality of the resist pattern.
  • the pressing pressure of the mold 1 is preferably 100 kPa to 5 MPa, and particularly preferably 100 kPa to 1 MPa.
  • the reason why the pressure is set to 100 kPa or higher is that when imprinting is performed in the atmosphere, when the space between the mold 1 and the substrate is filled with liquid, the pressure between the mold 1 and the substrate is pressurized at atmospheric pressure (about 101 kPa). is there.
  • the resist After pressing the mold 1 to form a resist film, the resist is cured by exposure with light containing a wavelength matched to the polymerization initiator contained in the resist.
  • a method of releasing after curing for example, the back surface or outer edge portion of either the mold 1 or the substrate is held, and the back surface or outer edge portion of the other substrate or mold is held, and the holding portion or back surface of the outer edge is held.
  • a method of moving the holding part relative to the direction opposite to the pressing is mentioned.
  • the area of the portion in contact with the atmosphere in the surface of the space region on the pattern region sandwiched between the mold and the substrate is the pattern region of the resist applied on the substrate.
  • the surface area of the portion existing above is smaller, and the mold and the substrate are brought close to each other so that the mold does not come into contact with the resist, and then the pressure is reduced. Accordingly, even if the pressure is reduced to such an extent that the constituent material of the resist volatilizes in the prior art, the volatilization can be suppressed. This is presumably because the concentration distribution of the volatilized material tends to be in an equilibrium state because the space between the mold and the substrate is narrow.
  • thermosetting resin for example
  • Method for manufacturing patterned substrate Next, an embodiment of a method for producing a patterned substrate (for example, a mold duplicate) will be described.
  • a duplicate of the mold 1 is manufactured using the above-described nanoimprint method using an Si mold as a master.
  • a resist film having a pattern transferred thereon is formed on one surface of the substrate using the nanoimprint method described above.
  • dry etching is performed using the resist film having the pattern transferred as a mask to form a concavo-convex pattern corresponding to the concavo-convex pattern formed on the resist film on the substrate to obtain a substrate having a predetermined pattern.
  • the substrate has a laminated structure and includes a metal layer on the surface
  • dry etching is performed using the resist film as a mask, and the concavo-convex pattern corresponding to the concavo-convex pattern formed on the resist film is applied to the metal.
  • the substrate is further dry-etched using the metal thin layer as an etch stop layer to form a concavo-convex pattern on the substrate to obtain a substrate having a predetermined pattern.
  • the dry etching is not particularly limited as long as it can form a concavo-convex pattern on the substrate, and can be appropriately selected according to the purpose.
  • ion milling reactive ion etching (RIE), sputter etching, etc. Is mentioned.
  • RIE reactive ion etching
  • RIE sputter etching
  • the ion milling method also called ion beam etching, introduces an inert gas such as Ar into the ion source to generate ions. This is accelerated through the grid, and collides with the sample substrate for etching.
  • the ion source include a Kaufman type, a high frequency type, an electron impact type, a duoplasmatron type, a Freeman type, an ECR (electron cyclotron resonance) type, and the like.
  • Ar gas and fluorine-based gas or chlorine-based gas can be used as the RIE etchant.
  • the substrate is etched using the resist film having a concavo-convex pattern and suppressing the occurrence of unfilled defects as a mask, the pattern It is possible to reduce the occurrence of pattern defects in the manufacture of the chemical substrate.
  • a resist solution containing a PHS (polyhydroxy styrene) -based chemically amplified resist as a main component was applied by spin coating to form a resist layer.
  • a resist solution containing a PHS (polyhydroxy styrene) -based chemically amplified resist as a main component was applied by spin coating to form a resist layer.
  • an electron beam modulated in accordance with the pattern was irradiated to expose the entire resist layer in the range of 10 mm square.
  • the resist layer was developed, the exposed portion was removed, and selective etching was performed by RIE so that the groove depth became 100 nm using the pattern of the removed resist layer as a mask to obtain a Si mold.
  • the taper angle was 85 degrees.
  • the mold surface was subjected to release treatment with Optool DSX by dip coating.
  • the pattern is located at the center of the Si substrate, and a 10 mm square area is the pattern area.
  • the concavo-convex pattern is constituted by a groove-shaped line pattern having a length of 10 mm, a width of 50 nm, a pitch of 100 nm, and a depth of 100 nm.
  • a quartz substrate having a 152 mm square and a thickness of 6.35 mm was used as the substrate.
  • a 10 mm square mesa portion having a height of 30 ⁇ m was formed by wet etching in the transferred region at the center of the substrate.
  • the surface of the quartz substrate was subjected to surface treatment with KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silane coupling agent having excellent adhesion to the resist.
  • KBM-5103 was diluted to 1% by mass with PGMEA (propylene glycol monomethyl ether acetate) and applied to the substrate surface by spin coating.
  • the coated substrate was annealed on a hot plate at 150 ° C. for 5 minutes to bond the silane coupling agent to the substrate surface.
  • a piezo-type inkjet printer, DMP-2838 manufactured by FUJIFILM Dimatix was used.
  • a dedicated head DMC-11610 was used as the ink jet head.
  • the discharge conditions were adjusted in advance so that the droplet amount was 6 pl.
  • the droplet arrangement pattern was a square lattice with a droplet interval of 400 ⁇ m, and the droplets were arranged on the entire transfer region on the mesa in accordance with this droplet arrangement pattern. At this time, the number of droplets was set to 625 (25 ⁇ 25) in a 10 mm square pattern region.
  • the surface area per droplet was calculated from shape data obtained by measuring the droplet shape with a confocal microscope, and was 0.00788 mm 2 . Therefore, the total surface area nS 2 of the resist droplet is 4.92 mm 2 .
  • the space between the mold and the quartz substrate was replaced with He to form a 99% by volume or higher He gas atmosphere, and the pressure was reduced to 5 kPa.
  • the mold was positioned with respect to the substrate under reduced pressure He conditions and brought into contact with the resist droplets. The time from when the pressure reaches 5 kPa until the mold contacts the resist is about 5 minutes.
  • pressing was performed with a pressing pressure of 300 kPa for 5 seconds, and exposure was performed with ultraviolet light including a wavelength of 360 nm so that an irradiation amount was 300 mJ / cm 2 to cure the resist.
  • the mold was peeled by moving the substrate or the mold in the direction opposite to the pressing in a state where the outer edge of the substrate and the mold was mechanically held or the back surface was sucked and held.
  • Defective due to residual gas was targeted when a convex pattern defect that was not found in a normal pattern was detected.
  • the total number of defects due to residual gas was counted. When the number of defects per 1 cm square was zero, no defect (OK), and when one or more defects were defective (NG).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】ナノインプリントにおいて、硬化性樹脂の揮発および効率低下の問題を改善しながら未充填欠陥の発生を低減することを可能とする。 【解決手段】微細な凹凸パターンを表面に有するモールド(1)を用いたナノインプリント方法において、基板(2)上に塗布されたレジスト(3)に凹凸パターンが対向するようにモールド(1)および基板(2)を配置し、モールド(1)と基板(2)とで挟まれたパターン領域上の空間領域の表面のうち雰囲気と接する部分の面積が、基板(2)上に塗布されたレジスト(3)のうちパターン領域上に存在する部分の表面積よりも小さく、かつモールド(1)がレジスト(3)に接触しない状態で、雰囲気の気圧を10kPa未満に減圧した後、モールド(1)を基板(2)に押し付ける。

Description

ナノインプリント方法およびそれを用いたパターン化基板の製造方法
 本発明は、微細な凹凸パターンを表面に有するモールドを用いたナノインプリント方法およびそれを用いたパターン化基板の製造方法に関するものである。
 ナノインプリントは、凹凸パターンを形成した型(一般的にモールド、スタンパ、テンプレートとも呼ばれる)を被転写基板上に塗布されたレジストに押し付け(インプリント)、レジストを力学的に変形または流動させて微細なパターンを精密にレジスト膜に転写する技術である。モールドを一度作製すれば、ナノレベルの微細構造を簡単に繰り返して成型できるため経済的であるとともに、有害な廃棄物および排出物が少ない転写技術であるため、近年、半導体分野等のさまざまな分野への応用が期待されている。
 従来ナノインプリントでは、未充填欠陥(残留気体による欠陥)を低減することが重要である。この未充填欠陥を低減する方法としては、例えば減圧(若しくは真空)雰囲気中でまたはヘリウム(He)雰囲気中でインプリントを実施する方法等が知られている(特許文献1から4)。
 減圧雰囲気中でインプリントを実施した場合には、モールドとレジストの間に残留する気体を直接的に低減することにより、未充填欠陥が低減するという効果がある。一方、ヘリウム雰囲気中でインプリントを実施した場合には、モールドとレジストの間にヘリウムが残留したとしても、ヘリウムが石英からなるモールドまたは基板を透過することで残留したヘリウムが徐々に抜けていくことにより、未充填欠陥が低減するという効果がある。
特開2004-071934号公報 特開2004-103817号公報 特表2007-509769号公報 特開2011-210942号公報
 しかしながら、減圧雰囲気中でインプリントを実施した場合には、レジストを構成する例えば硬化性樹脂の揮発に起因する問題が生じる場合がある。例えば、残膜の厚さを低減するために一般的にレジストは基板上に薄く(例えば数十nm)塗布されるところ、硬化性樹脂の揮発によって局所的に硬化性樹脂が不足して転写パターンに欠陥が生じる場合がある。
 また、ヘリウム雰囲気中でインプリントを実施した場合には、ヘリウムの透過速度が遅いため、モールドでレジストを加圧する時間を長くしなければならず、ナノインプリント工程全体として効率が低下するという問題がある。
 本発明は上記問題に鑑みてなされたものであり、ナノインプリントにおいて、硬化性樹脂の揮発および効率低下の問題を改善しながら未充填欠陥の発生を低減することを可能とするナノインプリント方法を提供することを目的とするものである。
 さらに本発明は、パターン化基板の製造において、パターン欠陥の発生を低減することを可能とするパターン化基板の製造方法を提供することを目的とするものである。
 上記課題を解決するために、本発明に係るナノインプリント方法は、
 微細な凹凸パターンを表面に有するモールドを用いたナノインプリント方法において、
 基板上に塗布されたレジストに凹凸パターンが対向するようにモールドおよび基板を配置し、
 モールドと基板とで挟まれたパターン領域上の空間領域の表面のうち雰囲気と接する部分の面積が、基板上に塗布されたレジストのうちパターン領域上に存在する部分の表面積よりも小さく、かつモールドがレジストに接触しない状態で、雰囲気の気圧を10kPa未満に減圧した後、モールドを基板に押し付けることを特徴とするものである。
 本明細書において、「パターン領域上の空間領域」とは、モールド表面のうち実際に凹凸パターンが形成されている領域と基板表面とで挟まれた空間領域を意味する。
 そして、本発明に係るナノインプリント方法において、雰囲気の気圧を5kPa以下に減圧することが好ましい。
 また、本発明に係るナノインプリント方法において、レジストの基板への塗布をインクジェット法により実施することが好ましい。
 また、本発明に係るナノインプリント方法において、ヘリウム雰囲気中で実施することが好ましい。
 また、本発明に係るナノインプリント方法において、上記モールドとして、メサ型構造を有するモールドを使用することが好ましい。
 本発明に係るパターン化基板の製造方法は、
 上記に記載のナノインプリント方法により凹凸パターンが転写されたレジスト膜を基板上に形成し、
 レジスト膜をマスクとして基板をエッチングすることにより、レジスト膜に転写された凹凸パターンに対応した凹凸パターンを基板上に形成することを特徴とするものである。
 本発明に係るナノインプリント方法は、モールドと基板とで挟まれたパターン領域上の空間領域の表面のうち雰囲気と接する部分の面積が、基板上に塗布されたレジストのうちパターン領域上に存在する部分の表面積よりも小さく、かつモールドがレジストに接触しないようにモールドおよび基板を互いに近づけた後に減圧することを特徴とする。したがって、従来であればレジストの構成材料が揮発してしまう程度にまで減圧してもその揮発を抑制することができる。これは、モールドと基板の間の空間が狭いため、揮発した材料の濃度分布が平衡状態になり易いためであると考えられる。そして、減圧した状態でインプリントすることができるため、残留気体そのものの発生を低減することができる。この結果、ナノインプリントにおいて、硬化性樹脂の揮発および効率低下の問題を改善しながら未充填欠陥の発生を低減することが可能となる。
 また、本発明に係るパターン化基板の製造方法は、上記ナノインプリント方法によりレジスト膜に凹凸パターンを転写するから、パターン化基板の製造においてパターン欠陥の発生を低減することが可能となる。
パターン領域上の間隙領域とレジスト膜との位置関係を示す概略断面図である。 パターン領域上の間隙領域とレジスト液滴との位置関係を示す概略断面図である。 パターン領域上のレジスト表面積に対する間隙領域の側面積の比とレジスト材料の揮発速度との関係を示すグラフである。
 以下、本発明の実施形態について図面を用いて説明するが、本発明はこれに限られるものではない。なお、視認しやすくするため、図面中の各構成要素の縮尺等は実際のものとは適宜異ならせてある。
 図1は、パターン領域上の間隙領域とレジスト膜との位置関係を示す概略断面図である。
 本実施形態のナノインプリント方法は、例えばスピンコート法などにより基板2上に均一に塗布されたレジスト膜3に凹凸パターンが対向するようにモールド1および基板2を配置し、モールド1と基板2とで挟まれたパターン領域P上の空間領域(間隙領域4)の表面のうち雰囲気と接する部分4aの面積が、基板2上に塗布されたレジスト膜3のうちパターン領域P上に存在する部分3aの表面積Sよりも小さく、かつモールド1がレジスト膜3に接触しない状態(図1)で、雰囲気の気圧を10kPa未満に減圧した後、モールド1を基板2に押し付け、レジストを硬化させ、モールド1をレジスト膜3から剥離するものである。
 また、図2は、パターン領域上の間隙領域とレジスト液滴との位置関係を示す概略断面図である。本発明において、例えば図2に示されるようにレジストの塗布はインクジェット法など液滴を配置する方法によって実施してもよい。この場合には、例えばインクジェット法などにより基板2上に配置されたレジストの液滴5に凹凸パターンが対向するようにモールド1および基板2を配置し、モールド1と基板2とで挟まれたパターン領域P上の空間領域(間隙領域4)の表面のうち雰囲気と接する部分4aの面積が、基板2上に塗布された液滴5のうちパターン領域P上に存在する部分5aの総表面積nSよりも小さく、かつモールド1が液滴5に接触しない状態(図2)で、雰囲気の気圧を10kPa未満に減圧した後、モールド1を基板2に押し付けるものとする。なお、nは液滴5aの個数であり、Sは液滴5aの1つ当たりの表面積である。
 (モールド)
 本実施形態で使用するモールド1は、例えば以下の手順により製造することができる。まず、Si基材上に、スピンコートなどでPHS(polyhydroxy styrene)系の化学増幅型レジスト、ノボラック系レジスト、PMMA(ポリメチルメタクリレート)等のアクリル樹脂などを主成分とするレジスト液を塗布し、レジスト層を形成する。その後、Si基材にレーザ光(又は電子ビーム)を所望の凹凸パターンに対応して変調しながら照射し、レジスト層表面に凹凸パターンを露光する。その後、レジスト層を現像処理し、現像後のレジスト層のパターンをマスクにして反応性イオンエッチング(RIE)などにより選択エッチングを行い、所定の凹凸パターンを有するSiモールドを得る。
 一方、モールドはこれに限られず、石英モールドを用いることも可能である。この場合、石英モールドは上記のSiモールドの製造法と同様の方法や、後述するパターン化基板(複版)の製造方法等により製造することができる。
 モールド1は、図1および図2のように、メサ部10(上面が比較的平らで周囲より高くなっている部分)とその周りのフランジ部11を含むメサ型構造を有していてもよい。メサ部10の段差は、好ましくは1~1000μm、より好ましくは10~500μm、さらに好ましくは20~100μmである。メサ型構造のモールド1を使用してナノインプリントを行った場合には、平坦なモールドを使用した場合に比べ、モールドとレジストとの接触面積が減少して、小さな力でモールドをレジストから剥離できるという利点がある。また、例えば同一の基板に対してパターンを繰り返し転写(ステップ・アンド・リピート)する場合には、メサ型構造のモールドを使用することで、次のパターンを転写するときにモールドと先に転写されたパターンとが干渉して、先に転写されたパターンが押し潰されることを回避できるという利点もある。
 (離型処理)
 本発明において、レジスト3とモールド1表面との離型性を向上させるために、モールド1の凹凸パターン面に離型処理を行うことが好ましい。離型処理に使用する離型剤としては、フッ素系のシランカップリング剤として、ダイキン工業株式会社製のオプツール(登録商標)DSXや、住友スリーエム株式会社製のNovec(登録商標)EGC-1720等、が挙げられる。
 この他にも、公知のフッ素系樹脂、炭化水素系潤滑剤、フッ素系潤滑剤、フッ素系シランカップリング剤などが使用できる。
 例えばフッ素系樹脂としては、PTFA(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、ETFE(テトラフルオロエチレン・エチレン共重合体)などが挙げられる。
 例えば炭化水素系潤滑剤としては、ステアリン酸およびオレイン酸等のカルボン酸類、ステアリン酸ブチル等のエステル類、オクタデシルスルホン酸等のスルホン酸類、リン酸モノオクタデシル等のリン酸エステル類、ステアリルアルコールおよびオレイルアルコール等のアルコール類、ステアリン酸アミド等のカルボン酸アミド類、ステアリルアミン等のアミン類などが挙げられる。
 例えばフッ素系潤滑剤としては、上記炭化水素系潤滑剤のアルキル基の一部または全部をフルオロアルキル基もしくはパーフルオロポリエーテル基で置換した潤滑剤が挙げられる。
 例えばパーフルオロポリエーテル基としては、パーフルオロメチレンオキシド重合体、パーフルオロエチレンオキシド重合体、パーフルオロ-n-プロピレンオキシド重合体(CFCFCFO)、パーフルオロイソプロピレンオキシド重合体(CF(CF)CFO)またはこれらの共重合体等である。ここで、添え字のnは重合度を表す。
 例えばフッ素系シランカップリング剤としては、分子中に少なくとも1個、好ましくは1~10個のアルコキシシラン基、クロロシラン基を有するものであり、分子量200~10,000のものが好ましい。例えば、アルコキシシラン基としては、-Si(OCH基、-Si(OCHCH基が挙げられ、クロロシラン基としては、-Si(Cl)基などが挙げられる。具体的には、ヘプタデカフルオロ-1,1,2,2-テトラ-ハイドロデシルトリメトキシシラン、ペンタフルオロフェニルプロピルジメチルクロロシラン、トリデカフルオロ-1,1,2,2-テトラ-ハイドロオクチルトリエトキシシラン、トリデカフルオロ-1,1,2,2-テトラ-ハイドロオクチルトリメトキシシランなどの化合物である。
 (基板)
 インプリント用の基板2は、Siモールドに対しては、レジストへの露光を可能とするために石英基板が好ましい。石英基板は、光透過性を有し、厚さが0.3mm以上であれば、特に制限されることなく、目的に応じて適宜選択される。例えば、石英基板表面をシランカップリング剤で被覆したもの、レジストとの密着性を向上させるためのポリマーなどからなる有機物層を積層したもの、石英基板上にCr、W、Ti、Ni、Ag、Pt、Auなどからなる金属層を積層したもの、石英基板上にCrO、WO、TiOなどからなる金属酸化膜層を積層したもの、および、上記積層体の表面をシランカップリング剤で被覆したものなどが挙げられる。有機物層、金属層または金属酸化膜層の厚さは、通常30nm以下、好ましくは20nm以下にする。30nmを超えるとUV透過性が低下し、レジストの硬化不良が起こりやすいためである。
 また、上記「光透過性を有する」とは、具体的には、レジストが形成される基板2の一方の面から出射するように他方の面から光を入射した場合に、レジストが十分に硬化することを意味しており、少なくとも、上記他方の面から上記一方の面へ波長200nm以上の光の透過率が5%以上であることを意味する。
 石英基板の厚さは、通常0.3mm以上が好ましい。0.3mm以下では、ハンドリングやインプリント中の押圧で破損しやすいからである。
 一方、石英モールドに対する基板は、その形状、構造、大きさ、材質等については特に制限はなく、目的に応じて適宜選択することができる。例えば用途が情報記録媒体である場合には、形状は円板状である。構造は、単層構造であってもよいし、積層構造であってもよい。材料としては、基板材料として公知のものの中から、適宜選択することができ、例えば、シリコン、ニッケル、アルミニウム、ガラスおよび樹脂などが挙げられる。これらの基板材料は、1種単独で使用してもよいし、2種以上を併用してもよい。基板は、適宜合成したものであってもよいし、市販品を使用してもよい。また、表面をシランカップリング剤で被覆したものでも良い。基板の厚さとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.05mm以上が好ましく、0.1mm以上がより好ましい。基板の厚さが0.05mm未満であると、基板とモールドとの密着時に基板側に撓みが発生し、均一な密着状態を確保できない可能性があるからである。
 基板2は、凹凸パターンが転写される領域がメサ部上に位置するように、メサ型構造を有していてもよい。この台座の存在により、モールドと接触するのは台座表面に限定できるため、基板のパターン形成領域外に存在する構造との接触を避けることができる。メサ部の段差の好ましい範囲は、モールドの場合と同様である。なお、モールドおよび基板のいずれか一方がメサ型構造を有していれば、前述した効果が得られる。
 (レジスト)
 レジストは、特に制限されるものではないが、本実施形態では例えば重合性化合物に、光重合開始剤(2質量%程度)、フッ素モノマー(0.1~1質量%)を加えて調製されたレジストを用いることができる。
 また、必要に応じて酸化防止剤(1質量%程度)を添加することもできる。上記の手順により作成したレジストは波長360nmの紫外光により硬化することができる。溶解性の悪いものについては少量のアセトンまたは酢酸エチルを加えて溶解させた後、溶媒を留去することが好ましい。
 上記重合性化合物としては、ベンジルアクリレート(ビスコート(登録商標)#160:大阪有機化学株式会社製)、エチルカルビトールアクリレート(ビスコート(登録商標)#190:大阪有機化学株式会社製)、ポリプロピレングリコールジアクリレート(アロニックス(登録商標)M-220:東亞合成株式会社製)、トリメチロールプロパンPO変性トリアクリレート(アロニックス(登録商標)M-310:東亞合成株式会社製)等の他、下記構造式1で表される化合物A等を挙げることができる。
構造式1:
Figure JPOXMLDOC01-appb-C000001
 また、上記重合開始剤としては、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(IRGACURE(登録商標)379:豊通ケミプラス株式会社製)等のアルキルフェノン系光重合開始剤を挙げることができる。
 また、上記フッ素モノマーとしては、下記構造式2で表される化合物B等を挙げることができる。
構造式2:
Figure JPOXMLDOC01-appb-C000002
 例えば、レジスト材料の粘度は8~20cPであり、レジスト材料の表面エネルギーは25~35mN/mである。ここで、レジスト材料の粘度は、RE-80L型回転粘度計(東機産業株式会社製)を用い、25±0.2℃で測定した値である。測定時の回転速度は、0.5cP以上5cP未満の場合は100rpmとし、5cP以上10cP未満の場合は50rpmとし、10cP以上30cP未満の場合は20rpmとし、30cP以上60cP未満の場合は10rpmとした。また、レジスト材料の表面エネルギーは、“UV nanoimprint materials: Surface energies, residual layers, and imprint quality”, H. Schmitt, L. Frey, H. Ryssel, M. Rommel, C. Lehrer, J. Vac. Sci. Technol. B, Volume 25, Issue 3, 2007, Pages 785-790.に記載の方法を用いた。具体的には、UVオゾン処理をしたSi基板と、オプツール(登録商標)DSX(ダイキン株式会社製)により表面処理をしたSi基板の表面エネルギーをそれぞれ求め、両基板に対するレジスト材料の接触角からレジスト材料の表面エネルギーを算出した。
 さらに、分子間相互作用が強く揮発性の低い化合物(たとえば界面活性剤)を添加してもよい。この場合には、レジストが塗布された際に当該化合物がレジストの気液界面に多く分布するようになりレジスト表面を覆う膜が形成されるため、レジスト材料の揮発が抑制されるという効果が得られる。これは、レジストの主たる成分でありかつ揮発性が高い重合性化合物の揮発を抑えることに特に有効である。
 (レジストの塗布方法)
 レジストの塗布方法としては、インクジェット法やディスペンス法など所定の量の液滴を基板またはモールド上の所定の位置に配置できる方法、または、スピンコート法やディップコート法など均一な膜厚でレジストを塗布できる方法を用いることができる。スピンコート法などにより均一な薄膜を基板上に形成する場合には、後述する凹凸パターンに応じた膜厚制御が困難となるため、液滴を所定の位置に配置できる方法が好ましい。また、均一な薄膜よりも微小な液滴を配置する方が、同体積のレジストを塗布した際の気液界面の面積が小さくなり、レジスト材料の揮発の影響を低減することができる。
 基板上にレジストの液滴を配置する際は、所望の液滴量に応じてインクジェットプリンターまたはディスペンサーを使い分けても良い。例えば、液滴量が100nl未満の場合はインクジェットプリンターを用い、100nl以上の場合はディスペンサーを用いるなどの方法がある。
 レジストをノズルから吐出するインクジェットヘッドには、ピエゾ方式、サーマル方式、静電方式などが挙げられる。これらの中でも、液適量(配置された液滴1つ当たりの量)や吐出速度の調整が可能なピエゾ方式が好ましい。基板上にレジストの液滴を配置する前には、あらかじめ液滴量や吐出速度を調整する。例えば、液適量は、モールドの凹凸パターンの空間体積が大きい領域に対応する基板上の位置では多くしたり、モールドの凹凸パターンの空間体積が小さい領域に対応する基板上の位置では少なくしたりして調整することが好ましい。このような調整は、液滴吐出量(吐出された液滴1つ当たりの量)に応じて適宜制御される。具体的には、液滴量を5plと設定する場合には、液滴吐出量が1plであるインクジェットヘッドを用いて同じ場所に5回吐出するように、液滴量を制御する。液滴量は、例えば事前に同条件で基板上に吐出した液滴の3次元形状を共焦点顕微鏡等により測定し、その形状から体積を計算することで求められる。
 上記のようにして液滴量を調整した後、所定の液滴配置パターンに従って、基板上に液滴を配置する。なお、液滴配置パターンは、基板上の液滴配置に対応する格子点群からなる2次元座標情報により構成される。
 (インプリント)
 上記に列挙したようなレジストの構成材料の蒸気圧は、各化合物の分子構造および混合比によって異なるが、概ね0.1kPa以上10kPa未満の範囲にある。この値は一般的な真空ポンプを用いれば容易に到達可能な真空度である。よって、従来技術におけるナノインプリント方法でレジスト材料を蒸気圧以下の減圧雰囲気または真空雰囲気(特に10kPa未満。以下単に減圧雰囲気という。)下にさらすとレジスト材料は揮発し、この揮発に起因する欠陥が増加してしまうという問題が生じる。揮発の影響を避けるために、気圧を蒸気圧より高い値に設定すると、減圧雰囲気中に存在する残留気体成分の影響により、未充填欠陥が生じてしまう。一方、この残留気体を消失させるために10kPa以上の真空度でヘリウム雰囲気を作り、残留ヘリウムをレジスト材料、モールドまたは基板を透過させて未充填欠陥を低減させる方法もあるが、ヘリウム消失に時間を要すため生産性が悪く、また、完全に未充填欠陥をなくすことは困難である。
 本発明では、モールド1とレジスト3を接触させる前に、モールド1と基板2で挟まれた間隙領域を減圧雰囲気にすることで残留気体を低減する。ただし、減圧雰囲気下では、硬化前のレジスト材料が揮発し、膜厚の制御が困難となる可能性がある。したがって、減圧雰囲気下でのレジスト材料の揮発量を低減できれば、残留気体に起因する未充填欠陥の発生を低減し、かつ、レジスト材料の揮発に起因するレジスト不足の発生を低減することが可能となる。
 本発明者は、モールド1と基板2の距離を適切な距離まで近接させた後、間隙領域4を減圧雰囲気とすることにより、減圧雰囲気下であってもレジスト材料の揮発量を低減できることを見出した。より具体的には、パターン領域P上の間隙領域4の表面のうち雰囲気と接する部分4aの面積が、パターン領域P上に存在するレジスト部分3aの表面積よりも小さく、かつモールド1がレジスト3に接触しないようにモールド1および基板2を互いに近づけた後、減圧を行う。
 間隙領域4は、モールド1表面のうち実際に凹凸パターンが形成されている領域(つまりパターン領域P)と基板2表面とで挟まれた空間領域を意味する。例えば図1および図2においては、この間隙領域4は、モールド1および基板2に垂直な点線4aおよびそれらに平行な点線4bによって囲まれた領域であり、三次元的に見れば、底面がパターン領域Pと同じ形状を有する柱状体領域と言える。この場合、間隙領域4の表面のうち雰囲気と接する部分4aとは、雰囲気に対して開放されている部分、つまりその柱状体の側面を意味する。凹凸パターンが複数のセルによって区画されている場合には、そのセル同士の間隔が小さければ(例えば5mm以下)、それらのセルは連続しているものとして取り扱い、その連続しているセルについてはセル同士の間の部分も含めて1つのパターン領域として取り扱ってもよい。
 この側面の面積は、モールド1および基板2の距離をd、パターン領域Pの外周の長さをLとすると、dLと表される。したがって、「パターン領域P上の間隙領域4の表面のうち雰囲気と接する部分4aの面積が、パターン領域P上に存在するレジストの表面積よりも小さい」とは、下記式1を満たすことである。この式1によりモールド1および基板2の距離dの上限が規定される。
dL<S      式1
 式1において、Sは、パターン領域P上に存在するレジストの表面積を表す。例えば図1のように均一なレジスト膜3を基板2上に形成した場合には、Sは間隙領域4に含まれる(或いはパターン領域Pに対応する)レジスト部分3aの表面積Sとなる。したがって、間隙領域4に含まれないレジスト部分3bは、Sの具体的な値を決定する際には考慮しない。一方、例えば図2のようにレジストの液滴5を基板2上に配置した場合には、Sは間隙領域4に含まれるレジスト部分5aの総表面積nSとなる。この場合にも、間隙領域4に含まれないレジスト部分5bは、Sの具体的な値を決定する際には考慮しない。
 式1は以下の実験データにより導かれた。図3は、パターン領域P上のレジストの総表面積nSに対する間隙領域4の側面積の比R(=dL/nS)とレジスト材料の揮発速度との関係を示すグラフである。このときの雰囲気は5kPaとした。揮発速度とは、揮発していくレジスト材料の量から、揮発したものが戻ってくる量を引いた単位時間当たりの実質的な揮発量である。縦軸は、レジスト材料が自由に揮発する(つまり周囲に障害物がない)ときの揮発速度に対する相対値で示している。このグラフから、R<1の範囲でdLの減少に伴い揮発速度が減少することが分かる。したがって、dL<nS(=S)であれば、前述したレジスト不足の発生を低減することができると言える。なお、上記データは液滴を基板上に配置した場合のデータであるが、レジスト膜を基板上に形成した場合も同様の傾向を示す。また、上記データは雰囲気が5kPaである場合のデータであるが、レジスト材料の蒸気圧未満の圧力であればその他の圧力であっても同様の傾向を示す。
 上記の現象は以下のような理由によると考えられる。一般的に、気相中(ここでは減圧雰囲気中)のレジスト材料の濃度は、液相表面から離れるに従って低下する。そしてこの濃度の変化(濃度勾配)が急峻であるほど、揮発速度は増加する。一方、気相中の揮発したレジスト材料が飽和状態に至れば、上記界面近傍では相変化が平衡状態(液相から気相へ揮発する成分量と気相から液相へ戻る成分量とが等しい状態)に近づくほど、揮発速度は減少する。したがって、レジスト材料の揮発が生じたとしても、揮発した分を濃度勾配の解消に寄与させるように処置すれば、レジスト材料が無制限に揮発する自体を回避でき、前述したレジスト不足の発生を低減することができると考えられる。以上を考慮すると、揮発したレジスト材料であっても間隙領域4内に留まっている間は、濃度勾配の解消に寄与しており、また場合によって液相のレジスト材料に戻ることもあり得るため、ナノインプリントにおいて深刻な影響はないと考えられる。しかしながら、揮発したレジスト材料が間隙領域4から一旦外れてしまうと、濃度勾配の解消に寄与せず、液相のレジスト材料に戻る可能性も低くなるため、問題となると考えられる。間隙領域4の表面のうち雰囲気と接する部分4aの面積dLが減少すると、間隙領域4の体積が減少し、かつ揮発したレジスト材料が間隙領域4から逃げていく出口が狭くなる。これにより、気相中の揮発したレジスト材料が飽和状態に至り易くなり、揮発速度が減少すると考えられる。
 このように、間隙領域4の表面のうち雰囲気と接する部分4aの面積dLは、レジスト層の表面積Sよりも小さくすることが好ましく、dL<0.2Sであることがより好ましい。
 一方、モールド1と基板2の距離は短いほど揮発の影響を低減できるが、モールド1がレジストに接触することを避ける必要がある。これは、減圧雰囲気にする前にモールド1がレジストと接触してしまうと、モールド1とレジスト3の間に気泡が取り込まれてしまい、未充填欠陥が発生する恐れがあるからである。したがって、モールド1および基板2の距離dの下限は、そのナノインプリントにおけるレジスト膜3の膜厚やレジスト液滴5の高さに応じて規定される。一般的にレジストの総量が同じであれば、レジスト膜の膜厚よりもレジスト液滴の高さの方が高いため、レジスト液滴を配置する場合には、モールド1および基板2の距離を例えば1μm以上とすることが好ましく、10μm以上とすることがより好ましい。
 上記のように、揮発量を低減するには、例えば互いに平行になるように保持したモールド1と基板2の距離を近接させた後に、減圧雰囲気を作ることが重要となる。つまり、減圧作業自体はモールド1と基板2を近づける前に開始してもよく、雰囲気の圧力が10kPa未満となる際に上記式1を満たしておけばよい。好ましくはモールドと基板間の雰囲気を、減圧ヘリウム雰囲気にすることで残留気体をより効率よく低減できる。減圧雰囲気は、1kPa以上10kPa未満であることが好ましく、1kPa以上5kPa以下が特に好ましい。
 レジストが形成された基板2およびモールド1は、所定の相対位置関係となるように両者を位置合わせした後に接触させる。位置合わせにはアライメントマークを用いることが好ましい。アライメントマークは、光学顕微鏡やモアレ干渉法等で検出可能な凹凸パターンで形成される。位置合わせ精度は好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは100nm以下である。
 モールド1の押し付け圧は、100kPa以上、10MPa以下の範囲で行う。圧力が大きい方が、モールド1と基板2の表面形状を互いに倣わせることが容易であり、レジストの流動が促進される。さらに、圧力が大きい場合には、残留気体の除去、圧縮、残留気体のレジストへの溶解、石英基板中のHeの透過も促進し、レジストパターンの品質向上に繋がる。しかし、加圧力が強すぎるとモールド1接触時に異物を噛みこんだ際にモールド1および基板を破損する可能性がある。よって、モールド1の押し付け圧は、100kPa~5MPaであることが好ましく、100kPa~1MPaであることが特に好ましい。100kPa以上としたのは、大気中でインプリントを行う際、モールド1と基板間が液体で満たされている場合、モールド1と基板間が大気圧(約101kPa)で加圧されているためである。
 モールド1を押し付けてレジスト膜を形成した後、レジストに含まれる重合開始剤に合わせた波長を含む光で露光し、レジストを硬化させる。硬化後に離型する方法としては、例えば、モールド1または基板のどちらかの裏面または外縁部を保持し、他方の基板またはモールドの裏面または外縁部を保持した状態で、外縁の保持部もしくは裏面の保持部を押圧と反対方向に相対移動させる方法が挙げられる。
 以上のように、本発明に係るナノインプリント方法は、モールドと基板とで挟まれたパターン領域上の空間領域の表面のうち雰囲気と接する部分の面積が、基板上に塗布されたレジストのうちパターン領域上に存在する部分の表面積よりも小さく、かつモールドがレジストに接触しないようにモールドおよび基板を互いに近づけた後に減圧することを特徴とする。したがって、従来であればレジストの構成材料が揮発してしまう程度にまで減圧してもその揮発を抑制することができる。これは、モールドと基板の間の空間が狭いため、揮発した材料の濃度分布が平衡状態になり易いためであると考えられる。そして、減圧した状態でインプリントすることができるため、残留気体そのものの発生を低減することができる。この結果、ナノインプリントにおいて、硬化性樹脂の揮発および効率低下の問題を改善しながら未充填欠陥の発生を低減することが可能となる。
 なお、上記の実施形態では、硬化性樹脂が光硬化性を有する場合について説明したが、本発明はこれに限られない。つまり本発明では、例えば熱硬化性樹脂を使用することも可能である。
 「パターン化基板の製造方法」
 次に、パターン化基板(例えばモールド複版)の製造方法の実施形態について説明する。本実施形態では、Siモールドを原盤として、前述したナノインプリント方法を用いてモールド1の複版が製造される。
 まず、上記のナノインプリント方法を用いて、パターン転写されたレジスト膜を基板の一方の面に形成する。次に、パターン転写されたレジスト膜をマスクにして、ドライエッチングを行い、レジスト膜に形成された凹凸パターンに対応した凹凸パターンを基板上に形成して、所定のパターンを有する基板を得る。
 一方、基板が積層構造を有しており表面上に金属層を含む場合には、レジスト膜をマスクにして、ドライエッチングを行い、レジスト膜に形成された凹凸パターンに対応した凹凸パターンを当該金属層に形成し、その金属薄層をエッチストップ層にして基板にさらにドライエッチングを行い、凹凸パターンを基板上に形成して、所定のパターンを有する基板を得る。
 ドライエッチングとしては、基板に凹凸パターンを形成できるものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、イオンミリング法、反応性イオンエッチング(RIE)、スパッタエッチング、などが挙げられる。これらの中でも、イオンミリング法、RIEが特に好ましい。
 イオンミリング法は、イオンビームエッチングとも言われ、イオン源にArなどの不活性ガスを導入し、イオンを生成する。これを、グリッドを通して加速させ、試料基板に衝突させてエッチングするものである。イオン源としては、カウフマン型、高周波型、電子衝撃型、デュオプラズマトロン型、フリーマン型、ECR(電子サイクロトロン共鳴)型などが挙げられる。
 イオンミリング法におけるプロセスガスとしては、Arガス、RIEのエッチャントとしては、フッ素系ガスや塩素系ガスを用いることができる。
 以上のように、本発明のパターン化基板の製造方法よれば、凹凸パターンを持つレジスト膜であって未充填欠陥の発生が抑制されたレジスト膜をマスクとして基板のエッチングをしているから、パターン化基板の製造においてパターン欠陥の発生を低減することが可能となる。
 本発明に係るナノインプリント方法の実施例を以下に示す。
 (モールドの作製)
 Si基材上に、スピンコートによりPHS(polyhydroxy styrene)系の化学増幅型レジストなどを主成分とするレジスト液を塗布し、レジスト層を形成した。その後、Si基材をXYステージ上で走査しながら、パターンに対応して変調した電子ビームを照射し、10mm角の範囲のレジスト層全面を露光した。その後、レジスト層を現像処理し、露光部分を除去して、除去後のレジスト層のパターンをマスクにしてRIEにより溝深さが100nmになるように選択エッチングを行い、Siモールドを得た。テーパー角は85度であった。モールド表面はディップコート法によりオプツールDSXで離型処理をした。
 上記Siモールドにおいて、パターンはSi基材の中心部に位置し、10mm角の領域がパターン領域となる。凹凸パターンは、長さ10mm、幅50nm、ピッチ100nm、深さ100nmの溝形状のラインパターンで構成される。
 (被転写基板)
 基板には152mm角、厚さ6.35mmの石英基板を使用した。まず、基板中心部の被転写領域に10mm角、高さ30μmのメサ部をウェットエッチングにより形成した。その後、レジストとの密着性に優れるシランカップリング剤であるKBM-5103(信越化学工業株式会社製)により、石英基板の表面に表面処理をした。具体的には、KBM-5103をPGMEA(プロピレングリコールモノメチルエーテルアセテート)で1質量%に希釈し、スピンコート法により基板表面に塗布した。続いて、塗布基板をホットプレート上で150℃、5分の条件でアニールし、シランカップリング剤を基板表面に結合させた。
 (レジスト)
 化合物Aを48質量%、アロニックスM220を48質量%、IRGACURE 379を3質量%、化合物Bを1質量%含有するレジストを調整した。
 (レジストの塗布工程)
 ピエゾ方式のインクジェットプリンターであるFUJIFILM Dimatix社製DMP-2838を使用した。インクジェットヘッドには専用のヘッドであるDMC-11610を使用した。液滴量が6plとなるように、あらかじめ吐出条件を調整した。液滴配置パターンは液滴間隔を400μmとした正方格子とし、この液滴配置パターンに従いメサ部上の転写領域全面に液滴を配置した。このとき液滴個数は10mm角のパターン領域内に25個×25個の計625個とした。液滴1個当たりの表面積は液滴形状を共焦点顕微鏡で測定した形状データから算出し、0.00788mmとなった。したがって、レジスト液滴の総表面積nSは4.92mmとなる。
 (ナノインプリント方法)
 モールドと石英基板を下記表に記載の値まで近接させ、石英基板の背面から基板上のアライメントマークとモールド上のアライメントマークが一致するように位置合わせをした。
 モールドと石英基板間の空間をHe置換して99体積%以上のHeガス雰囲気を形成し、5kPaまで減圧した。減圧He条件下でモールドを基板に対して位置あわせし、レジストからなる液滴に接触させた。圧力が5kPaに到達してからモールドがレジストに接触するまでの時間はおよそ5分である。
 接触後、300kPaの押付け圧で5秒間加圧し、360nmの波長を含む紫外光により、照射量が300mJ/cmとなるように露光し、レジストを硬化させた。基板およびモールドの外縁部を機械的に保持、もしくは裏面を吸引保持した状態で、基板またはモールドを押圧と反対方向に相対移動させることでモールドを剥離した。
 (評価方法)
 パターン領域内の光硬化性樹脂膜の凹凸パターンを、走査電子顕微鏡で検査した。
 残留気体による欠陥は、正常なパターンで見られない凸パターンの欠損を検出した場合を対象とした。残留気体による欠陥の欠陥総数をカウントした。1cm角当たりの欠陥数が0個の場合を欠陥なし(OK)、1個以上の場合を欠陥あり(NG)とした。
Figure JPOXMLDOC01-appb-T000001
 (結果)
 表1のように、本発明によれば、硬化性樹脂の揮発および効率低下の問題を改善しながら未充填欠陥の発生を低減することが可能であることがわかる。

Claims (6)

  1.  微細な凹凸パターンを表面に有するモールドを用いたナノインプリント方法において、
     基板上に塗布されたレジストに前記凹凸パターンが対向するように前記モールドおよび前記基板を配置し、
     モールドと基板とで挟まれたパターン領域上の空間領域の表面のうち雰囲気と接する部分の面積が、基板上に塗布されたレジストのうち前記パターン領域上に存在する部分の表面積よりも小さく、かつ前記モールドが前記レジストに接触しない状態で、雰囲気の気圧を10kPa未満に減圧した後、前記モールドを前記基板に押し付けることを特徴とするナノインプリント方法。
  2.  前記雰囲気の気圧を5kPa以下に減圧することを特徴とする請求項1に記載のナノインプリント方法。
  3.  前記レジストの前記基板への塗布をインクジェット法により実施することを特徴とする請求項1または2に記載のナノインプリント方法。
  4.  ヘリウム雰囲気中で実施することを特徴とする請求項1から3いずれかに記載のナノインプリント方法。
  5.  前記モールドとして、メサ型構造を有するモールドを使用することを特徴とする請求項1から4いずれかに記載のナノインプリント方法。
  6.  請求項1から5いずれかに記載のナノインプリント方法により凹凸パターンが転写されたレジスト膜を基板上に形成し、
     前記レジスト膜をマスクとして前記基板をエッチングすることにより、前記レジスト膜に転写された凹凸パターンに対応した凹凸パターンを前記基板上に形成することを特徴とするパターン化基板の製造方法。
PCT/JP2013/006612 2012-11-15 2013-11-11 ナノインプリント方法およびそれを用いたパターン化基板の製造方法 WO2014076922A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012250929A JP2014099525A (ja) 2012-11-15 2012-11-15 ナノインプリント方法およびそれを用いたパターン化基板の製造方法
JP2012-250929 2012-11-15

Publications (1)

Publication Number Publication Date
WO2014076922A1 true WO2014076922A1 (ja) 2014-05-22

Family

ID=50730856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006612 WO2014076922A1 (ja) 2012-11-15 2013-11-11 ナノインプリント方法およびそれを用いたパターン化基板の製造方法

Country Status (3)

Country Link
JP (1) JP2014099525A (ja)
TW (1) TW201428819A (ja)
WO (1) WO2014076922A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189980A (ja) * 2017-05-18 2017-10-19 富士ゼロックス株式会社 記録装置、及び記録方法
US10796948B2 (en) 2016-11-25 2020-10-06 Toshiba Memory Corporation Pattern forming method and imprint apparatus
US11590687B2 (en) 2020-06-30 2023-02-28 Canon Kabushiki Kaisha Systems and methods for reducing pressure while shaping a film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644184B (zh) * 2014-09-25 2018-12-11 日商富士軟片股份有限公司 Method of manufacturing pattern forming body
JP6529843B2 (ja) * 2015-07-14 2019-06-12 芝浦メカトロニクス株式会社 インプリント用のテンプレート製造装置及びテンプレート製造方法
JP6441181B2 (ja) 2015-08-04 2018-12-19 東芝メモリ株式会社 インプリント用テンプレートおよびその製造方法、および半導体装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134368A (ja) * 2005-11-08 2007-05-31 Nikon Corp パターン転写装置、露光装置及びパターン転写方法
JP2011183731A (ja) * 2010-03-10 2011-09-22 Dainippon Printing Co Ltd ナノインプリント用モールドの製造方法
JP2012069762A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp ナノインプリント方法およびそれを利用した基板の加工方法
JP2012190827A (ja) * 2011-03-08 2012-10-04 Toppan Printing Co Ltd インプリントモールド及びその作製方法、パターン形成体
JP2012212833A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp シミュレーション方法、プログラムおよびそれを記録した記録媒体、並びに、それらを利用した液滴配置パターンの作成方法、ナノインプリント方法、パターン化基板の製造方法およびインクジェット装置。

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134368A (ja) * 2005-11-08 2007-05-31 Nikon Corp パターン転写装置、露光装置及びパターン転写方法
JP2011183731A (ja) * 2010-03-10 2011-09-22 Dainippon Printing Co Ltd ナノインプリント用モールドの製造方法
JP2012069762A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp ナノインプリント方法およびそれを利用した基板の加工方法
JP2012190827A (ja) * 2011-03-08 2012-10-04 Toppan Printing Co Ltd インプリントモールド及びその作製方法、パターン形成体
JP2012212833A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp シミュレーション方法、プログラムおよびそれを記録した記録媒体、並びに、それらを利用した液滴配置パターンの作成方法、ナノインプリント方法、パターン化基板の製造方法およびインクジェット装置。

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10796948B2 (en) 2016-11-25 2020-10-06 Toshiba Memory Corporation Pattern forming method and imprint apparatus
JP2017189980A (ja) * 2017-05-18 2017-10-19 富士ゼロックス株式会社 記録装置、及び記録方法
US11590687B2 (en) 2020-06-30 2023-02-28 Canon Kabushiki Kaisha Systems and methods for reducing pressure while shaping a film

Also Published As

Publication number Publication date
TW201428819A (zh) 2014-07-16
JP2014099525A (ja) 2014-05-29

Similar Documents

Publication Publication Date Title
TWI480924B (zh) 奈米壓印方法及利用其的基板加工方法
JP5653864B2 (ja) ナノインプリント用のモールドの離型処理方法およびそれを用いた製造方法並びにモールド、ナノインプリント方法およびパターン化基板の製造方法
WO2014076922A1 (ja) ナノインプリント方法およびそれを用いたパターン化基板の製造方法
JP5520270B2 (ja) ナノインプリント用のモールドおよびその製造方法並びにそのモールドを用いたナノインプリント方法およびパターン化基板の製造方法
JP5865208B2 (ja) モールドの製造方法
JP2013161893A (ja) ナノインプリント用のモールド、並びにそれを用いたナノインプリント方法およびパターン化基板の製造方法
TWI479277B (zh) 移除附著於模具的異物的方法
JP2013074115A (ja) ナノインプリント装置およびナノインプリント方法、並びに、歪み付与デバイスおよび歪み付与方法
WO2015136898A1 (ja) プラズマエッチング方法およびパターン化基板の製造方法
JP2014110367A (ja) ナノインプリント方法およびそれを用いたパターン化基板の製造方法
JP6016578B2 (ja) ナノインプリント方法、その方法に使用されるモールドおよびその方法を利用したパターン化基板の製造方法
JP6479058B2 (ja) パターン形成マスク用薄膜層付基体およびパターン化基体の製造方法
JP2013222791A (ja) ナノインプリント方法およびナノインプリント用基板並びにそれらを用いたパターン化基板の製造方法
JP2013074257A (ja) ナノインプリント用のモールドおよびその製造方法並びにナノインプリント方法
JP2013207180A (ja) ナノインプリント方法およびナノインプリント装置並びにその方法を利用したパターン化基板の製造方法
WO2015133102A1 (ja) パターン形成方法およびパターン化基板製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854426

Country of ref document: EP

Kind code of ref document: A1