JP2010215888A - Circulation fluidized bed gasification reactor - Google Patents

Circulation fluidized bed gasification reactor Download PDF

Info

Publication number
JP2010215888A
JP2010215888A JP2009175233A JP2009175233A JP2010215888A JP 2010215888 A JP2010215888 A JP 2010215888A JP 2009175233 A JP2009175233 A JP 2009175233A JP 2009175233 A JP2009175233 A JP 2009175233A JP 2010215888 A JP2010215888 A JP 2010215888A
Authority
JP
Japan
Prior art keywords
furnace
gasification
fluidized bed
char
tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009175233A
Other languages
Japanese (ja)
Other versions
JP5532207B2 (en
Inventor
Takahiro Murakami
高広 村上
Koichi Matsuoka
浩一 松岡
Koji Kuramoto
浩司 倉本
Zenzo Suzuki
善三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009175233A priority Critical patent/JP5532207B2/en
Publication of JP2010215888A publication Critical patent/JP2010215888A/en
Application granted granted Critical
Publication of JP5532207B2 publication Critical patent/JP5532207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulation fluidized bed gasification reactor which can reduce the used amount of tar adsorptive material such as porous particles used for a fluidized medium as much as possible, can circulate the fluidized medium without allowing the fluidized medium to coexist with ash particles and can reduce a cost required for tar treatment. <P>SOLUTION: The circulation fluidized bed gasification reactor is configured such that a raw material is gasified in a fluidized bed gasification furnace into which the fluidized medium is introduced, char produced upon gasification and the fluidized medium are introduced into a fluidized bed combustion furnace of a post step, an uncombusted content is combusted and the reheated fluidized medium is circulated in the reactor, wherein, on a preliminary step of the fluidized bed gasification reactor, a pyrolysis furnace of a two-step furnace structure in which a tar absorption furnace and a fuel pyrolysis furnace are disposed on upper and lower stages is disposed, and a fluidized medium which contains uncombusted char taken out of the fuel pyrolysis furnace of the lower stage and a fluidized medium to which the tar taken out of the tar absorption furnace of the upper stage is adsorbed are circulated independently. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、循環流動層を用いて燃料より可燃ガスを取り出すためのガス化反応炉に関するものである。   The present invention relates to a gasification reactor for extracting combustible gas from fuel using a circulating fluidized bed.

従来から、石炭、バイオマス、ごみ、下水汚泥などの炭化水素資源の固体燃料を利用し、生成したガスを、可燃ガス及び熱源として利用することにより、有機資源の有効活用を図る技術が開発されている。
該ガス化装置の1つとして、反応炉を流動層ガス化炉と流動層燃焼炉に分離し、流動層ガス化炉に炭化水素資源の固体燃料を供給し、水蒸気でガス化を行い、生成した未燃分(チャー)と流動媒体を流動層燃焼炉で燃焼させ、加熱された流動媒体を前記ガス化炉に戻す循環流動層を用いたものがある(特許文献1)。
上記のガス化反応炉は外部循環方式であるが、特許文献2に記載された反応炉のように、内部循環方式のものもあり、該反応炉においては、流動媒体に粒子状スラグを利用することで、ガス化炉内で生成されたガス中に含まれるタールが改質されタール分の少ない可燃ガスが生成されるとともに、劣化したスラグを未燃チャーとともに燃焼炉へ導入し再活性化して、ガス化炉へ戻される。
これらの流動層ガス化炉と流動層燃焼炉を有する循環流動層ガス化システムにおいては、それぞれの炉から、ガス化ガスと燃焼ガスを別々に取り出すことができ、不活性ガスを含まない高カロリーなガスを製造することができる。
Conventionally, technologies have been developed to make effective use of organic resources by using solid fuels of hydrocarbon resources such as coal, biomass, garbage, and sewage sludge, and using the generated gas as a combustible gas and heat source. Yes.
As one of the gasifiers, the reactor is separated into a fluidized bed gasification furnace and a fluidized bed combustion furnace, a solid fuel of hydrocarbon resources is supplied to the fluidized bed gasification furnace, gasified with steam, and generated There is one that uses a circulating fluidized bed in which the unburned portion (char) and the fluidized medium are combusted in a fluidized bed combustion furnace and the heated fluidized medium is returned to the gasification furnace (Patent Document 1).
The gasification reaction furnace is an external circulation system, but there is an internal circulation system such as the reaction furnace described in Patent Document 2, in which particulate slag is used as a fluid medium. As a result, the tar contained in the gas generated in the gasification furnace is reformed to generate a combustible gas with a small amount of tar, and the deteriorated slag is introduced into the combustion furnace together with unburned char and reactivated. , Returned to the gasifier.
In the circulating fluidized bed gasification system having these fluidized bed gasification furnace and fluidized bed combustion furnace, the gasification gas and the combustion gas can be separately taken out from the respective furnaces, and the high calorie does not contain an inert gas. Gas can be produced.

しかしながら、特許文献1、2に記載された発明のように、ガス化炉内で熱分解およびガス化を同時に行うと、チャーのガス化が生じ難くなる。これは、熱分解時に生成するHガスがチャー表面に吸着することで、反応速度が低下してしまうことによる。よって、高含有チャー燃料のガス化を行うには、1200〜1400℃という高温又は高圧で行う必要があること、800〜900℃の低温では高価なニッケル等の触媒を使用せねばならないという問題がある。 However, as in the inventions described in Patent Documents 1 and 2, if pyrolysis and gasification are simultaneously performed in a gasification furnace, char gasification is unlikely to occur. This is because the reaction rate is lowered by the adsorption of H 2 gas generated during thermal decomposition on the char surface. Therefore, in order to gasify the high-content char fuel, it is necessary to perform at a high temperature or high pressure of 1200 to 1400 ° C., and a problem that an expensive catalyst such as nickel must be used at a low temperature of 800 to 900 ° C. is there.

また、特許文献3は、バイオマス及びガス化剤をガス化炉に導入して合成ガスに転換させるバイオマスのガス化において、加熱条件下、ガス化反応系内にバイオマスをガス化させることで生成する灰分を有効利用することにより、外部から高価な触媒を添加することなく、低温側でガス化させて有用な合成ガスを高収率で得られるバイオマスの効率的なガス化方法が記載されている。
しかしながら、特許文献3に記載された方法では、バイオマスをガス化させた後、炉外へ飛散した灰を回収し、そこへガスを通過させることでタールを改質させており、これにより、ガス化炉後段に高価な触媒を使用する必要がないと記述されているが、炉内でチャーのガス化を促進するものではない。
Further, Patent Document 3 generates biomass by gasifying biomass in a gasification reaction system under heating conditions in the gasification of biomass in which biomass and a gasifying agent are introduced into a gasification furnace and converted into synthesis gas. An efficient biomass gasification method is described in which a useful synthesis gas can be obtained in a high yield by gasifying on the low temperature side without adding an expensive catalyst from the outside by effectively using ash. .
However, in the method described in Patent Document 3, after the biomass is gasified, the ash scattered outside the furnace is recovered, and the tar is reformed by passing the gas therethrough. Although it is described that it is not necessary to use an expensive catalyst in the latter stage of the furnace, it does not promote char gasification in the furnace.

さらに、特許文献4は、原料を流動層炉でガス化し、熱分解又は部分酸化して、生成ガスを得るシステムにおいて、原料から生成するタールを、流動接触分解触媒、流動接触分解平衡触媒、シリカ・アルミナ系粒子、又は油浸造粒法で製造されたアルミナ系粒子を使用して、タールを除去することが記載されている。
しかしながら、特許文献4に記載された方法は、多孔質粒子によりタールを効率良く吸着する方法であるが、流動媒体として従来使用されている硅砂よりも極めて高価であるため、コストがかかってしまう。また、流動層炉では、一定間隔で炉下部から灰を抜き出すが、多孔質粒子と混在するために、多孔質粒子も一緒に抜き出さねばならない。したがって、抜き出した量を炉内へ新たに追加供給せねばならない。よって、石炭のような灰分の多い燃料ほど、よりランニングコストがかかる可能性が高い。
Further, Patent Document 4 discloses that in a system in which a raw material is gasified in a fluidized bed furnace and pyrolyzed or partially oxidized to obtain a product gas, tar generated from the raw material is converted into a fluid catalytic cracking catalyst, a fluid catalytic cracking equilibrium catalyst, silica -It is described that tar is removed by using alumina-based particles or alumina-based particles produced by an oil immersion granulation method.
However, the method described in Patent Document 4 is a method in which tar is efficiently adsorbed by porous particles, but it is extremely expensive than the conventionally used cinnabar sand as a fluid medium, and thus costs are increased. Further, in the fluidized bed furnace, ash is extracted from the lower part of the furnace at regular intervals. However, in order to be mixed with porous particles, the porous particles must be extracted together. Therefore, the extracted amount must be newly supplied into the furnace. Therefore, the higher the ash content fuel such as coal, the higher the running cost is likely.

本発明者らは、こうした問題を解決して、チャーを多く含む固体燃料のガス化を低温で促進させることにより、ガス化炉で取り出せる生成ガスを多くし、高効率で可燃ガスを取り出せる方法及びそのためのガス化反応炉を既に提案している。(特許文献5参照)。
この方法は、ガス化炉の前段にアルカリ吸収炉を設け、チャーに揮発ガス中のアルカリを積極的に吸着させてガス化触媒として利用し、ガス化効率を向上させる方法であって、アルカリ吸収炉内でタールをチャーに吸着させてチャーのガス化効率を向上させるとともに、チャーのガス化の阻害効果も避けることができ、さらに、アルカリ吸収炉から生成する熱分解ガスと、ガス化炉から生成するガス化ガスを分離して取り出し、トータルの生成ガス量を高くするメリットがある。
The present inventors have solved these problems and promoted gasification of a solid fuel containing a large amount of char at a low temperature, thereby increasing the amount of product gas that can be extracted in a gasification furnace, and a method for extracting combustible gas with high efficiency. A gasification reactor for this purpose has already been proposed. (See Patent Document 5).
This method is a method of improving the gasification efficiency by providing an alkali absorption furnace in front of the gasification furnace and actively adsorbing the alkali in the volatile gas to the char and using it as a gasification catalyst. In addition to improving the gasification efficiency of char by adsorbing tar to the char in the furnace, it is possible to avoid the effect of inhibiting the gasification of char, and from the pyrolysis gas generated from the alkali absorption furnace and the gasification furnace There is an advantage that the gasified gas to be generated is separated and taken out to increase the total amount of generated gas.

また、特許文献6では、流動層ガス化炉を、有機物原料が供給されて熱分解反応によりタールを含む熱分解ガスを生成する室と、熱分解反応によって生成した熱分解残渣を導入してガス化ガスを生成する室とに分けることによって、良質のガス化ガスの生成を高めるようにすることが記載されている。   Further, in Patent Document 6, a fluidized bed gasification furnace is provided by introducing a chamber in which an organic material is supplied and generating a pyrolysis gas containing tar by a pyrolysis reaction, and introducing a pyrolysis residue generated by the pyrolysis reaction into a gas. It is described that the generation of high-quality gasification gas is enhanced by dividing it into a chamber for generating gasification gas.

特開2005−41959号公報JP 2005-41959 A 特開2005−68297号公報JP 2005-68297 A 特開2005−68373号公報JP 2005-68373 A 特開2005−272782号公報JP 2005-272882 A 特開2008−303377号公報JP 2008-303377 A 特開2008−156552号公報JP 2008-156552 A

本発明者らは、前記の循環流動層ガス化反応炉を用いたガス化方法及び装置について更に検討したところ、流動媒体として、アルミナ、石灰石、ゼオライトなどのタール吸着性物質を投入すると、タールを効率良く吸着できるという利点があるが、特に、タール吸着性物質として、多孔質アルミナなどの多孔質粒子を用いた場合、よりタールを効率良く吸着できるものの、流動媒体として従来使用されている硅砂よりも極めて高価であるため、その使用量を可能な限り低減する必要がある。
また、特許文献4と同様に、炉内で多孔質粒子と灰粒子が混在するために、一定間隔で炉下部から灰を抜き出す際に、多孔質粒子も一緒に抜き出されてしまう。
さらに、炉後段のタール処理にかかるコスト(改質炉、スクラバなど)も削減する必要がある。
The present inventors further examined the gasification method and apparatus using the circulating fluidized bed gasification reactor, and when a tar adsorbing substance such as alumina, limestone, or zeolite was added as a fluid medium, the tar was Although there is an advantage that it can be adsorbed efficiently, in particular, when porous particles such as porous alumina are used as the tar adsorbing substance, although tar can be adsorbed more efficiently, it is more than the conventional sand used as a fluid medium. However, it is necessary to reduce the amount of use as much as possible.
Further, as in Patent Document 4, since porous particles and ash particles coexist in the furnace, the porous particles are also extracted together when the ash is extracted from the lower part of the furnace at regular intervals.
Furthermore, it is necessary to reduce the cost (reforming furnace, scrubber, etc.) required for tar treatment at the latter stage of the furnace.

本発明は、こうした従来技術における課題を解決して、高価な流動媒体を灰粒子と混在することなく、その使用量を可能な限り低減したうえで、タール処理にかかるコストを削減しうるガス化反応炉を提供することを目的とするものである。   The present invention solves such problems in the prior art, and reduces the amount of use as much as possible without mixing an expensive fluid medium with ash particles, and can reduce the cost for tar treatment. The object is to provide a reaction furnace.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ガス化炉の前段に、タール吸収炉を上段に備えた二段炉構造の燃料熱分解炉を設けるとともに、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させることにより解決しうるという知見を得た。   As a result of intensive research to achieve the above object, the present inventors have provided a fuel pyrolysis furnace having a two-stage furnace structure having a tar absorption furnace in the upper stage of the gasification furnace, and a lower stage fuel. The inventor has found that the fluid medium containing the unburned char taken out from the pyrolysis furnace and the fluid medium adsorbed with the tar taken out from the upper tar absorption furnace can be solved by independently circulating them.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]流動媒体が導入された流動層ガス化炉内で原料をガス化させ、ガス化時に生成したチャー及び流動媒体を後段の流動層燃焼炉に導入して、未燃分を燃焼させるとともに、再加熱された流動媒体が反応炉内を循環するように構成された循環流動層ガス化反応炉であって、
前記流動層ガス化炉の前段に、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構造の熱分解炉を設けるとともに、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させるようにしたことを特徴とする循環流動層ガス化反応炉。
[2]前記下段の燃料熱分解炉の後段に、チャーガス化炉及びチャー残渣燃焼炉をこの順に連結し、前記上段のタール吸収炉の後段に、コークガス化炉及びコーク残渣燃焼炉をこの順に連結したことを特徴とする上記[1]の循環流動層ガス化反応炉。
[3]前記ガス化炉を、下段に前記チャーガス化炉、上段に前記コークガス化炉を備えた二段炉としたことを特徴とする上記[2]の循環流動層ガス化反応炉。
[4]前記チャーガス化炉及び前記コークガス化炉を、それぞれ別個のガス化炉としたことを特徴とする上記[2]の循環流動層ガス化反応炉。
[5]前記チャーガス化炉を省略し、前記下段の燃料熱分解炉の後段に、チャー残渣燃焼炉を直接連結したことを特徴とする上記[2]の循環流動層ガス化反応炉。
[6]前記コークガス化炉を省略し、前記上段のタール吸収炉の後段に、コーク残渣燃焼炉を直接連結したことを特徴とする上記[2]のの循環流動層ガス化反応炉。
[7]前記上段のタール吸収炉には、流動媒体としてタール吸着性物質を使用し、下段の燃料熱分解炉において生成したタールを該流動媒体に吸着させるようにしたことを特徴とする上記[1]〜[6]のいずれかの循環流動層ガス化反応炉。
[8]前記下段の燃料熱分解炉には、流動媒体として硅砂を使用することを特徴とする上記[1]〜[7]のいずれかの循環流動層ガス化反応炉。
[9]前記燃料熱分解炉において揮発分の熱分解及びタールの改質により生成する熱分解ガス、前記流動層ガス化炉においてチャー及び/又はコークのガス化により生成するガス化ガス、及び前記流動層燃焼炉においてチャー残渣及び/又はコーク残渣の燃焼により生成する燃焼ガスを、それぞれ独立して取り出す手段を備えたことを特徴とする上記[1]〜〔8〕のいずれかの循環流動層ガス化反応炉。
[10]前記燃料熱分解炉が、アルカリ吸収機能を有することを特徴とする上記〔1〕〜〔9〕のいずれかの循環流動層ガス化反応炉。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] The raw material is gasified in the fluidized bed gasification furnace into which the fluidized medium is introduced, and the char and fluidized medium generated during the gasification are introduced into the subsequent fluidized bed combustion furnace to burn the unburned portion. A circulating fluidized bed gasification reactor configured to circulate the reheated fluid medium in the reactor,
In front of the fluidized bed gasification furnace, a two-stage furnace pyrolysis furnace equipped with a tar absorption furnace and a fuel pyrolysis furnace is provided, and contains unburned char taken out from the lower fuel pyrolysis furnace. A circulating fluidized bed gasification reactor, wherein the fluidized medium and the fluidized medium adsorbed with the tar taken out from the upper tar absorption furnace are circulated independently of each other.
[2] A char gasification furnace and a char residue combustion furnace are connected in this order to the subsequent stage of the lower fuel pyrolysis furnace, and a coke gasification furnace and a coke residue combustion furnace are connected in this order to the subsequent stage of the upper tar absorption furnace. The circulating fluidized bed gasification reactor according to [1] above, which is characterized in that
[3] The circulating fluidized bed gasification reactor according to [2], wherein the gasification furnace is a two-stage furnace including the char gasification furnace in the lower stage and the coke gasification furnace in the upper stage.
[4] The circulating fluidized bed gasification reactor according to [2], wherein the char gasification furnace and the coke gasification furnace are separate gasification furnaces.
[5] The circulating fluidized bed gasification reactor according to [2], wherein the char gasification furnace is omitted, and a char residue combustion furnace is directly connected to a rear stage of the lower fuel pyrolysis furnace.
[6] The circulating fluidized bed gasification reactor according to [2], wherein the coke gasification furnace is omitted, and a coke residue combustion furnace is directly connected to the rear stage of the upper tar absorption furnace.
[7] The above-mentioned upper tar absorption furnace uses a tar adsorbing substance as a fluid medium, and adsorbs the tar generated in the lower fuel pyrolysis furnace to the fluid medium. The circulating fluidized bed gasification reactor according to any one of 1] to [6].
[8] The circulating fluidized bed gasification reactor according to any one of [1] to [7], wherein the lower fuel pyrolysis furnace uses dredged sand as a fluid medium.
[9] Pyrolysis gas generated by pyrolysis of volatile matter and tar reforming in the fuel pyrolysis furnace, gasification gas generated by char and / or coke gasification in the fluidized bed gasification furnace, and The circulating fluidized bed according to any one of the above [1] to [8], comprising means for independently taking out combustion gases generated by combustion of char residue and / or coke residue in a fluidized bed combustion furnace Gasification reactor.
[10] The circulating fluidized bed gasification reactor according to any one of [1] to [9], wherein the fuel pyrolysis furnace has an alkali absorption function.

本発明によれば、ガス化炉の前段に、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構造の熱分解炉を設けることにより、タール吸収炉の流動媒体だけに、高価なタール吸着性物質を用いることが可能となり、その使用量を最小限にすることができ、また、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させることで、高価なタール吸着性物質と灰粒子とが混在しないようにでき、タール処理にかかるコストを削減しうる。さらに、本発明においては、燃料熱分解炉とチャーガス化炉を完全に分離して独立型とし、それらを連結することにより、チャーを最小量のガス化剤で効率良くガス化させることができる。また、タール吸収炉とコークガス化炉も完全に分離して独立型とし、それらを連結することにより、コークを最小量のガス化剤で効率良くガス化させることができる。   According to the present invention, by providing a pyrolysis furnace having a two-stage furnace structure having a tar absorption furnace and a fuel pyrolysis furnace at the upper and lower stages in front of the gasification furnace, only the fluid medium of the tar absorption furnace is expensive. It is possible to use a tar-adsorbing substance, the amount of use can be minimized, and a fluid medium containing unburned char taken from the lower fuel pyrolysis furnace and an upper tar absorption furnace can be used. By circulating each of the extracted fluid media on which the tar is adsorbed independently, the expensive tar adsorbing substance and the ash particles can be prevented from being mixed, and the cost for the tar treatment can be reduced. Furthermore, in the present invention, the fuel pyrolysis furnace and the char gasification furnace are completely separated from each other and connected to each other so that the char can be efficiently gasified with a minimum amount of gasifying agent. In addition, the tar absorption furnace and the coke gasification furnace are completely separated and made stand-alone, and by connecting them, the coke can be efficiently gasified with a minimum amount of gasifying agent.

本発明の循環流動層ガス化反応炉の第1の実施の形態を模式的に示す図。The figure which shows typically 1st Embodiment of the circulating fluidized-bed gasification reactor of this invention. 本発明の循環流動層ガス化反応炉の第2の実施の形態を模式的に示す図。The figure which shows typically 2nd Embodiment of the circulating fluidized bed gasification reactor of this invention. 本発明の循環流動層ガス化反応炉の第3の実施の形態を模式的に示す図。The figure which shows typically 3rd Embodiment of the circulating fluidized-bed gasification reactor of this invention. 本発明の循環流動層ガス化反応炉の第4の実施の形態を模式的に示す図。The figure which shows typically 4th Embodiment of the circulating fluidized-bed gasification reactor of this invention. 本発明の循環流動層ガス化反応炉の第5の実施の形態を模式的に示す図。The figure which shows typically 5th Embodiment of the circulating fluidized-bed gasification reactor of this invention. 本発明の循環流動層ガス化反応炉の第6の実施の形態を模式的に示す図。The figure which shows typically 6th Embodiment of the circulating fluidized bed gasification reactor of this invention. 本発明の循環流動層ガス化反応炉の第7の実施の形態を模式的に示す図。The figure which shows typically 7th Embodiment of the circulating fluidized-bed gasification reactor of this invention.

以下、本発明の実施の形態について、図面に基づいて説明するが、本発明はこの実施の形態に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.

図1は、本発明の循環流動層ガス化反応炉の第1の実施の形態を模式的に示す図であって、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構成の燃料熱分解炉を備え、該燃料熱分解炉の下段の後段には、チャーガス化炉及びチャー残渣燃焼炉をこの順に連結させ、前記上段のタール吸収炉の後段には、コークガス化炉及びコーク残渣燃焼炉をこの順に連結させたものである。そして、前記チャーガス化炉及び前記コークガス化炉は、それぞれを下段及び上段に備えた二段型の流動層ガス化炉とされており、チャー残渣燃焼炉及びコーク残渣燃焼炉は、それぞれ独立した流動層燃焼炉で構成されている。
なお、本発明において、前記の燃料熱分解炉を、前述の特許文献3に記載されたようなアルカリ吸収機能を有する炉とし、チャーに揮発ガス中のアルカリを積極的に吸着させてガス化触媒として利用し、チャーのガス化効率を向上させることができることはいうまでもない。
FIG. 1 is a diagram schematically showing a first embodiment of a circulating fluidized bed gasification reactor according to the present invention, which is a fuel having a two-stage furnace configuration having a tar absorption furnace and a fuel pyrolysis furnace at the top and bottom. A pyrolysis furnace, a char gasification furnace and a char residue combustion furnace are connected in this order to the lower stage of the fuel pyrolysis furnace, and a coke gasification furnace and a coke residue combustion are connected to the latter stage of the upper tar absorption furnace. The furnaces are connected in this order. The char gasification furnace and the coke gasification furnace are two-stage fluidized bed gasification furnaces provided at the lower stage and the upper stage, respectively, and the char residue combustion furnace and the coke residue combustion furnace are independent fluidized respectively. It consists of a layer combustion furnace.
In the present invention, the fuel pyrolysis furnace is a furnace having an alkali absorption function as described in Patent Document 3, and the gasification catalyst is prepared by actively adsorbing the alkali in the volatile gas to the char. Needless to say, the gasification efficiency of char can be improved.

該図に示す循環流動層ガス化反応炉においては、上段のタール吸収炉から取り出されるタールを吸着した流動媒体は、その後段に連結されたコークガス化炉及びコーク残渣燃焼炉を経てタール吸収炉に戻され、一方、下段の燃料熱分解炉から取り出される流動媒体は、その後段に連結されたチャーガス化炉及びチャー残渣燃焼炉を経て燃料熱分解炉に戻される。   In the circulating fluidized bed gasification reactor shown in the figure, the fluid medium that adsorbs the tar taken out from the upper tar absorption furnace passes through the coke gasification furnace and the coke residue combustion furnace connected to the subsequent stage to the tar absorption furnace. On the other hand, the fluid medium taken out from the lower fuel pyrolysis furnace is returned to the fuel pyrolysis furnace through the char gasification furnace and the char residue combustion furnace connected to the subsequent stage.

多孔質アルミナなどの多孔質粒子は、原料から生成するタールを効率よく吸収するために好ましく用いられるが、高価であるという欠点を有している。
本発明の循環流動層ガス化反応炉においては、流動層ガス化炉の前段に、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構造の熱分解炉を備えているので、上段のタール吸収炉の流動媒体に、多孔質粒子等のタール吸着効率の良好なものを使用し、その下段の燃料熱分解炉に導入する流動媒体には、一般的に使用されている安価な硅砂を主成分とするものを使用することにより、高価な流動媒体の使用量を最小限にすることが可能となる。
また、チャー残渣燃焼炉とコーク残渣燃焼炉とが分離しているので、上段のタール吸収炉を循環する多孔質粒子などの流動媒体は、チャー残渣燃焼炉で発生する灰粒子と混在しないようにできる。
また、炉内でタール処理ができるので、従来、炉後段でのタール処理にかかっていたコストを削減できる。
Porous particles such as porous alumina are preferably used in order to efficiently absorb tar generated from the raw material, but have the disadvantage of being expensive.
In the circulating fluidized bed gasification reactor according to the present invention, a thermal decomposition furnace having a two-stage furnace structure having a tar absorption furnace and a fuel pyrolysis furnace at the top and bottom is provided in the upstream of the fluidized bed gasification furnace. As a fluid medium for the tar absorption furnace of the present invention, those having good tar adsorption efficiency such as porous particles are used, and the fluid medium introduced into the fuel pyrolysis furnace at the lower stage is generally used inexpensive cinnabar It is possible to minimize the amount of the expensive fluid medium used by using a material containing as a main component.
In addition, since the char residue combustion furnace and the coke residue combustion furnace are separated, fluid media such as porous particles circulating in the upper tar absorption furnace should not be mixed with the ash particles generated in the char residue combustion furnace. it can.
Further, since tar treatment can be performed in the furnace, the cost conventionally required for the tar treatment at the latter stage of the furnace can be reduced.

以下、上段のタール吸収炉の流動媒体に、多孔質アルミナのような多孔質粒子を使用し、その下段の燃料熱分解炉の流動媒体に硅砂を使用した例を用いて、原料のガス化について具体的に説明する。
バイオマス、ごみ、下水汚泥、及び石炭などのような炭化水素系固体燃料を、燃料熱分解炉へ供給するとともに、下部より、例えば、生成した燃焼ガスの一部を循環させたCOガス、或いはNやArのような不活性ガス等を、流動ガスとして導入し、燃料分解炉に供給された上記の炭化水素系固体燃料を熱分解させる。
生成した熱分解ガスと同時に生成するタールが上段のタール吸収炉へ流れる。そのタールは、タール吸収炉中の多孔質粒子に吸着され、一部はガスに改質される。タールを含まない熱分解ガスは、上部に設けられた熱分解ガスの取出し手段から取り出すことができる。
取り出された熱分解ガスは、可燃ガスの一種であって、燃料電池やガスエンジンによる発電、液体燃料などに使用される。
なお、本発明においてガス化の原料としては、前述のような炭化水素系固体燃料に限られず、タールの発生し易い液体燃料を用いることも可能である。
Hereinafter, the gasification of the raw material is performed using an example in which porous particles such as porous alumina are used for the fluid medium of the upper tar absorption furnace and dredged sand is used for the fluid medium of the lower fuel pyrolysis furnace. This will be specifically described.
A hydrocarbon-based solid fuel such as biomass, garbage, sewage sludge, and coal is supplied to the fuel pyrolysis furnace, and for example, CO 2 gas in which a part of the generated combustion gas is circulated from the lower part, or An inert gas such as N 2 or Ar is introduced as a flowing gas, and the above hydrocarbon solid fuel supplied to the fuel cracking furnace is pyrolyzed.
The tar generated simultaneously with the generated pyrolysis gas flows to the upper tar absorption furnace. The tar is adsorbed by the porous particles in the tar absorption furnace and partly reformed into gas. The pyrolysis gas containing no tar can be taken out from the pyrolysis gas take-out means provided at the top.
The extracted pyrolysis gas is a kind of combustible gas, and is used for power generation by a fuel cell or a gas engine, liquid fuel, and the like.
In the present invention, the raw material for gasification is not limited to the hydrocarbon-based solid fuel as described above, and a liquid fuel that easily generates tar can also be used.

下段の燃料熱分解炉では、熱分解後のチャー及び硅砂は、次のチャーガス化炉へ送られる。
一方、上段のタール吸収炉でタールを吸着した多孔質粒子は、チャーガス化炉上段のコークガス化炉へ送られる。
In the lower fuel pyrolysis furnace, the pyrolyzed char and cinnabar are sent to the next char gasification furnace.
On the other hand, the porous particles having adsorbed tar in the upper tar absorption furnace are sent to the upper coke gasification furnace.

チャーガス化炉及びコークガス化炉は、それぞれの炉を下段及び上段に有する二段の流動層とされており、それぞれの炉内に導入されたチャー及びコークは、下部より導入されたガス化剤とのガス化反応によりガス化される。ガス化剤としては、水蒸気或いは酸素或いは空気などが用いられる。ガス化剤と反応して生成したガス化ガスは、コークガス化炉上部から取り出される。
取り出されたガス化ガスは、可燃ガスであり、燃料電池やガスエンジンによる発電、液体燃料などに利用される。
The char gasification furnace and the coke gasification furnace are in a two-stage fluidized bed having the respective furnaces in the lower stage and the upper stage, and the char and coke introduced into each furnace are combined with the gasifying agent introduced from the lower part. It is gasified by the gasification reaction. As the gasifying agent, water vapor, oxygen, air, or the like is used. The gasification gas produced by reacting with the gasifying agent is taken out from the upper part of the coke gasification furnace.
The extracted gasification gas is a combustible gas, and is used for power generation by a fuel cell or a gas engine, liquid fuel, or the like.

また、図1に示す装置では、前述のタール吸収炉上部から取り出された熱分解ガスと、コークガス化炉上部から取り出されたガス化ガスを別個に取り出しているが、熱分解ガスとガス化ガスを、それぞれの炉出口以後で合流させてから利用してもよく、熱源として用いる際には、合流前、或いは後に、熱交換器をつけることもできる。   In the apparatus shown in FIG. 1, the pyrolysis gas taken out from the upper part of the tar absorption furnace and the gasification gas taken out from the upper part of the coke gasification furnace are taken out separately. May be used after being merged after each furnace outlet, and when used as a heat source, a heat exchanger may be attached before or after the merge.

チャーガス化炉内の残渣チャー及びコークガス化炉内の残渣コークは、それぞれ、別個に設けられた、次の残渣チャー燃焼炉及び残渣コーク燃料炉に導入される。
残渣チャー燃焼炉及び残渣コーク燃焼炉は、いずれも流動層とされており、残渣チャー及び残渣コークが完全燃焼可能な滞留時間を確保する。それぞれの燃焼炉では、導入された残渣チャー及び残渣コークを、それぞれの燃焼炉の下部より導入された空気或いは酸素と共に燃焼させ、サイクロンにより燃焼ガスをそれぞれの炉の上部に設けられた取出手段から取り出される。
それぞれの燃焼炉から取り出された燃焼ガスは、主に熱源として利用されるものであり、前述したとおり、その一部を燃料熱分解炉に再循環させることも可能である。また、前記ガス化炉又はそれぞれの燃焼炉に導入する空気や蒸気の予熱源としても利用できる。
一方、チャー残渣燃焼炉で再加熱された硅砂、及びコーク燃焼炉で再加熱された多孔質粒子は、それぞれ、燃料熱分解炉及びタール吸収炉へ戻される。
なお、ガス化炉内で生じる反応(特にシフト反応)には、チャーの濃度が密接に関係しており、熱バランスが成立する範囲内であれば、未燃チャーの一部を再循環させ、ガス化炉内のチャー濃度を反応に適した濃度に制御することで、例えば、ガス化の際のH/CO比の制御が可能となり、液体燃料への利用が有利となる。
さらに、残渣チャーおよび残渣コークから得られる燃焼熱のみでは、熱バランスが成立しない場合、所定量の熱分解ガス、ガス化ガスをそれぞれの燃焼炉へ供給して燃焼させることにより、熱バランスを維持することも可能である。
The residue char in the char gasification furnace and the residue coke in the coke gasification furnace are respectively introduced into the next residue char combustion furnace and residue coke fuel furnace provided separately.
Both the residue char combustion furnace and the residue coke combustion furnace are fluidized beds, and ensure a residence time during which the residue char and residue coke can be completely combusted. In each combustion furnace, the introduced residue char and residue coke are burned together with air or oxygen introduced from the lower part of each combustion furnace, and the combustion gas is extracted from the extraction means provided in the upper part of each furnace by a cyclone. It is taken out.
The combustion gas taken out from each combustion furnace is mainly used as a heat source, and as described above, a part of the combustion gas can be recycled to the fuel pyrolysis furnace. It can also be used as a preheating source for air or steam introduced into the gasification furnace or each combustion furnace.
On the other hand, the silica sand reheated in the char residue combustion furnace and the porous particles reheated in the coke combustion furnace are returned to the fuel pyrolysis furnace and the tar absorption furnace, respectively.
Note that the char concentration is closely related to the reaction (especially shift reaction) occurring in the gasification furnace, and if the heat balance is within the range, a part of the unburned char is recirculated, By controlling the char concentration in the gasification furnace to a concentration suitable for the reaction, for example, the H 2 / CO ratio at the time of gasification can be controlled, and the use for liquid fuel is advantageous.
Furthermore, if the heat balance cannot be established with only the combustion heat obtained from the residue char and residue coke, the heat balance is maintained by supplying a predetermined amount of pyrolysis gas and gasification gas to each combustion furnace and burning them. It is also possible to do.

燃料熱分解炉とチャーガス化炉、チャーガス化炉と残渣チャー燃焼炉、タール吸収炉とコークガス化炉、或いは、コークガス化炉と残渣コーク燃焼炉のそれぞれを連結する連通路は、ループシール、L型バルブ、移動層など、マテリアルシールできれば、いずれの型でも良い。   A fuel pyrolysis furnace and a char gasification furnace, a char gasification furnace and a residue char combustion furnace, a tar absorption furnace and a coke gasification furnace, or a communication path connecting each of the coke gasification furnace and the residue coke combustion furnace is a loop seal, L-shaped Any type of material can be used as long as the material can be sealed, such as a valve or moving layer.

以上のとおり、図1に示す循環流動層ガス化反応炉においては、下段の燃料熱分解炉に導入される流動媒体及び固体燃料の流れは、燃料熱分解炉→連通路→チャーガス化炉→連通路→チャー残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→燃料熱分解炉となり、一方、上段のタール吸収炉に導入される流動媒体の流れは、タール吸収炉→連通路→コークガス化炉→連通路→コーク残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→タール吸収炉となる。   As described above, in the circulating fluidized bed gasification reactor shown in FIG. 1, the flow of the fluid medium and the solid fuel introduced into the lower fuel pyrolysis furnace is as follows: fuel pyrolysis furnace → communication passage → char gasification furnace → communication Passage → Char residue combustion furnace → Cyclone (not shown) → Downcomer (not shown) → Fuel pyrolysis furnace On the other hand, the flow of the fluid medium introduced into the upper tar absorption furnace is as follows. Path → Coke gasification furnace → Communication path → Coke residue combustion furnace → Cyclone (not shown) → Downcomer (not shown) → Tar absorption furnace.

図1に示した装置によれば、熱分解炉の上下が、燃料熱分解炉とタール吸収炉の二段に分離されているので、多孔質粒子等のタール吸着効率が良好な流動媒体、例えば、多孔質アルミナを、上段のタール吸収炉にのみに供給することにより、その使用量を最小限にすることができるという利点がある。さらに、燃料熱分解炉、チャーガス化炉及び残渣チャー燃焼炉とからなる系と、タール吸収炉、コークガス化炉及び残渣コーク燃焼炉からなる系とで、それぞれ別々に流動媒体を循環させることができるので、多孔質粒子などのタール吸着効率が良好な流動媒体と灰粒子とが混在しないようにすることができる。   According to the apparatus shown in FIG. 1, since the upper and lower sides of the pyrolysis furnace are separated into two stages, a fuel pyrolysis furnace and a tar absorption furnace, a fluid medium having good tar adsorption efficiency such as porous particles, for example, By supplying porous alumina only to the upper tar absorption furnace, there is an advantage that the amount of use can be minimized. Furthermore, the fluid medium can be separately circulated in a system comprising a fuel pyrolysis furnace, a char gasification furnace and a residue char combustion furnace, and a system comprising a tar absorption furnace, a coke gasification furnace and a residue coke combustion furnace. Therefore, it is possible to prevent the fluid medium having good tar adsorption efficiency such as porous particles from mixing with the ash particles.

図2は、本発明の循環流動層ガス化反応炉の第2の実施の形態を模式的に示す図である。
図1に示す装置では、ガス化炉を、下段及び上段に、それぞれチャーガス化炉及びコークガス化炉を設けた二段構造とし、生成されたガス化ガスを上段のコークガス化炉から取り出すように構成されているが、図2に示す装置では、これらのガス化炉を、それぞれ別個のガス化炉とし、それぞれのガス化炉の下部からガス化剤を導入し、生成されたガス化ガスを、上部に設けられた取出手段から取り出すように構成されている。この点以外は、図1に示す循環流動層ガス化反応炉と同じである。
FIG. 2 is a diagram schematically showing a second embodiment of the circulating fluidized bed gasification reactor of the present invention.
In the apparatus shown in FIG. 1, the gasification furnace has a two-stage structure in which a char gasification furnace and a coke gasification furnace are provided at the lower and upper stages, respectively, and the generated gasification gas is taken out from the upper coke gasification furnace. However, in the apparatus shown in FIG. 2, these gasification furnaces are set as separate gasification furnaces, a gasifying agent is introduced from the lower part of each gasification furnace, and the generated gasification gas is It is comprised so that it may take out from the taking-out means provided in the upper part. Except this point, it is the same as the circulating fluidized bed gasification reactor shown in FIG.

図3は、循環流動層ガス化反応炉の第3の実施の形態を模式的に示す図であって、チャーガス化炉を有しておらず、燃料熱分解炉の後段に、チャー残渣燃焼炉が直接連結されている点以外は、図1に示す循環流動層ガス化反応炉と同じである。
本発明の循環流動層ガス化反応炉においては、用いる固体燃料が、高揮発分固体燃料で、チャーをガス化させなくとも、熱分解ガスとその残渣分を燃焼させるだけで、システムの熱バランスが成立する場合、すなわち、熱分解後の残渣チャーをガス化させると、燃焼熱分が不足する場合は、本実施形態に示すように、チャーガス化炉を省略することができる。
FIG. 3 is a diagram schematically showing a third embodiment of the circulating fluidized bed gasification reaction furnace, which does not have a char gasification furnace, and is provided with a char residue combustion furnace at the rear stage of the fuel pyrolysis furnace. Is the same as the circulating fluidized bed gasification reactor shown in FIG.
In the circulating fluidized bed gasification reactor of the present invention, the solid fuel to be used is a high volatile solid fuel, and the thermal balance of the system can be obtained simply by burning the pyrolysis gas and its residue without gasifying the char. In other words, if the residual char after pyrolysis is gasified, the char gasification furnace can be omitted as shown in this embodiment.

図3に示す循環流動層ガス化反応炉においては、硅砂からなる流動媒体及び固体燃料の流れは、燃料熱分解炉→連通路→チャー残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→燃料熱分解炉となり、一方、多孔質粒子からなる流動媒体の流れは、タール吸収炉→連通路→コークガス化炉→連通路→コーク残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→タール吸収炉となる。   In the circulating fluidized bed gasification reactor shown in FIG. 3, the flow of the fluid medium made of cinnabar and the solid fuel is as follows: fuel pyrolysis furnace → communication passage → char residue combustion furnace → cyclone (not shown) → downcomer (FIG. (Not shown) → Fuel pyrolysis furnace, while the flow of fluid medium consisting of porous particles is tar absorption furnace → communication path → coke gasification furnace → communication path → coke residue combustion furnace → cyclone (not shown) → down Comer (not shown) → Tar absorption furnace.

図4は、循環流動層ガス化反応炉の第4の実施の形態を模式的に示す図であって、コークガス化炉を有しておらず、タール吸収炉の後段に、コーク残渣燃焼炉が直接連結されている点以外は、図1に示す循環流動層ガス化反応炉と同じである。
図4に示す循環流動層ガス化反応炉においては、硅砂からなる流動媒体及び固体燃料の流れは、燃料熱分解炉→連通路→チャーガス化炉→連通路→チャー残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→燃料熱分解炉となり、一方、多孔質粒子からなる流動媒体の流れは、タール吸収炉→連通路→コーク残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→タール吸収炉となる。
FIG. 4 is a diagram schematically showing a fourth embodiment of the circulating fluidized bed gasification reactor, which does not have a coke gasification furnace, and a coke residue combustion furnace is provided at the rear stage of the tar absorption furnace. Except for the direct connection, it is the same as the circulating fluidized bed gasification reactor shown in FIG.
In the circulating fluidized bed gasification reactor shown in FIG. 4, the flow of the fluid medium made of cinnabar and the solid fuel is a fuel pyrolysis furnace → communication passage → char gasification furnace → communication passage → char residue combustion furnace → cyclone (not shown). → downcomer (not shown) → fuel pyrolysis furnace, while the flow of fluid medium consisting of porous particles is tar absorption furnace → communication path → coke residue combustion furnace → cyclone (not shown) → down Comer (not shown) → Tar absorption furnace.

図5は、循環流動層ガス化反応炉の第5の実施の形態を模式的に示す図であって、チャーガス化炉、コークガス化炉を有しておらず、タール吸収炉の後段に、コーク残渣燃焼炉が直接連結されている、また、燃料熱分解炉の後段に、チャー残渣燃焼炉が直接連結されている点以外は、図1に示す循環流動層ガス化反応炉と同じである。
図5に示す循環流動層ガス化反応炉においては、硅砂からなる流動媒体及び固体燃料の流れは、燃料熱分解炉→連通路→チャー残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→燃料熱分解炉となり、一方、多孔質粒子からなる流動媒体の流れは、タール吸収炉→連通路→コーク残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→タール吸収炉となる。
FIG. 5 is a diagram schematically showing a fifth embodiment of the circulating fluidized bed gasification reactor, which does not have a char gasification furnace and a coke gasification furnace, and has a coke after the tar absorption furnace. 1 is the same as the circulating fluidized bed gasification reactor shown in FIG. 1 except that the residue combustion furnace is directly connected and the char residue combustion furnace is directly connected to the rear stage of the fuel pyrolysis furnace.
In the circulating fluidized bed gasification reactor shown in FIG. 5, the flow of the fluid medium made of cinnabar and the solid fuel is as follows: fuel pyrolysis furnace → communication passage → char residue combustion furnace → cyclone (not shown) → downcomer (FIG. (Not shown) → fuel pyrolysis furnace, while the flow of fluid medium consisting of porous particles is: tar absorption furnace → communication path → coke residue combustion furnace → cyclone (not shown) → downcomer (not shown) → It becomes a tar absorption furnace.

図1〜5は、本発明の循環流動層ガス化反応炉の概念を示す模式図であって、各炉は、完全分離型だけでなく、これらの炉の一部又は全体を一体型にすることも可能であり、例えば、内側を熱分解炉、ガス化炉、外側を燃焼炉とすることなどや、燃焼炉を二段炉にすることも可能である。
図6及び図7は、その一例を示すものであって、ガス化炉は、チャーガス化炉とコークガス化炉とが、図6に示すように、完全に分離されていてもよく、或いは、図7に示すように、両炉の熱損失を低減させるために、隔壁を隔てて並設されていても良い。
両炉の燃焼炉も、図6のように、両炉の熱損失を低減させるために、隔壁を隔てて並設されていても良いことはいうまでもない。
1 to 5 are schematic views showing the concept of a circulating fluidized bed gasification reactor according to the present invention. Each furnace is not only a completely separated type, but also a part or all of these furnaces are integrated. For example, the inside can be a pyrolysis furnace, a gasification furnace, the outside can be a combustion furnace, or the combustion furnace can be a two-stage furnace.
FIG. 6 and FIG. 7 show an example, and in the gasification furnace, the char gasification furnace and the coke gasification furnace may be completely separated as shown in FIG. As shown in FIG. 7, in order to reduce the heat loss of both furnaces, they may be arranged in parallel with a partition wall therebetween.
It goes without saying that the combustion furnaces of both furnaces may be arranged side by side with a partition wall in order to reduce the heat loss of both furnaces as shown in FIG.

本発明の循環流動層ガス化反応炉におけるシステムは、バイオマス、ごみ、下水汚泥などの未利用炭化水素資源の利用に適用する他に、例えば、石炭やバイオマスとのハイブリッドガス化(共ガス化)、或いは、固体燃料と液体燃料とのハイブリッドガス化にも適用することができる。   The system in the circulating fluidized bed gasification reactor of the present invention is applied to the utilization of unused hydrocarbon resources such as biomass, garbage, sewage sludge, and, for example, hybrid gasification (cogasification) with coal and biomass. Alternatively, it can also be applied to hybrid gasification of solid fuel and liquid fuel.

Claims (10)

流動媒体が導入された流動層ガス化炉内で原料をガス化させ、ガス化時に生成したチャー及び流動媒体を後段の流動層燃焼炉に導入して、未燃分を燃焼させるとともに、再加熱された流動媒体が反応炉内を循環するように構成された循環流動層ガス化反応炉であって、
前記流動層ガス化炉の前段に、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構造の熱分解炉を設けるとともに、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させるようにしたことを特徴とする循環流動層ガス化反応炉。
The raw material is gasified in the fluidized bed gasification furnace into which the fluidized medium is introduced, and the char and fluidized medium generated during the gasification are introduced into the subsequent fluidized bed combustion furnace to burn the unburned components and reheat. A circulating fluidized bed gasification reactor configured such that the fluidized medium circulated in the reactor,
In front of the fluidized bed gasification furnace, a two-stage furnace pyrolysis furnace equipped with a tar absorption furnace and a fuel pyrolysis furnace is provided, and contains unburned char taken out from the lower fuel pyrolysis furnace. A circulating fluidized bed gasification reactor, wherein the fluidized medium and the fluidized medium adsorbed with the tar taken out from the upper tar absorption furnace are circulated independently of each other.
前記下段の燃料熱分解炉の後段に、チャーガス化炉及びチャー残渣燃焼炉をこの順に連結し、前記上段のタール吸収炉の後段に、コークガス化炉及びコーク残渣燃焼炉をこの順に連結したことを特徴とする請求項1に記載の循環流動層ガス化反応炉。   A char gasification furnace and a char residue combustion furnace are connected in this order to the latter stage of the lower fuel pyrolysis furnace, and a coke gasification furnace and a coke residue combustion furnace are connected in this order to the latter stage of the upper tar absorption furnace. The circulating fluidized bed gasification reactor according to claim 1, wherein 前記ガス化炉を、下段に前記チャーガス化炉、上段に前記コークガス化炉を備えた二段炉としたことを特徴とする請求項2に記載の循環流動層ガス化反応炉。   The circulating fluidized bed gasification reactor according to claim 2, wherein the gasification furnace is a two-stage furnace having the char gasification furnace in the lower stage and the coke gasification furnace in the upper stage. 前記チャーガス化炉及び前記コークガス化炉を、それぞれ別個のガス化炉としたことを特徴とする請求項2に記載の循環流動層ガス化反応炉。   The circulating fluidized bed gasification reactor according to claim 2, wherein the char gasification furnace and the coke gasification furnace are respectively separate gasification furnaces. 前記チャーガス化炉を省略し、前記下段の燃料熱分解炉の後段に、チャー残渣燃焼炉を直接連結したことを特徴とする請求項2に記載の循環流動層ガス化反応炉。   The circulating fluidized bed gasification reactor according to claim 2, wherein the char gasification furnace is omitted, and a char residue combustion furnace is directly connected to a rear stage of the lower fuel pyrolysis furnace. 前記コークガス化炉を省略し、前記上段のタール吸収炉の後段に、コーク残渣燃焼炉を直接連結したことを特徴とする請求項2に記載の循環流動層ガス化反応炉。   The circulating fluidized bed gasification reactor according to claim 2, wherein the coke gasification furnace is omitted, and a coke residue combustion furnace is directly connected to the rear stage of the upper tar absorption furnace. 前記上段のタール吸収炉には、流動媒体としてタール吸着性物質を使用し、下段の燃料熱分解炉において生成したタールを該流動媒体に吸着させるようにしたことを特徴とする請求項1〜6のいずれか1項に記載の循環流動層ガス化反応炉。   7. The upper tar absorption furnace uses a tar adsorbing substance as a fluid medium, and the tar generated in the lower fuel pyrolysis furnace is adsorbed to the fluid medium. The circulating fluidized bed gasification reactor according to any one of the above. 前記下段の燃料熱分解炉には、流動媒体として硅砂を使用することを特徴とする請求項1〜7のいずれか1項に記載の循環流動層ガス化反応炉。   The circulating fluidized-bed gasification reactor according to any one of claims 1 to 7, wherein the lower fuel pyrolysis furnace uses cinnabar as a fluid medium. 前記燃料熱分解炉において揮発分の熱分解及びタールの改質により生成する熱分解ガス、前記流動層ガス化炉においてチャー及び/又はコークのガス化により生成するガス化ガス、及び前記流動層燃焼炉においてチャー残渣及び/又はコーク残渣の燃焼により生成する燃焼ガスを、それぞれ独立して取り出す手段を備えたことを特徴とする請求項1〜8のいずれか1項に記載の循環流動層ガス化反応炉。   Pyrolysis gas produced by pyrolysis of volatile matter and tar reforming in the fuel pyrolysis furnace, gasification gas produced by gasification of char and / or coke in the fluidized bed gasification furnace, and fluidized bed combustion The circulating fluidized bed gasification according to any one of claims 1 to 8, further comprising means for independently taking out combustion gases generated by combustion of char residue and / or coke residue in a furnace. Reactor. 前記燃料熱分解炉が、アルカリ吸収機能を有することを特徴とする請求項1〜9のいずれか1項に記載の循環流動層ガス化反応炉。
The circulating fluidized bed gasification reactor according to any one of claims 1 to 9, wherein the fuel pyrolysis furnace has an alkali absorption function.
JP2009175233A 2009-02-20 2009-07-28 Circulating fluidized bed gasification reactor Expired - Fee Related JP5532207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175233A JP5532207B2 (en) 2009-02-20 2009-07-28 Circulating fluidized bed gasification reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009037265 2009-02-20
JP2009037265 2009-02-20
JP2009175233A JP5532207B2 (en) 2009-02-20 2009-07-28 Circulating fluidized bed gasification reactor

Publications (2)

Publication Number Publication Date
JP2010215888A true JP2010215888A (en) 2010-09-30
JP5532207B2 JP5532207B2 (en) 2014-06-25

Family

ID=42975049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175233A Expired - Fee Related JP5532207B2 (en) 2009-02-20 2009-07-28 Circulating fluidized bed gasification reactor

Country Status (1)

Country Link
JP (1) JP5532207B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026491A (en) * 2009-07-28 2011-02-10 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification furnace structure
JP2011037933A (en) * 2009-08-07 2011-02-24 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification reaction furnace
JP2012111847A (en) * 2010-11-25 2012-06-14 Ihi Corp Gasified gas formation device and gasified gas formation method
CN102504842A (en) * 2011-11-09 2012-06-20 浙江大学 Three-fluidized-bed solid heat carrier coal pyrolysis, gasification and combustion cascade utilization method
WO2012133498A1 (en) * 2011-03-28 2012-10-04 株式会社Ihi Tar removal device
JP2015052068A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
JP2015052065A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
JP2015052067A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
JP2015052066A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
JP2015522106A (en) * 2012-07-17 2015-08-03 パイロニア エー/エス Apparatus and method for gasification
CN105018155A (en) * 2015-08-05 2015-11-04 华陆工程科技有限责任公司 Method for producing coal tar and synthesis gas from oil-rich coal through pyrolysis and gasification coupling device and oil gas purification device
US9862901B2 (en) 2013-07-17 2018-01-09 Pyroneer A/S Apparatus and methods for gasification
CN108373934A (en) * 2018-05-18 2018-08-07 华北电力大学(保定) Multiple types Biomass Gasification in Circulating Fluidized Bed reactor and its gasification process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251168A (en) * 2002-03-07 2003-09-09 Ebara Corp Method and apparatus for removing tar component in gas
JP2008156552A (en) * 2006-12-26 2008-07-10 Ihi Corp Fluidized bed gasification method and apparatus
JP2008303377A (en) * 2007-05-08 2008-12-18 National Institute Of Advanced Industrial & Technology Method for generating combustible gas and gasification reaction furnace therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251168A (en) * 2002-03-07 2003-09-09 Ebara Corp Method and apparatus for removing tar component in gas
JP2008156552A (en) * 2006-12-26 2008-07-10 Ihi Corp Fluidized bed gasification method and apparatus
JP2008303377A (en) * 2007-05-08 2008-12-18 National Institute Of Advanced Industrial & Technology Method for generating combustible gas and gasification reaction furnace therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026491A (en) * 2009-07-28 2011-02-10 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification furnace structure
JP2011037933A (en) * 2009-08-07 2011-02-24 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification reaction furnace
JP2012111847A (en) * 2010-11-25 2012-06-14 Ihi Corp Gasified gas formation device and gasified gas formation method
AU2012233555B2 (en) * 2011-03-28 2015-07-02 Ihi Corporation Tar removal device
WO2012133498A1 (en) * 2011-03-28 2012-10-04 株式会社Ihi Tar removal device
JP2012201851A (en) * 2011-03-28 2012-10-22 Ihi Corp Apparatus for removing tar
CN103429715A (en) * 2011-03-28 2013-12-04 株式会社Ihi Tar removal device
US9393514B2 (en) 2011-03-28 2016-07-19 Ihi Corporation Tar removal device
CN102504842A (en) * 2011-11-09 2012-06-20 浙江大学 Three-fluidized-bed solid heat carrier coal pyrolysis, gasification and combustion cascade utilization method
JP2015522106A (en) * 2012-07-17 2015-08-03 パイロニア エー/エス Apparatus and method for gasification
US9862901B2 (en) 2013-07-17 2018-01-09 Pyroneer A/S Apparatus and methods for gasification
JP2015052066A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
JP2015052067A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
JP2015052065A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
JP2015052068A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
CN105018155A (en) * 2015-08-05 2015-11-04 华陆工程科技有限责任公司 Method for producing coal tar and synthesis gas from oil-rich coal through pyrolysis and gasification coupling device and oil gas purification device
CN108373934A (en) * 2018-05-18 2018-08-07 华北电力大学(保定) Multiple types Biomass Gasification in Circulating Fluidized Bed reactor and its gasification process

Also Published As

Publication number Publication date
JP5532207B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5532207B2 (en) Circulating fluidized bed gasification reactor
JP5483058B2 (en) Circulating fluidized bed gasifier structure
JP5114412B2 (en) Separation type fluidized bed gasification method and gasification apparatus for solid fuel
JP4314488B2 (en) Gasification method for solid fuel and gasification apparatus using the method
JP4479906B2 (en) Fluidized bed gasification gas purification method and purification apparatus
JP5057466B2 (en) Method for generating combustible gas and gasification reactor therefor
JP2005041959A (en) Fluidized bed gasification system
JP5630626B2 (en) Organic raw material gasification apparatus and method
JP6304856B2 (en) Biomass gasification method using improved three-column circulating fluidized bed
JP2003238973A (en) Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
JP2007112873A (en) Method and system for gasification of gasification fuel
JP2011026489A (en) Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
CN108949234B (en) A kind of inverting tar gasification furnace of three layers of gas supply heating
JP5483060B2 (en) Circulating fluidized bed gasification reactor
JP2011042697A (en) Circulating fluidized bed type gasification method and apparatus
JP5004093B2 (en) Gasification reactor for generating combustible gas
JP2011105890A (en) Circulating fluidized bed gasification reactor
KR102032823B1 (en) Circulating Fluidized Bed Gasifier Equipped with Heat Exchanger Therein
JP5403574B2 (en) Gasification system using activated carbon extracted from a tar absorption tower.
JP2011105892A (en) Circulating fluidized bed gasification reactor enabling to effectively use tar adsorptive substance
JP5344447B2 (en) Gasification system that reuses alkali evaporated in gasification furnace
JP4930688B2 (en) Freeboard high temperature method and applied equipment for fluidized bed gasifier
JP6160997B2 (en) Circulating fluidized bed gasifier
JP6259991B2 (en) Circulating fluidized bed gasifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5532207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees