WO2014069840A1 - Dual biomass gasification reactor having nickel distribution plate and biomass gasifier having same - Google Patents

Dual biomass gasification reactor having nickel distribution plate and biomass gasifier having same Download PDF

Info

Publication number
WO2014069840A1
WO2014069840A1 PCT/KR2013/009559 KR2013009559W WO2014069840A1 WO 2014069840 A1 WO2014069840 A1 WO 2014069840A1 KR 2013009559 W KR2013009559 W KR 2013009559W WO 2014069840 A1 WO2014069840 A1 WO 2014069840A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
biomass
distribution plate
dual
tar
Prior art date
Application number
PCT/KR2013/009559
Other languages
French (fr)
Korean (ko)
Inventor
김주식
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2014069840A1 publication Critical patent/WO2014069840A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • B01J8/28Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations the one above the other
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • C10K1/30Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses with moving purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/0923Sludge, e.g. from water treatment plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1253Heating the gasifier by injecting hot gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/028Dust removal by electrostatic precipitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to a dual biomass gasification reactor having a nickel distribution plate and a biomass gasification apparatus having the same. More specifically, the present invention relates to a dual biomass gasification reactor having a nickel distribution plate which can minimize tar and ammonia generation and has excellent durability, and a biomass gasification apparatus having the same.
  • Fluidized bed gasifiers have been used in energy conversion and energy recovery processes associated with gasification of coal, sludge or waste polymers, waste wood and waste tires in many chemical processes such as alternative energy development and biomass treatment. There is extensive research on this. Fluidized bed gasifiers have better heat transfer characteristics than fixed bed gasifiers such as up-draft and down-draft gasifiers, and because of the uniform temperature distribution in the reactor, The yield and composition of the producer gas) is constant, and the residence time of the solid reactant in the reactor is long, and the solid has a fluid-like flow, and thus the solid treatment is easy.
  • the fluidized bed gasifier has been researched and developed in various ways, such as having an internal circulation structure or using a catalyst for high calorific value and yield increase of calorific gas.
  • a gasifier using an inner circulating fluidized bed is known from South African Patent No. 857,717.
  • the internal circulation fluidized bed gasifier known in this patent is configured to allow internal circulation in the fluidized bed by inserting a draft tube into the fluidized bed to divide the fluidized bed into two parts and injecting fluidized gas velocities at different rates.
  • Korean Patent Registration No. 208654 discloses an internal circulation fluidized bed gasification reactor having a bottom perforated draft tube
  • Korean Patent Registration No. 340594 discloses a gasification method of coal using an internal circulation fluidized bed reactor.
  • FIG. 1 is a conceptual diagram showing the configuration of a general fluidized bed gasifier disclosed in the above known art.
  • oxidation, partial oxidation, pyrolysis, and drying occur almost simultaneously during gasification.
  • Table 1 showing the gas characteristics and the tar content according to the type of gasification reactor, it has a smaller tar content in the generated gas than the ascending type gasifier.
  • this tar content is still high for power generation and the like, when tar is produced using gas turbines and gas engines using the generated gas obtained from the conventional fluidized bed gasifier, the gas turbine and gas due to tar are used. There is a problem that process failures such as plugging and fouling problems of the engine are likely to occur.
  • Table 1 Type of gasifier Gas component (VOL.% Dry) High calorific value (MJ / m3) Gas properties H 2 CO CO 2 CH 4 N 2 tar dust Rising Airflow Type (Air Supply) 11 24 9 3 53 5.5 High ( ⁇ 50 g / m3) that Downdraft type (air supply) 17 21 13 One 48 5.7 Low ( ⁇ 1g / m3) medium Fluid type (air supply) 9 14 20 7 50 5.4 Medium ( ⁇ 10 g / m3) Go
  • one object of the present invention is to provide a dual biomass gasification reactor in which tar and ammonia generation can be minimized in order to solve the problems of the prior art.
  • Another object of the present invention is to provide a gasification apparatus for producing a high calorific value gas having a low tar and ammonia content by using the dual biomass gasification reactor stably used for power generation.
  • a distribution plate provided at a communication site between the first and second reactors, the distribution plate prevents flow of the biochar and the sand or tar decomposition catalyst toward the second reactor in the first reactor, and the carbon in the second reactor.
  • the distribution plate provides a dual biomass gasification reactor, characterized in that the nickel plate.
  • the second reactor is fixed to the inner top of the first reactor so as to be located in the upper side in the interior of the first reactor, with a gap from the inner circumference of the first reactor It may be fixed spaced apart.
  • the second reactor may be installed on the top of the first reactor to form a two-stage configuration.
  • the distribution plate is preferably a nickel plate plated on an iron-based metal plate.
  • the distribution plate may have a shape of a porous plate having a plurality of holes.
  • a hook-shaped pipe may protrude toward the second reactor 220a at the upper end of each hole of the distribution plate.
  • the distribution plate may be attached to the hook (hook) bent a plurality of top.
  • the carbon adsorbent may be activated carbon or biochar.
  • the first reactor comprises: a first pipe installed in communication with the interior of the first reactor for discharging excess biochar to the outside such that the biochar inside maintains a constant amount;
  • the storage unit may further include an accommodation unit configured to store the surplus biochar discharged by gravity along the first pipe.
  • the second reactor may be further provided with a cyclone to discharge the generated gas of reduced tar content in a subsequent process and prevent the outflow of the carbon adsorbent charged therein.
  • a second pipe for communicating the first and second reactors with each other to flow surplus carbon adsorbent toward the first reactor so that the carbon adsorbent in the second reactor maintains a certain amount. It can be provided.
  • Dual biomass gasification reactor for gasifying the biomass injected through the biomass injection means using an external heat source and the heat source of the biomass itself;
  • Heat source supply means for supplying preheated air to the gasification reactor
  • It provides a biomass gasification apparatus comprising a purifying means for purifying the exhaust gas discharged from the gasification reactor.
  • FIG. 1 is a conceptual diagram of a general fluidized bed gasifier.
  • FIG. 2 is a conceptual diagram of a gasifier having a dual biomass gasification reactor according to a first embodiment of the present invention.
  • FIG. 3 is a detailed view of the dual biomass gasification reactor shown in FIG. 2.
  • FIG. 4 is a conceptual diagram of a gasifier having a dual biomass gasification reactor according to a second embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of a gasifier applied to the experimental example of the present invention.
  • FIG. 2 is a conceptual diagram of a gasification apparatus having a dual biomass gasification reactor according to a first embodiment of the present invention
  • FIG. 3 is a detailed view of the dual biomass gasification reactor shown in FIG.
  • the gasification apparatus of the present embodiment includes a biomass injection means 10 for injecting biomass such as sewage sludge and waste wood, and a biomass injected through the biomass injection means 10.
  • a dual biomass gasification reactor 20 to gasify using a heat source and a heat source of the biomass itself, and to reduce the content of tar and ammonia by adsorption or cracking of tar and ammonia in the generated product gas, and a gasification reactor
  • a heat source supply means 30 for supplying preheated air as an oxidant to the 20 and also supplying steam as needed, and refining means for purifying the exhaust gas discharged from the gasification reactor 20 to be used for power production or the like. It consists of
  • the biomass injection means 10 is a pulverized biomass such as sewage sludge or waste wood to be injected into a predetermined size and is composed of a general configuration relationship used in the gasifier.
  • the gasification reactor 20 includes a first reactor 210 having a volume of a predetermined size, and a second reactor 220 installed inside the first reactor 210.
  • the first reactor 210 serves to generate a gas by gasifying the biomass using the preliminary heat source, air and water vapor supplied from the heat source supply means 30, and the heat content of the biomass itself.
  • the first reactor 210 is filled with a predetermined amount of sand or tar decomposition catalyst therein, and is configured to receive the preheated air and steam from the heat source supply means 30 to one side.
  • the sand or tar decomposition catalyst serves to facilitate the gasification of the biomass while flowing along the air stream of the air and water vapor supplied from the heat source supply means (30). That is, the first reactor 210 undergoes typical biomass gasification as a fluidized bed reactor and produces bio-char as a gasification byproduct during the process.
  • the first reactor 210 is configured such that the surplus biochar flows along the first pipe 211 and is stored in the accommodating part 212 so that the biochar generated during the process maintains a constant amount at all times so as not to burden the process. That is, one end of the first pipe 211 is configured to communicate with the inside at a predetermined height of the first reactor 210. At this time, the first pipe 211 has a bent shape so as not to be disturbed by upflow. Therefore, the surplus biochar is stored in the accommodating portion 212 by gravity along the first pipe 211 and not the mechanical device, so that it does not burden the process.
  • the second reactor 220 is fixed to the inner top of the first reactor 210 to be installed on the upper side of the inside of the first reactor 210. Therefore, the second reactor 220 uses the heat source of the first reactor 210 as it is.
  • the second reactor 220 is installed at a predetermined distance from the inner circumference of the first reactor 210, except for the lower portion has a structure that is closed with the first reactor 210. That is, the second reactor 220 has a distribution plate 221 communicating with the first reactor 210 at the bottom thereof.
  • the distribution plate 221 flows smoothly through the product gas generated in the first reactor 210 flows in the upward air flow, but a plurality of micrometer-sized holes, for example, a plurality of holes so that biochar does not pass through. It has the shape of a perforated plate having a hole of. In addition, the hole of the distribution plate 221 has a size that the carbon adsorbent filled in the second reactor 220 does not flow out to the lower first reactor 210.
  • This distribution plate 221 is a nickel plate having a plurality of holes. In terms of economy, the distribution plate 221 is a nickel plate plated on an iron metal plate. For example, the distribution plate 221 is a nickel plate plated on a stainless steel plate.
  • the nickel distribution plate partitioning the first reactor and the second reactor can simultaneously undergo tar reduction and ammonia decomposition. That is, the nickel distribution plate decomposes the tar generated in the first reactor 210 by reducing the tar content in the product gas by decomposing the tar generated in the first reactor 210 and the ammonia generated in the first reactor 210 according to the reaction scheme shown below. Thereby exhibiting an ammonia decomposition catalytic action that reduces the ammonia content in the product gas, thereby reducing the content of tar and ammonia in the gas obtained from the biomass.
  • Reaction ii) is a reverse reaction of ammonia synthesis from hydrogen gas and nitrogen gas.
  • Nickel distribution plates are important in the gasification of sewage sludge containing a lot of nitrogen, especially since they can dramatically reduce the content of ammonia.
  • the use of the nickel distribution plate disclosed in the present invention can reduce nickel loss and nickel deactivation phenomena as compared to a configuration using a nickel catalyst particle layer inside a fluidized bed reactor or a configuration using a separate fixed bed nickel catalyst tower outside the reactor.
  • the nickel distribution plate 221 can prevent the loss of the nickel catalyst accompanying the swept away by the fluid (fluid medium) flow in the fluidized bed when adopting a configuration using a nickel catalyst particle layer in the fluidized bed reactor.
  • a second fixed bed nickel catalyst tower may be additionally installed to solve the energy problem of operating.
  • the nickel distribution plate according to the present invention is because the energy required for tar decomposition by nickel can utilize the energy generated by oxidation in the fluidized bed reactor.
  • the nickel distribution plate according to the present invention has the advantage that the deactivation (deactivation) of the nickel generated by the coke is deposited on the nickel distribution plate is reduced.
  • the nickel catalyst is rapidly deactivated by sulfur, tar, etc., and when the biomass such as wood with low sulfur content and polyolefin waste plastics are gasified, the main deactivation route is generation of coke due to tar deposition.
  • deactivation may be drastically reduced since continuous collision with the nickel distribution plate occurs due to active movement of fluidized bed materials such as sand and / or tar decomposition catalysts, and the coke is separated. It is also possible to continuously oxidize the carbon deposits formed in the nickel distribution plate by air which is often supplied to the first reactor, so that coke deposition can be further reduced. In addition, CO 2 and H 2 O generated from the first gasification reactor may react with coke (C) deposited on the nickel distribution plate to cause coke decomposition.
  • C coke
  • the second reactor 220 serves to reduce the content of tar by adsorbing or cracking tar in the generated gas generated in the first reactor 210, and a predetermined amount of carbon adsorbent (activated carbon) is contained therein. And / or biochar).
  • the carbon adsorbent serves to catalyze the tar in the product gas to reduce the content of tar or promote the decomposition of tar, thereby reducing the content and promoting the reaction with moisture in the product gas, thereby helping to produce hydrogen. do.
  • a cyclone 222 is installed inside the second reactor 220 to prevent the outflow of the carbon adsorbent charged therein and to supply the product gas having a reduced tar content to the purifying means 40.
  • the cyclone 222 preferably has a structure in which its lower end is bent so as not to be disturbed by upflow.
  • the excess carbon adsorbent flows along the second pipe 223 toward the first reactor 210 so as not to impede the process by maintaining a constant amount of the carbon adsorbent charged therein at all times. It is configured to be stored in the receiving portion (212).
  • one end of the second pipe 211 is in communication with the inside at a certain height of the second reactor 220, the other end is configured to communicate with the inside at a certain height of the first reactor (210).
  • the second pipe 223 has a bent shape so as not to be disturbed by upflow.
  • the dual biomass gasification reactor 20 having the above configuration has a predetermined amount of carbon adsorbent inside the second reactor 220 to adsorb tar in the product gas to reduce the content of tar or promote tar decomposition. It acts as a catalyst to reduce the content and promotes the reaction with moisture in the generated gas to help the production of hydrogen to produce a high calorific value gas.
  • the dual biomass gasification reactor 20 can reduce the amount of particles contained in the product gas through the following components. That is, the surplus biochar in the first reactor 210 is discharged to the receiving portion 212 through the first first pipe 211, and the first reactor (through the distribution plate 221 of the second reactor 220). The biochar in the product gas generated in 210 to be flowed into the second reactor 220 along the rising air flow is filtered, and the third cyclone 222 prevents the outflow of the carbon adsorbent inside the second reactor 220. For example, the amount of particles included in the generated gas may be reduced by discharging the excess carbon adsorbent in the second reactor 210 through the second pipe 223 to the accommodation portion 212 through the first reactor 210.
  • the heat source supply means 30 serves to supply a preliminary heat source and air to the first reactor 210 and also to supply water vapor as necessary, and is configured in a general configuration relationship used in a fluidized bed gasifier.
  • the purifying means 40 serves to purify the exhaust gas discharged from the second reactor 220 to be used for electric power production, etc., and is configured in a general configuration relationship used in the fluidized bed gasifier.
  • the gasifier according to the second embodiment of the present invention has the same concept as the gasifier of the first embodiment except for the partial structure of the reactor. Therefore, the same or similar components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the dual biomass gasification reactor 20a includes a biomass injected through the biomass injection means 10a and an external heat source supplied from the heat source supply means 30a and the biomass itself. It comprises a first reactor (210a) for gasification using a heat source, and a second reactor (220a) to reduce the content of tar by adsorption or decomposition of the tar in the product gas generated in the first reactor (210a).
  • the second reactor 220a has a wider size and volume than the first reactor 210a and is installed directly above the first reactor 210a. Therefore, the first and second reactors 210a and 220a form two stages up and down, and the connection portion has a tapered shape.
  • the first reactor 210a is filled with a certain amount of sand therein, and the surplus biochar generated during the process is stored in the receiving portion 212a along the first pipe 211a. 1 is configured to serve the same function as the reactor (210).
  • the second reactor 220a is filled with a predetermined amount of carbon adsorbent (activated carbon and / or biochar) therein, and a nickel distribution plate 221a communicating with the first reactor 210a at the lower portion thereof, and carbon Cyclone 222a for supplying the generated gas having reduced tar content to the refining means 40a as well as preventing the outflow of the adsorbent, and a second pipe 223a connecting the first and second reactors 210a and 220a. It is configured to serve the same function as the second reactor 220 of the first embodiment, and the like.
  • the nickel distribution plate 221a may be configured in a form in which a hook-shaped pipe protrudes toward the second reactor 220a at the upper end of each hole, unlike the nickel distribution plate 221 of the first embodiment. have.
  • the air supply line 310a to reduce the tar content in the product gas is installed in communication with the heat source supply means (30a).
  • the dual biomass gasification reactor of the present invention and the biomass gasification apparatus including the same can produce a product gas that minimizes the tar and ammonia content from the biomass by economically and efficiently adopting a nickel distribution plate.
  • the dual biomass gasification reactor of the present invention and the biomass gasification apparatus having the same has a separate internal reactor or two stages of the reactor inside, but by containing a carbon adsorbent in the upper reactor content of tar in the generated gas It can reduce and generate high calorific value gas and can be designed to have a medium-sized power generation capacity. This overcomes the limitation that existing fixed bed gasifiers can only be used in small power generation systems.
  • the dual biomass gasification reactor of the present invention and the biomass gasification apparatus including the same can also produce a high calorific value gas having a low content of tar and ammonia that can be stably used for electric power production and the like by providing a dual biomass gasification reactor.
  • the dual biomass gasification reactor of the present invention and the biomass gasification apparatus including the same also have a small installation space because the reactor can be dually configured so that the heat source of the lower reactor (first reactor) can be used as it is in the upper reactor (second reactor). The efficiency of the process can be increased.
  • the feedstock used in this experiment was 1kg of dry sewage sludge of 250 ⁇ 425 ⁇ m size as biomass and 500g of activated carbon as carbon adsorbent.
  • the gasifier is configured as shown in Figure 5, using a two-stage gasification reactor made of STS-316.
  • the lower reactor had a size of 100 mm in diameter and 360 mm in height, and was filled with silica sand therein.
  • three thermocouples were installed in the bottom reactor for flow stability testing.
  • the upper reactor was 160 mm in diameter and 340 mm in height and filled with activated carbon therein.
  • two thermocouples were installed in the upper reactor for flow stability testing.
  • Cyclone filtered the particle
  • the hot filter used the product of the specification which filters the particle
  • the condenser cooled the condensate liquid to 0 degreeC.
  • the generated gases were analyzed using GCs and GC-MS systems.
  • Equivalence ratio represents the amount of air that is chemically equivalent to the actual amount of air supplied during gasification / complete oxidation.
  • Example 1 using the nickel-plated stainless distribution plate produced gas compared to Comparative Example 2 (0.06 g / Nm 3 ) tested under the same conditions except that a stainless distribution plate instead of a nickel distribution plate It can be seen that the tar content (about 0.01 g / Nm 3 ) is reduced by about 6 times or more.
  • the ammonia content (about 12 mg / L) of the product gas obtained in Example 1 was confirmed to be reduced by about 58.3 times compared to Comparative Example 2 (700 mg / L).
  • the deactivation of the nickel distribution plate of Example 1 was not observed when the change of the product gas component was observed under the above experimental conditions.
  • Comparative Example 1 using a stainless distribution plate as in Comparative Example 2 but not filled with activated carbon in the upper reactor (second reactor) it was confirmed that the tar content is more.
  • Ammonia content of Comparative Example 1 was not measured, but considering the properties of activated carbon with ammonia adsorption, it is determined that it is 700 mg / L or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Disclosed is a dual biomass gasification reactor and a biomass gasifier having the dual biomass gasification reactor, and the reactor comprises: a first reactor which gasifies injected biomass using an external heat source and the oxidation heat source of the biomass, and in which sand or a tar pyrolysis catalyst is filled and moves along with the flow of the external heat source so as to gasify the biomass and to produce bio-char; a second reactor which is provided to communicate with the first reactor so as to use the heat sources of the first reactor and is filled with a carbon adsorbent so as to decrease the content of the tar in the gas produced in the first reactor and to increase hydrogen production for the supply of the gas to a subsequent process; and a distribution plate which is disposed in the communication portion between the first and second reactors so as to prevent the movement of the bio-char and the sand or the tar pyrolysis catalyst in the first reactor towards the second reactor and to prevent the leakage of the carbon adsorbent in the second reactor towards the first reactor, wherein the distribution plate is a nickel plate. When the dual biomass gasification reactor of the present invention and the biomass gasifier having the same are used, gas production from the biomass can be economically and effectively obtained with minimized amounts of tar and ammonia.

Description

니켈 분배판을 구비한 이중 바이오매스 가스화 반응기 및 이를 구비한 바이오매스 가스화 장치Dual biomass gasification reactor with nickel distribution plate and biomass gasifier with the same
본 발명은 니켈 분배판을 구비하는 이중 바이오매스 가스화 반응기 및 이를 구비한 바이오매스 가스화 장치에 관한 것이다. 더 상세하게는, 본 발명은 타르 및 암모니아 발생을 최소화할 수 있으며 내구성이 우수한 니켈 분배판을 구비하는 이중 바이오매스 가스화 반응기 및 이를 구비한 바이오매스 가스화 장치에 관한 것이다.The present invention relates to a dual biomass gasification reactor having a nickel distribution plate and a biomass gasification apparatus having the same. More specifically, the present invention relates to a dual biomass gasification reactor having a nickel distribution plate which can minimize tar and ammonia generation and has excellent durability, and a biomass gasification apparatus having the same.
일반적으로, 유동층 가스화 장치는 대체 에너지 개발 및 바이오매스 처리 등의 여러 화학공정분야에서 석탄이나 슬러지 또는 폐고분자, 폐목재 및 폐타이어 등의 가스화와 관련된 에너지 전환공정 및 에너지 회수공정에서 사용되어 왔으며, 이에 대한 광범위한 연구가 진행되고 있다. 유동층 가스화 장치는 상승기류형 가스화 장치(up-draft gasifier) 및 하강기류형 가스화 장치(down-draft gasifier) 등의 고정층 가스화 장치에 비해 우수한 열전달 특성을 가지며, 반응기 내의 균일한 온도 분포로 인해 가스화 생성가스(producer gas)의 수율 및 조성이 일정하며, 고체 반응물의 반응기 내의 체류시간이 길뿐만 아니라, 고체가 유체와 같은 흐름을 갖고 있어 고체 처리가 용이하다는 등 여러 가지 장점을 갖는다.In general, fluidized bed gasifiers have been used in energy conversion and energy recovery processes associated with gasification of coal, sludge or waste polymers, waste wood and waste tires in many chemical processes such as alternative energy development and biomass treatment. There is extensive research on this. Fluidized bed gasifiers have better heat transfer characteristics than fixed bed gasifiers such as up-draft and down-draft gasifiers, and because of the uniform temperature distribution in the reactor, The yield and composition of the producer gas) is constant, and the residence time of the solid reactant in the reactor is long, and the solid has a fluid-like flow, and thus the solid treatment is easy.
유동층 가스화 장치는 고체를 처리함에 따라 생성되는 열량 가스를 얻는 것을 주목적으로 하기 때문에, 열량 가스의 고열량화 및 수율증대를 위해 내부순환구조를 갖거나 촉매를 이용하는 등 여러 방식으로 연구 개발되고 있다. 그 중에서, 내부순환 유동층을 이용한 가스화 장치에 대해서는 남아프리카공화국 특허 제857,717호에 공지되어 있다. 이 특허에 공지된 내부순환 유동층 가스화 장치는 유동층 내에 드래프트관을 삽입하여 유동층을 두 부분으로 나누고, 각각에 유동화 기체속도를 달리하여 주입함으로써 유동층 내에서 내부순환이 가능하도록 구성하였다. The fluidized bed gasifier has been researched and developed in various ways, such as having an internal circulation structure or using a catalyst for high calorific value and yield increase of calorific gas. Among them, a gasifier using an inner circulating fluidized bed is known from South African Patent No. 857,717. The internal circulation fluidized bed gasifier known in this patent is configured to allow internal circulation in the fluidized bed by inserting a draft tube into the fluidized bed to divide the fluidized bed into two parts and injecting fluidized gas velocities at different rates.
대한민국 특허등록 제208654호는 하단 천공된 드래프트관을 갖는 내부순환 유동층 가스화 반응기을 개시하며, 대한민국 특허등록 제340594호는 내부순환 유동층 반응기를 이용한 석탄의 가스화방법을 개시한다.Korean Patent Registration No. 208654 discloses an internal circulation fluidized bed gasification reactor having a bottom perforated draft tube, and Korean Patent Registration No. 340594 discloses a gasification method of coal using an internal circulation fluidized bed reactor.
도 1은 상기와 같은 공지기술에 개시된 일반적인 유동층 가스화 장치의 구성을 나타내는 개념도이다. 도 1을 참조하면, 일반적인 유동층 가스화 장치를 이용하여 바이오매스 등을 가스화하는 경우 가스화가 진행되는 동안 산화(oxidation), 부분 산화(partial oxidation), 열분해(pyrolysis) 및 건조(drying)가 거의 동시에 일어나며, 가스화 반응기의 종류에 따른 가스 특성 및 타르 함량을 나타낸 표 1에서 알 수 있는 바와 같이, 상승기류형 가스화 장치보다는 생성가스 내에 적은 타르 함량을 갖는다. 그러나, 이 정도의 타르 함량은 전력생산 등에 이용하기에는 여전히 높은 수치이기 때문에, 종래의 유동층 가스화 장치에서 얻은 생성 가스를 이용하여 가스 터빈 및 가스 엔진을 이용하여 전력을 생산하는 경우 타르 때문에 가스 터빈 및 가스 엔진의 막힘(plugging) 및 오염(fouling) 문제 등의 공정 장애가 발생하기 쉬운 문제점이 있다.1 is a conceptual diagram showing the configuration of a general fluidized bed gasifier disclosed in the above known art. Referring to FIG. 1, in the case of gasifying biomass using a general fluidized bed gasifier, oxidation, partial oxidation, pyrolysis, and drying occur almost simultaneously during gasification. As can be seen in Table 1 showing the gas characteristics and the tar content according to the type of gasification reactor, it has a smaller tar content in the generated gas than the ascending type gasifier. However, since this tar content is still high for power generation and the like, when tar is produced using gas turbines and gas engines using the generated gas obtained from the conventional fluidized bed gasifier, the gas turbine and gas due to tar are used. There is a problem that process failures such as plugging and fouling problems of the engine are likely to occur.
표 1
가스화 장치의 종류 가스 구성 성분 (VOL.% 건조) 고위발열량(MJ/m3) 가스 특성
H2 CO CO2 CH4 N2 타르 먼지
상승기류형(공기공급) 11 24 9 3 53 5.5 고(~50g/m3)
하강기류형(공기공급) 17 21 13 1 48 5.7 저(~1g/m3)
유동형(공기공급) 9 14 20 7 50 5.4 중(~10g/m3)
Table 1
Type of gasifier Gas component (VOL.% Dry) High calorific value (MJ / m3) Gas properties
H 2 CO CO 2 CH 4 N 2 tar dust
Rising Airflow Type (Air Supply) 11 24 9 3 53 5.5 High (~ 50 g / m3) that
Downdraft type (air supply) 17 21 13 One 48 5.7 Low (~ 1g / m3) medium
Fluid type (air supply) 9 14 20 7 50 5.4 Medium (~ 10 g / m3) Go
타르 이외에도 바이오매스 가스화에서 중요한 것은 생성 가스내의 암모니아 발생을 최소화하는 것이다. 특히, 암모니아 발생 최소화는 질소를 많이 포함하는 하수 슬러지의 가스화에서 특히 중요하게 고려되어야 할 점이다.In addition to tar, it is important to biomass gasification to minimize the generation of ammonia in the product gas. In particular, minimizing the generation of ammonia should be considered particularly important in the gasification of sewage sludge containing a lot of nitrogen.
따라서, 본 발명의 일 목적은 종래기술의 문제점을 해결하기 위하여 타르 및 암모니아 발생이 최소화될 수 있는 이중 바이오매스 가스화 반응기를 제공하는 것이다.Accordingly, one object of the present invention is to provide a dual biomass gasification reactor in which tar and ammonia generation can be minimized in order to solve the problems of the prior art.
본 발명의 다른 목적은 상기 이중 바이오매스 가스화 반응기를 구비함으로써 전력생산 등에 안정적으로 이용할 수 있으며 타르 및 암모니아 함량이 낮은 고발열량의 가스를 생산하는 가스화 장치를 제공하는 것이다.Another object of the present invention is to provide a gasification apparatus for producing a high calorific value gas having a low tar and ammonia content by using the dual biomass gasification reactor stably used for power generation.
상기 일 목적을 달성하기 위하여 본 발명의 일 측면은One aspect of the present invention to achieve the above object
주입된 바이오매스를 외부의 열원과 상기 바이오매스 자체의 산화 열원을 이용하여 가스화하는 제1 반응기로서, 그 내부에 모래 또는 타르 분해 촉매가 충전되어 상기 외부의 열원의 기류를 따라 유동하면서 상기 바이오매스를 가스화하고 바이오챠르(bio-char)를 생성하는 제1 반응기;A first reactor for gasifying the injected biomass using an external heat source and an oxidizing heat source of the biomass itself, wherein the biomass is filled with sand or tar decomposition catalyst and flows along the air stream of the external heat source. A first reactor for gasifying and generating bio-char;
상기 제1 반응기에 연통되도록 설치되어 상기 제1 반응기의 열원을 이용하며 그 내부에 탄소 흡착제가 충전되어 상기 제1 반응기에서 생성된 생성가스 내의 타르의 함량을 저감시키고 수소 생산을 증대시켜 후속 공정으로 공급하는 제2 반응기; 및It is installed to communicate with the first reactor and uses the heat source of the first reactor and the carbon adsorbent is filled therein to reduce the content of tar in the generated gas produced in the first reactor and increase hydrogen production to a subsequent process A second reactor for supplying; And
상기 제1 및 제2 반응기 사이의 연통 부위에 설치된 분배판으로서, 상기 제1 반응기 내의 상기 바이오챠르 및 상기 모래 또는 타르 분해 촉매의 상기 제2 반응기 쪽으로의 유동을 막고, 상기 제2 반응기 내의 상기 탄소 흡착제의 상기 제1 반응기 쪽으로의 유출을 막는 분배판을 포함하고,A distribution plate provided at a communication site between the first and second reactors, the distribution plate prevents flow of the biochar and the sand or tar decomposition catalyst toward the second reactor in the first reactor, and the carbon in the second reactor. A distribution plate for preventing the outflow of the adsorbent to the first reactor,
상기 분배판은 니켈판인 것을 특징으로 하는 이중 바이오매스 가스화 반응기를 제공한다.The distribution plate provides a dual biomass gasification reactor, characterized in that the nickel plate.
본 발명의 일 실시형태에 있어서, 상기 제2 반응기는 상기 제1 반응기의 내부에서 상부 쪽에 위치하도록 상기 제1 반응기의 내부측 상단에 고정되어 있으며, 상기 제1 반응기의 내부측 둘레로부터 간격을 갖고 이격된 상태로 고정되어 있을 수 있다.In one embodiment of the invention, the second reactor is fixed to the inner top of the first reactor so as to be located in the upper side in the interior of the first reactor, with a gap from the inner circumference of the first reactor It may be fixed spaced apart.
본 발명의 다른 실시형태에 있어서, 상기 제2 반응기가 상기 제1 반응기의 상단에 설치되어 2단 형태를 이룰 수 있다.In another embodiment of the present invention, the second reactor may be installed on the top of the first reactor to form a two-stage configuration.
본 발명의 일 실시형태에 있어서, 상기 분배판은 철계 금속판에 도금된 니켈판인 것이 바람직하다.In one embodiment of the present invention, the distribution plate is preferably a nickel plate plated on an iron-based metal plate.
본 발명의 일 실시형태에 있어서, 상기 분배판은 복수 개의 구멍을 갖는 다공판의 형상을 가질 수 있다.In one embodiment of the present invention, the distribution plate may have a shape of a porous plate having a plurality of holes.
본 발명의 다른 실시형태에 있어서, 상기 분배판의 각 구멍의 상단에는 갈고리(hook) 형태의 파이프가 제2 반응기(220a) 쪽으로 돌출되어 있을 수 있다.In another embodiment of the present invention, a hook-shaped pipe may protrude toward the second reactor 220a at the upper end of each hole of the distribution plate.
상기 분배판에는 복수 개의 상단이 구부러진 후크(hook)가 부착되어 있을 수 있다.The distribution plate may be attached to the hook (hook) bent a plurality of top.
본 발명의 일 실시형태에 있어서, 상기 탄소 흡착제는 활성탄 또는 바이오챠르일 수 있다.In one embodiment of the present invention, the carbon adsorbent may be activated carbon or biochar.
본 발명의 일 실시형태에 있어서, 상기 제1 반응기는 그 내부의 상기 바이오챠르가 일정량을 유지하도록 잉여 바이오챠르를 외부로 배출하기 위해 상기 제1 반응기의 내부와 연통하여 설치된 제1 파이프; 및In one embodiment of the present invention, the first reactor comprises: a first pipe installed in communication with the interior of the first reactor for discharging excess biochar to the outside such that the biochar inside maintains a constant amount; And
상기 제1 파이프를 따라 중력에 의해 배출되는 상기 잉여 바이오챠르를 저장하는 수용부를 더 구비할 수 있다.The storage unit may further include an accommodation unit configured to store the surplus biochar discharged by gravity along the first pipe.
본 발명의 일 실시형태에 있어서, 상기 제2 반응기의 내부에는 타르의 함량이 저감된 생성가스를 후속 공정으로 배출하며 그 내부에 충전된 상기 탄소 흡착제의 유출을 막는 사이클론이 더 설치되어 있을 수 있다.In one embodiment of the present invention, the second reactor may be further provided with a cyclone to discharge the generated gas of reduced tar content in a subsequent process and prevent the outflow of the carbon adsorbent charged therein. .
본 발명의 일 실시형태에 있어서, 상기 제1 및 제2 반응기를 서로 연통시켜 상기 제2 반응기 내부의 상기 탄소 흡착제가 일정량을 유지하도록 잉여 탄소 흡착제를 상기 제1 반응기 쪽으로 유동시키는 제2 파이프를 더 구비할 수 있다.In one embodiment of the present invention, further comprising a second pipe for communicating the first and second reactors with each other to flow surplus carbon adsorbent toward the first reactor so that the carbon adsorbent in the second reactor maintains a certain amount. It can be provided.
상기 다른 목적을 달성하기 위하여 본 발명의 다른 측면은,Another aspect of the present invention to achieve the above another object,
바이오매스를 주입하는 바이오매스 주입수단;Biomass injection means for injecting biomass;
상기 바이오매스 주입수단을 통해 주입된 바이오매스를 외부의 열원과 바이오매스 자체의 열원을 이용하여 가스화하는 상기 본 발명의 일 측면에 따른 이중 바이오매스 가스화 반응기;Dual biomass gasification reactor according to an aspect of the present invention for gasifying the biomass injected through the biomass injection means using an external heat source and the heat source of the biomass itself;
상기 가스화 반응기에 예열된 공기를 공급하는 열원공급수단; 및Heat source supply means for supplying preheated air to the gasification reactor; And
상기 가스화 반응기에서 배출되는 배출가스를 정제하는 정제수단을 포함하는 바이오매스 가스화 장치를 제공한다.It provides a biomass gasification apparatus comprising a purifying means for purifying the exhaust gas discharged from the gasification reactor.
본 발명의 이중 바이오매스 가스화 반응기 및 이를 구비하는 바이오매스 가스화 장치를 이용하면, 바이오매스로부터 경제적이면서도 효율적으로 타르 및 암모니아 함량이 최소화된 생성 가스를 얻을 수 있다.By using the dual biomass gasification reactor of the present invention and a biomass gasification apparatus including the same, it is possible to economically and efficiently obtain a product gas with minimal tar and ammonia content from the biomass.
도 1은 일반적인 유동층 가스화 장치의 개념도이다.1 is a conceptual diagram of a general fluidized bed gasifier.
도 2는 본 발명의 제1 실시형태에 따른 이중 바이오매스 가스화 반응기를 구비한 가스화 장치의 개념도이다.2 is a conceptual diagram of a gasifier having a dual biomass gasification reactor according to a first embodiment of the present invention.
도 3은 도 2에 도시된 이중 바이오매스 가스화 반응기의 상세도이다.3 is a detailed view of the dual biomass gasification reactor shown in FIG. 2.
도 4는 본 발명의 제2 실시형태에 따른 이중 바이오매스 가스화 반응기를 구비한 가스화 장치의 개념도이다.4 is a conceptual diagram of a gasifier having a dual biomass gasification reactor according to a second embodiment of the present invention.
도 5는 본 발명의 실험예에 적용된 가스화 장치의 개념도이다.5 is a conceptual diagram of a gasifier applied to the experimental example of the present invention.
이하, 첨부한 도면을 참조하여 본 발명에 따른 니켈 분배판을 구비하는 이중 바이오매스 가스화 반응기 및 이를 구비한 가스화 장치의 구체적 실시형태들에 대하여 상세히 설명한다. 하기 설명은 본 발명을 용이하게 재현할 수 있도록 하는 예시적 목적을 위하여 제공되며 결코 본 발명의 권리범위를 한정하는 것이 아님은 말할 필요도 없다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to specific embodiments of a dual biomass gasification reactor having a nickel distribution plate and a gasification apparatus having the same according to the present invention. The following description is provided for illustrative purposes so that the present invention may be readily reproduced, and needless to say, it does not limit the scope of the present invention.
제1 실시형태First embodiment
도 2는 본 발명의 제1 실시형태에 따른 이중 바이오매스 가스화 반응기를 구비한 가스화 장치의 개념도이고, 도 3은 도 2에 도시된 이중 바이오매스 가스화 반응기의 상세도이다.FIG. 2 is a conceptual diagram of a gasification apparatus having a dual biomass gasification reactor according to a first embodiment of the present invention, and FIG. 3 is a detailed view of the dual biomass gasification reactor shown in FIG.
도 2를 참조하면, 본 실시형태의 가스화 장치는 하수 슬러지나 폐목재 등의 바이오매스를 주입하는 바이오매스 주입수단(10)과, 바이오매스 주입수단(10)을 통해 주입된 바이오매스를 외부의 열원과 바이오매스 자체의 열원을 이용하여 가스화하고 생성된 생성가스 내의 타르 및 암모니아를 흡착(adsorption)하거나 분해(cracking)하여 타르 및 암모니아의 함량을 줄이는 이중 바이오매스 가스화 반응기(20)와, 가스화 반응기(20)에 산화제로서 예열된 공기를 공급하고 필요에 따라 수증기 또한 공급하는 열원공급수단(30), 및 가스화 반응기(20)에서 배출되는 배출가스를 전력생산 등에 이용할 수 있도록 정제하는 정제수단(40)으로 구성된다.Referring to FIG. 2, the gasification apparatus of the present embodiment includes a biomass injection means 10 for injecting biomass such as sewage sludge and waste wood, and a biomass injected through the biomass injection means 10. A dual biomass gasification reactor 20 to gasify using a heat source and a heat source of the biomass itself, and to reduce the content of tar and ammonia by adsorption or cracking of tar and ammonia in the generated product gas, and a gasification reactor A heat source supply means 30 for supplying preheated air as an oxidant to the 20 and also supplying steam as needed, and refining means for purifying the exhaust gas discharged from the gasification reactor 20 to be used for power production or the like. It consists of
바이오매스 주입수단(10)은 하수 슬러지나 폐목재 등의 바이오매스를 일정 크기로 분쇄하여 주입하는 것으로서 가스화 장치에서 이용하는 일반적인 구성관계로 구성된다.The biomass injection means 10 is a pulverized biomass such as sewage sludge or waste wood to be injected into a predetermined size and is composed of a general configuration relationship used in the gasifier.
도 2 및 도 3를 참조하면, 가스화 반응기(20)는 일정 크기의 용적을 갖는 제1 반응기(210)와, 제1 반응기(210)의 내부에 설치되는 제2 반응기(220)로 구성된다.2 and 3, the gasification reactor 20 includes a first reactor 210 having a volume of a predetermined size, and a second reactor 220 installed inside the first reactor 210.
제1 반응기(210)는 열원공급수단(30)에서 공급되는 예비 열원, 공기 및 수증기와, 바이오매스 자체의 열함량을 이용하여 바이오매스를 가스화시킴으로써 가스를 생성하는 역할을 한다. 이러한 제1 반응기(210)는 그 내부에 일정량의 모래 또는 타르 분해 촉매가 충전되며, 열원공급수단(30)으로부터 예열된 공기 및 수증기를 일측으로 공급받을 수 있도록 구성된다. 여기서, 모래 또는 타르 분해 촉매는 열원공급수단(30)으로부터 공급되는 공기 및 수증기의 기류를 따라 유동하면서 바이오매스의 원활한 가스화를 돕는 역할을 한다. 즉, 제1 반응기(210)는 유동층 반응기로서 전형적인 바이오매스 가스화가 일어나며 공정 중에 가스화 부산물로서 바이오챠르(bio-char)가 생성된다.The first reactor 210 serves to generate a gas by gasifying the biomass using the preliminary heat source, air and water vapor supplied from the heat source supply means 30, and the heat content of the biomass itself. The first reactor 210 is filled with a predetermined amount of sand or tar decomposition catalyst therein, and is configured to receive the preheated air and steam from the heat source supply means 30 to one side. Here, the sand or tar decomposition catalyst serves to facilitate the gasification of the biomass while flowing along the air stream of the air and water vapor supplied from the heat source supply means (30). That is, the first reactor 210 undergoes typical biomass gasification as a fluidized bed reactor and produces bio-char as a gasification byproduct during the process.
제1 반응기(210)는 공정 중에 생성되는 바이오챠르가 항상 일정량을 유지함으로써 공정에 무리를 주지 않도록 잉여 바이오챠르는 제1 파이프(211)를 따라 유동하여 수용부(212)에 저장되도록 구성된다. 즉, 제1 파이프(211)의 일단이 제1 반응기(210)의 일정 높이에서 그 내부와 연통되게 구성된다. 이때, 제1 파이프(211)는 상향류의 방해를 받지 않도록 구부러진 형태를 갖는다. 따라서, 잉여 바이오챠르는 기계적 장치가 아닌 제1 파이프(211)를 따라 중력에 의해 수용부(212)에 저장되므로 공정에 무리를 주지 않는다.The first reactor 210 is configured such that the surplus biochar flows along the first pipe 211 and is stored in the accommodating part 212 so that the biochar generated during the process maintains a constant amount at all times so as not to burden the process. That is, one end of the first pipe 211 is configured to communicate with the inside at a predetermined height of the first reactor 210. At this time, the first pipe 211 has a bent shape so as not to be disturbed by upflow. Therefore, the surplus biochar is stored in the accommodating portion 212 by gravity along the first pipe 211 and not the mechanical device, so that it does not burden the process.
제2 반응기(220)는 제1 반응기(210)의 내부 중에서 상부 쪽에 설치하도록, 제1 반응기(210)의 내측 상단에 고정된다. 따라서, 제2 반응기(220)는 제1 반응기(210)의 열원을 그대로 이용한다. 이러한 제2 반응기(220)는 제1 반응기(210)의 내측 둘레와 일정 간격을 두고 설치되는 것으로서, 하부를 제외하고 제1 반응기(210)와 폐쇄되는 구조를 갖는다. 즉, 제2 반응기(220)는 그 하부에 제1 반응기(210)와 연통하는 분배판(221)을 갖는다.The second reactor 220 is fixed to the inner top of the first reactor 210 to be installed on the upper side of the inside of the first reactor 210. Therefore, the second reactor 220 uses the heat source of the first reactor 210 as it is. The second reactor 220 is installed at a predetermined distance from the inner circumference of the first reactor 210, except for the lower portion has a structure that is closed with the first reactor 210. That is, the second reactor 220 has a distribution plate 221 communicating with the first reactor 210 at the bottom thereof.
여기서, 분배판(221)은 제1 반응기(210) 내에서 생성되는 생성가스는 상승 기류를 따라 유동하여 원활하게 통과하지만, 바이오챠르는 통과하지 못하도록 마이크로미터 사이즈의 복수 개의 구멍, 예를 들면 다수의 구멍을 갖는 다공판의 형상을 갖는다. 또한, 분배판(221)의 구멍은 제2 반응기(220) 내에 충전되는 탄소 흡착제가 하부의 제1 반응기(210)로 유출되지 못하는 크기를 갖는다. 이러한 분배판(221)은 다수의 구멍을 갖는 니켈판이다. 경제적인 관점에서 상기 분배판(221)은 철계 금속판에 도금된 니켈판이다. 예를 들면, 상기 분배판(221)은 스테인레스 스틸판에 도금된 니켈판이다. 제1 반응기와 제2 반응기를 구획하는 니켈 분배판은 타르 저감 및 암모니아 분해를 동시에 진행할 수 있다. 즉 니켈 분배판은 아래에 표시한 반응식에 따라 제1 반응기(210)에서 생성되는 타르를 분해하여 생성 가스 내의 타르 함량을 감소시키는 타르 분해 촉매 작용 및 제1 반응기(210)에서 생성되는 암모니아를 분해하여 생성 가스 내의 암모니아 함량을 감소시키는 암모니아 분해 촉매 작용을 발휘하여 바이오매스로부터 얻어진 가스 중의 타르 및 암모니아의 함량을 감소시킬 수 있다.Here, the distribution plate 221 flows smoothly through the product gas generated in the first reactor 210 flows in the upward air flow, but a plurality of micrometer-sized holes, for example, a plurality of holes so that biochar does not pass through. It has the shape of a perforated plate having a hole of. In addition, the hole of the distribution plate 221 has a size that the carbon adsorbent filled in the second reactor 220 does not flow out to the lower first reactor 210. This distribution plate 221 is a nickel plate having a plurality of holes. In terms of economy, the distribution plate 221 is a nickel plate plated on an iron metal plate. For example, the distribution plate 221 is a nickel plate plated on a stainless steel plate. The nickel distribution plate partitioning the first reactor and the second reactor can simultaneously undergo tar reduction and ammonia decomposition. That is, the nickel distribution plate decomposes the tar generated in the first reactor 210 by reducing the tar content in the product gas by decomposing the tar generated in the first reactor 210 and the ammonia generated in the first reactor 210 according to the reaction scheme shown below. Thereby exhibiting an ammonia decomposition catalytic action that reduces the ammonia content in the product gas, thereby reducing the content of tar and ammonia in the gas obtained from the biomass.
i) 타르분해 촉매 작용: CnHx (타르)→ CmHy (작은 분자의 타르 또는 가벼운 탄화수소) + H2 i) Tar cracking catalysis: C n H x (tar) → C m H y (small molecule tar or light hydrocarbon) + H 2
ii) 암모니아 분해 촉매작용: 2NH3 → N2 + 3H2.ii) Catalytic decomposition of ammonia: 2NH 3 → N 2 + 3H 2 .
상기 반응 ii)는 수소 가스와 질소가스로부터 암모니아가 합성되는 반응의 역반응이다. 니켈 분배판은 질소 성분을 많이 함유하는 하수 슬러지의 가스화에서 특히 암모니아의 함량을 극적으로 감소시킬 수 있으므로 중요하다. 상기와 같이 본 발명에 개시된 니켈 분배판을 사용하면 유동층 반응기 내부에 니켈 촉매 입자 층을 사용하는 구성 또는 반응기 외부에 별도의 고정층 니켈 촉매탑을 사용하는 구성에 비하여 니켈 손실 및 니켈 비활성화 현상을 감소시킬 수 있는 장점이 있다. 즉, 니켈 분배판(221)은 유동층 반응기 내부에 니켈 촉매 입자 층을 사용하는 구성을 채택하는 경우 유동층 내에서 유체(유동매체) 유동에 의하여 휩쓸려 배출되는 데 수반되는 니켈 촉매의 손실을 방지할 수 있으며, 이러한 이유로 이 경우 제2 고정층 니켈 촉매탑을 추가로 설치하여 운전하여야 하는데 소요되는 에너지 문제를 해결할 수 있다. 본 발명에 따라 니켈 분배판을 사용하는 경우 니켈에 의한 타르 분해에 소요되는 에너지는 유동층 반응기 내에서 산화에 의해 발생하는 에너지를 활용할 수 있기 때문이다. 또한 본 발명에 따라 니켈 분배판을 사용하는 경우 니켈 분배판에 코크스가 침착되어 발생하는 니켈의 비활성화(deactivation)가 감소하는 장점이 있다. 일반적인 니켈 촉매는 황, 타르 등에 의해 비활성화가 급속히 진행되며, 황함량이 적은 목재 등의 바이오매스, 폴리올레핀계 폐플라스틱 등이 가스화되는 경우 주된 비활성화 루트는 타르 침착으로 인한 코크스의 생성이지만, 본 발명에 따른 가스화 장치에서는 모래 및/또는 타르 분해 촉매 등의 유동층 물질의 활발한 움직임으로 인하여 니켈 분배판과의 연속적 충돌이 일어나 코크스의 박리가 진행되므로 비활성화가 급격히 줄어들 수 있다. 또한 제1 반응기로 수시로 공급되는 공기에 의해 니켈 분배판에 형성된 탄소 침적물을 연속적으로 산화할 수 있어서 코크스 침적이 더욱 감소될 수 있다. 또한 제1 가스화 반응기로부터 생성된 CO2 및 H2O가 니켈 분배판에 침적된 코크스(C)와 반응하여 코크스 분해반응을 일으킬 수 있다.Reaction ii) is a reverse reaction of ammonia synthesis from hydrogen gas and nitrogen gas. Nickel distribution plates are important in the gasification of sewage sludge containing a lot of nitrogen, especially since they can dramatically reduce the content of ammonia. As described above, the use of the nickel distribution plate disclosed in the present invention can reduce nickel loss and nickel deactivation phenomena as compared to a configuration using a nickel catalyst particle layer inside a fluidized bed reactor or a configuration using a separate fixed bed nickel catalyst tower outside the reactor. There are advantages to it. That is, the nickel distribution plate 221 can prevent the loss of the nickel catalyst accompanying the swept away by the fluid (fluid medium) flow in the fluidized bed when adopting a configuration using a nickel catalyst particle layer in the fluidized bed reactor. For this reason, in this case, a second fixed bed nickel catalyst tower may be additionally installed to solve the energy problem of operating. When using the nickel distribution plate according to the present invention is because the energy required for tar decomposition by nickel can utilize the energy generated by oxidation in the fluidized bed reactor. In addition, when using the nickel distribution plate according to the present invention has the advantage that the deactivation (deactivation) of the nickel generated by the coke is deposited on the nickel distribution plate is reduced. In general, the nickel catalyst is rapidly deactivated by sulfur, tar, etc., and when the biomass such as wood with low sulfur content and polyolefin waste plastics are gasified, the main deactivation route is generation of coke due to tar deposition. In the gasifier according to the present invention, deactivation may be drastically reduced since continuous collision with the nickel distribution plate occurs due to active movement of fluidized bed materials such as sand and / or tar decomposition catalysts, and the coke is separated. It is also possible to continuously oxidize the carbon deposits formed in the nickel distribution plate by air which is often supplied to the first reactor, so that coke deposition can be further reduced. In addition, CO 2 and H 2 O generated from the first gasification reactor may react with coke (C) deposited on the nickel distribution plate to cause coke decomposition.
i) 코크스와 CO2의 반응: C (코크스) + CO2 → 2COi) Reaction of coke with CO 2 : C (coke) + CO 2 → 2CO
ii) 코크스와 H2O의 반응: C (코크스) + H2O → CO + H2 ii) Reaction of coke with H 2 O: C (coke) + H 2 O → CO + H 2
따라서 본 발명의 이중 바이오매스 가스화 반응기 및 이를 구비하는 바이오매스 가스화 장치를 이용하면, 바이오매스로부터 경제적이면서도 효율적으로 타르 및 암모니아 함량이 최소화된 생성 가스를 얻을 수 있다.Therefore, by using the dual biomass gasification reactor of the present invention and a biomass gasification apparatus having the same, it is possible to obtain a product gas with minimal tar and ammonia content from the biomass economically and efficiently.
제2 반응기(220)는 제1 반응기(210)에서 생성된 생성가스 내의 타르를 흡착(adsorption)하거나 분해(cracking)하여 타르의 함량을 줄이는 역할을 하는 것으로서, 그 내부에 일정량의 탄소 흡착제(활성탄 및/또는 바이오챠르)가 충전된다. 여기서, 탄소 흡착제는 생성가스 내의 타르를 흡착하여 타르의 함량을 줄이거나 타르의 분해를 촉진하는 촉매 역할을 하여 그 함량을 줄일 뿐만 아니라 생성가스 내의 수분과의 반응을 촉진시켜 수소 생산을 돕는 역할을 한다.The second reactor 220 serves to reduce the content of tar by adsorbing or cracking tar in the generated gas generated in the first reactor 210, and a predetermined amount of carbon adsorbent (activated carbon) is contained therein. And / or biochar). Here, the carbon adsorbent serves to catalyze the tar in the product gas to reduce the content of tar or promote the decomposition of tar, thereby reducing the content and promoting the reaction with moisture in the product gas, thereby helping to produce hydrogen. do.
또한, 제2 반응기(220)의 내부에는 그 내부에 충전되는 탄소 흡착제의 유출을 예방할 뿐만 아니라 타르의 함량이 저감된 생성가스를 정제수단(40)으로 공급하는 사이클론(222)이 설치된다. 사이클론(222)은 상향류의 방해를 받지 않도록 그 하단부가 구부러진 구조를 갖는 것이 바람직하다. 또한, 제2 반응기(220)에는 그 내부에 충전되는 탄소 흡착제가 항상 일정량을 유지함으로써 공정에 무리를 주지 않도록 잉여 탄소 흡착제가 제2 파이프(223)를 따라 제1 반응기(210) 쪽으로 유동한 후 수용부(212)에 저장되도록 구성된다. 즉, 제2 파이프(211)의 일단은 제2 반응기(220)의 일정 높이에서 그 내부와 연통되고, 타단은 제1 반응기(210)의 일정 높이에서 그 내부와 연통되게 구성된다. 이때, 제2 파이프(223)는 상향류의 방해를 받지 않도록 구부러진 형태를 갖는다.In addition, a cyclone 222 is installed inside the second reactor 220 to prevent the outflow of the carbon adsorbent charged therein and to supply the product gas having a reduced tar content to the purifying means 40. The cyclone 222 preferably has a structure in which its lower end is bent so as not to be disturbed by upflow. In addition, in the second reactor 220, the excess carbon adsorbent flows along the second pipe 223 toward the first reactor 210 so as not to impede the process by maintaining a constant amount of the carbon adsorbent charged therein at all times. It is configured to be stored in the receiving portion (212). That is, one end of the second pipe 211 is in communication with the inside at a certain height of the second reactor 220, the other end is configured to communicate with the inside at a certain height of the first reactor (210). In this case, the second pipe 223 has a bent shape so as not to be disturbed by upflow.
상기와 같은 구성관계를 갖는 이중 바이오매스 가스화 반응기(20)는 제2 반응기(220)의 내부에 일정량의 탄소 흡착제를 충전함으로써 생성가스 내의 타르를 흡착하여 타르의 함량을 줄이거나 타르의 분해를 촉진하는 촉매 역할을 하여 그 함량을 줄일 뿐만 아니라 생성가스 내의 수분과의 반응을 촉진시켜 수소 생산을 도와 고발열량의 가스 생산이 가능하도록 한다.The dual biomass gasification reactor 20 having the above configuration has a predetermined amount of carbon adsorbent inside the second reactor 220 to adsorb tar in the product gas to reduce the content of tar or promote tar decomposition. It acts as a catalyst to reduce the content and promotes the reaction with moisture in the generated gas to help the production of hydrogen to produce a high calorific value gas.
또한, 이중 바이오매스 가스화 반응기(20)는 생성가스 내에 포함되는 입자의 양을 아래와 같은 구성요소를 통해 줄일 수가 있다. 즉, 첫째 제1 파이프(211)를 통해 제1 반응기(210) 내의 잉여 바이오챠르를 수용부(212)로 배출하고, 둘째 제2 반응기(220)의 분배판(221)을 통해 제1 반응기(210)에서 생성되어 상승 기류를 따라 제2 반응기(220) 내부로 유동하려는 생성가스 내의 바이오챠르를 여과하며, 셋째 사이클론(222)을 통해 제2 반응기(220) 내부의 탄소 흡착제의 유출을 예방하며, 넷째 제2 파이프(223)를 통해 제2 반응기(210) 내의 잉여 탄소 흡착제를 제1 반응기(210)를 거쳐 수용부(212)로 배출함으로써 생성가스 내에 포함되는 입자의 양을 줄일 수가 있다.In addition, the dual biomass gasification reactor 20 can reduce the amount of particles contained in the product gas through the following components. That is, the surplus biochar in the first reactor 210 is discharged to the receiving portion 212 through the first first pipe 211, and the first reactor (through the distribution plate 221 of the second reactor 220). The biochar in the product gas generated in 210 to be flowed into the second reactor 220 along the rising air flow is filtered, and the third cyclone 222 prevents the outflow of the carbon adsorbent inside the second reactor 220. For example, the amount of particles included in the generated gas may be reduced by discharging the excess carbon adsorbent in the second reactor 210 through the second pipe 223 to the accommodation portion 212 through the first reactor 210.
열원공급수단(30)은 제1 반응기(210)에 예비 열원과 공기를 공급하고 필요에 따라 수증기 또한 공급하는 역할을 하는 것으로서 유동층 가스화 장치에서 이용하는 일반적인 구성관계로 구성된다.The heat source supply means 30 serves to supply a preliminary heat source and air to the first reactor 210 and also to supply water vapor as necessary, and is configured in a general configuration relationship used in a fluidized bed gasifier.
정제수단(40)은 제2 반응기(220)에서 배출되는 배출가스를 전력생산 등에 이용할 수 있도록 정제하는 역할을 하는 것으로서 유동층 가스화 장치에서 이용하는 일반적인 구성관계로 구성된다.The purifying means 40 serves to purify the exhaust gas discharged from the second reactor 220 to be used for electric power production, etc., and is configured in a general configuration relationship used in the fluidized bed gasifier.
제2 실시형태2nd Embodiment
본 발명의 제2 실시형태에 따른 가스화 장치는 반응기의 일부 구조를 제외하고는 제1 실시형태의 가스화 장치와 동일한 개념으로 구성된다. 따라서, 제1 실시형태와 동일하거나 유사한 구성요소들에 대해서는 유사한 도면부호를 부여하고 그 설명을 생략하기로 한다.The gasifier according to the second embodiment of the present invention has the same concept as the gasifier of the first embodiment except for the partial structure of the reactor. Therefore, the same or similar components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
도 4는 본 발명의 제2 실시형태에 따른 탄소 흡착제를 함유하는 이중 바이오매스 가스화 반응기를 구비한 가스화 장치의 개념도이다. 도 4를 참조하면, 본 실시형태의 이중 바이오매스 가스화 반응기(20a)는 바이오매스 주입수단(10a)을 통해 주입된 바이오매스를 열원공급수단(30a)에서 공급되는 외부의 열원과 바이오매스 자체의 열원을 이용하여 가스화하는 제1 반응기(210a)와, 제1 반응기(210a)에서 생성된 생성가스 내의 타르를 흡착하거나 분해하여 타르의 함량을 줄이는 제2 반응기(220a)로 구성된다. 여기서, 제2 반응기(220a)는 제1 반응기(210a)보다 넓은 크기와 용적을 가지며, 제1 반응기(210a)의 바로 상부에 설치된다. 따라서, 제1, 제2 반응기(210a, 220a)는 상하로 2단 형태를 이루며, 그 연결부위는 테이퍼진 형태를 갖는다.4 is a conceptual diagram of a gasifier having a dual biomass gasification reactor containing a carbon adsorbent according to a second embodiment of the present invention. Referring to FIG. 4, the dual biomass gasification reactor 20a according to the present embodiment includes a biomass injected through the biomass injection means 10a and an external heat source supplied from the heat source supply means 30a and the biomass itself. It comprises a first reactor (210a) for gasification using a heat source, and a second reactor (220a) to reduce the content of tar by adsorption or decomposition of the tar in the product gas generated in the first reactor (210a). Here, the second reactor 220a has a wider size and volume than the first reactor 210a and is installed directly above the first reactor 210a. Therefore, the first and second reactors 210a and 220a form two stages up and down, and the connection portion has a tapered shape.
제1 반응기(210a)는 그 내부에 일정량의 모래가 충전되고, 공정 중에 생성된 잉여 바이오챠르를 제1 파이프(211a)를 따라 수용부(212a)에 저장하도록 하는 등, 제1 실시형태의 제1 반응기(210)와 동일한 기능과 역할을 하도록 구성된다.The first reactor 210a is filled with a certain amount of sand therein, and the surplus biochar generated during the process is stored in the receiving portion 212a along the first pipe 211a. 1 is configured to serve the same function as the reactor (210).
또한, 제2 반응기(220a)는 그 내부에 일정량의 탄소 흡착제(활성탄 및/또는 바이오챠르)가 충전되는 것으로서, 그 하부에 제1 반응기(210a)와 연통하는 니켈 분배판(221a)과, 탄소 흡착제의 유출을 예방할 뿐만 아니라 타르의 함량이 저감된 생성가스를 정제수단(40a)으로 공급하는 사이클론(222a), 및 제1, 제2 반응기(210a, 220a)를 연결하는 제2 파이프(223a)를 갖는 등, 제1 실시형태의 제2 반응기(220)와 동일한 기능과 역할을 하도록 구성된다. 여기서, 니켈 분배판(221a)은 제1 실시형태의 니켈 분배판(221)과 달리 각 구멍의 상단으로 갈고리(hook) 형태의 파이프가 제2 반응기(220a) 쪽으로 돌출되어 있는 형태로 구성할 수도 있다.In addition, the second reactor 220a is filled with a predetermined amount of carbon adsorbent (activated carbon and / or biochar) therein, and a nickel distribution plate 221a communicating with the first reactor 210a at the lower portion thereof, and carbon Cyclone 222a for supplying the generated gas having reduced tar content to the refining means 40a as well as preventing the outflow of the adsorbent, and a second pipe 223a connecting the first and second reactors 210a and 220a. It is configured to serve the same function as the second reactor 220 of the first embodiment, and the like. Here, the nickel distribution plate 221a may be configured in a form in which a hook-shaped pipe protrudes toward the second reactor 220a at the upper end of each hole, unlike the nickel distribution plate 221 of the first embodiment. have.
제1 및 제2 반응기(210a, 220a)의 연결부위에는 열원공급수단(30a)의 공기를 공급하여 제1 반응기(210a)에서 생성되어 제2 반응기(220a)로 유동하는 생성가스 내의 타르를 일부 제거함으로써 생성가스 내의 타르 함량을 줄이는 공기공급라인(310a)이 열원공급수단(30a)과 연통되게 설치된다. 이렇게 공기를 공급하여 생성가스 내의 타르를 산화시킴으로써 그 함량을 줄일 수 있다.Part of the tar in the product gas generated in the first reactor 210a and flowing to the second reactor 220a by supplying air from the heat source supply means 30a to the connection portions of the first and second reactors 210a and 220a. By removing the air supply line 310a to reduce the tar content in the product gas is installed in communication with the heat source supply means (30a). Thus, by supplying air to oxidize the tar in the product gas can be reduced its content.
상기한 바와 같이 본 발명의 이중 바이오매스 가스화 반응기 및 이를 구비하는 바이오매스 가스화 장치는 니켈 분배판을 채택함으로써 바이오매스로부터 경제적이면서도 효율적으로 타르 및 암모니아 함량이 최소화된 생성 가스를 제조할 수 있다.As described above, the dual biomass gasification reactor of the present invention and the biomass gasification apparatus including the same can produce a product gas that minimizes the tar and ammonia content from the biomass by economically and efficiently adopting a nickel distribution plate.
또한, 본 발명의 이중 바이오매스 가스화 반응기 및 이를 구비하는 바이오매스 가스화 장치는 내부에 별도의 내부 반응기를 갖거나 반응기를 2단으로 구성하되 상부 반응기 내에 탄소 흡착제를 함유함으로써 생성가스 내의 타르의 함량을 줄이고 고발열량의 가스를 생성할 수 있으며 이에 따라 중형 규모의 발전용량을 갖도록 설계할 수 있다. 이에 의하여 기존의 고정형 가스화 장치(fixed bed gasifier)가 소형 발전 시스템에 이용될 수밖에 없는 한계를 극복할 수 있다.In addition, the dual biomass gasification reactor of the present invention and the biomass gasification apparatus having the same has a separate internal reactor or two stages of the reactor inside, but by containing a carbon adsorbent in the upper reactor content of tar in the generated gas It can reduce and generate high calorific value gas and can be designed to have a medium-sized power generation capacity. This overcomes the limitation that existing fixed bed gasifiers can only be used in small power generation systems.
본 발명의 이중 바이오매스 가스화 반응기 및 이를 구비하는 바이오매스 가스화 장치는 또한 이중 바이오매스 가스화 반응기를 구비함으로써 전력생산 등에 안정적으로 이용할 수 있는 저함량의 타르 및 암모니아를 갖는 고발열량의 가스를 생산할 수 있다.The dual biomass gasification reactor of the present invention and the biomass gasification apparatus including the same can also produce a high calorific value gas having a low content of tar and ammonia that can be stably used for electric power production and the like by providing a dual biomass gasification reactor.
본 발명의 이중 바이오매스 가스화 반응기 및 이를 구비하는 바이오매스 가스화 장치는 또한 반응기를 이중으로 구성하여 하부 반응기(제1 반응기)의 열원을 상부 반응기(제2 반응기)에서 그대로 이용할 수 있으므로 설치공간이 작아 공정의 효율성을 높일 수 있다.The dual biomass gasification reactor of the present invention and the biomass gasification apparatus including the same also have a small installation space because the reactor can be dually configured so that the heat source of the lower reactor (first reactor) can be used as it is in the upper reactor (second reactor). The efficiency of the process can be increased.
실험예Experimental Example
아래에서는 앞서 설명한 바와 같이 구성된 본 발명에 따른 바이오매스 가스화 장치를 제작하여 실험한 실험예에 대해 설명한다.Hereinafter, an experimental example of the biomass gasifier according to the present invention configured as described above will be described.
이 실험에 사용된 공급재료는 바이오매스로 250~425㎛ 크기의 건조 하수 슬러지 1kg을 사용하고, 탄소 흡착제로 활성탄 500g를 사용하였다.The feedstock used in this experiment was 1kg of dry sewage sludge of 250 ~ 425㎛ size as biomass and 500g of activated carbon as carbon adsorbent.
그리고, 가스화 장치는 도 5와 같이 구성하되, STS-316으로 제작한 2단식 가스화 반응기를 이용하였다. 여기서, 하부 반응기는 그 직경이 100mm이고 높이가 360mm인 사이즈를 갖되, 그 내부에 실리카 모래를 충전하였다. 또한, 유동 안정성 검사를 위해 하부 반응기에 3개의 열전쌍을 설치하였다. 그리고, 상부 반응기는 그 직경이 160mm이고 높이가 340mm인 사이즈를 가지며 그 내부에 활성탄을 충전하였다. 또한, 유동 안정성 검사를 위해 상부 반응기에 2개의 열전쌍을 설치하였다.And, the gasifier is configured as shown in Figure 5, using a two-stage gasification reactor made of STS-316. Here, the lower reactor had a size of 100 mm in diameter and 360 mm in height, and was filled with silica sand therein. In addition, three thermocouples were installed in the bottom reactor for flow stability testing. The upper reactor was 160 mm in diameter and 340 mm in height and filled with activated carbon therein. In addition, two thermocouples were installed in the upper reactor for flow stability testing.
사이클론은 10㎛ 이상의 입자를 여과하고, 핫 필터는 1㎛ 이상의 입자를 여과하는 사양의 제품을 이용하고, 콘덴서는 응축액 액체를 0℃까지 냉각하도록 하였다. 그리고, 생성된 가스를 GCs와 GC-MS 체계를 사용하여 분석하였다. Cyclone filtered the particle | grains of 10 micrometers or more, the hot filter used the product of the specification which filters the particle | grains of 1 micrometer or more, and the condenser cooled the condensate liquid to 0 degreeC. The generated gases were analyzed using GCs and GC-MS systems.
표 2
비교예 1 비교예 2 실시예 1
실험 조건
상부 반응기 온도(℃) 807 800 793
하부 반응기 온도(℃) 812 779 794
운전 시간 (min) 91 93 93
당량비* 0.20 0.21 0.20
층(bed) 재료 (g) 천연 올리빈2,500g 천연 올리빈2,500g 천연 올리빈2,500g
상부 반응기 중의활성 탄소 충전량(g) 사용하지 않음 사용함2,000g 사용함2,000g
분배판 재료 스테인레스 스틸 분배판 스테일레스 스틸분배판 스테인레스 스틸판에 니켈을 도금한 분배판
생성가스 특성
N2 (vol.%) 46.81 44.22 38.85
CO2 (vol.%) 16.73 7.65 13.26
H2 (vol.%) 9.97 29.19 26.46
CO (vol.%) 14.26 14.94 17.23
CH4 (vol.%) 8.04 4.00 4.19
C2H2 (vol.%) 0.20 0.0000 0.0053
C2H4 (vol.%) 3.16 0.0020 0.0010
C2H6 (vol.%) 0.19 0.0008 0.0009
C3+C4+C5 (vol.%) 0.10 0.0034 <0.0001
벤젠 (vol.%) 0.49 0.0051 0.0002
벤젠보다 무거운 방향족 화합물(vol.%) 0.06 0.0015 0.0003
타르(g/Nm3) 2.41 0.06 0.0098
저위 발열량(MJ/Nm3) 8.36 6.18 6.28
암모니아 함량(mg/L) Not measured 700 11.7
TABLE 2
Comparative Example 1 Comparative Example 2 Example 1
Experimental conditions
Upper reactor temperature (℃) 807 800 793
Bottom reactor temperature (° C) 812 779 794
Driving time (min) 91 93 93
Equivalence ratio * 0.20 0.21 0.20
Bed material (g) Natural Olivine 2500g Natural Olivine 2500g Natural Olivine 2500g
G of activated carbon in the upper reactor (g) Do not use 2,000 g 2,000 g
Distribution plate material Stainless steel distribution plate Stainless Steel Distribution Plate Nickel plated plate on stainless steel plate
Product gas characteristics
N 2 (vol.%) 46.81 44.22 38.85
CO 2 (vol.%) 16.73 7.65 13.26
H 2 (vol.%) 9.97 29.19 26.46
CO (vol.%) 14.26 14.94 17.23
CH 4 (vol.%) 8.04 4.00 4.19
C 2 H 2 (vol.%) 0.20 0.0000 0.0053
C 2 H 4 (vol.%) 3.16 0.0020 0.0010
C 2 H 6 (vol.%) 0.19 0.0008 0.0009
C 3 + C 4 + C 5 (vol.%) 0.10 0.0034 <0.0001
Benzene (vol.%) 0.49 0.0051 0.0002
Aromatic compounds heavier than benzene (vol.%) 0.06 0.0015 0.0003
Tar (g / Nm 3 ) 2.41 0.06 0.0098
Low calorific value (MJ / Nm 3 ) 8.36 6.18 6.28
Ammonia Content (mg / L) Not measured 700 11.7
* 당량비는 가스화 중 실제 공급된 공기양/ 완전산화를 위해 화학당량적으로 필요한 공기양을 나타낸다.* Equivalence ratio represents the amount of air that is chemically equivalent to the actual amount of air supplied during gasification / complete oxidation.
표 2를 참조하면, 니켈 도금 스테인레스 분배판을 이용한 실시예 1의 경우 니켈 분배판 대신 스테인레스 분배판을 이용한 것을 제외하고는 동일한 조건에서 시험한 비교예 2(0.06 g/Nm3)에 비하여 생성 가스 중의 타르 함량(약 0.01 g/Nm3)이 약 6배 이상 감소한 것을 확인할 수 있다. 실시예 1에서 얻은 생성 가스의 암모니아 함량(약 12 mg/L)은 비교예 2(700 mg/L)에 비하여 약 58.3배 감소한 것을 확인할 수 있었다. 또한 상기한 실험 조건하에서 생성 가스 성분의 변화 관찰시 실시예 1의 니켈 분배판의 비활성화는 관찰되지 않았다.Referring to Table 2, Example 1 using the nickel-plated stainless distribution plate produced gas compared to Comparative Example 2 (0.06 g / Nm 3 ) tested under the same conditions except that a stainless distribution plate instead of a nickel distribution plate It can be seen that the tar content (about 0.01 g / Nm 3 ) is reduced by about 6 times or more. The ammonia content (about 12 mg / L) of the product gas obtained in Example 1 was confirmed to be reduced by about 58.3 times compared to Comparative Example 2 (700 mg / L). In addition, the deactivation of the nickel distribution plate of Example 1 was not observed when the change of the product gas component was observed under the above experimental conditions.
따라서 비교예 2와 같이 스테인레스 분배판을 사용하지만 상부 반응기(제2 반응기)에 활성 탄소를 충전하지 않은 비교예 1의 경우에는 타르 함량이 더 많아지는 것을 확인할 수 있었다. 비교예 1의 암모니아 함량은 측정하지 않았으나 암모니아 흡착성이 있는 활성탄의 성질을 고려할 때 700 mg/L 이상일 것으로 판단된다.Therefore, in the case of Comparative Example 1 using a stainless distribution plate as in Comparative Example 2 but not filled with activated carbon in the upper reactor (second reactor) it was confirmed that the tar content is more. Ammonia content of Comparative Example 1 was not measured, but considering the properties of activated carbon with ammonia adsorption, it is determined that it is 700 mg / L or more.
본 기술분야의 통상의 지식을 가진 자라면 본 발명의 기술사상의 범주를 이탈하지 않고 첨부한 특허청구범위 내에서 다양한 변형 및 모방이 가능하다는 것을 인정할 것이다.Those skilled in the art will recognize that various modifications and variations can be made within the scope of the appended claims without departing from the scope of the spirit of the invention.
<부호의 설명><Description of the code>
10 : 바이오매스 주입수단 10: biomass injection means
20 : 가스화 반응기20: gasification reactor
30 : 열원공급수단 30: heat source supply means
40 : 정제수단 40: refining means
210 : 제1 반응기 210: first reactor
211 : 제1 파이프211: first pipe
212 : 수용부 212: accommodation
220 : 제2 반응기220: second reactor
221 : 분배판 221: Distribution Plate
222 : 사이클론222: cyclone
223 : 제2 파이프.223: second pipe.

Claims (11)

  1. 주입된 바이오매스를 외부의 열원과 상기 바이오매스 자체의 산화 열원을 이용하여 가스화하는 제1 반응기로서, 그 내부에 모래 또는 타르 분해 촉매가 충전되어 상기 외부의 열원의 기류를 따라 유동하면서 상기 바이오매스를 가스화하고 바이오챠르(bio-char)를 생성하는 제1 반응기A first reactor for gasifying the injected biomass using an external heat source and an oxidizing heat source of the biomass itself, wherein the biomass is filled with sand or tar decomposition catalyst and flows along the air stream of the external heat source. Reactor to gasify and generate bio-char
    상기 제1 반응기에 연통되도록 설치되어 상기 제1 반응기의 열원을 이용하며 그 내부에 탄소 흡착제가 충전되어 상기 제1 반응기에서 생성된 생성가스 내의 타르의 함량을 저감시키고 수소 생산을 증대시켜 후속 공정으로 공급하는 제2 반응기; 및It is installed to communicate with the first reactor and uses the heat source of the first reactor and the carbon adsorbent is filled therein to reduce the content of tar in the generated gas produced in the first reactor and increase hydrogen production to a subsequent process A second reactor for supplying; And
    상기 제1 및 제2 반응기 사이의 연통 부위에 설치된 분배판으로서, 상기 제1 반응기 내의 상기 바이오챠르 및 상기 모래 또는 타르 분해 촉매의 상기 제2 반응기 쪽으로의 유동을 막고, 상기 제2 반응기 내의 상기 탄소 흡착제의 상기 제1 반응기 쪽으로의 유출을 막는 분배판을 포함하고,A distribution plate provided at a communication site between the first and second reactors, the distribution plate prevents flow of the biochar and the sand or tar decomposition catalyst toward the second reactor in the first reactor, and the carbon in the second reactor. A distribution plate for preventing the outflow of the adsorbent to the first reactor,
    상기 분배판은 니켈판인 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The distribution plate is a dual biomass gasification reactor, characterized in that the nickel plate.
  2. 제1항에 있어서, 상기 제2 반응기는 상기 제1 반응기의 내부에서 상부 쪽에 위치하도록 상기 제1 반응기의 내부측 상단에 고정되어 있으며, 상기 제1 반응기의 내부측 둘레로부터 간격을 갖고 이격된 상태로 고정되어 있는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The method of claim 1, wherein the second reactor is fixed to the inner top of the first reactor so as to be located in the upper side in the interior of the first reactor, spaced apart from the inner circumference of the first reactor Dual biomass gasification reactor, characterized in that fixed to.
  3. 제1항에 있어서, 상기 제2 반응기가 상기 제1 반응기의 상단에 설치되어 2단 형태를 이루는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The dual biomass gasification reactor of claim 1, wherein the second reactor is installed on the top of the first reactor to form a two-stage configuration.
  4. 제1항에 있어서, 상기 분배판은 철계 금속판에 도금된 니켈판인 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The dual biomass gasification reactor according to claim 1, wherein the distribution plate is a nickel plate plated on an iron-based metal plate.
  5. 제1항에 있어서, 상기 분배판은 복수 개의 구멍을 갖는 다공판의 형상을 갖는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The dual biomass gasification reactor according to claim 1, wherein the distribution plate has a shape of a porous plate having a plurality of holes.
  6. 제5항에 있어서, 상기 분배판의 각 구멍의 상단에는 갈고리(hook) 형태의 파이프가 제2 반응기(220a) 쪽으로 돌출되어 있는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.6. The dual biomass gasification reactor according to claim 5, wherein a hook-shaped pipe protrudes toward the second reactor (220a) at the upper end of each hole of the distribution plate.
  7. 제1항에 있어서, 상기 탄소 흡착제는 활성탄 또는 바이오챠르인 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The dual biomass gasification reactor of claim 1, wherein the carbon adsorbent is activated carbon or biochar.
  8. 제1항에 있어서, 상기 제1 반응기는 그 내부의 상기 바이오챠르가 일정량을 유지하도록 잉여 바이오챠르를 외부로 배출하기 위해 상기 제1 반응기의 내부와 연통하여 설치된 제1 파이프; 및 According to claim 1, wherein the first reactor has a first pipe installed in communication with the interior of the first reactor for discharging the surplus biochar to the outside to maintain a certain amount of the biochar therein; And
    상기 제1 파이프를 따라 중력에 의해 배출되는 상기 잉여 바이오챠르를 저장하는 수용부를 더 구비하는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.And a receptacle for storing the surplus biochar discharged by gravity along the first pipe.
  9. 제1항에 있어서, 상기 제2 반응기의 내부에는 타르의 함량이 저감된 생성가스를 후속 공정으로 배출하며 그 내부에 충전된 상기 탄소 흡착제의 유출을 막는 사이클론이 더 설치되어 있는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The method of claim 1, wherein the second reactor is further provided with a cyclone for discharging the product gas of reduced tar content in a subsequent process and preventing the outflow of the carbon adsorbent charged therein. Biomass gasification reactor.
  10. 제1항에 있어서, 상기 제1 및 제2 반응기를 서로 연통시켜 상기 제2 반응기 내부의 상기 탄소 흡착제가 일정량을 유지하도록 잉여 탄소 흡착제를 상기 제1 반응기 쪽으로 유동시키는 제2 파이프를 더 구비하는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The method of claim 1, further comprising a second pipe communicating the first and second reactors with each other to flow a surplus carbon adsorbent toward the first reactor to maintain a constant amount of the carbon adsorbent in the second reactor. Dual biomass gasification reactor characterized in that.
  11. 바이오매스를 주입하는 바이오매스 주입수단;Biomass injection means for injecting biomass;
    상기 바이오매스 주입수단을 통해 주입된 바이오매스를 외부의 열원과 바이오매스 자체의 열원을 이용하여 가스화하는 제1항 내지 제10항 중 어느 한 항에 따른 이중 바이오매스 가스화 반응기;The dual biomass gasification reactor according to any one of claims 1 to 10, wherein the biomass injected through the biomass injection means is gasified using an external heat source and a heat source of the biomass itself;
    상기 가스화 반응기에 예열된 공기를 공급하는 열원공급수단; 및Heat source supply means for supplying preheated air to the gasification reactor; And
    상기 가스화 반응기에서 배출되는 배출가스를 정제하는 정제수단을 포함하는 바이오매스 가스화 장치.Biomass gasification apparatus comprising a purifying means for purifying the exhaust gas discharged from the gasification reactor.
PCT/KR2013/009559 2012-10-31 2013-10-25 Dual biomass gasification reactor having nickel distribution plate and biomass gasifier having same WO2014069840A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0122562 2012-10-31
KR1020120122562A KR101401472B1 (en) 2012-10-31 2012-10-31 Two-stage biomass gasifier having nickel distributor plate and biomass gasifier apparatus having the same

Publications (1)

Publication Number Publication Date
WO2014069840A1 true WO2014069840A1 (en) 2014-05-08

Family

ID=50627684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009559 WO2014069840A1 (en) 2012-10-31 2013-10-25 Dual biomass gasification reactor having nickel distribution plate and biomass gasifier having same

Country Status (2)

Country Link
KR (1) KR101401472B1 (en)
WO (1) WO2014069840A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101773653B1 (en) * 2014-06-13 2017-08-31 주식회사 엘지화학 Fluidized bed reactor and process for preparing carbon nanostructures using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632146B1 (en) 2015-03-31 2016-06-21 (주)정석이엔씨 Biomass gasifier
KR101632147B1 (en) 2015-04-01 2016-06-22 (주)정석이엔씨 Power plant for generating electric power by biomass
KR102111001B1 (en) 2018-07-18 2020-05-15 한국생산기술연구원 Water treatment system using biochar
KR102422089B1 (en) 2019-02-28 2022-07-18 주식회사 엘지화학 Fluidized Bed Reactor
KR102465670B1 (en) * 2020-11-11 2022-11-11 한국생산기술연구원 Apparatus and method for circulating fluidized bed gasification having a multitude of draft tubes
KR102465674B1 (en) * 2020-11-11 2022-11-11 한국생산기술연구원 Gasifier capable of continuously regenerating carbon-based additives and method for producing syngas using the same
KR102490101B1 (en) * 2021-02-18 2023-01-18 한국에너지기술연구원 Tar reforming process and catalyst usnig carbonaceous by-product of gasification process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292720A (en) * 2003-03-28 2004-10-21 Hachinohe Institute Of Technology Fluidized bed gasification furnace, fuel gas producing method and gas power generation system
US7597743B2 (en) * 2003-01-28 2009-10-06 Fluor Technologies Corporation Configuration and process for carbonyl removal
KR20100004586A (en) * 2008-07-04 2010-01-13 한국에너지기술연구원 Fixed and fluidized bed water-gas shift reactor and the hydrogen production method by using syngas from waste gasification
KR20100108944A (en) * 2009-03-31 2010-10-08 서울시립대학교 산학협력단 Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
KR101178831B1 (en) * 2010-05-19 2012-08-31 한국에너지기술연구원 Fluidized bed of water gas shift with membrane for the simultaneous CO2 separation and CO2 separation method using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597743B2 (en) * 2003-01-28 2009-10-06 Fluor Technologies Corporation Configuration and process for carbonyl removal
JP2004292720A (en) * 2003-03-28 2004-10-21 Hachinohe Institute Of Technology Fluidized bed gasification furnace, fuel gas producing method and gas power generation system
KR20100004586A (en) * 2008-07-04 2010-01-13 한국에너지기술연구원 Fixed and fluidized bed water-gas shift reactor and the hydrogen production method by using syngas from waste gasification
KR20100108944A (en) * 2009-03-31 2010-10-08 서울시립대학교 산학협력단 Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
KR101178831B1 (en) * 2010-05-19 2012-08-31 한국에너지기술연구원 Fluidized bed of water gas shift with membrane for the simultaneous CO2 separation and CO2 separation method using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101773653B1 (en) * 2014-06-13 2017-08-31 주식회사 엘지화학 Fluidized bed reactor and process for preparing carbon nanostructures using same

Also Published As

Publication number Publication date
KR20140055539A (en) 2014-05-09
KR101401472B1 (en) 2014-05-30

Similar Documents

Publication Publication Date Title
WO2014069840A1 (en) Dual biomass gasification reactor having nickel distribution plate and biomass gasifier having same
WO2018030702A1 (en) Dual biomass gasification reactor equipped with dispersion plate for reducing flow rate of fluidized bed medium and gasification apparatus comprising same
CN101880552B (en) Gasification device and method for preparing hydrogen-rich synthetic gas from biomass
CN102703131B (en) Two-stage gasification method and gasification device for fuels with wide size distribution
BR112013001807B1 (en) METHOD FOR GASPING CARBONIDE MATERIAL AND A GASIFICATION SYSTEM
EP3083008B1 (en) Process and apparatus for cleaning raw product gas
KR101271793B1 (en) Gasification apparatus with dual-type fluidized bed reactors
WO2017003066A1 (en) Hydrogen generator and hydrogen production method, using steam plasma
US10023820B2 (en) Device and method for producing substitute natural gas and network comprising same
JP2010215888A (en) Circulation fluidized bed gasification reactor
CN108946661B (en) Method and system for preparing hydrogen through biomass gasification
KR101069574B1 (en) Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
WO2013095073A1 (en) Hybrid gasification system
WO2014092447A1 (en) Gasification process and system using dryer integrated with water-gas shift catalyst
KR101438335B1 (en) Three stage gasifier for the production of low-tar producer gas
WO2014104712A1 (en) Gasification combined facility for carbon fuel including pneumatic conveying dryer
CN215828695U (en) Coal gasification furnace and coal gasification system
CN1630701A (en) Method and device for gasification
JP2010047719A (en) Apparatus and method for removing tar
JP5483060B2 (en) Circulating fluidized bed gasification reactor
JP2019203078A (en) Gasification gas manufacturing apparatus and manufacturing method of gasification gas
KR102653928B1 (en) Gasifier integrated with tar reformer
WO2021096319A1 (en) Rotating methane pyrolysis solar reactor, and method for producing hydrogen and carbon black using same
CN113667514A (en) Coal gasification method, coal gasification furnace, coal gasification system, and coal gasification synthetic ammonia system
CN117720948A (en) Biomass gasification method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850295

Country of ref document: EP

Kind code of ref document: A1