WO2014076770A1 - 真空蒸着装置 - Google Patents
真空蒸着装置 Download PDFInfo
- Publication number
- WO2014076770A1 WO2014076770A1 PCT/JP2012/079420 JP2012079420W WO2014076770A1 WO 2014076770 A1 WO2014076770 A1 WO 2014076770A1 JP 2012079420 W JP2012079420 W JP 2012079420W WO 2014076770 A1 WO2014076770 A1 WO 2014076770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- film thickness
- reflected
- thickness sensor
- target
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/542—Controlling the film thickness or evaporation rate
- C23C14/545—Controlling the film thickness or evaporation rate using measurement on deposited material
- C23C14/546—Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/08—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
Definitions
- the evaporation source is heated by a heater or the like to release the vapor deposition material.
- the discharged deposition material is deposited on a substrate disposed above.
- Such a vacuum evaporation apparatus is provided with a film thickness sensor for film formation at a desired film formation speed, and film formation is performed while monitoring the film formation speed with the film thickness sensor.
- a film thickness sensor a film thickness sensor using a crystal resonator is known. When the vapor deposition material adheres to the crystal resonator, the resonance frequency changes, and based on this change, the film deposition rate of the vapor deposition material deposited on the substrate is estimated (see Patent Document 1).
- Patent Document 1 discloses that a film formation rate is measured with higher accuracy by cooling a crystal resonator with a refrigerant and increasing a resonance frequency as a base. However, the temperature does not change due to the reflected heat from the tray or the substrate, and the resonance frequency changes, which affects the film formation rate monitor value.
- Patent Document 2 discloses that a temperature change is detected by a temperature sensor and the film formation rate monitor value is corrected according to the temperature change.
- the temperature sensor it is difficult to place the temperature sensor in exactly the same temperature environment as the film thickness sensor, and the temperature change is the largest on the exposed surface of the film thickness sensor, and the change becomes smaller as it goes inside.
- the impact on film thickness sensors is complex. For this reason, even if the film formation rate calculated by the film thickness sensor is corrected based on the temperature change detected by the temperature sensor, the influence on the film formation rate monitor value due to the reflected heat from the tray or the substrate is removed. Was difficult.
- the present invention has been made in order to improve the above-described problems, and provides a vacuum deposition apparatus capable of controlling the film formation rate more accurately by suppressing the temperature change of the film thickness sensor due to the heat reflected from the target. It is.
- the present invention proposes the following means.
- the heat reflection suppressing means includes a heat absorption means for absorbing heat reflected by the target.
- the heat reflection suppressing means includes a heat passage means for passing the heat reflected by the target.
- the heat reflection suppressing means includes a heat retroreflection means for returning the heat reflected by the target in the direction from which it came.
- the heat absorption means may be a black body treatment.
- the heat shielding means may be composed of at least one fin welded.
- the heat passing means may comprise a through hole formed by bending a cut.
- the heat reflected by the target and applied to the evaporation source cover can be reflected toward the part other than the film thickness sensor by the inclined surface.
- the film thickness sensor cover may include a cylindrical hood whose inner surface is blackened.
- the target in this specification includes the board
- the film thickness sensor 50 in this embodiment includes a crystal resonator.
- the film thickness sensor 50 measures the resonance frequency of the crystal resonator.
- a vapor deposition material 38 emitted from the evaporation source 30 is attached to the crystal resonator to form a film on the surface, and the resonance frequency changes according to the film thickness.
- the film thickness formed by the vapor deposition material is obtained based on the detected resonance frequency, and the film formation speed is obtained based on the temporal change of the film thickness.
- the film forming speed is controlled according to the film forming speed.
- the vacuum evaporation apparatus 10A includes a heat reflection suppressing means 60 that suppresses heat that can be irradiated to the film thickness sensor 50 by re-reflecting the heat emitted from the evaporation source 30 and reflected by the target.
- the heat reflection suppressing means 60 can re-reflect the heat emitted from the evaporation source 30 and reflected by the target toward the film thickness sensor 50 on the inner surface of the deposition preventing plate 40 and the outer surface of the evaporation source cover.
- a heat absorbing means is formed by applying blackening treatment to the region. Specifically, the blackening process is performed by a surface process such as plating.
- the upward heat (H1, H′1) radiated from the evaporation source 30 heated by the heater is reflected by the substrate 20 and the tray 24 (H2, H '2) Thereafter, the film is re-reflected by the evaporation source cover 32 and the deposition preventing plate 40, and a part of the heat (H3, H'3) is irradiated to the film thickness sensor 50.
- the film thickness sensor is irradiated with the heat (H3, H′3) re-reflected by the evaporation source cover 32 and the deposition preventing plate 40, the temperature change of the crystal resonator is generated and the resonance frequency is changed. .
- the film forming speed detected by the film thickness sensor is disturbed even if the actual film forming speed does not change. Since the vacuum deposition apparatus tries to control the film forming speed based on the displaced film forming speed detected by the film thickness sensor, it also adversely affects the actual film forming speed.
- the heat reflected toward the film thickness sensor 50 (H3, H′2) is absorbed by absorbing the heat (H2, H′2) reflected by the target substrate 20 and the tray 24. H′3) is suppressed.
- the substrate 20 passes through the vapor deposition position on the evaporation source 30, the displacement of the amount of radiant heat incident on the crystal resonator of the film thickness sensor 50 can be suppressed, and the film detected by the film thickness sensor 50. Thickness measurement errors can be suppressed, and the deposition rate can be controlled more accurately.
- FIG. 7 shows a graph comparing the film formation rate (unmeasured) and the actual film formation rate.
- the heat reflected from the target varies with time according to the shape and material of the target composed of the substrate 20, the tray 24, and the mask 26, and is received by the film formation sensor.
- This heat re-reflection also varies with time. This affects the film forming speed detected by the film forming sensor 50.
- the change in the film forming speed after the countermeasure is suppressed compared to the unmeasured one, and the actual film forming speed is further increased. It is possible to monitor the film deposition rate that is close, that is, more accurate.
- a blast process or the like may be provided instead of the black body process.
- the blast process functions as a heat diffusion means for diffusing the heat (H2, H′2) reflected by the substrate 20 or the tray 24, and the heat (H2, H′2) reflected by the substrate 20 or the tray 24. It also functions as a heat absorption means that absorbs water.
- the heat (H 2, H ′ 2) reflected by the substrate 20 and the tray 24 is diffused and absorbed on the inner surface of the blast-proof deposition prevention plate 40 and the outer surface of the evaporation source cover 32.
- Heat re-reflection (H3, H′3) toward the film thickness sensor 50 can be suppressed.
- what functions as a heat diffusion means and a heat absorption means is not limited to this.
- a metal mesh sheet or a porous sheet made by roughly sintering a particulate or fibrous metal material the film thickness is obtained by diffusing and absorbing heat with the unevenness provided on the surface.
- Heat re-reflection (H3, H′3) toward the sensor 50 may be suppressed.
- the heat reflection suppressing means 60 in the first and second embodiments may be applied to the entire surface of the deposition preventing plate 40 and the evaporation source cover 32 as shown in FIG. 1 or heat toward the film thickness sensor 50. May be applied only to a region where the light can be re-reflected.
- the vacuum vapor deposition apparatus 10 ⁇ / b> B includes a heat blocking unit including a plurality of fins 62 fixed to the deposition preventing plate 40 as a heat reflection suppressing unit.
- the plurality of fins 62 are fixed to the deposition preventing plate 40 at a predetermined angle.
- the plurality of fins 62 heat emitted from the evaporation source 30 and reflected by the target is re-reflected to block heat directed to the film thickness sensor, and heat reflected by the fins 62 is film thickness. It is attached at an angle for re-reflection so as not to enter the sensor 50.
- the plurality of fins 62 are fixed to the deposition preventing plate 40 by welding, but may be fixed by another fixing means.
- the fin 62 blocks a part of the heat re-reflected by the deposition prevention plate 40 from the heat emitted from the evaporation source 30 and reflected by the target, and is prevented from entering the film thickness sensor 50. Further, the heat reflected by the target is reflected again so as not to enter the film thickness sensor 50. Accordingly, the heat (H2) reflected by the substrate 20 and the tray 24 is blocked by the fins 62, so that the re-reflection (H3) of the heat toward the film thickness sensor 50 can be suppressed.
- FIG. 3A shows a modification of the third embodiment.
- the heat reflection suppressing means includes a fin 64 that is a heat blocking means and a through hole 66 on the deposition preventing plate 40 that is a heat passing means.
- a plurality of fins 64 are formed by bending notches formed in a region where the heat emitted from the evaporation source 30 and reflected by the target can be re-reflected toward the film thickness sensor 50.
- the through-hole 66 is formed in the original part (refer FIG. 3B).
- the fin 64 blocks the heat re-reflected toward the film thickness sensor 50 and re-reflects the heat reflected by the fin 64 so that it does not enter the film thickness sensor 50 as described above. It is bent at an angle.
- the fin 64 blocks the part of the heat re-reflected by the deposition preventing plate 40 out of the heat emitted from the evaporation source 30 and reflected by the target, and enters the film thickness sensor 50.
- the heat reflected by the target is reflected again so as not to enter the film thickness sensor 50.
- the bent through hole 66 allows the heat (H2) reflected by the substrate 20 tray 24 target to pass out of the space surrounded by the deposition preventing plate 40, and is reflected again thereby to be a film thickness sensor. 50 is suppressed from entering.
- the plurality of fins 62 and 64 in the third and fourth embodiments may all be fixed at the same angle, or may be appropriately different for each area in consideration of the positional relationship with the film thickness sensor 50. It may be fixed with. That is, the angle of each of the plurality of fins 62 and 64 blocks the heat that the reflected heat H2 from the target re-reflects on the inner surface of the deposition preventing plate 40 and the outer surface of the evaporation source cover 32 to the film thickness sensor 50, and The heat re-reflected by the fins 62 and 64 itself may be arbitrarily determined within a range in which the heat is reflected toward other than the film thickness sensor 50.
- a vacuum deposition apparatus 10D according to the present invention shown in FIG. 4 includes an evaporation source cover 33 having an inclined surface 36.
- the inclined surface 36 of the evaporation source cover is formed at an angle that re-reflects the heat (H2) reflected by the target such as the substrate 20 or the tray 24 in a direction avoiding the film thickness sensor 50, and the heat in this embodiment. It constitutes reflection suppression means.
- the evaporation source cover in this embodiment employs a cone-shaped evaporation source cover 33, and its side surface is an inclined surface 36 that constitutes a heat reflecting means.
- the angle of the inclined surface 36 is appropriately determined according to the position of the film thickness sensor 50 so as not to re-reflect heat toward the film thickness sensor 50, and is not a symmetrical shape as shown in FIG. It may be asymmetrical. Moreover, the shape which leaves a horizontal surface or a vertical surface according to the position of the film thickness sensor 50 may be sufficient.
- FIG. 4 shows a form in which the inclined surface 36 is provided on the evaporation source cover 33 to form the heat reflecting means, but an inclined surface may be similarly provided on the deposition preventing plate.
- the vacuum evaporation apparatus 10E according to the present invention shown in FIG. 5A has an evaporation source on the inner surface of the deposition preventing plate 40 and the outer surface of the evaporation source cover, instead of providing an inclined surface on the deposition preventing plate.
- a corner cube array 68 which is a heat retroreflective means shaped as shown in FIG. 5C, is applied as a heat reflecting means to a region where the heat emitted from 30 and reflected by the target can be rereflected toward the film thickness sensor 50. ing.
- the corner cube reflects heat that has entered at an arbitrary incident angle in the same direction as the incident angle. Therefore, when the reflected heat (H2, H'2) from the target is applied to the surface on which the corner cube array is applied, the heat is reflected in the same direction in which the heat is incident. Thereby, it is possible to prevent the re-reflected heat (H3, H′3) from being irradiated toward the film thickness sensor 50.
- a corner cube array not only a corner cube array but general retroreflective processing methods such as those using a paint containing beads can be used.
- a retroreflective sheet-like thin plate may be attached to the deposition preventing plate 40 or the evaporation source cover 32.
- FIG. 6A shows a vacuum evaporation apparatus 10F according to the present invention.
- the vacuum evaporation apparatus 10 ⁇ / b> F includes a film thickness sensor cover 52 that covers other than the sensor portion of the film thickness sensor 50.
- the film thickness sensor 50 can detect the film thickness while suppressing the re-reflected heat from being irradiated to the film thickness sensor 50 from the surroundings, and can suppress the influence of the irradiation of heat from the surroundings.
- the film formation can be controlled.
- the area of the evaporation source cover 32 and the deposition preventing plate 40 where the heat (H2) reflected by the target can be re-reflected to irradiate the film thickness sensor is more narrowly limited. Therefore, the area where the heat reflection suppressing means 60 is provided can be reduced.
- a cylindrical hood 54 may be provided on the sensor cover 52.
- the hood 54 limits the angle at which the re-reflected heat can enter the film thickness sensor. Thereby, the area
- the inner surface of the hood 54 may be subjected to the blackening process, blasting process, or retroreflection process described above. By doing in this way, the heat reflected on the inner surface of the hood 54 out of the heat incident on the hood 54 is prevented from entering the film thickness sensor 50, and further the heat incident on the film thickness sensor 50 is suppressed. Thus, the film forming speed can be detected more accurately.
- the blackening process may be performed on the plurality of fins 62 and 64 of the second embodiment.
- the deposition preventing plate 40 may be provided with a plurality of fins 62 and 64, and the evaporation source cover 32 may be provided with a corner cube array.
- the target in the present invention is not limited to the substrate 20, the tray 24, and the mask 26, but covers any opening 42 of the deposition preventing plate and can reflect any heat (H1) emitted from the evaporation source 30. Refers to a structure.
- the heat reflection suppressing means 60 is not limited to being provided on the evaporation source cover 32 and the deposition preventing plate 40, and any structure disposed in a space surrounded by the deposition preventing plate 40. It may be provided on the surface.
- the vacuum evaporation apparatus of the present invention is not limited to the above-described embodiments, and appropriate modifications and improvements can be made.
- a temperature sensor that measures the temperature of the film thickness sensor 50 is arranged, and the film formation speed can be more accurately controlled by using the correction of the film formation speed by monitoring the temperature change.
- the present invention relates to a vacuum deposition apparatus that can control the film formation speed more accurately by suppressing the temperature change of the film thickness sensor due to the heat reflected from the target.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
Abstract
Description
また、図1における熱反射抑制手段60として、黒体化処理の代わりにブラスト処理などを設けてもよい。ブラスト処理は、基板20やトレイ24で反射された熱(H2、H’2)を拡散させる熱拡散手段として機能し、また、基板20やトレイ24で反射された熱(H2、H’2)を吸収させる熱吸収手段としても機能する。
図2に示すように、本実施形態の真空蒸着装置10Bでは、熱反射抑制手段として、防着板40に固定された複数のフィン62からなる熱遮断手段を有している。複数のフィン62は、防着板40に対して所定角度で固定されている。
また、図3Aは、第3実施形態の変形例を示している。図3Aに示すように、本変形例では、熱反射抑制手段として、熱遮断手段であるフィン64と、熱通過手段である、防着板40上の貫通孔66とを有している。防着板40において、蒸発源30から放出されターゲットで反射される熱が膜厚センサ50に向けて再反射し得る領域に入れた切り込みを折り曲げて複数のフィン64を形成するとともに、フィン64を形成することで元の部分に貫通孔66を形成している(図3B参照)。本変形例では、フィン64は、上述のように、膜厚センサ50に向けて再反射される熱を遮断するとともに、フィン64で反射した熱が膜厚センサ50に入射しないように再反射させる角度に折り曲げられている。
図4に示す、本発明に係る真空蒸着装置10Dは、傾斜面36を有する蒸発源カバー33を備える。蒸発源カバーの傾斜面36は、基板20やトレイ24などのターゲットで反射された熱(H2)を、膜厚センサ50を避ける方向に再反射させる角度に形成されており、本実施形態における熱反射抑制手段を構成している。本実施形態における蒸発源カバーは、錐体状の蒸発源カバー33を採用し、その側面を、熱反射手段を構成する傾斜面36としている。
また、別の熱反射手段として、図5Aに示す本発明に係る真空蒸着装置10Eは、防着板に傾斜面が設ける代わりに、防着板40の内面および蒸発源カバーの外面において、蒸発源30から放出されターゲットで反射される熱が膜厚センサ50に向けて再反射し得る領域に熱反射手段として図5Cに示すような形状をした熱再帰反射手段であるコーナーキューブアレイ68が施されている。
図6Aは、本発明に係る真空蒸着装置10Fを示している。図6Aに示すように、真空蒸着装置10Fは、膜厚センサ50のセンサ部以外を覆った膜厚センサカバー52を備えている。これにより、膜厚センサ50は、再反射熱が周囲から膜厚センサ50に照射されることを抑制しつつ、膜厚を検出することができ、周囲からの熱の照射による影響を抑制して成膜に制御することができる。
また、図6Bに示すように、蒸発源カバー32や防着板40の、ターゲットで反射した熱が再反射して膜厚センサ(50)に照射し得る領域をさらに限定するために、膜厚センサカバー52に筒状のフード54を設けてもよい。フード54は、再反射した熱が膜厚センサに入射し得る角度を限定する。これにより、蒸発源カバー32や防着板40の、ターゲットで反射した熱再反射して膜厚センサに照射し得る領域はさらに限定されることになる。
12 真空チャンバー
20 基板
24 トレイ
26 マスク
28 搬送ローラ
30 蒸発源
32、33 蒸発源カバー
34 放出口
36 傾斜面
38 蒸着材
40 防着板
42 開口
50 膜厚センサ
52 膜厚センサカバー
54 フード
60 熱反射抑制手段
62、64 フィン
66 貫通孔
68 コーナーキューブアレイ
H1、H’1 蒸発源からの熱
H2、H’2 ターゲットで反射した熱
H3、H’3、H4 再反射した熱
Claims (16)
- ターゲットが配置される位置に向けて蒸着材を放出されるように配置される蒸発源と、
前記蒸発源を包囲し、蒸着材が放出される放出口を有する蒸発源カバーと、
前記蒸発源カバーの周囲に配されて前記蒸着材の飛散を防ぐとともに、前記ターゲットを前記蒸発源に露出する開口を有する防着板と、
前記防着板に囲まれた空間に配置され、蒸発源から放出される蒸着材による膜厚を検出する膜厚センサと、
前記蒸発源から放射され、前記ターゲットで反射した熱が、再反射して前記膜厚センサに照射し得る位置に設けられ、前記膜厚センサに照射し得る熱を抑制する熱反射抑制手段と、
を備えることを特徴とする真空蒸着装置。 - 前記熱反射抑制手段は、前記ターゲットで反射した熱を吸収する熱吸収手段を含むことを特徴とする請求項1に記載の真空蒸着装置。
- 前記熱反射抑制手段は、前記ターゲットで反射した熱を拡散する熱拡散手段を含むことを特徴とする請求項1または2に記載の真空蒸着装置。
- 前記熱反射抑制手段は、前記ターゲットで反射した熱を遮断する熱遮断手段を含むことを特徴とする請求項1~3のいずれか一項に記載の真空蒸着装置。
- 前記熱反射抑制手段は、前記ターゲットで反射した熱を通過させる熱通過手段を含むことを特徴とする請求項1~4のいずれか一項に記載の真空蒸着装置。
- 前記熱反射抑制手段は、前記ターゲットで反射した熱を、前記膜厚センサを避ける方向に反射させる熱反射手段を含むことを特徴とする請求項1~5のいずれか一項に記載の真空蒸着装置。
- 前記熱反射抑制手段は、前記ターゲットから反射した熱を来た方向に戻す、熱再帰反射手段を含むことを特徴とする請求項1~6のいずれか一項に記載の真空蒸着装置。
- 前記膜厚センサの少なくとも一部を包囲する膜厚センサカバーをさらに備えることを特徴とする請求項1~7のいずれか一項に記載の真空蒸着装置。
- 前記熱吸収手段は、黒体化処理によるものであることを特徴とする請求項2に記載の真空蒸着装置。
- 前記熱拡散手段は、ブラスト加工によるものであることを特徴とする請求項3に記載の真空蒸着装置。
- 前記熱吸収手段は、ブラスト加工によるものであることを特徴とする請求項2に記載の真空蒸着装置。
- 前記熱遮断手段は、前記防着板に取り付けられた少なくとも1つのフィンを有することを特徴とする請求項4に記載の真空蒸着装置。
- 前記熱通過手段は、前記防着板に形成された貫通孔を有することを特徴とする請求項5に記載の真空蒸着装置。
- 前記熱反射手段は、蒸発源カバーに設けられ、前記ターゲットで反射した熱を、前記膜厚センサを避ける方向に反射させるような角度に形成された傾斜面を有することを特徴とする請求項6に記載の真空蒸着装置。
- 前記熱再帰反射手段は、コーナーキューブアレイまたはビーズ含有塗料を有することを特徴とする請求項7に記載の真空蒸着装置。
- 前記膜厚センサカバーは、その内面が黒体化された筒状のフードを備えることを特徴とする請求項8に記載の真空蒸着装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/079420 WO2014076770A1 (ja) | 2012-11-13 | 2012-11-13 | 真空蒸着装置 |
JP2014546762A JP5916883B2 (ja) | 2012-11-13 | 2012-11-13 | 真空蒸着装置 |
KR1020157000967A KR101643107B1 (ko) | 2012-11-13 | 2012-11-13 | 진공 증착 장치 |
CN201280075029.5A CN104508172B (zh) | 2012-11-13 | 2012-11-13 | 真空蒸镀装置 |
EP12888566.2A EP2921571B1 (en) | 2012-11-13 | 2012-11-13 | Vacuum vapor deposition apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/079420 WO2014076770A1 (ja) | 2012-11-13 | 2012-11-13 | 真空蒸着装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014076770A1 true WO2014076770A1 (ja) | 2014-05-22 |
Family
ID=50730712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079420 WO2014076770A1 (ja) | 2012-11-13 | 2012-11-13 | 真空蒸着装置 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2921571B1 (ja) |
JP (1) | JP5916883B2 (ja) |
KR (1) | KR101643107B1 (ja) |
CN (1) | CN104508172B (ja) |
WO (1) | WO2014076770A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016006210A (ja) * | 2014-06-20 | 2016-01-14 | コニカミノルタ株式会社 | ガスバリアー性フィルムの製造方法、製造装置及び膜厚の測定方法 |
WO2020017047A1 (ja) * | 2018-07-20 | 2020-01-23 | シャープ株式会社 | 蒸着装置 |
JP7503481B2 (ja) | 2020-11-17 | 2024-06-20 | 株式会社アルバック | 膜厚モニタ |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105486215A (zh) * | 2015-12-15 | 2016-04-13 | 苏州晶鼎鑫光电科技有限公司 | 一种镀膜膜厚监测方法 |
CN110453181A (zh) * | 2019-08-08 | 2019-11-15 | 深圳市华星光电半导体显示技术有限公司 | 蒸镀设备及其防着板 |
CN110819940B (zh) * | 2019-11-29 | 2024-04-16 | 福建华佳彩有限公司 | 一种蒸镀机构 |
KR102458164B1 (ko) | 2020-11-05 | 2022-10-24 | (주)제이피오토메이션 | 오염방지 방착판을 구비한 진공 증착 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6093303A (ja) | 1983-10-27 | 1985-05-25 | Anelva Corp | 水晶式膜厚モニタ |
JPH1025563A (ja) * | 1996-07-08 | 1998-01-27 | Shinko Seiki Co Ltd | 真空蒸着装置及び真空蒸着方法 |
JP2005325391A (ja) * | 2004-05-13 | 2005-11-24 | Ulvac Japan Ltd | 有機薄膜の成膜装置 |
JP2007297704A (ja) * | 2006-04-05 | 2007-11-15 | Seiko Epson Corp | 蒸着装置、蒸着方法、及び電気光学装置の製造方法、並びに成膜装置 |
JP2009064758A (ja) * | 2007-09-10 | 2009-03-26 | Canon Inc | 有機elディスプレイパネル製造装置 |
JP2009120924A (ja) | 2007-11-19 | 2009-06-04 | Ulvac Japan Ltd | 成膜装置、薄膜形成方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03150365A (ja) * | 1989-07-26 | 1991-06-26 | Tokyo Electron Ltd | 熱処理装置 |
JP3413626B2 (ja) * | 1994-07-22 | 2003-06-03 | 日本カーバイド工業株式会社 | 再帰反射シートの製造方法 |
US5770124A (en) * | 1996-04-30 | 1998-06-23 | Minnesota Mining And Manufacturing Company | Method of making glittering cube-corner retroreflective sheeting |
JP4195205B2 (ja) * | 2001-03-16 | 2008-12-10 | 三井化学株式会社 | 有機高分子薄膜の作製方法 |
JP4552184B2 (ja) * | 2004-10-22 | 2010-09-29 | 富士電機ホールディングス株式会社 | 有機発光素子用基板に有機層を蒸着させる装置および方法 |
KR20060081015A (ko) * | 2005-01-06 | 2006-07-12 | 삼성에스디아이 주식회사 | 진공 증착기 |
JP2007077419A (ja) * | 2005-09-12 | 2007-03-29 | Seiko Epson Corp | 膜厚測定装置及び薄膜形成装置 |
JP2008276998A (ja) * | 2007-04-26 | 2008-11-13 | Sony Corp | 膜厚センサ、薄膜形成装置、有機el表示装置の製造装置、及び有機el表示装置の製造方法 |
KR101006952B1 (ko) * | 2008-04-25 | 2011-01-12 | (주)알파플러스 | 박막 제조용 진공 증발원 장치 |
JP2012012689A (ja) * | 2010-07-05 | 2012-01-19 | Canon Inc | 真空蒸着方法及び真空蒸着装置 |
JP5456711B2 (ja) * | 2011-03-03 | 2014-04-02 | 住友重機械工業株式会社 | 成膜装置 |
JP2013104085A (ja) * | 2011-11-11 | 2013-05-30 | Hitachi Zosen Corp | 電子ビーム蒸着装置用膜厚センサ装置 |
JP2014055342A (ja) * | 2012-09-14 | 2014-03-27 | Hitachi High-Technologies Corp | 成膜装置 |
-
2012
- 2012-11-13 WO PCT/JP2012/079420 patent/WO2014076770A1/ja active Application Filing
- 2012-11-13 JP JP2014546762A patent/JP5916883B2/ja active Active
- 2012-11-13 EP EP12888566.2A patent/EP2921571B1/en not_active Not-in-force
- 2012-11-13 KR KR1020157000967A patent/KR101643107B1/ko active IP Right Grant
- 2012-11-13 CN CN201280075029.5A patent/CN104508172B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6093303A (ja) | 1983-10-27 | 1985-05-25 | Anelva Corp | 水晶式膜厚モニタ |
JPH1025563A (ja) * | 1996-07-08 | 1998-01-27 | Shinko Seiki Co Ltd | 真空蒸着装置及び真空蒸着方法 |
JP2005325391A (ja) * | 2004-05-13 | 2005-11-24 | Ulvac Japan Ltd | 有機薄膜の成膜装置 |
JP2007297704A (ja) * | 2006-04-05 | 2007-11-15 | Seiko Epson Corp | 蒸着装置、蒸着方法、及び電気光学装置の製造方法、並びに成膜装置 |
JP2009064758A (ja) * | 2007-09-10 | 2009-03-26 | Canon Inc | 有機elディスプレイパネル製造装置 |
JP2009120924A (ja) | 2007-11-19 | 2009-06-04 | Ulvac Japan Ltd | 成膜装置、薄膜形成方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2921571A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016006210A (ja) * | 2014-06-20 | 2016-01-14 | コニカミノルタ株式会社 | ガスバリアー性フィルムの製造方法、製造装置及び膜厚の測定方法 |
WO2020017047A1 (ja) * | 2018-07-20 | 2020-01-23 | シャープ株式会社 | 蒸着装置 |
JP7503481B2 (ja) | 2020-11-17 | 2024-06-20 | 株式会社アルバック | 膜厚モニタ |
Also Published As
Publication number | Publication date |
---|---|
KR101643107B1 (ko) | 2016-07-26 |
JPWO2014076770A1 (ja) | 2016-09-08 |
CN104508172A (zh) | 2015-04-08 |
JP5916883B2 (ja) | 2016-05-11 |
KR20150018885A (ko) | 2015-02-24 |
EP2921571A4 (en) | 2015-12-23 |
EP2921571B1 (en) | 2017-02-01 |
EP2921571A1 (en) | 2015-09-23 |
CN104508172B (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5916883B2 (ja) | 真空蒸着装置 | |
CN107574411B (zh) | 蒸镀装置及蒸发源 | |
TWI477624B (zh) | Film forming device | |
EP2642822B1 (en) | Infrared ray detecting apparatus and heating cooker having the same | |
KR20130101055A (ko) | 적외선 검출 시스템용 듀어 조립체 | |
CN106065465B (zh) | 用于测量沉积速率的设备 | |
KR20160090987A (ko) | 증착속도 측정장치 | |
JPH0854211A (ja) | 不透明膜の堆積速度モニター方法および装置 | |
JP2006045673A (ja) | 蒸着システム、およびその膜厚監視装置 | |
US20140044863A1 (en) | Deposition apparatus capable of measuring residual amount of deposition material and method of measuring the residual amount of the deposition material using the deposition apparatus | |
KR20200093644A (ko) | 보호 장치 | |
KR101582670B1 (ko) | 진공 증발원용 증발율 모니터링 모듈 | |
JP2003307412A (ja) | 形状測定装置 | |
JP6776574B2 (ja) | 測定装置 | |
US20200219739A1 (en) | Substrate temperature measurement device and an apparatus having substrate temperature measurement device | |
JP2010541264A5 (ja) | ||
JP2011158213A (ja) | 高周波加熱装置 | |
CN118111564A (zh) | 蒸发舟的温度检测装置及其温度检测方法 | |
JP2011158212A (ja) | 高周波加熱装置 | |
JP2008138261A (ja) | 真空蒸着装置及び方法 | |
JP2020056959A (ja) | 走査装置 | |
JP2007064697A (ja) | 赤外線撮像装置 | |
KR20010048323A (ko) | 펄스 레이저의 수직 입사를 이용한 박막 증착장치 | |
JP2004091891A (ja) | 膜厚予測方法及び成膜方法 | |
JP2009294095A (ja) | サーモパイル型赤外線検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12888566 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014546762 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157000967 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012888566 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012888566 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |