JP2011026489A - Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace - Google Patents

Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace Download PDF

Info

Publication number
JP2011026489A
JP2011026489A JP2009175248A JP2009175248A JP2011026489A JP 2011026489 A JP2011026489 A JP 2011026489A JP 2009175248 A JP2009175248 A JP 2009175248A JP 2009175248 A JP2009175248 A JP 2009175248A JP 2011026489 A JP2011026489 A JP 2011026489A
Authority
JP
Japan
Prior art keywords
furnace
fluidized bed
gasification
bed gasification
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009175248A
Other languages
Japanese (ja)
Inventor
Takahiro Murakami
高広 村上
Koichi Matsuoka
浩一 松岡
Zenzo Suzuki
善三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009175248A priority Critical patent/JP2011026489A/en
Publication of JP2011026489A publication Critical patent/JP2011026489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasification reacting furnace reducing the amount used of expensive porous fine particles and controlling temperatures of a fuel pyrolysis furnace and a gasification furnace with a convenient method. <P>SOLUTION: The circulating fluidized bed gasification reaction furnace, in which raw material is gasified in the fluidized bed gasification furnace, produced char and a fluidizing medium are introduced into a fluidized bed combustion furnace of a subsequent step to combust an uncombusted content and the reheated fluidized medium is circulated in the reaction furnace, includes a pyrolysis furnace having a tar absorption furnace and the fuel pyrolysis furnace on the upper and lower sides respectively on the precedent step of the fluidized bed gasification furnace, wherein a fluidizing medium containing uncombusted char taken out of the fuel pyrolysis furnace of the lower stage and a fluidizing medium, to which the tar is adsorbed, taken out of the tar absorption furnace of the upper stage are circulated respectively independently and, further, at least one side of respective fluidizing media which are separated from a cyclone of the subsequent step of the fluidized bed combustion furnace and have higher temperatures, is distributed and supplied to the pyrolysis furnace and the fluidizing bed gasification furnace so as to control the temperatures of the pyrolysis furnace and the fluidized bed gasification furnace. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料より可燃ガスを取り出すためのガス化反応炉に係り、特に、循環流動層ガス化反応炉における熱分解炉及びガス化炉の温度制御システムに関するものである。   The present invention relates to a gasification reactor for extracting combustible gas from fuel, and more particularly to a thermal decomposition furnace and a temperature control system for a gasification furnace in a circulating fluidized bed gasification reactor.

従来から、石炭、バイオマス、ごみ、下水汚泥などの炭化水素資源の固体燃料を利用し、生成したガスを、可燃ガス及び熱源として利用することにより、有機資源の有効活用を図るガス化システムが開発されている。
該ガス化システムの1つとして、反応炉を流動層ガス化炉と流動層燃焼炉に分離し、流動層ガス化炉に炭化水素資源の固体燃料を供給し、水蒸気でガス化を行い、生成した未燃分(チャー)と流動媒体を流動層燃焼炉で燃焼させ、加熱された流動媒体を前記ガス化炉に戻す循環流動層を用いたものが知られている(特許文献1)。
上記のガス化反応炉は外部循環方式であるが、特許文献2に記載された反応炉のように、内部循環方式のものもあり、該反応炉においては、流動媒体に粒子状スラグを利用することで、ガス化炉内で生成されたガス中に含まれるタールが改質されタール分の少ない可燃ガスが生成されるとともに、劣化したスラグを未燃チャーとともに燃焼炉へ導入し再活性化して、ガス化炉へ戻される。
これらの流動層ガス化炉と流動層燃焼炉を有する循環流動層ガス化システムにおいては、それぞれの炉から、ガス化ガスと燃焼ガスを別々に取り出すことができ、不活性ガスを含まない高カロリーなガスを製造することができる。
Conventionally, a gasification system has been developed that uses solid fuels of hydrocarbon resources such as coal, biomass, garbage, sewage sludge, etc., and uses the generated gas as a combustible gas and heat source to effectively use organic resources. Has been.
As one of the gasification systems, the reaction furnace is separated into a fluidized bed gasification furnace and a fluidized bed combustion furnace, a solid fuel of hydrocarbon resources is supplied to the fluidized bed gasification furnace, gasified with steam, and generated There is known one using a circulating fluidized bed in which the unburned portion (char) and the fluidized medium are burned in a fluidized bed combustion furnace and the heated fluidized medium is returned to the gasification furnace (Patent Document 1).
The gasification reaction furnace is an external circulation system, but there is an internal circulation system such as the reaction furnace described in Patent Document 2, in which particulate slag is used as a fluid medium. As a result, the tar contained in the gas generated in the gasification furnace is reformed to generate a combustible gas with a small amount of tar, and the deteriorated slag is introduced into the combustion furnace together with unburned char and reactivated. , Returned to the gasifier.
In the circulating fluidized bed gasification system having these fluidized bed gasification furnace and fluidized bed combustion furnace, the gasification gas and the combustion gas can be separately taken out from the respective furnaces, and the high calorie does not contain an inert gas. Gas can be produced.

さらに、該ガス化システムの循環流動層ガス化炉について、種々の提案がなされている。
例えば、特許文献3では、循環流動層ガス化炉を、有機物原料が供給されて熱分解反応によりタールを含む熱分解ガスを生成する室と、熱分解反応によって生成した熱分解残渣を導入してガス化ガスを生成する室とに分けることにより、良質のガス化ガスの生成を高めるようにしたガス化装置が提案されている。
また、特許文献4は、本発明者らの提案によるものであるが、流動層ガス化炉の前段にアルカリ吸収炉を独立して設けることにより、アルカリ吸収炉内でタールをチャーに吸着させてチャーのガス化効率を向上させることができ、かつ、チャーのガス化の阻害効果も避けることができるものである。
さらに、特許文献5では、流動層ガス化炉を複数のガス化装置により構成し、生成したガスを別個に取り出すようにしたガス化装置が提案されている。
Furthermore, various proposals have been made for the circulating fluidized bed gasification furnace of the gasification system.
For example, in Patent Document 3, a circulating fluidized bed gasification furnace is introduced by introducing a chamber in which organic raw materials are supplied and generating pyrolysis gas containing tar by a pyrolysis reaction, and a pyrolysis residue generated by the pyrolysis reaction. There has been proposed a gasification apparatus that enhances the production of high-quality gasification gas by dividing it into a chamber for generating gasification gas.
Further, Patent Document 4 is based on the proposal of the present inventors, but by providing an alkali absorption furnace independently in the preceding stage of the fluidized bed gasification furnace, tar is adsorbed on the char in the alkali absorption furnace. The gasification efficiency of char can be improved, and the effect of inhibiting the gasification of char can be avoided.
Further, Patent Document 5 proposes a gasification apparatus in which a fluidized bed gasification furnace is constituted by a plurality of gasification apparatuses, and the generated gas is taken out separately.

特開2005−41959号公報JP 2005-41959 A 特開2005−68297号公報JP 2005-68297 A 特開2008−156552号公報JP 2008-156552 A 特開2008−303377号公報JP 2008-303377 A 特開2009−40887号公報JP 2009-40887 A 特願2009−37625Japanese Patent Application No. 2009-37625

本発明者らは、前記の循環流動層ガス化反応炉を用いたガス化方法及び装置について更に検討したところ、流動媒体として、アルミナ、石灰石、ゼオライトなどのタール吸着性物質を投入すると、タールを効率良く吸着できるという利点があるが、特に、タール吸着性物質として、多孔質アルミナなどの多孔質粒子を用いた場合、よりタールを効率良く吸着できるものの、流動媒体として従来使用されている硅砂よりも極めて高価であるため、その使用量を可能な限り低減する必要がある。
また、炉内で多孔質粒子と灰粒子が混在するために、一定間隔で炉下部から灰を抜き出す際に、多孔質粒子も一緒に抜き出されてしまう。
さらに、炉後段のタール処理にかかるコスト(改質炉、スクラバなど)も削減する必要がある。
The present inventors further examined the gasification method and apparatus using the circulating fluidized bed gasification reactor, and when a tar adsorbing substance such as alumina, limestone, or zeolite was added as a fluid medium, the tar was Although there is an advantage that it can be adsorbed efficiently, in particular, when porous particles such as porous alumina are used as the tar adsorbing substance, although tar can be adsorbed more efficiently, it is more than the conventional sand used as a fluid medium. However, it is necessary to reduce the amount of use as much as possible.
Further, since porous particles and ash particles coexist in the furnace, the porous particles are also extracted together when the ash is extracted from the lower part of the furnace at regular intervals.
Furthermore, it is necessary to reduce the cost (reforming furnace, scrubber, etc.) required for tar treatment at the latter stage of the furnace.

本発明者らは、上記課題を達成すべく鋭意研究を重ねた結果、上段にタール吸収炉を備えた二段炉構造の燃料熱分解炉を、ガス化炉の前段に設けるとともに、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させることにより解決しうるという知見を得、特許出願している(特許文献6)。
なお、特許文献3には、燃焼炉から戻される流動媒体を、前段の熱分解室と、ガス化室の双方に分配することが記載されており、また、特許文献5には、複数のガス化装置を上下方向に多段に接続した装置において、各ガス化装置に流動媒体を分配することが記載されているが、いずれも、未燃焼チャーを含有する流動媒体と、タールが吸着した流動媒体をそれぞれ独立して循環させるものではない。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have provided a fuel pyrolysis furnace having a two-stage furnace structure with a tar absorption furnace in the upper stage in the front stage of the gasification furnace and a lower stage fuel. Obtained the knowledge that the fluid medium containing unburned char taken out from the pyrolysis furnace and the fluid medium adsorbed with the tar taken out from the upper tar absorption furnace can be solved by independently circulating the patent. An application has been filed (Patent Document 6).
Patent Document 3 describes that the fluid medium returned from the combustion furnace is distributed to both the preceding pyrolysis chamber and the gasification chamber, and Patent Document 5 describes a plurality of gases. In the apparatus in which the gasifiers are connected in multiple stages in the vertical direction, it is described that the fluidized medium is distributed to each gasifier, both of which are a fluid medium containing unburned char and a fluid medium in which tar is adsorbed Are not circulated independently.

ところで、燃料の熱分解は、例えば600℃程度の低温でも十分可能であるが、チャーの水蒸気ガス化は、高温であるほどガス化速度は速くなるので、例えば700℃、800℃と温度を高くするほど、ガス化炉内の同滞留時間でのチャー粒子から得られる可燃ガス量は多くなる。ただし、そのためには熱分解炉よりもガス化炉の温度を高くする必要があり、例えば、800℃の高温水蒸気を製造してガス化炉へ供給するなどの手法が考えられるが、製造コストがかかるので、システム効率低下につながる。
また、熱分解およびガス化反応は吸熱反応であるため、流動媒体の粒子温度は炉内で低下してしまうという問題もある。
By the way, the thermal decomposition of the fuel is sufficiently possible even at a low temperature of, for example, about 600 ° C. However, the gasification rate of char becomes higher at higher temperatures, for example, 700 ° C. and 800 ° C. The more the amount of combustible gas obtained from the char particles in the same residence time in the gasification furnace is increased. However, for this purpose, it is necessary to raise the temperature of the gasification furnace as compared with the pyrolysis furnace. For example, a method of producing high-temperature steam at 800 ° C. and supplying it to the gasification furnace can be considered, but the production cost is low. As a result, system efficiency is reduced.
Further, since the pyrolysis and gasification reactions are endothermic reactions, there is also a problem that the particle temperature of the fluidized medium decreases in the furnace.

しかしながら、先の特許出願では、熱分解炉上段で、その下段より生成したタールをタール吸着性物質に吸着させ、ガス化炉で可燃ガスにし、トータルの生成ガス量をより高くするメリットがあるものの、特許文献3記載のものと同様に、それぞれの燃焼炉出口のサイクロンで分離した高温粒子は、それぞれの熱分解炉へ送られる構造となっているため、前述の様な課題を解決するためには、更なる改良が必要であることが判明した。   However, in the earlier patent application, although the tar generated from the lower stage of the pyrolysis furnace is adsorbed to the tar adsorbing substance and combustible gas is produced in the gasification furnace, there is an advantage that the total amount of generated gas is higher. In the same manner as described in Patent Document 3, the high temperature particles separated by the cyclones at the respective combustion furnace outlets are sent to the respective pyrolysis furnaces. Was found to require further improvement.

本発明は、こうした従来技術における課題を解決して、高価なタール吸着性物質が灰粒子と混在することなく、その使用量を可能な限り低減したうえ、さらに、簡易な手法で熱分解炉とガス化炉上下のそれぞれの炉の温度をコントロールできるガス化システムを提供することを目的とするものである。   The present invention solves such problems in the prior art, reduces the usage amount of expensive tar-adsorbing substances without mixing with ash particles as much as possible, and further uses a simple method to An object of the present invention is to provide a gasification system capable of controlling the temperatures of the respective furnaces above and below the gasification furnace.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、先の特許出願の循環流動層ガス化反応炉において、それぞれの燃焼炉後段に設けられたサイクロンから分離され、高温にされた流動媒体を、前記熱分解炉及びガス化炉のそれぞれの炉へ分配することで、熱分解炉及びガス化炉の温度を制御できることが判明した。   As a result of intensive studies to achieve the above object, the inventors of the present invention have been separated from the cyclone provided in the subsequent stage of each combustion furnace in the circulating fluidized bed gasification reactor of the previous patent application and brought to a high temperature. It was found that the temperature of the pyrolysis furnace and the gasification furnace can be controlled by distributing the fluidized medium to each of the pyrolysis furnace and the gasification furnace.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]流動媒体が導入された流動層ガス化炉内で原料をガス化させ、ガス化時に生成したチャー及び流動媒体を後段の流動層燃焼炉に導入して、未燃分を燃焼させるとともに、再加熱された流動媒体が反応炉内を循環するように構成された循環流動層ガス化反応炉であって、
前記流動層ガス化炉の前段に、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構造の熱分解炉を設けるとともに、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させるようにし、
さらに、流動層燃焼炉の後段に設けられたサイクロンから分離されて高温となった、前記のそれぞれの流動媒体の少なくとも一方を、前記熱分解炉及び前記流動層ガス化炉に分配供給することにより、熱分解炉及び流動層ガス化炉の温度を制御することを特徴とする循環流動層ガス化システム。
[2]前記分配供給する手段として、前記サイクロンの下段に設けられたダウンカマーが二股に分岐したものを用いることを特徴とする上記[1]の循環流動層ガス化システム。
[3]前記分岐後のダウンカマーの断面積に差をつけることで、それぞれの炉に導入される高温流動媒体の量を異ならせることを特徴とする上記[2]に記載の循環流動層ガス化システム。
[4]前記分岐後のダウンカマーの断面積を可変にしたことを特徴とする上記[2]又は[3]の循環流動層ガス化システム。
[5]分岐後のダウンカマーの炉への連結部を、炉の上部あるいは側面にし、マテリアルシールする構造にしたことを特徴とする上記[1]〜[4]の循環流動層ガス化システム。
[6]流動層ガス化炉側のダウンカマーを熱分解炉とガス化炉との連通路へ接続し、マテリアルシールする構造にした上記[1]〜[5]の循環流動層ガス化システム。
[7]燃料熱分解炉側のダウンカマーの下部に熱交換器を設置したことを特徴とする上記[1]〜[6]の循環流動層ガス化システム。
[8]前記温度制御手段としてマルチサイクロン又は多段サイクロンを用い、高温流動媒体の各炉への導入量を制御することを特徴とする上記[1]〜[7]の循環流動層ガス化システム。
[9]前記上段のタール吸収炉には、流動媒体としてタール吸着性物質を使用し、下段の燃料熱分解炉において生成したタールを該流動性媒体に吸着させるようにしたことを特徴とする上記[1]〜[8]の循環流動層ガス化システム。
[10]前記下段の燃料熱分解炉には、流動媒体として硅砂を使用することを特徴とする上記[1]〜[9]の循環流動層ガス化システム。
[11]前記燃料熱分解炉において揮発分の熱分解及びタールの改質により生成する熱分解ガス、前記流動層ガス化炉においてチャー及び/又はコークのガス化により生成するガス化ガス、及び前記流動層燃焼炉においてチャー残渣及び/又はコーク残渣の燃焼により生成する燃焼ガスを、それぞれ独立して取り出す手段を備えたことを特徴とする上記[1]〜[10]の循環流動層ガス化システム。
[12]前記燃料熱分解炉が、アルカリ吸収機能を有することを特徴とする上記[1]〜[11]の循環流動層ガス化システム。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] The raw material is gasified in the fluidized bed gasification furnace into which the fluidized medium is introduced, and the char and fluidized medium generated during the gasification are introduced into the subsequent fluidized bed combustion furnace to burn the unburned portion. A circulating fluidized bed gasification reactor configured to circulate the reheated fluid medium in the reactor,
In front of the fluidized bed gasification furnace, a two-stage furnace pyrolysis furnace equipped with a tar absorption furnace and a fuel pyrolysis furnace is provided, and contains unburned char taken out from the lower fuel pyrolysis furnace. Circulating the fluid medium and the fluid medium adsorbed with the tar taken out from the upper tar absorption furnace are independently circulated,
Furthermore, by distributing and supplying at least one of each of the fluidized media separated from a cyclone provided at the latter stage of the fluidized bed combustion furnace to the pyrolysis furnace and the fluidized bed gasification furnace. A circulating fluidized bed gasification system characterized by controlling the temperatures of a pyrolysis furnace and a fluidized bed gasification furnace.
[2] The circulating fluidized-bed gasification system according to [1], wherein a downcomer provided at the lower stage of the cyclone is bifurcated as the means for distributing and supplying.
[3] The circulating fluidized bed gas according to the above [2], wherein the amount of the high-temperature fluidized medium introduced into each furnace is varied by making a difference in the cross-sectional area of the downcomer after the branching. System.
[4] The circulating fluidized bed gasification system according to [2] or [3], wherein a cross-sectional area of the downcomer after branching is variable.
[5] The circulating fluidized-bed gasification system according to any one of [1] to [4], wherein the branched downcomer is connected to the furnace at an upper part or a side of the furnace, and the material is sealed.
[6] The circulating fluidized bed gasification system according to the above [1] to [5], wherein the downcomer on the fluidized bed gasification furnace side is connected to the communication path between the pyrolysis furnace and the gasification furnace and material sealing is performed.
[7] The circulating fluidized bed gasification system according to any one of [1] to [6], wherein a heat exchanger is installed below the downcomer on the fuel pyrolysis furnace side.
[8] The circulating fluidized bed gasification system according to any one of [1] to [7], wherein a multicyclone or a multistage cyclone is used as the temperature control means, and the introduction amount of the high-temperature fluidized medium into each furnace is controlled.
[9] The above-mentioned upper tar absorption furnace uses a tar adsorbing substance as a fluid medium, and adsorbs the tar generated in the lower fuel pyrolysis furnace to the fluid medium. The circulating fluidized bed gasification system of [1] to [8].
[10] The circulating fluidized bed gasification system according to any one of [1] to [9] above, wherein the lower fuel pyrolysis furnace uses dredged sand as a fluidized medium.
[11] Pyrolysis gas generated by pyrolysis of volatile matter and tar reforming in the fuel pyrolysis furnace, gasification gas generated by char and / or coke gasification in the fluidized bed gasification furnace, and The circulating fluidized bed gasification system according to any one of the above [1] to [10], comprising means for independently taking out combustion gases generated by combustion of char residue and / or coke residue in a fluidized bed combustion furnace .
[12] The circulating fluidized bed gasification system according to any one of [1] to [11], wherein the fuel pyrolysis furnace has an alkali absorption function.

本発明によれば、チャー残渣燃焼炉及びコーク残渣燃焼炉からの高温な流動媒体の少なくとも一方を、熱分解炉及び流動層ガス化炉に分配供給することにより、流動層ガス化炉を高温にすることができ、特に、流動層ガス化炉側へ送る高温流動媒体の量を、熱分解炉へ送る量よりも多くすることで、流動層ガス化炉温度の方が熱分解炉の温度よりも容易に高くできる。
また、本発明において、ダウンカマーの断面積を可変にする、或いはマルチサイクロンや多段サイクロンを採用することにより、燃料や炉温度などの条件が異なる場合においても、それぞれの炉へおくる高温流動媒体の量を容易に調整でき、各炉の最適な反応温度に調整することができる。
According to the present invention, the fluidized bed gasification furnace is heated to a high temperature by distributing and supplying at least one of the high temperature fluidized media from the char residue combustion furnace and the coke residue combustion furnace to the pyrolysis furnace and the fluidized bed gasification furnace. In particular, by increasing the amount of the high-temperature fluidized medium sent to the fluidized bed gasifier side more than the amount sent to the pyrolysis furnace, the fluidized bed gasifier temperature is higher than the temperature of the pyrolysis furnace. Can be easily increased.
Further, in the present invention, by making the cross-sectional area of the downcomer variable or adopting a multi-cyclone or multi-stage cyclone, even when conditions such as fuel and furnace temperature are different, the high-temperature fluidized medium to be put in each furnace The amount can be adjusted easily and can be adjusted to the optimum reaction temperature for each furnace.

本発明のガス化装置の第1の実施の形態を模式的に示す図。The figure which shows typically 1st Embodiment of the gasification apparatus of this invention. 熱分解炉及びガス化炉温度(それぞれ二段炉)を同じ条件でガス化させた場合と、ガス化炉温度を熱分解温度よりも高くした場合(上下のそれぞれの温度は同じ)で冷ガス効率を比較した結果を示す図。Cold gas when the pyrolysis furnace and gasification furnace temperatures (each two-stage furnace) are gasified under the same conditions and when the gasification furnace temperature is higher than the pyrolysis temperature (the upper and lower temperatures are the same) The figure which shows the result of having compared efficiency. 本発明のガス化装置の別の実施の形態を模式的に示す図。The figure which shows typically another embodiment of the gasification apparatus of this invention. 本発明のガス化装置の別の実施の形態を模式的に示す図。The figure which shows typically another embodiment of the gasification apparatus of this invention. 本発明のガス化装置の別の実施の形態を模式的に示す図。The figure which shows typically another embodiment of the gasification apparatus of this invention. 本発明のガス化装置の別の実施の形態を模式的に示す図。The figure which shows typically another embodiment of the gasification apparatus of this invention. 本発明のガス化装置の別の実施の形態を模式的に示す図。The figure which shows typically another embodiment of the gasification apparatus of this invention.

以下、本発明の実施の形態について、図面に基づいて説明するが、本発明はこの実施の形態に限定されるものではない。
図1は、本発明の循環流動層ガス化反応炉の第1の実施の形態を模式的に示す図であって、上段にタール吸収炉を備えた二段炉構成の熱分解炉を備え、該燃料熱分解炉の下段の後段には、チャーガス化炉及びチャー残渣燃焼炉をこの順にそれぞれ独立型として連結させ、また、前記上段のタール吸収炉の後段には、コークガス化炉及びコーク残渣燃焼炉をこの順にそれぞれ独立型として連結させたものである。
さらに、チャー残渣燃焼炉の後段には、サイクロンを設け、その下段のダウンカマー(点線で示す)を二股に分岐し、前記チャー残渣燃焼炉からの高温流動媒体を、前記燃料熱分解炉及びチャーガス化炉に分配して供給できるようにされている。
同様に、コーク残渣燃焼炉の後段にも、サイクロンを設け、その下段のダウンカマー(点線で示す)を二股に分岐し、コーク残渣燃焼炉からの高温流動媒体を前記タール吸収炉及びコークガス化炉に、それぞれ分配して供給できるようにされている。
なお、本発明において、前記の燃料熱分解炉を、前述の特許文献3に記載されたようなアルカリ吸収機能を有する炉とし、チャーに揮発ガス中のアルカリを積極的に吸着させてガス化触媒として利用し、チャーのガス化効率を向上させることができることはいうまでもない。
Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.
FIG. 1 is a diagram schematically showing a first embodiment of a circulating fluidized bed gasification reactor according to the present invention, comprising a pyrolysis furnace having a two-stage furnace structure having a tar absorption furnace in the upper stage, A char gasification furnace and a char residue combustion furnace are connected to the lower stage of the fuel pyrolysis furnace in this order as independent types, respectively, and a coke gasification furnace and a coke residue combustion are connected to the rear stage of the upper tar absorption furnace. The furnaces are connected in this order as independent types.
Further, a cyclone is provided at the rear stage of the char residue combustion furnace, and the downcomer (shown by a dotted line) at the lower stage is bifurcated. The high temperature fluid medium from the char residue combustion furnace is supplied to the fuel pyrolysis furnace and the char gas. It can be distributed and supplied to the reactor.
Similarly, a cyclone is also provided at the rear stage of the coke residue combustion furnace, and the downcomer (shown by a dotted line) at the lower stage is bifurcated. In addition, each can be distributed and supplied.
In the present invention, the fuel pyrolysis furnace is a furnace having an alkali absorption function as described in Patent Document 3, and the gasification catalyst is prepared by actively adsorbing the alkali in the volatile gas to the char. Needless to say, the gasification efficiency of char can be improved.

多孔質アルミナなどの多孔質粒子は、原料から生成するタールを効率よく吸収するために好ましく用いられるが、高価であるという欠点を有している。
本発明の循環流動層ガス化反応炉においては、流動層ガス化炉の前段に、上段にタール吸収炉を備えた二段炉構造の燃料熱分解炉を備えているので、上段のタール吸収炉流動媒体に、多孔質粒子等のタール吸着効率の良好なものを使用し、その下段の燃料熱分解炉に導入する流動媒体には、一般的に使用されている安価な硅砂を主成分とするものを使用することにより、高価な流動媒体の使用量を最小限にすることが可能となる。
また、チャー残渣燃焼炉とコーク残渣燃焼炉とが分離しているので、上段のタール吸収炉を循環する多孔質微粒子などの流動媒体は、チャー残渣燃焼炉で発生する灰粒子と混在しないようにできる。
Porous particles such as porous alumina are preferably used in order to efficiently absorb tar generated from the raw material, but have the disadvantage of being expensive.
In the circulating fluidized bed gasification reactor according to the present invention, a fuel pyrolysis furnace having a two-stage furnace structure in which a tar absorption furnace is provided in the upper stage is provided upstream of the fluidized bed gasification furnace. A fluid medium with good tar adsorption efficiency such as porous particles is used, and the fluid medium introduced into the lower fuel pyrolysis furnace is mainly composed of inexpensive dredged sand that is generally used. By using a thing, it becomes possible to minimize the usage-amount of an expensive fluidized medium.
In addition, since the char residue combustion furnace and the coke residue combustion furnace are separated, fluid media such as porous fine particles circulating in the upper tar absorption furnace should not be mixed with the ash particles generated in the char residue combustion furnace. it can.

以下、上段のタール吸収炉の流動媒体に、多孔質アルミナのような多孔質粒子を使用し、その下段の燃料分解炉の流動媒体に硅砂を使用した例を用いて、原料のガス化について具体的に説明する。
バイオマス、ごみ、下水汚泥、及び石炭などのような炭化水素系固体燃料を、下段の燃料熱分解炉へ供給するとともに、下部より、生成した燃焼ガスの一部を循環させたCOガス、或いはNやArのような不活性ガス等を、流動ガスとして導入し、燃料分解炉に供給された前記炭化水素系固体燃料を熱分解させる。
生成した熱分解ガスと同時に生成するタールが上段のタール吸収炉へ流れる。そのタールは、タール吸収炉中の前記多孔質粒子に吸着され、一部はガスに改質される。タールを含まない熱分解ガスは、上部に設けられた熱分解ガスの取出し手段から取り出すことができる。
Hereinafter, the gasification of the raw material will be described using an example in which porous particles such as porous alumina are used for the fluid medium of the upper tar absorption furnace and dredged sand is used for the fluid medium of the lower fuel cracking furnace. I will explain it.
A hydrocarbon-based solid fuel such as biomass, garbage, sewage sludge, and coal is supplied to the lower fuel pyrolysis furnace, and CO 2 gas in which a part of the generated combustion gas is circulated from the lower part, or An inert gas such as N 2 or Ar is introduced as a flowing gas, and the hydrocarbon solid fuel supplied to the fuel cracking furnace is pyrolyzed.
The tar generated simultaneously with the generated pyrolysis gas flows to the upper tar absorption furnace. The tar is adsorbed by the porous particles in the tar absorption furnace, and a part thereof is reformed to gas. The pyrolysis gas containing no tar can be taken out from the pyrolysis gas take-out means provided at the top.

取り出された熱分解ガスは、可燃ガスの一種であって、燃料電池やガスエンジンによる発電、液体燃料などに使用される。
なお、本発明においてガス化の原料としては、前述のような炭化水素系固体燃料に限られず、タールの発生し易い液体燃料を用いることも可能である。
下段の燃料熱分解炉では、熱分解後のチャー及び硅砂は、次のチャーガス化炉へ送られる。
一方、上段のタールを吸着した多孔質粒子は、チャーガス化炉上段のコークガス化炉へ送られる。
The extracted pyrolysis gas is a kind of combustible gas, and is used for power generation by a fuel cell or a gas engine, liquid fuel, and the like.
In the present invention, the raw material for gasification is not limited to the hydrocarbon-based solid fuel as described above, and a liquid fuel that easily generates tar can also be used.
In the lower fuel pyrolysis furnace, the pyrolyzed char and cinnabar are sent to the next char gasification furnace.
On the other hand, the porous particles adsorbing the upper tar are sent to the upper coke gasification furnace.

チャーガス化炉及びコークガス化炉は、それぞれの炉を下段及び上段に有する二段の流動層とされており、それぞれの炉内に導入されたチャー及びコークは、下部より導入されたガス化剤とのガス化反応によりガス化される。ガス化剤としては、水蒸気或いは酸素或いは空気などが用いられる。ガス化剤と反応して生成したガス化ガスは、コークガス化炉上部から取り出される。
取り出されたガス化ガスは、可燃ガスであり、燃料電池やガスエンジンによる発電、液体燃料などに利用される。
The char gasification furnace and the coke gasification furnace are in a two-stage fluidized bed having the respective furnaces in the lower stage and the upper stage, and the char and coke introduced into each furnace are combined with the gasifying agent introduced from the lower part. It is gasified by the gasification reaction. As the gasifying agent, water vapor, oxygen, air, or the like is used. The gasification gas produced by reacting with the gasifying agent is taken out from the upper part of the coke gasification furnace.
The extracted gasification gas is a combustible gas, and is used for power generation by a fuel cell or a gas engine, liquid fuel, or the like.

なお、図1に示す装置では、下段及び上段に、それぞれチャーガス化炉及びコークガス化炉を設けた二段のガス化炉とし、生成されたガス化ガスを上段のコークガス化炉から取り出すように構成されているが、これらのガス化炉は、それぞれ別個のガス化炉とし、それぞれのガス化炉の下部からガス化剤を導入し、生成されたガス化ガスを、上部に設けられた取出手段から取り出すように構成することもできる。
また、図1に示す装置では、タール吸収炉上部から取り出された熱分解ガスと、コークガス化炉上部から取り出されたガス化ガスを、別個に取り出しているが、熱分解ガスとガス化ガスを、それぞれの炉出口以後で合流させてから利用してもよく、熱源として用いる際には、合流前或いは後に、熱交換器をつけることもできる。
チャーガス化炉内の残渣チャー及びコークガス化炉内の残渣コークは、それぞれ、別個に設けられた、次の残渣チャー燃焼炉及び残渣コーク燃焼炉に導入される。
The apparatus shown in FIG. 1 is configured to be a two-stage gasification furnace in which a char gasification furnace and a coke gasification furnace are provided in the lower stage and the upper stage, respectively, and the generated gasification gas is taken out from the upper stage coke gasification furnace. However, these gasification furnaces are respectively separate gasification furnaces, the gasifying agent is introduced from the lower part of each gasification furnace, and the generated gasification gas is taken out at the upper part. It can also be configured to be taken out from.
Further, in the apparatus shown in FIG. 1, the pyrolysis gas taken out from the upper part of the tar absorption furnace and the gasification gas taken out from the upper part of the coke gasification furnace are taken out separately, but the pyrolysis gas and the gasification gas are taken out. They may be used after being merged after each furnace outlet, and when used as a heat source, a heat exchanger can be attached before or after the merge.
The residue char in the char gasification furnace and the residue coke in the coke gasification furnace are respectively introduced into the next residue char combustion furnace and residue coke combustion furnace, which are separately provided.

残渣チャー燃焼炉及び残渣コーク燃焼炉は、いずれも流動層とされており、残渣チャー及び残渣コークが完全燃焼可能な滞留時間を確保する。それぞれの燃焼炉では、導入された残渣チャー及び残渣コークを、それぞれの燃焼炉の下部より導入された空気或いは酸素と共に燃焼させ、サイクロンにより燃焼ガスをそれぞれの炉の上部に設けられた取出手段から取り出される。
それぞれの燃焼炉から取り出された燃焼ガスは、主に熱源として利用されるものであり、前述したとおり、その一部を燃料熱分解炉に再循環させることも可能である。また、前記ガス化炉又はそれぞれの燃焼炉に導入する空気や蒸気の予熱源としても利用できる。
Both the residue char combustion furnace and the residue coke combustion furnace are fluidized beds, and ensure a residence time during which the residue char and residue coke can be completely combusted. In each combustion furnace, the introduced residue char and residue coke are burned together with air or oxygen introduced from the lower part of each combustion furnace, and the combustion gas is extracted from the extraction means provided in the upper part of each furnace by a cyclone. It is taken out.
The combustion gas taken out from each combustion furnace is mainly used as a heat source, and as described above, a part of the combustion gas can be recycled to the fuel pyrolysis furnace. It can also be used as a preheating source for air or steam introduced into the gasification furnace or each combustion furnace.

なお、ガス化炉内で生じる反応(特にシフト反応)には、チャーの濃度が密接に関係しており、熱バランスが成立する範囲内であれば、未燃チャーの一部を再循環させ、ガス化炉内のチャー濃度を反応に適した濃度に制御することで、例えば、ガス化の際のH/CO比の制御が可能となり、液体燃料への利用が有利となる。
さらに、残渣チャーおよび残渣コークから得られる燃焼熱のみでは、熱バランスが成立しない場合、所定量の熱分解ガス、ガス化ガスをそれぞれの燃焼炉へ供給して燃焼させることにより、熱バランスを維持することも可能である。
Note that the char concentration is closely related to the reaction (especially shift reaction) occurring in the gasification furnace, and if the heat balance is within the range, a part of the unburned char is recirculated, By controlling the char concentration in the gasification furnace to a concentration suitable for the reaction, for example, the H 2 / CO ratio at the time of gasification can be controlled, and the use for liquid fuel is advantageous.
Furthermore, if the heat balance cannot be established with only the combustion heat obtained from the residue char and residue coke, the heat balance is maintained by supplying a predetermined amount of pyrolysis gas and gasification gas to each combustion furnace and burning them. It is also possible to do.

一方、チャー残渣燃焼炉で再加熱されて高温となった硅砂は、サイクロン下部の二股に分岐されたダウンカマーから、再び燃料熱分解炉及びチャーガス化炉へ戻される。
同様に、コーク残渣燃焼炉で再加熱されて高温となった多孔質粒子は、サイクロン下部の二股に分岐されたダウンカマーから、タール吸収炉及びコークガス化炉へ戻される。
また、図1に示すように、例えば、上段のタール吸収炉側のダウンカマー及び下段の燃料熱分解炉側のダウンカマーにそれぞれ熱交換器をつけて、所定温度まで流動媒体の温度を低下することで、取り出した熱を利用して蒸気や空気を予熱することもできる。
On the other hand, the cinnabar sand, which has been reheated in the char residue combustion furnace and heated to a high temperature, is returned to the fuel pyrolysis furnace and the char gasification furnace again from the downcomer branched into two branches under the cyclone.
Similarly, the porous particles which are reheated in the coke residue combustion furnace and become high temperature are returned to the tar absorption furnace and the coke gasification furnace from the downcomer branched into two branches at the lower part of the cyclone.
In addition, as shown in FIG. 1, for example, heat exchangers are respectively attached to the downcomer on the upper tar absorption furnace side and the downcomer on the lower fuel pyrolysis furnace side to lower the temperature of the fluidized medium to a predetermined temperature. Thus, steam and air can be preheated using the extracted heat.

燃料熱分解炉とチャーガス化炉、チャーガス化炉と残渣チャー燃焼炉、タール吸収炉とコークガス化炉、或いは、コークガス化炉と残渣コーク燃焼炉のそれぞれを連結する連通路は、ループシール、L型バルブ、移動層など、マテリアルシールできれば、いずれの型でも良い。   A fuel pyrolysis furnace and a char gasification furnace, a char gasification furnace and a residue char combustion furnace, a tar absorption furnace and a coke gasification furnace, or a communication path connecting each of the coke gasification furnace and the residue coke combustion furnace is a loop seal, L-shaped Any type of material can be used as long as it can seal materials such as a valve and a moving layer.

以上のとおり、図1に示すガス化反応炉においては、硅砂からなる流動媒体及び固体燃料の流れは、燃料熱分解炉→連通路→チャーガス化炉→連通路→チャー残渣燃焼炉→サイクロン→ダウンカマー→燃料熱分解炉及びチャーガス化炉となり、一方、多孔質粒子からなる流動媒体の流れは、タール吸収炉→連通路→コークガス化炉→連通路→コーク残渣燃焼炉→サイクロン→ダウンカマー→タール吸収炉及びコークガス化炉となる。   As described above, in the gasification reactor shown in FIG. 1, the flow of the fluid medium made of cinnabar and the solid fuel is as follows: fuel pyrolysis furnace → communication passage → char gasification furnace → communication passage → char residue combustion furnace → cyclone → down Comer → fuel pyrolysis furnace and char gasification furnace, while the flow of fluid medium consisting of porous particles is tar absorption furnace → communication path → coke gasification furnace → communication path → coke residue combustion furnace → cyclone → downcomer → tar It becomes an absorption furnace and a coke gasification furnace.

図1に示した装置によれば、熱分解炉は、上段にタール吸収炉、下段に燃料熱分解炉を有する二段炉構造とされているので、高価な多孔質粒子等のタール吸着効率良好な流動媒体、例えば、多孔質アルミナを、上段のタール吸収炉にのみに供給することにより、その使用量を最小限にすることができるという利点がある。
また、下段の燃料熱分解炉、チャーガス化炉及び残渣チャー燃焼炉とからなる系と、タール吸収炉、コークガス化炉及び残渣コーク燃焼炉からなる系とで、それぞれ別々に流動媒体を循環させることができるので、多孔質粒子と灰粒子とが混在しないようにすることができる。
さらに、各燃焼炉で再加熱されて高温となった硅砂及び多孔質粒子は、それぞれ、サイクロン下部の二股に分岐されたダウンカマーから、上下の熱分解炉(燃料熱分解炉及びタール吸収炉)だけでなく、上下の流動層ガス炉(チャーガス化炉及びコークガス化炉)にも供給されるので、流動層ガス化炉を容易に高温にすることができる。
According to the apparatus shown in FIG. 1, since the pyrolysis furnace has a two-stage furnace structure having a tar absorption furnace in the upper stage and a fuel pyrolysis furnace in the lower stage, the tar adsorption efficiency of expensive porous particles and the like is good. By supplying a simple fluid medium such as porous alumina only to the upper tar absorption furnace, there is an advantage that the amount of use can be minimized.
In addition, the fluidized medium is separately circulated in a system consisting of a lower fuel pyrolysis furnace, a char gasification furnace and a residue char combustion furnace, and a system consisting of a tar absorption furnace, a coke gasification furnace and a residue coke combustion furnace. Therefore, porous particles and ash particles can be prevented from being mixed.
Furthermore, the dredged sand and porous particles that have been reheated in each combustion furnace and heated to high temperatures are separated from the downcomers that are bifurcated into the lower part of the cyclone, and the upper and lower pyrolysis furnaces (fuel pyrolysis furnace and tar absorption furnace). In addition to being supplied to upper and lower fluidized bed gas furnaces (char gasification furnace and coke gasification furnace), the fluidized bed gasification furnace can be easily heated to a high temperature.

特に、それぞれの燃焼炉後段のサイクロン下部のダウンカマーを二股にし、ガス化炉の断面積を熱分解炉よりも大きくすることで、ガス化炉へ送られる高温粒子量は多くなる。したがって、流動層ガス化炉の温度を、熱分解炉の温度よりも高くできる。本手法により、上下を含む各炉における最適な反応温度にコントロールできる。
また、それぞれのダウンカマーの断面積の大きさは、バルブなどにより容易に調整できるので、燃料や炉温度などの条件が異なる場合においても、それぞれの炉へおくる高温流動媒体の量を容易に調整できる。
さらに、高温粒子量の制御手法としては、他にマルチサイクロンや多段サイクロンなどが挙げられる。
In particular, the amount of high-temperature particles sent to the gasification furnace is increased by making the downcomer at the lower part of the cyclone downstream of each combustion furnace into two and making the cross-sectional area of the gasification furnace larger than that of the pyrolysis furnace. Therefore, the temperature of the fluidized bed gasification furnace can be made higher than the temperature of the pyrolysis furnace. By this method, it is possible to control the optimum reaction temperature in each furnace including the upper and lower sides.
In addition, the size of the cross-sectional area of each downcomer can be easily adjusted with a valve, etc., so even when conditions such as fuel and furnace temperature are different, the amount of high-temperature fluid medium to be placed in each furnace can be easily adjusted. it can.
Furthermore, other methods for controlling the amount of high-temperature particles include multicyclones and multistage cyclones.

流動層基礎実験により、熱分解炉及びガス化炉温度(それぞれ二段炉)を同じ条件でガス化させた場合とガス化炉温度を熱分解温度よりも高くした場合(上下のそれぞれの温度は同じ)で冷ガス効率を比較した結果を図2に示す。
本条件はあくまで一例であるが、ガス化炉温度を高くした方が冷ガス効率は顕著に向上する。また、HやCO生成量も増加するので、例えば、生成した可燃ガスからDMEやメタノールなどの液体燃料を製造する場合にはより有効な手法といえる。
In the fluidized bed basic experiment, when the pyrolysis furnace and gasifier temperature (each two-stage furnace) are gasified under the same conditions and when the gasifier temperature is higher than the pyrolysis temperature (the upper and lower temperatures are respectively The result of comparing the cold gas efficiency with the same) is shown in FIG.
Although this condition is only an example, the cold gas efficiency is significantly improved when the gasifier temperature is increased. In addition, since the amount of H 2 and CO produced increases, it can be said that it is a more effective method when, for example, liquid fuel such as DME or methanol is produced from the produced combustible gas.

図3〜5は、本発明のガス化反応炉の別の実施の形態を模式的に示す図であって、図3に示す装置は、コークガス化炉及びチャーガス化炉へのダウンカマーの接続部を、それぞれ燃料熱分解炉と流動層ガス化炉の連通路に設け、かつ、タール吸収炉へのダウンカマーの接続部を炉の上部に設けたものある。
たものある。
また、図4に示す装置は、コークガス化炉へのダウンカマーの接続部を炉の上部に設けたものある。
更に、図5に示す装置は、コークガス化炉及びチャーガス化炉へのダウンカマーの接続部を、それぞれ燃料熱分解炉と流動層ガス化炉の連通路に設けたものである。
これらの例に限られず、本発明の循環流動層ガス化システムにおいて、ダウンカマーの接続部は、炉の上部や側面、熱分解炉とガス化炉の連通路など、マテリアルシールができてガスが逆流しなければ種々の変更が可能である。
連通路は、ループシール、L型バルブ、移動層などマテリアルシールできれば、いずれの型でも良い。
FIGS. 3 to 5 are diagrams schematically showing another embodiment of the gasification reactor according to the present invention, and the apparatus shown in FIG. 3 is connected to a downcomer to a coke gasification furnace and a char gasification furnace. Are provided in the communication path between the fuel pyrolysis furnace and the fluidized bed gasification furnace, and a downcomer connection to the tar absorption furnace is provided in the upper part of the furnace.
There is something.
The apparatus shown in FIG. 4 has a downcomer connection to the coke gasification furnace provided in the upper part of the furnace.
Further, the apparatus shown in FIG. 5 is provided with a downcomer connection to the coke gasification furnace and the char gasification furnace in the communication passages of the fuel pyrolysis furnace and the fluidized bed gasification furnace, respectively.
Without being limited to these examples, in the circulating fluidized bed gasification system of the present invention, the downcomer connection part is made of a material seal such as the upper and side surfaces of the furnace, the communication path between the pyrolysis furnace and the gasification furnace, and the gas flows. Various changes are possible without backflow.
The communication path may be any type as long as material seal such as a loop seal, an L-shaped valve, and a moving layer can be sealed.

図6及び図7は、本発明のガス化反応炉のさらに別の実施の形態を模式的に示す図であって、図6に示す装置は、チャー残渣燃料炉からの高温な流動媒体を、下段の燃料熱分解炉及びチャーガス化炉に分配供給するようにしたものであり、図7に示す装置は、コーク残渣燃料炉からの高温な流動媒体を、タール吸収炉及びコークガス化炉に分配供給するようにしたものである。
図6及び図7に示すとおり、本発明の循環流動層ガス化システムは、ガス生成量の条件に応じて、ダウンカマーのいずれか一方だけを二股に分岐することもできる。
さらに、図1、図3〜7は、何れも単なる装置の概念図であって、各炉は、図に示すような完全分離型だけでなく、これらの炉の一部または全体を一体型にすることも可能である。
6 and 7 are diagrams schematically showing still another embodiment of the gasification reactor of the present invention, in which the apparatus shown in FIG. The apparatus shown in FIG. 7 distributes and supplies the high-temperature fluid medium from the coke residue fuel furnace to the tar absorption furnace and the coke gasification furnace. It is what you do.
As shown in FIGS. 6 and 7, the circulating fluidized bed gasification system of the present invention can branch only one of the downcomers into two branches depending on the gas generation amount condition.
Further, FIGS. 1 and 3 to 7 are all conceptual views of the apparatus, and each furnace is not only a completely separated type as shown in the figure, but also a part or all of these furnaces are integrated. It is also possible to do.

本発明の循環流動層ガス化システムは、バイオマス、ごみ、下水汚泥などの未利用炭化水素資源の利用に適用する他に、例えば、石炭やバイオマスとのハイブリッドガス化(共ガス化)、或いは、固体燃料と液体燃料とのハイブリッドガス化にも適用できる。   The circulating fluidized bed gasification system of the present invention is applied to use of unused hydrocarbon resources such as biomass, garbage, sewage sludge, for example, hybrid gasification (cogasification) with coal or biomass, or It can also be applied to hybrid gasification of solid fuel and liquid fuel.

Claims (12)

流動媒体が導入された流動層ガス化炉内で原料をガス化させ、ガス化時に生成したチャー及び流動媒体を後段の流動層燃焼炉に導入して、未燃分を燃焼させるとともに、再加熱された流動媒体が反応炉内を循環するように構成された循環流動層ガス化反応炉であって、
前記流動層ガス化炉の前段に、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構造の熱分解炉を設けるとともに、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させるようにし、
さらに、流動層燃焼炉の後段に設けられたサイクロンから分離されて高温となった、前記のそれぞれの流動媒体の少なくとも一方を、前記熱分解炉及び前記流動層ガス化炉に分配供給することにより、熱分解炉及び流動層ガス化炉の温度を制御することを特徴とする循環流動層ガス化システム。
The raw material is gasified in the fluidized bed gasification furnace into which the fluidized medium is introduced, and the char and fluidized medium generated during the gasification are introduced into the subsequent fluidized bed combustion furnace to burn the unburned components and reheat. A circulating fluidized bed gasification reactor configured such that the fluidized medium circulated in the reactor,
In front of the fluidized bed gasification furnace, a two-stage furnace pyrolysis furnace equipped with a tar absorption furnace and a fuel pyrolysis furnace is provided, and contains unburned char taken out from the lower fuel pyrolysis furnace. Circulating the fluid medium and the fluid medium adsorbed with the tar taken out from the upper tar absorption furnace are independently circulated.
Furthermore, by distributing and supplying at least one of each of the fluidized media separated from a cyclone provided at the latter stage of the fluidized bed combustion furnace to the pyrolysis furnace and the fluidized bed gasification furnace. A circulating fluidized bed gasification system characterized by controlling the temperatures of a pyrolysis furnace and a fluidized bed gasification furnace.
前記分配供給する手段として、前記サイクロンの下段に設けられたダウンカマーが二股に分岐したものを用いることを特徴とする請求項1に記載の循環流動層ガス化システム。   The circulating fluidized bed gasification system according to claim 1, wherein a downcomer provided at a lower stage of the cyclone is bifurcated as the distribution and supply means. 前記分岐後のダウンカマーの断面積に差をつけることで、それぞれの炉に導入される高温流動媒体の量を異ならせることを特徴とする請求項2に記載の循環流動層ガス化システム。   The circulating fluidized bed gasification system according to claim 2, wherein the amount of the high-temperature fluidized medium introduced into each furnace is varied by making a difference in the cross-sectional area of the downcomer after the branching. 前記分岐後のダウンカマーの断面積を可変にしたことを特徴とする請求項2又は3に記載の循環流動層ガス化システム。   The circulating fluidized bed gasification system according to claim 2 or 3, wherein the cross-sectional area of the branched downcomer is variable. 分岐後のダウンカマーの炉への連結部を、炉の上部あるいは側面にし、マテリアルシールする構造にしたことを特徴とする請求項1〜4のいずれか1項に記載の循環流動層ガス化システム。   The circulating fluidized bed gasification system according to any one of claims 1 to 4, wherein a connecting portion of the branched downcomer to the furnace is formed on the top or side of the furnace and material sealed. . 流動層ガス化炉側のダウンカマーを熱分解炉とガス化炉との連通路へ接続し、マテリアルシールする構造にした請求項1〜5のいずれか1項に記載の循環流動層ガス化システム。   The circulating fluidized bed gasification system according to any one of claims 1 to 5, wherein a downcomer on the fluidized bed gasification furnace side is connected to a communication path between the pyrolysis furnace and the gasification furnace and material sealing is performed. . 燃料熱分解炉側のダウンカマーの下部に熱交換器を設置したことを特徴とする請求項1〜6のいずれか1項に記載の循環流動層ガス化システム。   The circulating fluidized bed gasification system according to any one of claims 1 to 6, wherein a heat exchanger is installed in a lower part of the downcomer on the fuel pyrolysis furnace side. 前記温度制御手段としてマルチサイクロン又は多段サイクロンを用い、高温流動媒体の各炉への導入量を制御することを特徴とする請求項1〜7のいずれか1項に記載の循環流動層ガス化システム。   The circulating fluidized bed gasification system according to any one of claims 1 to 7, wherein a multi-cyclone or a multi-stage cyclone is used as the temperature control means, and an introduction amount of the high-temperature fluidized medium into each furnace is controlled. . 前記上段のタール吸収炉には、流動媒体としてタール吸着性物質を使用し、下段の燃料熱分解炉において生成したタールを該流動性媒体に吸着させるようにしたことを特徴とする請求項1〜8のいずれか1項に記載の循環流動層ガス化システム。   The upper tar absorption furnace uses a tar adsorbing substance as a fluid medium, and adsorbs the tar generated in the lower fuel pyrolysis furnace to the fluid medium. The circulating fluidized bed gasification system according to claim 8. 前記下段の燃料熱分解炉には、流動媒体として硅砂を使用することを特徴とする請求項1〜9のいずれか1項に記載の循環流動層ガス化システム。   The circulating fluidized bed gasification system according to any one of claims 1 to 9, wherein the lower fuel pyrolysis furnace uses dredged sand as a fluidized medium. 前記燃料熱分解炉において揮発分の熱分解及びタールの改質により生成する熱分解ガス、前記流動層ガス化炉においてチャー及び/又はコークのガス化により生成するガス化ガス、及び前記流動層燃焼炉においてチャー残渣及び/又はコーク残渣の燃焼により生成する燃焼ガスを、それぞれ独立して取り出す手段を備えたことを特徴とする請求項1〜10のいずれか1項に記載の循環流動層ガス化システム。   Pyrolysis gas produced by pyrolysis of volatile matter and tar reforming in the fuel pyrolysis furnace, gasification gas produced by gasification of char and / or coke in the fluidized bed gasification furnace, and fluidized bed combustion The circulating fluidized bed gasification according to any one of claims 1 to 10, further comprising means for independently taking out combustion gases generated by combustion of char residue and / or coke residue in a furnace. system. 前記燃料熱分解炉が、アルカリ吸収機能を有することを特徴とする請求項1〜11のいずれか1項に記載の循環流動層ガス化システム。
The circulating fluidized bed gasification system according to any one of claims 1 to 11, wherein the fuel pyrolysis furnace has an alkali absorption function.
JP2009175248A 2009-07-28 2009-07-28 Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace Pending JP2011026489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175248A JP2011026489A (en) 2009-07-28 2009-07-28 Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175248A JP2011026489A (en) 2009-07-28 2009-07-28 Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace

Publications (1)

Publication Number Publication Date
JP2011026489A true JP2011026489A (en) 2011-02-10

Family

ID=43635604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175248A Pending JP2011026489A (en) 2009-07-28 2009-07-28 Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace

Country Status (1)

Country Link
JP (1) JP2011026489A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133498A1 (en) * 2011-03-28 2012-10-04 株式会社Ihi Tar removal device
CN103060003A (en) * 2012-12-27 2013-04-24 东南大学 Method and device for preparing H2 and separating CO2 based on calcium-based sorbent
JP2015044933A (en) * 2013-08-28 2015-03-12 株式会社Ihi Gasification gas generation system
JP2015052068A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
CN106833752A (en) * 2017-01-25 2017-06-13 浙江大学 The house refuse of three-stage technique cooperates with pyrolysis gasifying device and method with high-alkali coal
CN107118807A (en) * 2017-06-14 2017-09-01 北京京诚泽宇能源环保工程技术有限公司 A kind of system and method for the standby also Primordial Qi of lignite double bed vaporizing system
CN112625755A (en) * 2019-09-24 2021-04-09 中国石油化工股份有限公司 Circulating fluidized bed pulverized coal pyrolysis-gasification device and pulverized coal pyrolysis-gasification method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133498A1 (en) * 2011-03-28 2012-10-04 株式会社Ihi Tar removal device
JP2012201851A (en) * 2011-03-28 2012-10-22 Ihi Corp Apparatus for removing tar
US9393514B2 (en) 2011-03-28 2016-07-19 Ihi Corporation Tar removal device
CN103060003A (en) * 2012-12-27 2013-04-24 东南大学 Method and device for preparing H2 and separating CO2 based on calcium-based sorbent
JP2015044933A (en) * 2013-08-28 2015-03-12 株式会社Ihi Gasification gas generation system
JP2015052068A (en) * 2013-09-09 2015-03-19 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification furnace
CN106833752A (en) * 2017-01-25 2017-06-13 浙江大学 The house refuse of three-stage technique cooperates with pyrolysis gasifying device and method with high-alkali coal
CN106833752B (en) * 2017-01-25 2019-11-29 浙江大学 The house refuse of three-stage technique cooperates with pyrolysis gasifying device and method with high-alkali coal
CN107118807A (en) * 2017-06-14 2017-09-01 北京京诚泽宇能源环保工程技术有限公司 A kind of system and method for the standby also Primordial Qi of lignite double bed vaporizing system
CN107118807B (en) * 2017-06-14 2023-07-25 北京京诚泽宇能源环保工程技术有限公司 System and method for preparing reducing gas by lignite double-bed gasification
CN112625755A (en) * 2019-09-24 2021-04-09 中国石油化工股份有限公司 Circulating fluidized bed pulverized coal pyrolysis-gasification device and pulverized coal pyrolysis-gasification method

Similar Documents

Publication Publication Date Title
JP5532207B2 (en) Circulating fluidized bed gasification reactor
JP5114412B2 (en) Separation type fluidized bed gasification method and gasification apparatus for solid fuel
JP5483058B2 (en) Circulating fluidized bed gasifier structure
US10081772B2 (en) Conversion of carbonaceous fuels into carbon free energy carriers
JP3933105B2 (en) Fluidized bed gasification system
Guan et al. High-density circulating fluidized bed gasifier for advanced IGCC/IGFC—Advantages and challenges
JP4479906B2 (en) Fluidized bed gasification gas purification method and purification apparatus
US8888875B2 (en) Methods for feedstock pretreatment and transport to gasification
JP2011026489A (en) Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace
CN1961062B (en) Solid-fuel gasification system
JP5630626B2 (en) Organic raw material gasification apparatus and method
US20160030904A1 (en) Distributing secondary solids in packed moving bed reactors
WO2007004342A1 (en) Method of solid fuel gasification including gas purification and gasifier employing the method
JP2011522084A (en) Two-stage high-temperature preheating steam gasifier
JP5057466B2 (en) Method for generating combustible gas and gasification reactor therefor
AU2009307613A1 (en) Coal gasifier
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
KR102032823B1 (en) Circulating Fluidized Bed Gasifier Equipped with Heat Exchanger Therein
JP5483060B2 (en) Circulating fluidized bed gasification reactor
CN2319410Y (en) Cooperative prodn. Unit for two-stage gasifying fluidized bed coke loaded hot gas and steam
JP2011105890A (en) Circulating fluidized bed gasification reactor
JP5004093B2 (en) Gasification reactor for generating combustible gas
JP3839709B2 (en) Gas supply device, gas supply utilization system, gasification and melting system, and gas supply method
JP2011105892A (en) Circulating fluidized bed gasification reactor enabling to effectively use tar adsorptive substance
JP2007284470A (en) Method for heating up freeboard of fluidized-bed gasifying furnace to high temperature and applied apparatus