WO2014071769A1 - 紫外光/臭氧表面清洗和氧化改性真空设备系统 - Google Patents

紫外光/臭氧表面清洗和氧化改性真空设备系统 Download PDF

Info

Publication number
WO2014071769A1
WO2014071769A1 PCT/CN2013/082969 CN2013082969W WO2014071769A1 WO 2014071769 A1 WO2014071769 A1 WO 2014071769A1 CN 2013082969 W CN2013082969 W CN 2013082969W WO 2014071769 A1 WO2014071769 A1 WO 2014071769A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
vacuum
ultraviolet light
vacuum chamber
surface cleaning
Prior art date
Application number
PCT/CN2013/082969
Other languages
English (en)
French (fr)
Inventor
陶海华
陈险峰
张双喜
乔延琦
黎浩
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210442424.4A external-priority patent/CN102983064B/zh
Priority claimed from CN201210462171.7A external-priority patent/CN102969227B/zh
Priority claimed from CN201310242512.4A external-priority patent/CN103337450B/zh
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2014071769A1 publication Critical patent/WO2014071769A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • This invention relates to ultraviolet photochemical dry surface treatment techniques for materials and devices, and more particularly to systems for collecting ultraviolet/ozone surface cleaning and oxidation modified vacuum equipment.
  • UV/ozone surface treatment technology can effectively remove most organic pollutants from metals, semiconductors and insulating materials. It plays an important role in basic scientific research and industrial applications such as material growth, surface modification and device preparation. Ultraviolet/ozone surface treatment technology not only has a cleaning effect on the substrate, but also strong oxidation of oxygen atoms can oxidize some metals (such as silver, aluminum, etc.) and carbon-based materials (such as graphene, carbon nanotubes). Material modification. Ultraviolet/ozone surface treatment technology originated in the 1970s. At present, it has developed from the initial ultraviolet light to ultraviolet light to reduce the influence of water vapor, nitrogen dioxide and other gases on the photochemical reaction process. , effectively improve the efficiency of light cleaning and oxidation modification.
  • Ultraviolet surface cleaning and oxidation modification equipment is mainly based on low-pressure mercury lamps capable of emitting ultraviolet light with dominant wavelengths at 184.9 nm and 253.7 nm.
  • Oxygen generates oxygen atoms and ozone under the irradiation of these two kinds of ultraviolet light, and Photochemical reaction with organic molecules or some special materials in an excited state to achieve the purpose of surface cleaning and photochemical oxidation modification.
  • minimizing the effects of non-oxygen molecules in the environment and effectively controlling and characterizing the photochemical reaction process is essential for obtaining highly controllable, high quality samples.
  • the commonly used ultraviolet light cleaning or surface oxidation treatment technology is to place the ultraviolet lamp and the sample holder in the same common chamber.
  • One working process is: after a certain amount of oxygen is introduced into the chamber, the ultraviolet light source is turned on. After the reaction is finished, it is left for a few hours to convert the ozone into oxygen, and then the sample is taken out. The other is to open the ultraviolet light source after emptying the original air in the chamber by introducing a certain amount of oxygen. After the photochemical reaction is finished, a certain amount of gas is again introduced to discharge the reaction gas into the chamber.
  • the photochemical reaction process of the first method is greatly affected by the residual air in the chamber.
  • the residual ozone and oxygen atoms in the chamber can continue to react with the sample, so that it is difficult to control the degree of light cleaning and oxidation. If the container is forcibly opened immediately after the reaction to remove the sample, it will cause harm to human health.
  • the second method has some improvement in eliminating the original air in the chamber or in quickly removing the gas in the chamber after the reaction is completed. However, despite this, a large amount of air molecules remain in the chamber. This affects the UV surface cleaning and oxidation modification process and reduces its controllability.
  • another disadvantage of the second method is that a large amount of gas needs to be introduced before and after the photochemical reaction to effectively discharge the original gas in the chamber, which causes a waste of a large amount of gas resources.
  • the present invention will develop an ultraviolet/ozone surface cleaning and oxidation modified vacuum equipment system.
  • the system includes two types: a low vacuum device system and a high vacuum device system, corresponding to a vacuum chamber of a single chamber structure and a true chamber of a double chamber structure, respectively.
  • the low-vacuum equipment has high photochemical reaction efficiency and convenient operation.
  • the high vacuum system system is relatively soft, more controllable, and easy to integrate with other technologies (such as chemical vapor surface treatment, electronic component test system), which can more effectively clean the sample surface, oxidize and modify the physical properties. Characterization.
  • the invention aims at the problems and bottlenecks in the above existing ultraviolet light/ozone surface treatment technology, and provides an ultraviolet light/ozone surface cleaning and oxidation modified vacuum equipment system, which effectively realizes dry surface cleaning and oxidation modification of materials and devices. It is easy to operate, controllable, and easy to integrate with other technologies (such as chemical vapor phase surface treatment, electronic component test system), and has important value in the fields of cleaning and oxidation modification of materials and optoelectronic components.
  • the UV/Ozone surface cleaning and oxidation-modified vacuum equipment system consists mainly of a vacuum chamber, an ultraviolet light source, a sample rack, a vacuum system, a gas pressure monitoring system, and a water cooling system.
  • the vacuum chamber is a place where a photochemical reaction occurs.
  • the ultraviolet light source comprises an ultraviolet lamp control power source and an ultraviolet lamp tube, and the ultraviolet lamp tube is fixed on the inner top end of the vacuum chamber.
  • the sample holder is located directly below the UV tube and its height can be continuously adjusted to effectively control the photochemical reaction process.
  • the vacuum system is used to generate and control the degree of vacuum within the vacuum chamber and utilizes a gas pressure monitoring system to effectively control the gas pressure within the chamber during photochemical reactions.
  • the water cooling system is used to prevent the temperature build-up caused by the accumulation of heat in the UV lamp and chamber.
  • the vacuum chamber is filled with a certain pressure of oxygen, which is irradiated with ultraviolet light to generate ozone and oxygen atoms, and the surface of the sample on the sample holder is subjected to dry cleaning and oxidation modification.
  • the UV/Ozone surface cleaning and oxidation modified vacuum equipment system can be further subdivided into two types: a low vacuum equipment system and a high vacuum equipment system.
  • the vacuum chamber of the low vacuum system uses a single chamber structure, and the ultraviolet light source is placed in the same chamber as the sample holder.
  • the vacuum chamber of the high vacuum system uses a double chamber structure, ie An outer chamber and an inner chamber, wherein the ultraviolet lamp portion of the ultraviolet light source is installed in the outer chamber, and the emitted light passes through the quartz window of the inner chamber to be irradiated onto the sample holder filled with a certain pressure of oxygen .
  • the ultraviolet lamp has a power of 150 W.
  • the ultraviolet lamp emits ultraviolet light of mainly 184.9 nm and 253.7 nm.
  • an ultraviolet/ozone surface cleaning and oxidatively modified low vacuum apparatus system is preferably provided.
  • the system mainly includes vacuum chamber, ultraviolet light source, sample holder, vacuum system, air pressure monitoring system and water cooling system.
  • the specific features are as follows:
  • the vacuum chamber is mainly made of two layers of materials: the inner layer is a highly reflective aluminum plate, and the outer layer is a stainless steel rib; the purple light source includes an ultraviolet lamp and a control power source, and the ultraviolet lamp is installed at the top of the vacuum chamber, and is externally controlled. Power connection
  • the sample holder is located directly below the ultraviolet tube;
  • a vacuum system is connected to the vacuum chamber, and the vacuum system is used for quickly and effectively evacuating the gas before and after the ultraviolet photochemical reaction;
  • An air pressure monitoring system is connected to the vacuum chamber, and the air pressure monitoring system is used for effectively controlling the gas pressure in the true cavity during the photochemical reaction process;
  • the water cooling system is placed on the upper part of the UV lamp, and the water cooling system is used to prevent the heat buildup in the UV lamp and the chamber from increasing.
  • the ultraviolet lamp tube is fixed to the top of the inside of the vacuum chamber by an aluminum reflector.
  • the UV tube has a diameter of 18 mm and is shaped as a hairpin structure and is bent into a radiation area of 200 mm * 200 mm.
  • the height of the sample holder is continuously adjustable over a range to effectively control the intensity of the photochemical reaction.
  • the sample holder is mainly made of highly reflective aluminum material and can be lifted and lowered within a range of 60 mm, and the closest distance to the lower end surface of the ultraviolet lamp tube is 10 mm.
  • the vacuum system includes a mechanical pump and a vacuum gauge connected to the vacuum chamber, the vacuum system providing a low vacuum to effectively prevent bursting caused by excessive pressure inside and outside the UV tube.
  • the air pressure monitoring system comprises an air inlet, an air outlet, a gas flow meter and a barometer, wherein the gas flow meter is disposed between the air inlet and the vacuum chamber to effectively adjust the gas pressure in the chamber, and the air pressure gauge is disposed at At the top of the vacuum chamber, the vacuum chamber discharges gas through the air outlet to effectively relieve pressure.
  • a plurality of reserved ports disposed on the vacuum chamber are further included. They can effectively expand the functions of the equipment, such as the control and supervision of parameters such as ozone concentration and temperature.
  • the above method for using the ultraviolet/ozone surface cleaning and oxidatively modified low vacuum device includes the following steps: Step 1: sequentially turn on the main power source and the vacuum gauge, open the oxygen valve, and fill the vacuum chamber with oxygen; when the air pressure is slightly more than one After the atmospheric pressure, close the oxygen valve and open the vacuum chamber door;
  • Step 2 Place the sample on the sample holder, adjust the distance between the sample and the lower surface of the UV tube, and close the vacuum chamber door;
  • Step 3 sequentially turn on the water cooling system and the mechanical pump power supply of the vacuum chamber, and after the vacuum degree reaches 1 Pa, close the vacuum suction valve;
  • Step 4 Open the oxygen inflation valve and the gas flow meter, and the gas pressure in the chamber reaches 0.15 MPa, and the gas inlet valve is closed;
  • Step 5 Turn on the main power of the ultraviolet light source, set the light intensity and time, and activate the ultraviolet light switch; Step 6: After the ultraviolet light is finished, turn off the main power of the ultraviolet light source;
  • Step 7 Open the mechanical pump and the vacuum valve in turn, and wait until the air pressure in the vacuum chamber drops to 2 Pa, and close the vacuum valve and the mechanical pump;
  • Step 8 Repeat step 1) to remove the sample
  • Step 9 Repeat step 7) to maintain the vacuum inside the chamber
  • Step 10 Turn off the mechanical pump, vacuum gauge, and water cooling system in sequence.
  • the low vacuum device system has the following beneficial effects:
  • the technical solution of the single chamber vacuum system provided by the invention is that the ultraviolet lamp tube and the sample holder are placed in the same vacuum chamber, and the temperature of the ultraviolet lamp tube and the vacuum chamber are effectively controlled by the water cooling system, thereby effectively reducing the equipment cost. .
  • the vacuum system is used to quickly and effectively discharge the gas before and after the reaction, which not only enables relatively precise control of the oxidation reform process, but also saves gas usage and reduces the cost of use.
  • the ultraviolet light/ozone surface cleaning and oxidation modified vacuum equipment system provided by the invention has important application value in the fields of surface cleaning and oxidation modification of materials, optoelectronic components and the like.
  • an ultraviolet/ozone surface cleaning and oxidation-modified high vacuum apparatus system which includes not only a vacuum chamber, an ultraviolet light source, a sample holder, a vacuum system, a gas pressure monitoring system, and a water cooling system. It also includes an annealing system with a chemical vapor phase treatment and an electronic component test system.
  • the vacuum chamber is filled with a certain pressure of oxygen, which is irradiated by ultraviolet light to generate ozone and oxygen atoms, and the surface of the sample on the sample holder is subjected to dry cleaning and oxidative modification.
  • the annealing system is capable of annealing the sample in a gas atmosphere.
  • the electronic component test system is capable of in situ electrical properties of the electronic component The specific characteristics are as follows:
  • the vacuum chamber is a double chamber structure, that is, including an outer chamber and an inner chamber.
  • the outer chamber is mainly made of stainless steel
  • the inner chamber is made of quartz and stainless steel.
  • the upper portion of the inner chamber is mainly made of quartz material, the lower portion is made of stainless steel material, and the top of the inner chamber has a quartz window with high transmittance at wavelengths of 184.9 nm and 253.7 nm, the quartz window
  • the size of the inner chamber is not less than the inner diameter of the inner chamber, so as to effectively prevent the generation of the dark area of the photochemical reaction of the inner chamber oxygen under the ultraviolet light, the gas input port and the gas output port are disposed in the lower part of the inner chamber. section;
  • the purple light source comprises an ultraviolet lamp tube and a control power source, and the ultraviolet lamp tube is installed at the top of the vacuum outer chamber and connected to the external control power source;
  • the sample holder is located in the inner chamber directly below the ultraviolet lamp tube;
  • a vacuum system is connected to the vacuum chamber for quickly and efficiently evacuating gas in the inner chamber and the outer chamber before and after the ultraviolet photochemical reaction and providing a high vacuum working environment for the inner chamber;
  • An air pressure monitoring system is connected to the vacuum chamber, and the air pressure monitoring system is used for effectively controlling the gas pressure in the true cavity during the photochemical reaction process;
  • the water cooling system is installed inside the inner cavity, and the water cooling system is used to prevent the temperature of the ultraviolet lamp tube and the inner and outer chambers from accumulating, causing the temperature to rise continuously.
  • the ultraviolet lamp tube is fixed to the top of the chamber outside the vacuum chamber by an aluminum reflector.
  • the UV tube has a diameter of 16 mm and is shaped as a hairpin structure that is bent to a radiation area of 130 mm * 130 mm.
  • the sample holder is made of stainless steel, and its height can be adjusted by a control rod within a certain range (such as 60 mm) to realize and effectively control the ultraviolet photochemical surface treatment process, and the closest distance between the sample holder and the lower surface of the quartz window is 10 mm.
  • the lever is composed of two parts, an inner rod connected to the sample holder and located in the inner chamber, and an outer rod connected to the inner rod to the outside of the vacuum chamber.
  • the vacuum system includes a mechanical pump, a molecular pump, and a vacuum gauge that connect the vacuum chamber.
  • the low vacuum of the outer chamber can effectively avoid the burst caused by the excessive pressure inside and outside the UV lamp tube.
  • the inner chamber can meet the requirements of high oxidation degree for the oxidation modification of the material surface and the measurement of electrical properties.
  • the air pressure monitoring system comprises an air inlet, an air outlet, a gas flow meter and a barometer, wherein the gas flow meter is disposed between the air inlet and the inner chamber to effectively adjust the gas pressure of the inner chamber, the air pressure gauge
  • the air inlet port is disposed in the inner chamber, and the vacuum chamber discharges gas through the air outlet to effectively relieve pressure.
  • a plurality of reserved ports disposed on the vacuum chamber are further included. They can effectively expand the functions of the equipment, such as the control and monitoring of ozone concentration, temperature and other parameters.
  • the annealing system mainly comprises: a heating resistance wire outside the inner cavity and an electric control part thereof, and a water cooling system.
  • the electronic component test system mainly comprises: a lock-in amplifier, a voltage source and an ammeter, which can perform in-situ characterization of the electrical properties of the electronic component.
  • a stainless steel sample holder having a water cooling system is employed when characterizing the electrical properties of the electronic component.
  • the method of using the high vacuum device includes the following steps:
  • Step 1) sequentially open the vacuum power supply of the vacuum device, the vacuum gauge of the vacuum control system, and the nitrogen valve. After the air pressure in the vacuum chamber exceeds 1 atm, the nitrogen valve is closed, and the outer chamber and the inner chamber of the vacuum chamber are sequentially opened;
  • Step 2) Place the sample on the stainless steel sample holder of the inner chamber, and close the inner chamber cover and the outer chamber cover in turn;
  • Step 3) sequentially turn on the mechanical power supply of the inner chamber water cooling system and the vacuum pump system, when the vacuum After the degree is higher than 1 Pa, the molecular pump of the vacuum pump system is turned on;
  • Step 5 After irradiating UV lamp, UV lamp turned off the main power, the gas inner chamber outlet valve is opened, until the degree of vacuum reached 1 Pa-molecular pump is turned on, and then waits for the degree of vacuum reaches 2 * 10- 4 Pa, Turn off the molecular pump and mechanical pump in turn;
  • Step 6) Open the Ar gas flow meter and the H 2 gas flow meter.
  • the Ar and H 2 gas flow rates are 200 sccm and 100 sccm respectively; after the pressure reaches one atmosphere, the internal chamber heating device is turned on, and the control temperature is within 30 min. Raised to 310 V, and cooled under these conditions for two hours, the temperature is controlled to be 80 °C / hour;
  • Step 7) Turn on the mechanical pump and turn off the mechanical pump after the vacuum reaches 1 Pa.
  • Step 8) Open the nitrogen input valve, and open the outer chamber and the inner chamber in turn after the air pressure in the vacuum chamber is greater than 1 atm, and take out the sample;
  • Step 9) Open the mechanical pump and the molecular pump in sequence to maintain the vacuum state of the chamber;
  • Step 10) Close the vacuum chamber valve, and then turn off the molecular pump power supply, mechanical pump power supply, barometer, thermometer, water cooling system, and vacuum equipment main power.
  • the ultraviolet/ozone surface cleaning and oxidation modified high vacuum device system has the following beneficial effects:
  • the technical solution provided by the invention adopts a double chamber vacuum system, that is, the ultraviolet lamp tube and the sample holder are respectively placed in the outer chamber and the inner chamber, and the temperature of the inner chamber is effectively controlled by the heating and water cooling system, thereby Can better control the progress of the ultraviolet photochemical reaction.
  • the technical solution provided by the invention integrates ultraviolet photochemistry, chemical vapor phase dry surface treatment technology and in-situ testing technology of electronic components, and can realize effective cleaning and precise modification of materials and devices, and can also realize normal temperature and high temperature.
  • the in-situ detection and characterization of the electrical properties has important applications in the fields of materials and optoelectronics.
  • FIG. 1 is a view showing the structure of a low vacuum apparatus in a preferred embodiment of the present invention.
  • Fig. 2 is a view showing the structure of a high vacuum apparatus in a preferred embodiment of the present invention.
  • Figure 3 is a schematic view showing the structure of a ceramic base fixed on the sample holder.
  • 1 is an ultraviolet light source
  • connection port 16 is a connection port
  • the invention provides an ultraviolet light/ozone surface cleaning and oxidation modified vacuum device system, overcomes the problems existing in the surface treatment of the prior art, and realizes an ultraviolet light/ozone surface cleaning and oxidation modified vacuum device, which can be accurate
  • the process of controlling photochemical reactions has important application value in dry cleaning and surface oxidation modification of materials and devices.
  • the invention relates to an ultraviolet light/ozone surface cleaning and oxidation modified low vacuum device system, and the structure is as shown in FIG. 1 , mainly by vacuum chamber, ultraviolet light source, water cooling system, sample rack, vacuum system and air pressure monitoring. System composition.
  • the vacuum chamber consists of two layers of material: the inner layer is a highly reflective aluminum plate, the outer layer is a stainless steel rib, and a vacuum chamber door is placed.
  • the aluminum plate inside the cavity has high reflectivity to ultraviolet light and enhances the intensity of photochemical reaction; the stainless steel rib outside the cavity can withstand an external atmospheric pressure under internal vacuum conditions.
  • the ultraviolet lamp tube is fixed at the top of the inside of the vacuum chamber, and the water cooling system is arranged on the upper part of the ultraviolet lamp tube, and the sample holder is directly below.
  • the ultraviolet light source includes an ultraviolet lamp and a control power source.
  • the control power supply can control the switching of the UV lamp, the radiation intensity, the radiation time, and the like.
  • the UV lamp is a low-pressure mercury lamp, which is first fixed to an aluminum reflector, and then the reflector is fixed to the top of the vacuum chamber, which emits mainly 184.9 nm and 253.7 nm UV light.
  • It is placed in the upper part of the lamp tube in the chamber, and is mainly used to prevent the temperature of the ultraviolet lamp tube and the chamber from rising continuously, to prevent the ultraviolet lamp tube from bursting due to excessive pressure inside and outside, and to ensure the temperature stability in the chamber.
  • the vacuum system is composed of a mechanical pump and a vacuum gauge. When the mechanical pump is working, the background vacuum of the chamber can reach 1
  • the gas flow meter is placed at the inlet and the barometer is placed at the top of the chamber.
  • the gas flow meter can control the flow rate of the inflowing gas, and the vacuum degree of the inner chamber can be detected by the high and low vacuum gauges, and the gas outlet can discharge the gas for effective pressure relief.
  • step 1) Repeat step 1) and take out the sample.
  • step 7) to maintain the vacuum inside the chamber.
  • the design and installation of the UV lamp in the vacuum chamber of the present invention are as follows:
  • the UV lamp can be fabricated by the company with a power of 150 W, a lamp diameter of 18 mm, a hairpin structure, and a 200 mm*200 mm radiant area.
  • the UV lamp is first fixed on the aluminum reflector, and then The aluminum reflector is fixed to the top of the chamber.
  • the power control part of the UV lamp includes a main power switch, an ultraviolet light on switch, and a time adjustment button.
  • the ultraviolet light/ozone surface cleaning and oxidation modified high vacuum equipment system provided by the invention is integrated with the chemical gas coherent surface treatment and electrical property testing function, and the specific structure is shown in FIG. 2 .
  • the vacuum apparatus includes not only a vacuum chamber, an ultraviolet light source, a sample holder, a vacuum system, a gas pressure monitoring system, a water cooling system, but also an annealing system having a chemical vapor phase treatment and an electronic component testing system. These components are described below.
  • the ultraviolet light source system includes a UV lamp control power source and an ultraviolet lamp tube, wherein:
  • the UV lamp control power supply can control the opening and extinction of the UV lamp, the radiation intensity, and the radiation time.
  • the UV lamp is a low-pressure mercury lamp, which is first fixed to an aluminum reflector, and then the reflector is fixed to the top of the outer chamber.
  • the light source emits ultraviolet light of mainly 184.9 nm and 253.7 nm.
  • the vacuum chamber includes an outer chamber and an inner chamber, wherein:
  • the outer chamber is made of stainless steel, and the upper end surface is fixed with an ultraviolet lamp. After the UV lamp is turned on, the vacuum environment of the external chamber can effectively reduce the absorption of ultraviolet light by gas molecules, avoid unnecessary ozone generation and possible impact on the surrounding environment.
  • the inner chamber is divided into two parts: a quartz chamber and a stainless steel chamber.
  • the upper quartz chamber is mainly made of quartz material, and the lower stainless steel chamber is mainly made of stainless steel.
  • a high-purity quartz window is placed at the top of the inner chamber, and a built-in liftable sample rack, a gas input port, a gas output port, and the like are built in.
  • the quartz window has a light transmission size not less than the inner chamber diameter and is fixed on the stainless steel flange. It can transmit 184.9 nm and 253.7 nm ultraviolet light to reduce the unevenness of ozone generated in the inner chamber.
  • the sample holder of the inner chamber is made of stainless steel and has a closest distance of 10 mm from the lower end of the quartz window.
  • the sample holder is connected to the external environment of the device via a lever and can be raised and lowered within 60 mm.
  • the stainless steel chamber portion at the lower end of the inner chamber has a gas input port and a gas output port.
  • the vacuum system includes a vacuum pump system and a vacuum equipment control system.
  • the vacuum pump system is mainly composed of a two-stage pump, that is, a mechanical pump and a molecular pump, and the background vacuum can reach Ij 2*10 - 4 Pa.
  • the vacuum equipment control system mainly includes a gas flow meter, a vacuum gauge, a temperature control system, and a water cooling system.
  • the gas flow meter can control the flow of gas into the inner chamber, and the vacuum of the inner chamber can be determined by the high and low vacuum gauges. Detection, monitoring of gas parameters.
  • Electronic component test systems primarily provide lock-in amplifiers, voltage sources, and ammeters that enable in-situ characterization of the electrical properties of electronic components.
  • the inner chamber to achieve a vacuum of 2 * 10- 4 Pa, the power open electronic device testing system, the conductive properties at room temperature under high vacuum before alkenyl nanoelectronics test surface treatment of graphite.
  • Test graphene electronic component again after 8) UV irradiation, the UV lamp off control power supply, a gas outlet valve open interior chamber, the degree of vacuum reached 1 Pa to be open-molecular pump, a vacuum of 2 * 10- 4 Pa Conductivity, characterizing the effect of UV/ozone modification on the electrical conductivity of graphene electronic components.
  • the outer chamber has a cylindrical structure and is made of a stainless steel material with a sealing cover. It has a total height of 400 mm, an internal diameter of 300 mm and a wall and top cover thickness of 6 mm.
  • the UV lamp has a power of 150 W, a lamp diameter of 18 mm, a hairpin structure, and a curvature of 120 mm*120 mm.
  • the UV lamp is first attached to an aluminum reflector and then the aluminum reflector is attached to the inside of the outer chamber seal.
  • the UV lamp control power supply part of the UV lamp includes a main switch, an ultraviolet light on switch, and a time adjustment button.
  • the design and fabrication process of the inner chamber, quartz window, heating and water cooling system of the present invention are as follows:
  • the inner chamber is mainly made of quartz material and has a cylindrical structure with a total height of 130 mm, an inner diameter of 80 mm and a cavity wall thickness of 8 mm.
  • the ultraviolet light transmission window at the top of the inner chamber is made of high-quality quartz material with an outer diameter of 100 mm, a light transmission diameter of 80 mm and a thickness of 10 mm.
  • the seal is embedded in a stainless steel flange. Fixed holes and seals are placed on the flange. A heating coil and a water cooling device are disposed around the outer wall of the adjacent inner cavity.
  • the upper surface of the inner chamber quartz window is 10 mm from the lowermost end of the tube.
  • the sample holder has a diameter of 60 mm and is connected to the control rod. It can enter the inner chamber from the bottom of the vacuum device and the control rod can be moved up and down within 60 mm.
  • An insulated and thermally conductive ceramic plate with a diameter of 60 mm and a thickness of 2 mm is first fixed on the sample holder, and then a specially designed and processed ceramic base is fixed thereon.
  • the ceramic base 18 has 24 foot pins 19, as shown in the structural diagram of Figure 3. The lower end of the foot is connected to the built-in wire, and the upper end is inserted into the chip carrier to which the electronic component is connected, so that the electronic component can be connected to the external electronic device.
  • the stainless steel lever has a length of 350 mm, and the inner and outer rods are 12 mm in diameter.
  • the outer side of the rod has threads and snaps, which can be controlled to rise and fall within 60 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

一种紫外光/臭氧表面清洗和氧化改性真空设备系统,包括:真空腔室、紫外光源(1)、样品架(14)、真空系统、气压监控系统和水冷系统(3)。真空设备可细分为:低真空设备系统,其为单真空腔室,紫外光源(1)和样品架(14)架置于同一腔室内;高真空系统,其为双真空腔室,紫外光源(1)位于外腔室(11),样品架(14)位于内腔室(15),紫外光源(1)通过石英窗口(12)照射于内腔室(15)的样品架(14)上。能够有效排除光反应前后真空腔室的气体,监控腔室内气体压强,准确控制紫外光/臭氧对材料的表面清洗和氧化改性过程,并实现与其它技术的集成,在材料的表面清洗、改性以及电子元件的电学性质原位表征等方面具有重要的应用价值。

Description

紫外光 /臭氧表面清洗和氧化改性真空设备系统 技术领域
本发明涉及材料和器件的紫外光化学干法表面处理技术, 更具体地说, 涉及集紫外 光 /臭氧表面清洗与氧化改性真空设备系统。
背景技术
紫外光 /臭氧表面处理技术能够有效清除大多数金属、 半导体和绝缘材料的有机污 染物,它在材料生长、表面改性和器件制备等基础科研和产业应用领域发挥着重要作用。 紫外光 /臭氧表面处理技术不仅对基底具有清洗效应, 氧原子的强氧化性还能够将一些 金属 (譬如银、 铝等)和碳族材料(如石墨烯、 碳纳米管)等表面氧化, 实现材料改性。 紫外光 /臭氧表面处理技术起源于二十世纪七十年代, 目前它已经从最初的紫外光照射 空气发展为紫外光照射氧气, 以降低空气中水汽、 二氧化氮等气体对光化学反应过程的 影响, 有效提高光清洗和氧化改性效率。
紫外光表面清洗与氧化改性设备主要是基于低压汞灯能发射出主要波长位于 184. 9 nm和 253. 7 nm的紫外光, 氧气在这两种紫外光照射下生成氧原子和臭氧, 并与处于激 发态的有机分子或一些特殊材料发生光化学反应,达到表面清洗和光化学氧化改性的目 的。 在这种光化学处理过程中, 尽可能减少环境中非氧气分子的影响, 并有效控制和表 征光化学反应的进程, 对获得高可控、 高质量的样品至关重要。
目前常用的紫外光清洗或表面氧化处理技术是将紫外灯与样品架置于同一普通腔 室中。 一种工作过程是: 向腔室内通入一定量的氧气后开启紫外光源, 反应结束后, 放 置几个小时待臭氧转化为氧气, 然后再将样品取出。 另一种是通过通入一定量的氧气将 腔室内原有的空气排空后开启紫外光源, 待光化学反应结束后, 再次通入一定量的气体 将反应生成气体排出腔室。第一种方法的光化学反应过程受到腔室内残留空气的影响较 大, 此外, 反应后腔室内残存的臭氧和氧原子仍能继续与样品发生反应, 因而不易控制 光清洗与氧化的程度。 如果反应结束后立刻强行打开容器以取出样品, 将会对人体健康 造成伤害。 第二种方法无论是在排除腔室内原有的空气, 还是在反应结束后迅速排除腔 室内气体方面均有一定的改进。 但是, 尽管如此, 腔室内仍然会残留大量的空气分子, 从而影响紫外光表面清洗和氧化改性过程, 并降低其可控性。 与此同时, 第二种方法的 另一个弊端是光化学反应前后需要通入大量的气体以有效排放腔室内原有的气体,这会 造成大量气体资源的浪费。 由于目前的紫外光 /臭氧表面清洗和氧化改性技术采用的是 普通反应腔室, 其不能实现气体的良好密封以及反应参数的有效监测和控制。 并且, 目 前这种技术很难与其它技术有效集成, 因而在前沿研究和未来产业化应用中受到诸多限 制。
为解决上述紫外光 /臭氧表面清洗和氧化改性技术中存在的问题和瓶颈, 本发明将 研制紫外光 /臭氧表面清洗和氧化改性真空设备系统。 具体来说, 该套系统包括两种: 低真空设备系统和高真空设备系统,分别对应单腔室结构的真空腔室和双腔室结构的真 空腔室。 低真空设备光化学反应效率高、 操作方便。 高真空设备系统反应相对柔和、 可 控性更强, 并且易于与其它技术 (如化学气相表面处理、 电子元件测试系统)集成, 能 更有效对样品表面清洗、 氧化改性以及开展物性的原位表征。
发明内容
本发明针对上述现有紫外光 /臭氧表面处理技术中存在的问题和瓶颈,提供一种紫外 光 /臭氧表面清洗和氧化改性真空设备系统,有效实现材料和器件的干法表面清洗和氧化 改性, 其操作方便、 可控性强, 并易于与其它技术 (如化学气相表面处理、 电子元件测 试系统) 集成, 在材料、 光电子元件等清洗和氧化改性领域具有重要价值。
紫外光 /臭氧表面清洗和氧化改性真空设备系统, 主要由真空腔室、 紫外光源、 样 品架、 真空系统、 气压监控系统和水冷系统组成。 其中, 所述真空腔室为光化学反应 发生的场所。 所述紫外光源包括紫外灯控制电源和紫外灯管, 紫外灯管固定于真空腔室 内部顶端。样品架位于紫外灯管正下方, 其高度可以连续调节, 用于有效控制光化学 反应过程。 所述真空系统用于产生并控制真空腔室内的真空度, 并利用气压监控系统 以有效控制光化学反应时腔内气体压强。水冷系统用于防止紫外灯管和腔室内热量积 聚引起温度持续升高。 光化学反应过程中, 所述真空腔室充有一定压强的氧气, 该氧 气经紫外光照射生成臭氧和氧原子,对所述样品架上的样品表面实施干法清洗和氧化改 性。
具体来说紫外光 /臭氧表面清洗和氧化改性真空设备系统进一步可以细分为两种:即 低真空设备系统和高真空设备系统。 低真空设备系统的真空腔室采用单腔室结构, 紫 外光源与样品架置于同一腔室内。 高真空设备系统的真空腔室采用双腔室结构, 即 外腔室和内腔室, 紫外光源的紫外灯管部分安装于所述外腔室, 其发射的光通过所述 内腔室的石英窗口, 照射到所述充入一定压强氧气的样品架上。
优选地, 所述紫外灯管的功率为 150 W。
优选地, 所述紫外灯管发射主要为 184.9 nm和 253.7 nm的紫外光。
根据本发明的一个方面, 优选地提供一种紫外光 /臭氧表面清洗和氧化改性低真空 设备系统。 该系统主要包括真空腔室、 紫外光源、 样品架、 真空系统、 气压监控系统 和水冷系统, 具体特征如下:
真空腔室主要由双层材料制作: 内层为高反射铝板, 外层为不锈钢加强筋; 紫灯光源包括紫外灯管和控制电源, 紫外灯管安装于真空腔室内部顶端, 并与外部 控制电源连接;
样品架位于紫外灯管正下方;
真空系统连接所述真空腔室, 真空系统用于快速、 有效排空紫外光化学反应前后的 气体;
气压监控系统连接所述真空腔室,气压监控系统用于有效控制光化学反应过程中真 空腔室内气体压强;
水冷系统设置在紫外灯管的上部,水冷系统用于防止紫外灯管和腔室内热量积聚引 起温度持续升高。
优选地, 紫外灯管通过铝制反射板固定于真空腔室内部顶端。
优选地, 紫外灯管直径为 18 mm, 形状为 hairpin结构, 弯曲成 200 mm*200 mm辐 射面积。
优选地, 样品架的高度在一定范围内连续可调, 以有效控制光化学反应的强度。 优选地, 样品架主要由高反射铝材料制作, 能够在 60 mm范围内升降, 距紫外灯 管下端面最近距离为 10 mm。
优选地, 真空系统包括连接真空腔室的机械泵和真空计, 真空系统提供低真空度以 有效避免紫外灯管内外压力过大而引起的爆裂。
优选地, 气压监控系统包括进气口、 出气口、 气体流量计和气压计, 其中, 气体流 量计设置于进气口和真空腔室之间, 以有效调节腔室内气体压强, 气压计设置于真空腔 室的顶端, 真空腔室通过出气口排放气体以有效泄压。
优选地,还包括设置于真空腔室上的若干预留口。它们可以有效扩充该设备的功能, 如实现臭氧浓度、 温度等参数的控制和监《 上述紫外光 /臭氧表面清洗和氧化改性低真空设备的使用方法, 包括如下步骤: 步骤 1 : 依次打开主电源和真空计, 打开氧气阀门, 将氧气充入真空腔室内; 当气 压略超过一个大气压后关闭氧气阀门, 打开真空腔室门;
步骤 2: 将样品放置于样品架上, 调节样品与紫外灯管下表面的距离, 关闭真空腔 室门;
步骤 3: 依次开启真空腔室的水冷系统和机械泵电源, 待真空度达到 1 Pa后, 关闭 真空抽气阀门;
步骤 4: 打开氧气充气阀和气体流量计, 待腔体内气压达到 0. 15 MPa, 关闭气体输 入阀门;
步骤 5: 开启紫外光源的主电源, 设置光照强度和时间, 启动紫外光照射开关; 步骤 6: 待紫外光照射结束后, 关闭紫外光源的主电源;
步骤 7: 依次打开机械泵和真空阀门, 待真空腔室内气压降至 2 Pa, 关闭真空阀门 和机械泵;
步骤 8: 重复步骤 1 ), 取出样品;
步骤 9: 重复步骤 7), 保持腔室内真空状态;
步骤 10: 依次关闭机械泵、 真空计和水冷系统。
与已有技术相比, 该低真空设备系统具有以下有益效果:
本发明所提供的单腔室真空系统技术方案, 即将紫外灯管和样品架置于同一真空腔 室中, 通过水冷系统对紫外灯管以及真空腔室内温度给予有效控制, 从而可以有效降低 设备成本。 利用真空系统对反应前后的气体进行快速、 有效排放, 这不仅能够对氧化改 性过程实现比较精确控制, 而且能够节约气体使用量, 降低使用成本。 本发明提供的紫 外光 /臭氧表面清洗和氧化改性真空设备系统, 在材料、 光电子元件等表面清洗和氧化 改性领域具有重要的应用价值。
根据本发明的另一个方面, 优选地提供一种紫外光 /臭氧表面清洗和氧化改性高真 空设备系统, 它不仅包括真空腔室、 紫外光源、 样品架、 真空系统、 气压监控系统、 水冷系统, 还包括具备化学气相表面处理的退火系统和电子元件测试系统。 光化学反 应过程中,所述真空腔室充有一定压强的氧气,该氧气经紫外光照射生成臭氧和氧原子, 对所述样品架上的样品表面实施干法清洗和氧化改性。所述退火系统能够对样品在一定 气体氛围中进行退火处理。所述电子元件测试系统能够对电子元件的电学性质进行原位 具体特征如下:
真空腔室为双腔室结构, 即包括外腔室和内腔室。 外腔室主要由不锈钢材料制作, 内腔室由石英和不锈钢材料制作;
优选地, 所述内腔室上部主要由石英材料制成, 下部由不锈钢材料制成, 所述内腔 室顶部具有在波长 184.9 nm和 253.7 nm处高透过率的石英窗口, 所述石英窗口的尺寸 不小于所述内腔室的内部孔径, 以有效避免内腔室氧气在紫外光照射下光化学反应暗区 的产生, 所述气体输入端口、 气体输出端口设置在所述内腔室下部不锈钢部分;
紫灯光源包括紫外灯管和控制电源, 紫外灯管安装于真空外腔室内部顶端, 并与外 部控制电源连接;
样品架位于紫外灯管正下方的内腔室;
真空系统连接所述真空腔室, 真空系统用于快速、 有效排空紫外光化学反应前后内 腔室和外腔室的气体以及为内腔室提供高真空工作环境;
气压监控系统连接所述真空腔室,气压监控系统用于有效控制光化学反应过程中真 空腔室内气体压强;
水冷系统设置在内腔室外围,水冷系统用于防止紫外灯管和内外两个腔室内热量积 聚引起温度持续升高。
优选地, 紫外灯管通过铝制反射板固定于真空外腔室内部顶端。
优选地, 紫外灯管直径为 16 mm, 形状为 hairpin结构, 弯曲成 130 mm*130 mm辐 射面积。
优选地, 所述样品架由不锈钢材料制作, 其高度可通过控制杆在一定 (如 60 mm) 范围内调节, 以实现和有效控制紫外光化学表面处理过程, 样品架与石英窗口下表面最 近距离为 10 mm。所述控制杆由两部分组成, 即与所述样品架连接且位于所述内腔室中 的内杆以及与所述内杆相连通往真空腔室外部的外杆。 优选地, 真空系统包括连接真空 腔室的机械泵、 分子泵和真空计。 外腔室低真空度可以有效避免紫外灯管内外压力过大 而引起的爆裂, 内腔室可以满足对材料表面氧化改性以及电学性质测量对高真空度的要 求。
优选地, 气压监控系统包括进气口、 出气口、 气体流量计和气压计, 其中, 气体流 量计设置于进气口和内腔室之间, 以有效调节内腔室的气体压强, 气压计设置于内腔室 的进气端口, 真空腔室通过出气口排放气体以有效泄压。 优选地,还包括设置于真空腔室上的若干预留口。它们可以有效扩充该设备的功能, 如实现臭氧浓度、 温度等参数的控制和监测。 所述退火系统主要包括: 内腔室外部加热电阻丝及其电学控制部分、 水冷系统。 所述电子元件测试系统主要包括: 锁相放大器、 电压源和电流计, 能够对电子元件 的电学性质进行原位表征。 优选地, 当对电子元件的电学性质进行表征时, 采用具有水 冷系统的不锈钢样品架。 该高真空设备的使用方法, 包括如下步骤:
步骤 1 ): 依次打开真空设备主电源、真空控制系统的真空计和氮气阀门, 真空腔室 内的气压超过 1 atm后关闭氮气阀门, 依次打开真空腔室的外腔室和内腔室;
步骤 2): 将样品置于内腔室的不锈钢样品架上, 依次关闭内腔室盖、 外腔室盖; 步骤 3): 依次开启内腔室水冷系统和真空泵系统的机械泵电源, 当真空度高于 1 Pa 后, 开启真空泵系统的分子泵;
步骤 4): 内腔室本底真空度达到 2*10—4 Pa后, 关闭分子泵和内腔室气体输出阀门, 打开真空控制系统的氧气气体流量计; 内腔室达到 1 atm压强后, 关闭气体输入阀门, 开启紫外灯管主电源, 设置光照时间, 启动紫外光源的电源控制开关。
步骤 5): 紫外灯管照射结束后, 关闭紫外灯管主电源, 打开内腔室气体输出阀门, 待真空度达到 1 Pa后开启分子泵, 再等待真空度达到 2*10—4 Pa后, 依次关闭分子泵和 机械泵;
步骤 6): 打开 Ar气体流量计和 H2气体流量计, Ar和 H2气体流量分别为 200 sccm 和 100 sccm; 待压强达到一个大气压后, 开启内腔室加热装置, 控制温度在 30 min内 升至 310 V, 并在此条件下保温两个小时后降温, 控制降温速度为 80 °C/小时;
步骤 7): 开启机械泵, 待真空度达到 1 Pa后关闭机械泵;
步骤 8): 打开氮气输入阀门, 真空腔室内气压大于 1 atm后依次打开外腔室和内腔 室, 取出样品;
步骤 9): 依次打开机械泵和分子泵, 保持腔室真空状态;
步骤 10): 关闭真空腔室阀门, 然后再依次关闭分子泵电源、机械泵电源、气压计、 温度计、 水冷系统和真空设备主电源。
与已有技术相比, 该紫外光 /臭氧表面清洗和氧化改性高真空设备系统具有以下有 益效果: 本发明所提供的技术方案采用双腔室的真空系统, 即将紫外灯管和样品架分别置于 外腔室和内腔室中, 并通过加热和水冷系统对内腔室温度给予有效控制, 从而能更好地 控制紫外光化学反应的进程。
本发明所提供的技术方案集紫外光化学、化学气相干法表面处理技术和电子元件原 位测试技术于一体, 它能够实现对材料和器件的有效清洗以及精确改性, 而且还能够实 现常温和高温下电学性质的原位探测和表征,在材料、光电子技术领域具有重要的应用。 附图说明
图 1表示本发明的优选例中低真空设备结构示意图。
图 2表示本发明的优选例中高真空设备结构示意图。
图 3是样品架上固置的陶瓷底座结构示意图。
图中:
1为紫外光源;
2为气压计;
3为水冷系统;
4为真空计;
5为备用口 A;
6为出气口;
7为气体流量计;
8为进气口;
9为备用口 B;
10为外腔室盖;
11为外腔室;
12为石英窗口;
13为紫外灯管;
14为样品架;
15为内腔室;
16为连接端口;
17为操纵杆;
18为陶瓷底座; 19为脚标。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细描述。 以下实施例将有助于本 领域的技术人员进一步理解本发明, 但不以任何形式限制本发明。 应当指出的是, 对本 领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。 这些都属于本发明的保护范围。
本发明提供紫外光 /臭氧表面清洗和氧化改性真空设备系统,克服现有技术在样品表 面处理中存在的问题,实现一种紫外光 /臭氧表面清洗与氧化改性的真空设备,其可以准 确地控制光化学反应的进程, 在材料和器件的干法清洗、 表面氧化改性方面具有重要应 用价值。
第一实施例:
本发明中所设计的一种紫外光 /臭氧表面清洗和氧化改性低真空设备系统,结构如图 1所示, 主要由真空腔室、 紫外光源、 水冷系统、 样品架、 真空系统和气压监控系统组 成。
1、 真空腔室
真空腔室由两层材料组成: 内层为高反射铝板, 外层为不锈钢加强筋, 置有真空腔 室门。 腔体内部铝板对紫外光具有高反射率, 提高了光化学反应的强度; 腔体外部不锈 钢加强筋可以承受内部真空状况下外部一个大气压的压力。真空腔室内部顶端固定紫外 灯管, 紫外灯管的上部置有水冷系统, 正下方为样品架。
2、 紫外光源包括紫外灯管和控制电源
控制电源能够控制紫外灯的开关、 辐射强度、 辐射时间等。 紫外灯管为低压汞灯, 将其首先固定于铝制反光板上, 然后再将反光板固定于真空腔室顶端, 灯管能够发射主 要为 184.9 nm和 253.7 nm的紫外光。
3、 水冷系统
其置于腔室内灯管上部, 主要用于防止紫外灯管以及腔室内温度不断升高, 避免紫 外灯管因内外压力过大而爆裂, 并保障腔室内温度稳定性。
4、 样品架
其主要由高反射铝材料制作, 能够在 60 mm范围内升降, 距紫外灯管下端面最近距 离为 10 mm。 5、 真空系统
真空系统由机械泵和真空计构成,所述机械泵工作时,腔室内本底真空度可以达到 1
Pa。
6、 气压监控系统
主要包括进气口、 出气口、 气体流量计和气压计。
所述气体流量计置于进气口, 所述气压计置于腔室顶端。
当内腔室充入一定气体时, 气体流量计可以控制流入气体的流量, 内腔室的真空度 可以由高、 低真空计检测, 出气口可以排放气体, 进行有效泄压。
对于上述紫外光 /臭氧表面清洗与氧化改性真空设备,下面以石墨烯为例,具体说明 其在样品表面氧化改性过程中的主要步骤:
1 ) 依次打开主电源和真空计, 打开氧气阀门, 将氧气充入真空腔室内。 当气压略 超过一个大气压后关闭氧气阀门, 打开真空腔室门。
2)将转移有石墨烯的 SiO Si基底放置于样品架上, 调节样品与紫外灯管下表面的 距离约为 50 mm, 关闭真空腔室门。
3 ) 依次开启真空腔室的水冷系统和机械泵电源, 待真空度达到 1 Pa后, 关闭真空 抽气阀门。
4) 打开氧气充气阀和气体流量计, 待腔体内气压达到 0.15 MPa后, 关闭气体输入 阀门。
5 ) 开启紫外灯管主电源, 设置光照强度和时间, 启动紫外光照射开关。
6) 待紫外光照射结束后, 关闭紫外灯主电源。
7 ) 依次打开机械泵和真空阀门, 待真空腔室内气压降至 2 Pa后, 关闭真空阀门和 机械泵。
8 ) 重复步骤 1 ), 取出样品。
9) 重复步骤 7), 保持腔室内真空状态。
10) 关闭机械泵, 依次关闭真空计和水冷系统。
本发明中真空腔室内的紫外灯管的设计和安装具体如下:
紫外灯管可由公司加工制作, 其功率为 150 W, 灯管直径为 18 mm, 形状为 hairpin 结构, 弯曲成 200 mm*200 mm辐射面积。 紫外灯管首先固定于铝制反射板上, 然后再 将铝制反射板固定于腔室内部顶端。 紫外灯管的电源控制部分包括主电源开关、 紫外灯 开启开关、 时间调节按钮。
第二实施例:
根据本发明所提供的紫外光 /臭氧表面清洗和氧化改性高真空设备系统,并与化学气 相干法表面处理和电学性质测试功能集成, 具体结构如图 2所示。 所述真空设备不仅包 括真空腔室、 紫外光源、 样品架、 真空系统、 气压监控系统、 水冷系统, 还包括具 有化学气相表面处理的退火系统和电子元件测试系统。 如下对这些组成部分进行描述。
具体地, 紫外光源系统包括紫外灯控制电源和紫外灯管, 其中:
紫外灯控制电源能够控制紫外灯管的开启和熄灭、 辐射强度、 辐射时间等。 紫外灯 管为低压汞灯, 将其首先固定于铝制反光板上, 然后再将反光板固定于外腔室顶端, 光 源能够发射主要为 184.9 nm和 253.7 nm的紫外光。
更为具体地, 真空腔室包括外腔室和内腔室, 其中:
外腔室由不锈钢材料制作, 其上端面固定紫外灯管。 紫外灯管开启后, 外腔室的真 空环境可以有效降低气体分子对紫外光的吸收,避免不必要的臭氧产生以及可能对周围 环境的影响。
内腔室分为石英腔室和不锈钢腔室两部分, 上部的石英腔室主要由石英材料制成, 下部的不锈钢腔室主要为不锈钢材料。 内腔室顶端安置高纯度石英窗口, 内置可升降样 品架以及气体输入端口、 气体输出端口等。
石英窗口透光尺寸不小于内腔室内径, 固定于不锈钢法兰上, 能透过 184.9 nm和 253.7 nm紫外光, 降低内腔室臭氧产生的不均匀性。
内腔室的样品架由不锈钢材料制作, 距石英窗口下端面最近距离为 10 mm。样品架 通过控制杆与设备外部环境连接, 能够在 60 mm范围内升降。
内腔室下端的不锈钢腔室部分具有气体输入端口、 气体输出端口。
真空系统包括真空泵系统和真空设备控制系统。
进一步地, 真空泵系统主要由两级泵, 即机械泵和分子泵组成, 本底真空度可以达 至 Ij 2*10- 4 Pa。
真空设备控制系统主要包括气体流量计、 真空计、 温度控制系统和水冷系统。 气体流量计可以控制流入内腔室气体的流量, 内腔室的真空度可以由高、 低真空计 检测, 实现气体参数监控。
电子元件测试系统主要是提供锁相放大器、 电压源和电流计, 能够对电子元件的电 学性质进行原位表征。
对于上述紫外光 /臭氧表面清洗与氧化改性高真空设备, 下面以 Si /Si02基底上的石 墨烯纳米电子元件为例, 具体说明对其清洗和电学性质测试的主要步骤:
1 )依次打开主电源、真空计和氮气阀门, 当真空腔室内的气压略超过 l atm时关闭 氮气阀门, 依次打开真空设备的外腔室和内腔室。
2) 将石墨烯电子元件置于内腔室样品架上, 依次关闭内、 外腔室盖。
3 ) 依次开启内腔室水冷系统和机械泵电源, 当真空度高于 l Pa后, 开启分子泵。
4) 内腔室本底真空度达到 2*10—4Pa后, 打开电子元件测试系统电源, 测试石墨烯 纳米电子元件表面处理前在高真空环境下的室温导电性质。
5 ) 打开 Ar和 ¾气体流量计, 如 Ar和 H2气体流量分别为 200 sccm和 100 sccm。 待压强达到一个大气压后,开启内腔室加热控制设备,控制温度在 30 min内升至 310 。C , 并在此条件下保温两个小时后降温, 控制降温速度为 80 °C/小时。
6)打开内腔室气体输出阀门,待真空度达到 1 Pa后开启分子泵,当真空度达到 2*10—4 Pa后再次测试石墨烯电子元件的导电性能, 表征紫外光 /臭氧表面氧化改性对石墨烯电 子元件导电性能的影响。
7 )关闭分子泵和内腔室气体输出阀门, 打开氧气气体流量计。 内腔室达到 l atm后 关闭气体输入阀门, 开启紫外灯管主电源, 设置光照强度和时间, 启动紫外光照射电源 开关。
8 ) 紫外光照射结束后, 关闭紫外灯管控制电源, 打开内腔室气体输出阀门, 待真 空度达到 1 Pa后开启分子泵, 真空度达到 2*10—4 Pa后再次测试石墨烯电子元件的导电 性能, 表征紫外光 /臭氧改性对石墨烯电子元件导电性能的影响。
9) 开启机械泵, 待真空度达到 1 Pa后关闭机械泵。
10) 打开氮气输入阀门, 腔室内气压大于 1 atm后依次打开外腔室和内腔室, 取出 样品。
11 ) 依次打开机械泵和分子泵, 保持腔室真空状态。
12) 关闭真空腔室阀门, 然后再依次关闭分子泵电源、 机械泵电源、 气压计、 温度 计、 水冷系统和主电源。
本发明中外腔室及紫外灯管设计和制作过程具体如下:
外腔室为圆筒状结构, 由不锈钢材料制成, 上有密封盖。 其总高度为 400 mm, 内 径为 300 mm, 壁和上盖厚度均为 6 mm。
紫外灯管功率为 150 W, 灯管直径为 18 mm, 形状为 hairpin结构, 弯曲成 120 mm*120 mm辐射面积。 紫外灯管首先固定于铝制反射板上, 然后再将铝制反射板固定 于外腔室密封盖内部顶端。
紫外灯管的紫外灯控制电源部分包括主开关、 紫外灯开启开关、 时间调节按钮。 本发明中内腔室、 石英窗口、 加热和水冷系统的设计和制作过程如下:
内腔室主要由石英材料制作, 为圆筒状结构, 总高度为 130 mm, 内径为 80 mm, 腔壁厚度为 8 mm。内腔室顶部紫外光透射窗口采用高质量的石英材料,外径为 100 mm, 其透光直径为 80 mm, 厚度为 10 mm, 密封嵌于不锈钢法兰内。 法兰上置有固定孔和密 封圈。 近邻内腔室外壁周围置有加热线圈和水冷装置。
内腔室石英窗口上表面距离灯管最下端 10 mm。
本发明中内腔室控制杆和样品架的设计与加工过程具体如下:
样品架直径为 60 mm, 其与控制杆连接, 可以从真空设备底端进入内腔室, 并由控 制杆操纵样品架在 60 mm范围内升降。
样品架上首先固定一直径为 60 mm, 厚度为 2 mm的绝缘导热陶瓷平板, 然后其上 固定特殊设计与加工的陶瓷底座。陶瓷底座 18内置 24个脚标 19,具体如图 3结构示意 图。 其脚标下端与内置电线连接, 上端插入连接有电子元件的芯片载体后就可以实现电 子元件与外部电子设备连接。
不锈钢控制杆长度为 350 mm, 其内杆和外杆的直径均为 12 mm, 外杆侧端面有螺 纹和卡点, 可以控制在 60 mm范围内升降。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制。 尽管参照 实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 对本发明的技术方 案进行修改或者等同替换, 都不脱离本发明技术方案的精神和范围, 其均应涵盖在本发 明的权利要求范围当中。

Claims

权 利 要 求 书
1、 一种紫外光 /臭氧表面清洗和氧化改性真空设备系统, 其特征在于, 主要由真空 腔室、 紫外光源、 样品架、 真空系统和水冷系统组成, 其中, 所述真空腔室为光化学 反应发生的场所, 所述紫外光源包括紫外灯控制电源和紫外灯管, 紫外灯管固定于真空 腔室内部顶端, 样品架位于真空腔室内, 所述真空系统用于产生并控制真空腔室内的 真空度, 水冷系统用于防止紫外光源和真空腔室内热量积聚引起温度持续升高, 光化 学反应过程中, 所述真空腔室充有一定压强的氧气, 该氧气经紫外光照射生成臭氧和 氧原子, 对所述样品架上的样品表面实施干法清洗和氧化改性。
2、 根据权利要求 1所述的紫外光 /臭氧表面清洗和氧化改性真空设备系统, 其特征 在于,
-真空腔室采用单腔室结构, 紫外光源与样品架置于同一腔室内; 或者
-真空腔室采用双腔室结构, 即真空腔室包括外腔室和内腔室, 紫外光源安装于 所述外腔室, 紫外光源发射的光通过所述内腔室的石英窗口, 照射到所述充入一定压 强氧气的内腔室样品架上。
3、 根据权利要求 1所述的紫外光 /臭氧表面清洗和氧化改性真空设备系统, 其特征 在于, 所述紫外光源包括紫外灯管, 紫外灯管形状为 hairpin结构, 功率为 150 W, 发 射紫外光波长主要为 184. 9 ^!1和253. 7 歷, 所述紫外灯管通过铝制反射板固定于真空 腔室内部顶端。
4、 根据权利要求 1或 2所述的紫外光 /臭氧表面清洗和氧化改性真空设备系统, 其 特征在于, 还包括气压监控系统, 气压监控系统用于有效控制光化学反应时腔内气体压 强, 气压监控系统包括进气口、 出气口、 气体流量计和气压计, 其中, 气体流量计设置 于进气口和真空腔室之间, 以有效调节腔室内气体的压强, 气压计设置于真空腔室的顶 端, 真空腔室通过出气口排放气体进行有效泄压, 此外, 真空腔室上还设置有若干备用 端口。
5、 根据权利要求 2所述的紫外光 /臭氧表面清洗和氧化改性真空设备系统, 其特征 在于, 当真空腔室采用单腔室结构时, 所述真空系统主要由机械泵构成, 当真空腔室 采用双腔室结构时, 所述真空系统主要由两级泵构成, 即机械泵和分子泵。
6、 根据权利要求 2所述的紫外光 /臭氧表面清洗和氧化改性真空设备系统, 其特征 在于, 当真空腔室采用单腔室结构时, 所述真空腔室主要由双层材料制作: 内层为高反 射铝板, 外层为不锈钢加强筋; 其内置可调节样品架为高反射铝板。
7、 根据权利要求 2所述的紫外光 /臭氧表面清洗和氧化改性真空设备系统, 其特征 在于, 当真空腔室采用双腔室结构时, 所述内腔室上部主要由石英材料制成, 下部主要 为不锈钢材料制成, 所述内腔室顶部具有在波长 184. 9 nm和 253. 7 nm处高透过率的石 英窗口, 所述石英窗口的尺寸不小于所述内腔室的内部孔径, 以有效避免内腔室氧气在 紫外光照射下光化学反应暗区的产生, 所述进气口、 出气口设置在所述内腔室下部不锈 钢部分。
8、 根据权利要求 2所述的紫外光 /臭氧表面清洗和氧化改性高真空设备系统, 其特 征在于, 样品架位于紫外灯管正下方, 由不锈钢材料制作, 所述样品架的高度通过控制 杆在一定范围内能够连续调节, 以实现和有效控制紫外光化学反应过程; 所述控制杆由 不锈钢材料制作, 包括两部分, 即与所述样品架连接且位于所述内腔室的内杆以及与所 述内杆相连通往真空腔室外部的外杆。
PCT/CN2013/082969 2012-11-07 2013-09-05 紫外光/臭氧表面清洗和氧化改性真空设备系统 WO2014071769A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201210442424.4A CN102983064B (zh) 2012-11-07 2012-11-07 集紫外光/臭氧表面处理与电学性质原位测试的真空设备
CN201210442424.4 2012-11-07
CN201210462171.7A CN102969227B (zh) 2012-11-15 2012-11-15 集紫外光化学与化学气相干法表面处理的真空设备
CN201210462171.7 2012-11-15
CN201310242512.4 2013-06-18
CN201310242512.4A CN103337450B (zh) 2013-06-18 2013-06-18 紫外光/臭氧表面清洗与氧化改性真空设备及其使用方法

Publications (1)

Publication Number Publication Date
WO2014071769A1 true WO2014071769A1 (zh) 2014-05-15

Family

ID=50684020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082969 WO2014071769A1 (zh) 2012-11-07 2013-09-05 紫外光/臭氧表面清洗和氧化改性真空设备系统

Country Status (1)

Country Link
WO (1) WO2014071769A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183809A (ja) * 1988-01-19 1989-07-21 Babcock Hitachi Kk 光cvd装置
US20030192577A1 (en) * 2002-04-11 2003-10-16 Applied Materials, Inc. Method and apparatus for wafer cleaning
CN1511339A (zh) * 2001-04-06 2004-07-07 ���������ƴ���ʽ���� 半导体处理用紫外线辅助处理装置
CN102969227A (zh) * 2012-11-15 2013-03-13 上海交通大学 集紫外光化学与化学气相干法表面处理的真空设备
CN102983064A (zh) * 2012-11-07 2013-03-20 上海交通大学 集紫外光/臭氧表面处理与电学性质原位测试的真空设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183809A (ja) * 1988-01-19 1989-07-21 Babcock Hitachi Kk 光cvd装置
CN1511339A (zh) * 2001-04-06 2004-07-07 ���������ƴ���ʽ���� 半导体处理用紫外线辅助处理装置
US20030192577A1 (en) * 2002-04-11 2003-10-16 Applied Materials, Inc. Method and apparatus for wafer cleaning
CN102983064A (zh) * 2012-11-07 2013-03-20 上海交通大学 集紫外光/臭氧表面处理与电学性质原位测试的真空设备
CN102969227A (zh) * 2012-11-15 2013-03-13 上海交通大学 集紫外光化学与化学气相干法表面处理的真空设备

Similar Documents

Publication Publication Date Title
CN102969227B (zh) 集紫外光化学与化学气相干法表面处理的真空设备
KR101750633B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
CN103337450B (zh) 紫外光/臭氧表面清洗与氧化改性真空设备及其使用方法
TWI390552B (zh) Excimer lamp device
US20060263275A1 (en) Cabinet and sterilizing lamp
US20110056513A1 (en) Method for treating surfaces, lamp for said method, and irradiation system having said lamp
KR20150110315A (ko) 에칭 장치
CN102983064B (zh) 集紫外光/臭氧表面处理与电学性质原位测试的真空设备
JP6564663B2 (ja) エキシマランプ装置
TWI222133B (en) The method for forming the oxide film and the device thereof
TW200539268A (en) Ultraviolet ray generator, ultraviolet ray irradiation processing apparatus, and semiconductor manufacturing system
CN203521379U (zh) 紫外光和臭氧表面清洗与氧化改性真空设备
JP3822804B2 (ja) 半導体装置の製造方法
KR20190024666A (ko) 열처리 장치 및 열처리 방법
CN202948906U (zh) 一种对电子元件改性与电学性质表征的设备
JP5118337B2 (ja) エキシマ真空紫外光照射処理装置
WO2002103749A1 (fr) Lampe a decharge et systeme d'irradiation aux rayons ultraviolets et leur procede de fonctionnement
WO2014071769A1 (zh) 紫外光/臭氧表面清洗和氧化改性真空设备系统
KR101063089B1 (ko) 탈기체 측정 장치 및 그 측정 방법
JP2009252546A (ja) 紫外線用放電ランプおよびこれを備えたランプユニット
TWM496236U (zh) 用於太陽能電池片鈍化的晶體矽氧化處理設備
JP5437863B2 (ja) 熱処理装置
CN203002359U (zh) 用于化学气相和紫外光化学干法表面清洗改性的真空装置
KR100811391B1 (ko) 엑시머 램프
WO2003040041A1 (fr) Dispositif d'irradiation a ultraviolet et procede d'exploitation correspondant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/10/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13853603

Country of ref document: EP

Kind code of ref document: A1