JP5483060B2 - Circulating fluidized bed gasification reactor - Google Patents

Circulating fluidized bed gasification reactor Download PDF

Info

Publication number
JP5483060B2
JP5483060B2 JP2009183958A JP2009183958A JP5483060B2 JP 5483060 B2 JP5483060 B2 JP 5483060B2 JP 2009183958 A JP2009183958 A JP 2009183958A JP 2009183958 A JP2009183958 A JP 2009183958A JP 5483060 B2 JP5483060 B2 JP 5483060B2
Authority
JP
Japan
Prior art keywords
furnace
fluidized bed
gasification
tar
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009183958A
Other languages
Japanese (ja)
Other versions
JP2011037933A (en
Inventor
高広 村上
浩一 松岡
浩司 倉本
善三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009183958A priority Critical patent/JP5483060B2/en
Publication of JP2011037933A publication Critical patent/JP2011037933A/en
Application granted granted Critical
Publication of JP5483060B2 publication Critical patent/JP5483060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、循環流動層を用いて燃料より可燃ガスを取り出すためのガス化反応炉に関するものである。   The present invention relates to a gasification reactor for extracting combustible gas from fuel using a circulating fluidized bed.

従来から、石炭、バイオマス、ごみ、下水汚泥などの炭化水素資源の固体燃料を利用し、生成したガスを、可燃ガス及び熱源として利用することにより、有機資源の有効活用を図る技術が開発されている。
該ガス化装置の1つとして、反応炉を流動層ガス化炉と流動層燃焼炉に分離し、流動層ガス化炉に炭化水素資源の固体燃料を供給し、水蒸気でガス化を行い、生成した未燃分(チャー)と流動媒体を流動層燃焼炉で燃焼させ、加熱された流動媒体を前記ガス化炉に戻す循環流動層を用いたものがある(特許文献1)。
上記のガス化反応炉は外部循環方式であるが、特許文献2に記載された反応炉のように、内部循環方式のものもあり、該反応炉においては、流動媒体に粒子状スラグを利用することで、ガス化炉内で生成されたガス中に含まれるタールが改質されタール分の少ない可燃ガスが生成されるとともに、劣化したスラグを未燃チャーとともに燃焼炉へ導入し再活性化して、ガス化炉へ戻される。
これらの流動層ガス化炉と流動層燃焼炉を有する循環流動層ガス化システムにおいては、それぞれの炉から、ガス化ガスと燃焼ガスを別々に取り出すことができ、不活性ガスを含まない高カロリーなガスを製造することができる。
Conventionally, technologies have been developed to make effective use of organic resources by using solid fuels of hydrocarbon resources such as coal, biomass, garbage, and sewage sludge, and using the generated gas as a combustible gas and heat source. Yes.
As one of the gasifiers, the reactor is separated into a fluidized bed gasification furnace and a fluidized bed combustion furnace, a solid fuel of hydrocarbon resources is supplied to the fluidized bed gasification furnace, gasified with steam, and generated There is one that uses a circulating fluidized bed in which the unburned portion (char) and the fluidized medium are combusted in a fluidized bed combustion furnace and the heated fluidized medium is returned to the gasification furnace (Patent Document 1).
The gasification reaction furnace is an external circulation system, but there is an internal circulation system such as the reaction furnace described in Patent Document 2, in which particulate slag is used as a fluid medium. As a result, the tar contained in the gas generated in the gasification furnace is reformed to generate a combustible gas with a small amount of tar, and the deteriorated slag is introduced into the combustion furnace together with unburned char and reactivated. , Returned to the gasifier.
In the circulating fluidized bed gasification system having these fluidized bed gasification furnace and fluidized bed combustion furnace, the gasification gas and the combustion gas can be separately taken out from the respective furnaces, and the high calorie does not contain an inert gas. Gas can be produced.

また、特許文献3では、流動層ガス化炉を、有機物原料が供給されて熱分解反応によりタールを含む熱分解ガスを生成する室と、熱分解反応によって生成した熱分解残渣を導入してガス化ガスを生成する室とに分けることによって、良質のガス化ガスの生成を高めるようにすることが記載されている。   Further, in Patent Document 3, a fluidized bed gasification furnace is introduced by introducing a chamber in which an organic material is supplied and generating a pyrolysis gas containing tar by a pyrolysis reaction, and a pyrolysis residue generated by the pyrolysis reaction to introduce a gas. It is described that the generation of high-quality gasification gas is enhanced by dividing it into a chamber for generating gasification gas.

さらに、特許文献4は、原料を流動層炉でガス化し、熱分解又は部分酸化して、生成ガスを得るシステムにおいて、原料から生成するタールを、流動接触分解触媒、流動接触分解平衡触媒、シリカ・アルミナ系粒子、又は油浸造粒法で製造されたアルミナ系粒子を使用して、タールを除去することが記載されている。
しかしながら、特許文献4に記載された方法は、多孔質粒子によりタールを効率良く吸着する方法であるが、流動媒体として従来使用されている硅砂よりも極めて高価であるため、コストがかかってしまう。また、流動層炉では、一定間隔で炉下部から灰を抜き出すが、多孔質粒子と混在するために、多孔質粒子も一緒に抜き出さねばならない。したがって、抜き出した量を炉内へ新たに追加供給せねばならない。よって、石炭のような灰分の多い燃料ほど、よりランニングコストがかかる可能性が高い。
Further, Patent Document 4 discloses that in a system in which a raw material is gasified in a fluidized bed furnace and pyrolyzed or partially oxidized to obtain a product gas, tar generated from the raw material is converted into a fluid catalytic cracking catalyst, a fluid catalytic cracking equilibrium catalyst, silica -It is described that tar is removed by using alumina-based particles or alumina-based particles produced by an oil immersion granulation method.
However, the method described in Patent Document 4 is a method in which tar is efficiently adsorbed by porous particles, but it is extremely expensive than the conventionally used cinnabar sand as a fluid medium, and thus costs are increased. Further, in the fluidized bed furnace, ash is extracted from the lower part of the furnace at regular intervals. However, in order to be mixed with porous particles, the porous particles must be extracted together. Therefore, the extracted amount must be newly supplied into the furnace. Therefore, the higher the ash content fuel such as coal, the higher the running cost is likely.

本発明者らは、こうした問題を解決して、チャーを多く含む固体燃料のガス化を低温で促進させることにより、ガス化炉で取り出せる生成ガスを多くし、高効率で可燃ガスを取り出せる方法及びそのためのガス化反応炉を既に提案している。(特許文献5参照)。
この方法は、ガス化炉の前段にアルカリ吸収炉を設け、チャーに揮発ガス中のアルカリを積極的に吸着させてガス化触媒として利用し、ガス化効率を向上させる方法であって、アルカリ吸収炉内でタールをチャーに吸着させてチャーのガス化効率を向上させるとともに、チャーのガス化の阻害効果も避けることができ、さらに、アルカリ吸収炉から生成する熱分解ガスと、ガス化炉から生成するガス化ガスを分離して取り出し、トータルの生成ガス量を高くするメリットがある。
The present inventors have solved these problems and promoted gasification of a solid fuel containing a large amount of char at a low temperature, thereby increasing the amount of product gas that can be extracted in a gasification furnace, and a method for extracting combustible gas with high efficiency. A gasification reactor for this purpose has already been proposed. (See Patent Document 5).
This method is a method of improving the gasification efficiency by providing an alkali absorption furnace in front of the gasification furnace and actively adsorbing the alkali in the volatile gas to the char and using it as a gasification catalyst. In addition to improving the gasification efficiency of char by adsorbing tar to the char in the furnace, it is possible to avoid the effect of inhibiting the gasification of char, and from the pyrolysis gas generated from the alkali absorption furnace and the gasification furnace There is an advantage that the gasified gas to be generated is separated and taken out to increase the total amount of generated gas.

特開2005−41959号公報JP 2005-41959 A 特開2005−68297号公報JP 2005-68297 A 特開2008−156552号公報JP 2008-156552 A 特開2005−272782号公報JP 2005-272882 A 特開2008−303377号公報JP 2008-303377 A

本発明者らは、前記の循環流動層ガス化反応炉を用いたガス化方法及び装置について更に検討したところ、流動媒体として、アルミナ、石灰石、ゼオライトなどのタール吸着性物質を投入すると、タールを効率良く吸着できるという利点があるが、特に、タール吸着性物質として、多孔質アルミナなどの多孔質粒子を用いた場合、よりタールを効率良く吸着できるものの、流動媒体として従来使用されている硅砂よりも極めて高価であるため、その使用量を可能な限り低減する必要がある。
また、特許文献4と同様に、炉内で多孔質粒子と灰粒子が混在するために、一定間隔で炉下部から灰を抜き出す際に、多孔質粒子も一緒に抜き出されてしまう。
さらに、炉後段のタール処理にかかるコスト(改質炉、スクラバなど)も削減する必要がある。
The present inventors further examined the gasification method and apparatus using the circulating fluidized bed gasification reactor, and when a tar adsorbing substance such as alumina, limestone, or zeolite was added as a fluid medium, the tar was Although there is an advantage that it can be adsorbed efficiently, in particular, when porous particles such as porous alumina are used as the tar adsorbing substance, although tar can be adsorbed more efficiently, it is more than the conventional sand used as a fluid medium. However, it is necessary to reduce the amount of use as much as possible.
Further, as in Patent Document 4, since porous particles and ash particles coexist in the furnace, the porous particles are also extracted together when the ash is extracted from the lower part of the furnace at regular intervals.
Furthermore, it is necessary to reduce the cost (reforming furnace, scrubber, etc.) required for tar treatment at the latter stage of the furnace.

本発明は、こうした従来技術における課題を解決して、高価な流動媒体を灰粒子と混在することなく、その使用量を可能な限り低減したうえで、タール処理にかかるコストを削減しうるガス化反応炉を提供することを目的とするものである。   The present invention solves such problems in the prior art, and reduces the amount of use as much as possible without mixing an expensive fluid medium with ash particles, and can reduce the cost for tar treatment. The object is to provide a reaction furnace.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、流動層ガス化炉の上段に、タール吸収炉を備えた二段炉構造として設けるとともに、下段の燃料ガス化炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させることにより解決しうるという知見を得た。   As a result of intensive studies to achieve the above object, the present inventors have provided a two-stage furnace structure equipped with a tar absorption furnace on the upper stage of the fluidized bed gasification furnace and removed it from the lower fuel gasification furnace. The present inventors have found that the problem can be solved by independently circulating a fluid medium containing unburned char and a fluid medium adsorbed with tar taken from the upper tar absorption furnace.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1] 流動層ガス化炉と流動層燃焼炉とからなり、流動媒体が導入された前記流動層ガス化炉内で原料をガス化させ、ガス化時に生成したチャー及び流動媒体を後段の前記流動層燃焼炉に導入して、未燃分を燃焼させるとともに、再加熱された流動媒体が前記流動層ガス化炉及び前記流動層燃焼炉を循環するように構成された循環流動層ガス化反応炉であって、
前記流動層ガス化炉は、下段の燃料ガス化炉及びその上段に備えられたタール吸収炉からなる二段炉構造であり、
前記流動層燃焼炉は、それぞれ独立したチャー燃焼炉及びコーク燃焼炉からなり、
前記下段の燃料ガス化炉の後段に、前記チャー燃焼炉を連結し、前記上段のタール吸収炉の後段に、前記コーク燃焼炉を連結して、
前記下段の燃料ガス化炉から取り出される未燃焼チャーを含有する流動媒体と、前記上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させるようにしたことを特徴とする循環流動層ガス化反応炉。
]前記上段のタール吸収炉には、流動媒体としてタール吸着性物質を使用し、下段の燃料ガス化炉において生成したタールを該流動媒体に吸着させるようにしたことを特徴とする上記[1]の循環流動層ガス化反応炉。
]前記下段の燃料ガス化炉には、流動媒体として硅砂を使用することを特徴とする上記[1]〜又は[2]の循環流動層ガス化反応炉。
]前記燃料ガス化炉を燃料熱分解炉としたことを特徴とする上記[1]〜[]のいずれかの循環流動層ガス化反応炉。
]前記流動層ガス化炉において生成するガス化ガス、及び前記流動層燃焼炉においてチャー及びコークの燃焼により生成する燃焼ガスを、それぞれ独立して取り出す手段を備えたことを特徴とする上記[1]〜[]のいずれかの循環流動層ガス化反応炉。
]前記燃料ガス化炉又は熱分解炉が、アルカリ吸収機能を有することを特徴とする上記[1]〜[]のいずれかの循環流動層ガス化反応炉。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] consists of a fluidized bed gasification furnace and the fluidized bed combustion furnace, the raw material was gasified in the fluidized medium is introduced the fluidized bed gasification furnace, the char and bed material generated during the gasification subsequent A circulating fluidized bed gasification reaction that is introduced into a fluidized bed combustion furnace to combust unburned components and the reheated fluidized medium circulates through the fluidized bed gasification furnace and the fluidized bed combustion furnace. A furnace,
The fluidized bed gasification furnace has a two-stage furnace structure consisting of a lower fuel gasification furnace and a tar absorption furnace provided in the upper stage ,
The fluidized bed combustion furnace comprises an independent char combustion furnace and a coke combustion furnace,
The char combustion furnace is connected to the rear stage of the lower fuel gasification furnace, the coke combustion furnace is connected to the rear stage of the upper tar absorption furnace,
Wherein the fluid medium containing unburned char is taken out from the lower part of the fuel gasifier and a fluidized medium tar adsorbed withdrawn from tar absorption furnace of the upper, and to circulate independently A circulating fluidized bed gasification reactor.
[ 2 ] The above-mentioned tar absorption furnace uses a tar adsorbing substance as a fluid medium, and adsorbs the tar generated in the fuel gasification furnace in the lower part to the fluid medium . 1] The circulating fluidized bed gasification reactor.
[ 3 ] The circulating fluidized bed gasification reactor according to [1] or [2] above, wherein the lower fuel gasification furnace uses dredged sand as a fluid medium.
[ 4 ] The circulating fluidized bed gasification reactor according to any one of [1] to [ 3 ], wherein the fuel gasification furnace is a fuel pyrolysis furnace.
[ 5 ] The above, characterized by comprising means for independently taking out the gasification gas generated in the fluidized bed gasification furnace and the combustion gas generated by the combustion of char and coke in the fluidized bed combustion furnace. The circulating fluidized bed gasification reactor according to any one of [1] to [ 4 ].
[ 6 ] The circulating fluidized bed gasification reactor according to any one of [1] to [ 5 ], wherein the fuel gasification furnace or the pyrolysis furnace has an alkali absorption function.

本発明によれば、流動層ガス化炉を、タール吸収炉及び燃料ガス化炉を上下に備えた二段炉構造として設けることにより、タール吸収炉の流動媒体だけに、高価なタール吸着性物質を用いることが可能となり、その使用量を最小限にすることができ、また、下段の燃料ガス化炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させることで、高価なタール吸着性物質と灰粒子とが混在しないようにでき、タール処理にかかるコストを削減しうる。   According to the present invention, by providing the fluidized bed gasification furnace as a two-stage furnace structure having a tar absorption furnace and a fuel gasification furnace at the upper and lower sides, an expensive tar adsorbing substance is provided only in the fluid medium of the tar absorption furnace. Can be used, the amount of use can be minimized, and the fluid medium containing unburned char taken from the lower fuel gasifier and the tar taken from the upper tar absorber By circulating the adsorbed fluid medium independently, it is possible to prevent expensive tar-adsorbing substances and ash particles from being mixed, and the cost for tar treatment can be reduced.

本発明の循環流動層ガス化反応炉の第1の実施の形態を模式的に示す図。The figure which shows typically 1st Embodiment of the circulating fluidized-bed gasification reactor of this invention. 本発明の循環流動層ガス化反応炉の第2の実施の形態を模式的に示す図。The figure which shows typically 2nd Embodiment of the circulating fluidized bed gasification reactor of this invention.

以下、本発明の実施の形態について、図面に基づいて説明するが、本発明はこの実施の形態に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.

図1は、本発明の循環流動層ガス化反応炉の第1の実施の形態を模式的に示す図であって、タール吸収炉及び燃料ガス化炉を上下に備えた二段炉構成の流動層ガス化炉を備え、該流動層ガス化炉の下段の後段には、チャー燃焼炉を連結させ、前記上段のタール吸収炉の後段には、コーク燃焼炉を連結させたものである。そして、前記チャー燃焼炉及び前記コーク燃焼炉は、それぞれ独立した流動層燃焼炉で構成されている。
なお、本発明において、前記の燃料ガス化炉を、前述の特許文献5に記載されたようなアルカリ吸収機能を有する炉とし、チャーに揮発ガス中のアルカリを積極的に吸着させてガス化触媒として利用し、チャーのガス化効率を向上させることができることはいうまでもない。
FIG. 1 is a diagram schematically showing a first embodiment of a circulating fluidized bed gasification reactor according to the present invention, in which a flow in a two-stage furnace configuration having a tar absorption furnace and a fuel gasification furnace at the top and bottom is shown. A bed gasification furnace is provided, a char combustion furnace is connected to the lower stage of the fluidized bed gasification furnace, and a coke combustion furnace is connected to the rear stage of the upper tar absorption furnace. And the said char combustion furnace and the said coke combustion furnace are comprised by the independent fluidized bed combustion furnace, respectively.
In the present invention, the fuel gasification furnace is a furnace having an alkali absorption function as described in Patent Document 5, and the char in the volatile gas is actively adsorbed to the char to thereby form a gasification catalyst. Needless to say, the gasification efficiency of char can be improved.

該図に示す循環流動層ガス化反応炉においては、上段のタール吸収炉から取り出されるタールを吸着した流動媒体は、その後段に連結されたコーク燃焼炉を経てタール吸収炉に戻され、一方、下段の燃料ガス化炉から取り出される流動媒体は、その後段に連結されたチャー燃焼炉を経て燃料ガス化炉に戻される。   In the circulating fluidized bed gasification reactor shown in the figure, the fluid medium that adsorbs the tar taken out from the upper tar absorption furnace is returned to the tar absorption furnace through the coke combustion furnace connected to the subsequent stage, The fluid medium taken out from the lower fuel gasification furnace is returned to the fuel gasification furnace through the char combustion furnace connected to the subsequent stage.

多孔質アルミナなどの多孔質粒子は、原料から生成するタールを効率よく吸収するために好ましく用いられるが、高価であるという欠点を有している。
本発明の循環流動層ガス化反応炉においては、燃料ガス化炉の上段に、タール吸収炉を備えた二段炉構造であるので、上段のタール吸収炉の流動媒体に、多孔質粒子等のタール吸着効率の良好なものを使用し、その下段の燃料ガス化炉に導入する流動媒体には、一般的に使用されている安価な硅砂を主成分とするものを使用することにより、高価な流動媒体の使用量を最小限にすることが可能となる。
また、チャー燃焼炉とコーク燃焼炉とが分離しているので、上段のタール吸収炉を循環する多孔質粒子などの流動媒体は、チャー燃焼炉で発生する灰粒子と混在しないようにできる。
また、炉内でタール処理ができるので、従来、炉後段でのタール処理にかかっていたコストを削減できる。
Porous particles such as porous alumina are preferably used in order to efficiently absorb tar generated from the raw material, but have the disadvantage of being expensive.
The circulating fluidized bed gasification reactor of the present invention has a two-stage furnace structure provided with a tar absorption furnace in the upper stage of the fuel gasification furnace. A fluid medium that has good tar adsorption efficiency and is introduced into the lower fuel gasification furnace is expensive by using a commonly used low-cost silica sand as the main component. It is possible to minimize the amount of fluid medium used.
Further, since the char combustion furnace and the coke combustion furnace are separated, the fluid medium such as porous particles circulating in the upper tar absorption furnace can be prevented from being mixed with the ash particles generated in the char combustion furnace.
Further, since tar treatment can be performed in the furnace, the cost conventionally required for the tar treatment at the latter stage of the furnace can be reduced.

以下、上段のタール吸収炉の流動媒体に、多孔質アルミナのような多孔質粒子を使用し、その下段の燃料ガス化炉の流動媒体に硅砂を使用した例を用いて、原料のガス化について具体的に説明する。
バイオマス、ごみ、下水汚泥、及び石炭などのような炭化水素系固体燃料を、燃料ガス化炉へ供給するとともに、下部より、例えば、水蒸気或いは酸素或いは空気のようなガス化剤を、流動ガスとして導入し、燃料ガス化炉に供給された上記の炭化水素系固体燃料をガス化させる。
生成したガス化ガスと同時に生成するタールが上段のタール吸収炉へ流れる。そのタールは、タール吸収炉中の多孔質粒子に吸着され、一部はガスに改質される。タールを含まないガス化ガスは、上部に設けられたガス化ガスの取出し手段から取り出すことができる。
取り出されたガス化ガスは、可燃ガスの一種であって、燃料電池やガスエンジンによる発電、液体燃料などに使用される。
なお、本発明においてガス化の原料としては、前述のような炭化水素系固体燃料に限られず、タールの発生し易い液体燃料を用いることも可能である。
Hereinafter, the gasification of the raw material is performed using an example in which porous particles such as porous alumina are used for the fluid medium of the upper tar absorption furnace, and dredged sand is used for the fluid medium of the lower fuel gasification furnace. This will be specifically described.
While supplying a hydrocarbon-based solid fuel such as biomass, garbage, sewage sludge, and coal to the fuel gasifier, a gasifying agent such as water vapor, oxygen or air is used as a flowing gas from the bottom. The hydrocarbon-based solid fuel introduced and supplied to the fuel gasifier is gasified.
The tar generated simultaneously with the generated gasification gas flows to the upper tar absorption furnace. The tar is adsorbed by the porous particles in the tar absorption furnace and partly reformed into gas. The gasification gas not containing tar can be taken out from the gasification gas take-out means provided in the upper part.
The extracted gasified gas is a kind of combustible gas, and is used for power generation by a fuel cell or a gas engine, liquid fuel, and the like.
In the present invention, the raw material for gasification is not limited to the hydrocarbon-based solid fuel as described above, and a liquid fuel that easily generates tar can also be used.

下段の燃料ガス化炉では、ガス化後のチャー及び硅砂は、チャー燃焼炉へ送られる。
一方、上段のタール吸収炉でタールを吸着した多孔質粒子は、コーク燃焼炉へ送られる。
チャー燃焼炉及びコーク燃焼炉は、いずれも流動層とされており、チャー及びコークが完全燃焼可能な滞留時間を確保する。それぞれの燃焼炉では、導入されたチャー及びコークを、それぞれの燃焼炉の下部より導入された空気或いは酸素と共に燃焼させ、サイクロンにより燃焼ガスをそれぞれの炉の上部に設けられた取出手段から取り出される。
それぞれの燃焼炉から取り出された燃焼ガスは、主に熱源として利用されるものであり、前記ガス化炉又はそれぞれの燃焼炉に導入する空気や蒸気の予熱源としても利用できる。
一方、チャー燃焼炉で再加熱された硅砂、及びコーク燃焼炉で再加熱された多孔質粒子は、それぞれ燃料ガス化炉及びタール吸収炉へ戻される。
なお、ガス化炉内で生じる反応(特にシフト反応)には、チャーの濃度が密接に関係しており、熱バランスが成立する範囲内であれば、未燃チャーの一部を再循環させ、ガス化炉内のチャー濃度を反応に適した濃度に制御することで、例えば、ガス化の際のH/CO比の制御が可能となり、液体燃料への利用が有利となる。
さらに、チャーおよびコークから得られる燃焼熱のみでは、熱バランスが成立しない場合、所定量のガス化ガスをそれぞれの燃焼炉へ供給して燃焼させることにより、熱バランスを維持することも可能である。
In the lower fuel gasifier, the char and cinnabar after gasification are sent to the char combustion furnace.
On the other hand, the porous particles having adsorbed tar in the upper tar absorption furnace are sent to the coke combustion furnace.
Each of the char combustion furnace and the coke combustion furnace is a fluidized bed, and ensures a residence time during which the char and coke can be completely combusted. In each combustion furnace, the introduced char and coke are burned together with air or oxygen introduced from the lower part of each combustion furnace, and the combustion gas is taken out from the extraction means provided in the upper part of each furnace by a cyclone. .
The combustion gas taken out from each combustion furnace is mainly used as a heat source, and can also be used as a preheating source for air or steam introduced into the gasification furnace or each combustion furnace.
On the other hand, the silica sand reheated in the char combustion furnace and the porous particles reheated in the coke combustion furnace are returned to the fuel gasification furnace and the tar absorption furnace, respectively.
Note that the char concentration is closely related to the reaction (especially shift reaction) occurring in the gasification furnace, and if the heat balance is within the range, a part of the unburned char is recirculated, By controlling the char concentration in the gasification furnace to a concentration suitable for the reaction, for example, the H 2 / CO ratio at the time of gasification can be controlled, and the use for liquid fuel is advantageous.
Furthermore, when the heat balance is not established only by the combustion heat obtained from char and coke, it is also possible to maintain the heat balance by supplying a predetermined amount of gasified gas to each combustion furnace and burning it. .

燃料ガス化炉とチャー燃焼炉、タール吸収炉とコーク燃焼炉のそれぞれを連結する連通路は、ループシール、L型バルブ、移動層など、マテリアルシールできれば、いずれの型でも良い。   The communication passages connecting the fuel gasification furnace and the char combustion furnace, the tar absorption furnace and the coke combustion furnace may be of any type as long as material sealing can be performed, such as a loop seal, an L-type valve, and a moving bed.

以上のとおり、図1に示す循環流動層ガス化反応炉においては、下段の燃料ガス化炉に導入される流動媒体及び固体燃料の流れは、燃料ガス化炉→連通路→チャー燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→燃料ガス化炉となり、一方、上段のタール吸収炉に導入される流動媒体の流れは、タール吸収炉→連通路→コーク燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→タール吸収炉となる。   As described above, in the circulating fluidized bed gasification reactor shown in FIG. 1, the flow of the fluid medium and the solid fuel introduced into the lower fuel gasification furnace is as follows: fuel gasification furnace → communication passage → char combustion furnace → cyclone (Not shown) → downcomer (not shown) → fuel gasification furnace, while the flow of the fluid medium introduced into the upper tar absorption furnace is: tar absorption furnace → communication path → coke combustion furnace → cyclone ( (Not shown) → downcomer (not shown) → tar absorption furnace.

図1に示した装置によれば、流動層ガス化炉の上下が、燃料ガス化炉とタール吸収炉の二段に分離されているので、多孔質粒子等のタール吸着効率が良好な流動媒体、例えば、多孔質アルミナを、上段のタール吸収炉にのみに供給することにより、その使用量を最小限にすることができるという利点がある。さらに、燃料ガス化炉及びチャー燃焼炉とからなる系と、タール吸収炉及びコーク燃焼炉からなる系とで、それぞれ別々に流動媒体を循環させることができるので、多孔質粒子などのタール吸着効率が良好な流動媒体と灰粒子とが混在しないようにすることができる。   According to the apparatus shown in FIG. 1, since the upper and lower sides of the fluidized bed gasification furnace are separated into two stages, a fuel gasification furnace and a tar absorption furnace, a fluid medium having good tar adsorption efficiency such as porous particles. For example, by supplying porous alumina only to the upper tar absorption furnace, there is an advantage that the amount of use can be minimized. Furthermore, since the fluidized medium can be circulated separately in a system consisting of a fuel gasification furnace and a char combustion furnace and a system consisting of a tar absorption furnace and a coke combustion furnace, the tar adsorption efficiency of porous particles and the like However, a good fluid medium and ash particles can be prevented from being mixed.

図2は、本発明の循環流動層ガス化反応炉の第2の実施の形態を模式的に示す図である。
図1に示す装置では、流動層ガス化炉を、下段及び上段に、それぞれ燃料ガス化炉及びタール吸収炉を設けた二段構造とし、生成されたガス化ガスを上段から取り出すように構成されているが、図2に示す装置では、これらのガス化炉の下段を、燃料熱分解炉として構成されている。下部より、例えば、生成した燃焼ガスの一部を循環させたCOガス、或いはNやArのような不活性ガス等を供給して燃料を熱分解させる。この点以外は、図1に示す循環流動層ガス化反応炉と同じである。
図2に示す循環流動層ガス化反応炉においては、下段の燃料熱分解炉に導入される流動媒体及び固体燃料の流れは、燃料熱分解炉→連通路→チャー燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→燃料熱分解炉となり、一方、上段のタール吸収炉に導入される流動媒体の流れは、タール吸収炉→連通路→コーク燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→タール吸収炉となる。
FIG. 2 is a diagram schematically showing a second embodiment of the circulating fluidized bed gasification reactor of the present invention.
In the apparatus shown in FIG. 1, the fluidized bed gasification furnace has a two-stage structure in which a fuel gasification furnace and a tar absorption furnace are provided in the lower stage and the upper stage, respectively, and the generated gasification gas is extracted from the upper stage. However, in the apparatus shown in FIG. 2, the lower stage of these gasification furnaces is configured as a fuel pyrolysis furnace. From the lower part, for example, CO 2 gas obtained by circulating a part of the generated combustion gas, or an inert gas such as N 2 or Ar is supplied to thermally decompose the fuel. Except this point, it is the same as the circulating fluidized bed gasification reactor shown in FIG.
In the circulating fluidized bed gasification reactor shown in FIG. 2, the flow of the fluid medium and solid fuel introduced into the lower fuel pyrolysis furnace is as follows: fuel pyrolysis furnace → communication passage → char combustion furnace → cyclone (not shown) ) → Downcomer (not shown) → Fuel pyrolysis furnace, while the flow of fluid medium introduced into the upper tar absorption furnace is: Tar absorption furnace → Communication path → Coke combustion furnace → Cyclone (not shown) → Downcomer (not shown) → Tar absorption furnace.

図1〜2は、本発明の循環流動層ガス化反応炉の概念を示す模式図であって、各炉は、完全分離型だけでなく、これらの炉の一部又は全体を一体型にすることも可能であり、例えば、内側をガス化炉、外側を燃焼炉とすることなどや、燃焼炉両炉の熱損失を低減させるために、隔壁を隔てて並設されていても良いことはいうまでもない。   FIGS. 1 and 2 are schematic views showing the concept of a circulating fluidized bed gasification reactor according to the present invention. Each furnace is not only a completely separated type, but also a part or all of these furnaces are integrated. For example, the inside may be a gasification furnace and the outside may be a combustion furnace, or in order to reduce the heat loss of both furnaces, it may be arranged in parallel with a partition wall. Needless to say.

本発明の循環流動層ガス化反応炉におけるシステムは、バイオマス、ごみ、下水汚泥などの未利用炭化水素資源の利用に適用する他に、例えば、石炭やバイオマスとのハイブリッドガス化(共ガス化)、或いは、固体燃料と液体燃料とのハイブリッドガス化にも適用することができる。   The system in the circulating fluidized bed gasification reactor of the present invention is applied to the utilization of unused hydrocarbon resources such as biomass, garbage, sewage sludge, and, for example, hybrid gasification (cogasification) with coal and biomass. Alternatively, it can also be applied to hybrid gasification of solid fuel and liquid fuel.

Claims (6)

流動層ガス化炉と流動層燃焼炉とからなり、流動媒体が導入された前記流動層ガス化炉内で原料をガス化させ、ガス化時に生成したチャー及び流動媒体を後段の前記流動層燃焼炉に導入して、未燃分を燃焼させるとともに、再加熱された流動媒体が前記流動層ガス化炉及び前記流動層燃焼炉を循環するように構成された循環流動層ガス化反応炉であって、
前記流動層ガス化炉は、下段の燃料ガス化炉及びその上段に備えられたタール吸収炉からなる二段炉構造であり、
前記流動層燃焼炉は、それぞれ独立したチャー燃焼炉及びコーク燃焼炉からなり、
前記下段の燃料ガス化炉の後段に、前記チャー燃焼炉を連結し、前記上段のタール吸収炉の後段に、前記コーク燃焼炉を連結して、
前記下段の燃料ガス化炉から取り出される未燃焼チャーを含有する流動媒体と、前記上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させるようにしたことを特徴とする循環流動層ガス化反応炉。
Consists of a fluidized bed gasification furnace and the fluidized bed combustion furnace, the fluidized medium feed was gasified is introduced the fluidized bed gasification furnace, the fluidized bed of the subsequent char and bed material generated during gasification and combustion A circulating fluidized bed gasification reactor configured to be introduced into a furnace to combust unburned components and to recirculate a reheated fluidized medium through the fluidized bed gasification furnace and the fluidized bed combustion furnace. And
The fluidized bed gasification furnace has a two-stage furnace structure consisting of a lower fuel gasification furnace and a tar absorption furnace provided in the upper stage ,
The fluidized bed combustion furnace comprises an independent char combustion furnace and a coke combustion furnace,
The char combustion furnace is connected to the rear stage of the lower fuel gasification furnace, the coke combustion furnace is connected to the rear stage of the upper tar absorption furnace,
Wherein the fluid medium containing unburned char is taken out from the lower part of the fuel gasifier and a fluidized medium tar adsorbed withdrawn from tar absorption furnace of the upper, and to circulate independently A circulating fluidized bed gasification reactor.
前記上段のタール吸収炉には、流動媒体としてタール吸着性物質を使用し、下段の燃料ガス化炉において生成したタールを該流動媒体に吸着させるようにしたことを特徴とする請求項1に記載の循環流動層ガス化反応炉。 Tar absorption furnace of the upper stage, according to claim 1, characterized in that as bed material using the tar adsorptive material was to adsorb the tar produced in the lower part of the fuel gasifier to flowable media Circulating fluidized bed gasification reactor. 前記下段の燃料ガス化炉には、流動媒体として硅砂を使用することを特徴とする請求項1又は2に記載の循環流動層ガス化反応炉。 The circulating fluidized bed gasification reactor according to claim 1 or 2 , wherein the lower fuel gasification furnace uses dredged sand as a fluidized medium. 前記燃料ガス化炉を燃料熱分解炉としたことを特徴とする請求項1〜のいずれか1項に記載の循環流動層ガス化反応炉。 The circulating fluidized bed gasification reactor according to any one of claims 1 to 3 , wherein the fuel gasification furnace is a fuel pyrolysis furnace. 前記流動層ガス化炉において生成するガス化ガス、及び前記流動層燃焼炉においてチャー及びコークの燃焼により生成する燃焼ガスを、それぞれ独立して取り出す手段を備えたことを特徴とする請求項1〜のいずれか1項に記載の循環流動層ガス化反応炉。 The gasification gas produced | generated in the said fluidized bed gasification furnace and the combustion gas produced | generated by combustion of char and coke in the said fluidized bed combustion furnace were provided, respectively, The means which takes out each independently is provided. 5. The circulating fluidized bed gasification reactor according to any one of 4 above. 前記燃料ガス化炉又は前記燃料熱分解炉が、アルカリ吸収機能を有することを特徴とする請求項1〜のいずれか1項に記載の循環流動層ガス化反応炉。 The circulating fluidized bed gasification reactor according to any one of claims 1 to 5 , wherein the fuel gasification furnace or the fuel pyrolysis furnace has an alkali absorption function.
JP2009183958A 2009-08-07 2009-08-07 Circulating fluidized bed gasification reactor Expired - Fee Related JP5483060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183958A JP5483060B2 (en) 2009-08-07 2009-08-07 Circulating fluidized bed gasification reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183958A JP5483060B2 (en) 2009-08-07 2009-08-07 Circulating fluidized bed gasification reactor

Publications (2)

Publication Number Publication Date
JP2011037933A JP2011037933A (en) 2011-02-24
JP5483060B2 true JP5483060B2 (en) 2014-05-07

Family

ID=43766032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183958A Expired - Fee Related JP5483060B2 (en) 2009-08-07 2009-08-07 Circulating fluidized bed gasification reactor

Country Status (1)

Country Link
JP (1) JP5483060B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772136B2 (en) * 2011-03-28 2015-09-02 株式会社Ihi Tar removal device
CN113372956A (en) * 2021-06-09 2021-09-10 东南大学 Utilize integrative accuse dirty system of domestic waste gasification of U type reactor
CN114940917B (en) * 2022-05-23 2024-02-23 东南大学 Oil gas outlet anti-coking device and method for self-circulation regeneration of adsorption medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609955U (en) * 1983-06-24 1985-01-23 バブコツク日立株式会社 gasifier
JP4479906B2 (en) * 2005-02-03 2010-06-09 株式会社Ihi Fluidized bed gasification gas purification method and purification apparatus
JP4314488B2 (en) * 2005-07-05 2009-08-19 株式会社Ihi Gasification method for solid fuel and gasification apparatus using the method
JP5004093B2 (en) * 2007-08-23 2012-08-22 独立行政法人産業技術総合研究所 Gasification reactor for generating combustible gas
JP5532207B2 (en) * 2009-02-20 2014-06-25 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification reactor
JP5483058B2 (en) * 2009-07-28 2014-05-07 独立行政法人産業技術総合研究所 Circulating fluidized bed gasifier structure

Also Published As

Publication number Publication date
JP2011037933A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5532207B2 (en) Circulating fluidized bed gasification reactor
JP5483058B2 (en) Circulating fluidized bed gasifier structure
JP4314488B2 (en) Gasification method for solid fuel and gasification apparatus using the method
JP4479906B2 (en) Fluidized bed gasification gas purification method and purification apparatus
JP5114412B2 (en) Separation type fluidized bed gasification method and gasification apparatus for solid fuel
EP3026098B1 (en) Method for preparing hydrogen-rich gas by gasification of solid organic substance and steam
US20040244289A1 (en) Process for reforming inflammable gas, apparatus for reforming inflammable gas and gasification apparatus
JP5057466B2 (en) Method for generating combustible gas and gasification reactor therefor
JP2003238973A (en) Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
JP2003176486A (en) Integrated circulating fluidized bed gasifying furnace
JP2011026489A (en) Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace
JP4589311B2 (en) Gasification method and apparatus
JP5483060B2 (en) Circulating fluidized bed gasification reactor
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
JP2011105890A (en) Circulating fluidized bed gasification reactor
JP5403574B2 (en) Gasification system using activated carbon extracted from a tar absorption tower.
JP5004093B2 (en) Gasification reactor for generating combustible gas
JP2011105892A (en) Circulating fluidized bed gasification reactor enabling to effectively use tar adsorptive substance
JP5344447B2 (en) Gasification system that reuses alkali evaporated in gasification furnace
JP4930688B2 (en) Freeboard high temperature method and applied equipment for fluidized bed gasifier
JP6160997B2 (en) Circulating fluidized bed gasifier
JP6259991B2 (en) Circulating fluidized bed gasifier
JP2011105891A (en) Circulating fluidized bed gasification reactor enabling to control circulating amount
JP6187968B2 (en) Circulating fluidized bed gasifier
WO2023199367A1 (en) System for the neutral/negative co2 production of syngas from solid fuels with high hydrogen content for uses at high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5483060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees