JP2003176486A - Integrated circulating fluidized bed gasifying furnace - Google Patents

Integrated circulating fluidized bed gasifying furnace

Info

Publication number
JP2003176486A
JP2003176486A JP2001376520A JP2001376520A JP2003176486A JP 2003176486 A JP2003176486 A JP 2003176486A JP 2001376520 A JP2001376520 A JP 2001376520A JP 2001376520 A JP2001376520 A JP 2001376520A JP 2003176486 A JP2003176486 A JP 2003176486A
Authority
JP
Japan
Prior art keywords
fluidized bed
gasification
chamber
gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001376520A
Other languages
Japanese (ja)
Inventor
Yuki Iwadate
由貴 岩楯
Seiichiro Toyoda
誠一郎 豊田
Fumitoshi Nishiura
文敏 西浦
Takahiro Oshita
孝裕 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001376520A priority Critical patent/JP2003176486A/en
Publication of JP2003176486A publication Critical patent/JP2003176486A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact integrated circulating fluidized bed gasifying furnace capable of stably affording a combustible gas having excellent properties without requiring special mechanical handling of a fluid medium between a gasifying chamber and a char combustion chamber, forming a circulating fluidized bed type and thereby reducing the hearth area. <P>SOLUTION: This integrated circulating fluidized bed gasifying furnace is equipped with a gasifying chamber 1 having a concentrated fluidized bed or a high-speed fluidized bed in the lower part and the high-speed fluidized bed in the upper part and capable of converting a raw material (a) into a thermal decomposition gas, a collector 2 provided in the latter stage of the gasifying chamber 1 for collecting scattered particles (e), returning the collected particles (e) into the gasifying chamber 1 and discharging a combustible gas (c) separated from the scattered particles (e) to a process in the latter stage, and a combustion chamber 3 burning at least a part of combustibles such as char in the collected scattered particles (e) and discharging a combustion gas (d). Thereby, the combustion chamber 3 is composed so as to return the scattered particles (e) from the combustion chamber 3 to the gasifying chamber 1. The combustible gas (c) discharged from the collector 2 and the combustion gas (d) discharged from the combustion chamber 3 can individually be recovered without mixing the combustible gas (c) with the combustion gas (d). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、統合型循環流動床
ガス化炉に係り、特にRDFや廃プラスチックなどの各
種廃棄物、石炭やバイオマスなどの各種燃料を原料とし
たガス化炉およびそれを用いたガス化システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circulating fluidized bed gasifier, and more particularly to a gasifier using various wastes such as RDF and waste plastics and various fuels such as coal and biomass, and the same. Regarding the gasification system used.

【0002】[0002]

【従来の技術】外部循環型流動床ガス化炉は、生成した
チャーやタール等を燃焼するために流動媒体とともにこ
れらを系外へ排出し、かつ燃焼後の媒体粒子を系内に戻
すための機械的な設備が必要である。特に固定炭素分の
多い原料をガス化する場合には、ガス化と燃焼を行う別
々の2つの塔を媒体粒子と生成物を循環させる2塔循環
方式がある。2塔循環式ガス化炉は、図7に示すよう
に、ガス化炉101とチャー燃焼炉102の2炉(塔)
から構成され、ガス化炉101とチャー燃焼炉102の
間で流動媒体やチャーを循環し、ガス化に必要な熱量
を、チャー燃焼炉102におけるチャーの燃焼熱によっ
て加熱された流動媒体の顕熱でガス化炉101に供給し
ようとするものである。ガス化炉で発生した生成ガスを
燃焼させる必要がないことから、生成ガスの発熱量を高
く維持できるという特徴がある。この方式では、ガス化
炉、チャー燃焼炉間の十分な粒子循環量の確保、粒子循
環量制御、安定運転といった高温粒子の取り扱い面の課
題と、チャー燃焼炉の温度制御が他の操作と独立してで
きないという運用面の課題から、大規模な実機建設には
至らなかった。
2. Description of the Related Art An external circulation type fluidized bed gasification furnace is used for discharging chars and tars produced together with a fluidized medium to the outside of the system and for returning the medium particles after the combustion to the inside of the system. Mechanical equipment is required. In particular, in the case of gasifying a raw material having a large fixed carbon content, there is a two-column circulation system in which medium particles and products are circulated through two separate columns for gasification and combustion. As shown in FIG. 7, the two-tower circulation type gasification furnace has two furnaces (tower) of a gasification furnace 101 and a char combustion furnace 102.
And the sensible heat of the fluid medium heated by the combustion heat of the char in the char combustion furnace 102 to circulate the fluid medium and the char between the gasification furnace 101 and the char combustion furnace 102 to heat the amount of heat required for gasification. Therefore, the gasification furnace 101 is to be supplied. Since it is not necessary to burn the generated gas generated in the gasification furnace, there is a feature that the calorific value of the generated gas can be maintained high. With this method, the issues of handling high-temperature particles such as securing a sufficient particle circulation amount between the gasification furnace and the char combustion furnace, controlling the particle circulation amount, and stable operation, and the temperature control of the char combustion furnace are independent from other operations. Due to the operational problem of being unable to do so, it was not possible to construct a large-scale real machine.

【0003】これに対して近年、図8に示すように、チ
ャー燃焼炉110の燃焼ガスを高温集塵器114を介し
て全量ガス化炉112に導き、粒子の循環による顕熱供
給だけでは不足しがちなガス化用熱量を補おうとするシ
ステムが提案されている。このシステムにおいては、廃
棄物等の燃料はガス化炉112に投入されガス化され、
燃料中の不燃物はガス化炉112から排出される。ガス
化炉112で生成された生成ガスは、ガスクーラ113
および高温集塵器114を通過した後に次工程へ供給さ
れる。一方、高温集塵器114において生成ガスから分
離されたチャーは、前述したチャー燃焼炉110に供給
され、空気または酸素または水蒸気等の燃焼用ガスの存
在のもとで燃焼され、前述したチャー燃焼ガスが生成さ
れる。
On the other hand, in recent years, as shown in FIG. 8, the total amount of the combustion gas of the char combustion furnace 110 is introduced into the gasification furnace 112 through the high temperature dust collector 114, and it is insufficient to supply sensible heat by circulating particles. A system has been proposed that attempts to supplement the heat of gasification that tends to occur. In this system, fuel such as waste is put into the gasification furnace 112 and gasified,
Incombustible substances in the fuel are discharged from the gasification furnace 112. The generated gas generated in the gasification furnace 112 is the gas cooler 113.
After passing through the high temperature dust collector 114, it is supplied to the next step. On the other hand, the char separated from the produced gas in the high-temperature dust collector 114 is supplied to the char combustion furnace 110 described above, and is burned in the presence of a combustion gas such as air, oxygen, or steam, and the char combustion described above is performed. Gas is produced.

【0004】しかしながら、上述したシステムにおいて
は、チャー燃焼炉から排出される燃焼ガスを全量ガス化
炉に導くために、発熱量の高い生成ガスが得られない。
すなわち、チャー燃焼ガスの量がガス化炉でのガス化あ
るいは流動化に必要な量以上になると、生成ガスが余計
なチャー燃焼ガスによって希釈されるので、その発熱量
が低下する。また、このシステムにおいては、チャー燃
焼炉の温度制御は、層高を変化させて、層内の伝熱面積
を変化させる方式であり、低負荷時には層上に露出した
伝熱管によって燃焼ガスが冷却されるため、ガス化炉の
温度や流動化速度等が変わるので、ガス化反応速度にも
影響を与え、システムの安定操業が難しくなるという問
題がある。
However, in the above-mentioned system, since the total amount of the combustion gas discharged from the char combustion furnace is guided to the gasification furnace, a product gas having a high calorific value cannot be obtained.
That is, when the amount of the char combustion gas exceeds the amount required for gasification or fluidization in the gasification furnace, the generated gas is diluted with the extra char combustion gas, so that the calorific value thereof decreases. Moreover, in this system, the temperature control of the char combustion furnace is a method that changes the bed height to change the heat transfer area in the bed, and when the load is low, the combustion gas is cooled by the heat transfer tubes exposed on the bed. As a result, the temperature of the gasification furnace, the fluidization rate, etc. change, which also affects the gasification reaction rate, making it difficult to operate the system stably.

【0005】また、ごみ燃焼発電システムの分野では、
ごみを熱分解して塩素成分を揮発分とともに揮散させ、
塩素含有量が大幅に減少した残りのチャーの燃焼熱で蒸
気過熱を行って高効率発電を行なおうという提案がなさ
れている。しかしながら、通常、一般ごみの熱分解では
ほとんどチャーが発生しないので蒸気過熱に必要なチャ
ー燃焼熱が得られない可能性が高い。また、熱媒体とし
ての流動媒体とチャーは、ガス化炉側からチャー燃焼炉
側に流入する必要があるが、従来の方法ではコンベヤ等
を用いて機械的に搬送するほかなく、高温粒子のハンド
リングの困難さ、顕熱ロスが多いといった課題を抱えて
いる。
In the field of refuse combustion power generation system,
Pyrolysis of garbage and volatilization of chlorine components along with volatile components,
A proposal has been made to perform high-efficiency power generation by superheating steam with the combustion heat of the remaining char with a significantly reduced chlorine content. However, in general, almost no char is generated in the thermal decomposition of general waste, so there is a high possibility that the char combustion heat required for steam superheating cannot be obtained. Further, the fluidizing medium as a heat medium and the char have to flow from the gasification furnace side to the char combustion furnace side, but in the conventional method, there is no choice but to mechanically convey it by using a conveyor etc., and handling of high temperature particles. Is difficult and there are many problems with sensible heat loss.

【0006】これらの課題に鑑み、本発明者らは一つの
流動層の内部にガス化室、チャー燃焼室、熱回収室の3
つをそれぞれ隔壁を介して設けた統合型ガス化炉を考案
している。この統合型ガス化炉は、前述の2塔循環方式
の課題を克服すべく考案したものであり、チャー燃焼室
とガス化室の間に大量の流動媒体循環を可能にしている
ので、流動媒体の顕熱だけでガス化のための熱量を十分
に供給でき、「できるだけ少量の且つ発熱量の高い生成
ガスを得る」ことが最も容易に実現できる可能性のある
技術である。しかしながら、この技術は、気泡流動層型
であるため、炉床面積が大きくなるという問題がある。
In view of these problems, the inventors of the present invention have three gasification chambers, a char combustion chamber and a heat recovery chamber inside one fluidized bed.
We are devising an integrated gasification furnace in which each of them is provided via a partition wall. This integrated gasification furnace was devised to overcome the above-mentioned problems of the two-column circulation system, and enables a large amount of fluidized medium circulation between the char combustion chamber and the gasification chamber. It is a technology that has the possibility of being able to supply a sufficient amount of heat for gasification only with the sensible heat of, and to "obtain a generated gas with the smallest possible amount and high calorific value". However, this technique has a problem that the hearth area becomes large because it is a bubbling fluidized bed type.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたものであり、ガス化室とチャー燃焼室の
間に特別な機械的な流動媒体のハンドリングを必要とせ
ず、性状の優れた可燃ガスを安定して得ることができ、
かつ循環流動床型とすることで炉床面積の小さいコンパ
クトな統合型循環流動床ガス化炉を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and does not require any special mechanical handling of a fluidized medium between the gasification chamber and the char combustion chamber. It is possible to stably obtain excellent combustible gas,
Moreover, it is an object of the present invention to provide a compact integrated circulating fluidized bed gasification furnace having a small furnace floor area by adopting the circulating fluidized bed type.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の統合型循環流動床ガス化炉は、濃厚流動層
または高速流動層を下部に有し、かつ高速流動層を上部
に有し、原料を熱分解ガス化するガス化室と、該ガス化
室の後段に設けられ飛散粒子を捕集して該ガス化室に戻
し、該飛散粒子と分離した可燃ガスを後段プロセスに排
出するための捕集装置と、捕集された該飛散粒子中のチ
ャー等の可燃分の少なくとも一部を燃焼し、燃焼ガスを
排出する燃焼室とを備え、該燃焼室から該ガス化室に該
飛散粒子を戻すように構成し、該捕集装置から排出され
た可燃ガスと該燃焼室から排出された該燃焼ガスとを混
合することなく個別に回収可能としたことを特徴とする
ものである。
In order to achieve the above object, the integrated circulating fluidized bed gasification furnace of the present invention has a concentrated fluidized bed or a high speed fluidized bed in the lower part and a high speed fluidized bed in the upper part. Having a gasification chamber for pyrolyzing and gasifying the raw material, and collecting the scattered particles in the latter stage of the gasification chamber and returning them to the gasification chamber, the combustible gas separated from the scattered particles is subjected to the subsequent process. The gasification chamber includes a trapping device for discharging and a combustion chamber that burns at least a part of combustible components such as char in the collected scattered particles and discharges combustion gas. The combustible gas discharged from the trap and the combustion gas discharged from the combustion chamber can be individually recovered without being mixed with each other. Is.

【0009】本発明の統合型循環流動床ガス化炉は、ガ
ス化室、捕集装置、燃焼室を併せ持ち、ガス化室では、
原料の熱分解ガス化、および生成ガスの分解・改質を行
い、捕集装置では飛散粒子の捕集と可燃ガスの分離回収
を行い、燃焼室では飛散粒子中のチャー等の可燃分の燃
焼を行う。燃焼室から排出された燃焼ガスは廃熱回収部
等の後段の機器で減温されて系外に排出される。
The integrated circulating fluidized bed gasification furnace of the present invention has a gasification chamber, a collector, and a combustion chamber, and in the gasification chamber,
The raw material is pyrolyzed and gasified, and the produced gas is decomposed and reformed.The collection device collects the scattered particles and separates and recovers the combustible gas.The combustion chamber burns combustibles such as char in the scattered particles. I do. The combustion gas discharged from the combustion chamber is cooled by a device in the latter stage such as a waste heat recovery unit and discharged to the outside of the system.

【0010】本発明の1態様では、前記ガス化室の下部
では濃厚流動層または高速流動層にて原料を熱分解ガス
化して生成ガスとチャーを形成し、ついで該ガス化室の
上部では高速流動層にてガスを分解・改質するようにし
たことを特徴とする。本発明の1態様では、前記ガス化
室の下部が濃厚流動層である場合、該ガス化室の上部を
高速流動層とするために濃厚流動層上部から蒸気または
窒素などのガスを流動化ガスとして供給することを特徴
とする。
In one embodiment of the present invention, the raw material is pyrolyzed and gasified in a concentrated fluidized bed or a high-speed fluidized bed in the lower part of the gasification chamber to form a product gas and char, and then in the upper part of the gasification chamber, a high-speed gas is formed. It is characterized in that the gas is decomposed and reformed in the fluidized bed. In one aspect of the present invention, when the lower part of the gasification chamber is a rich fluidized bed, a gas such as steam or nitrogen is fluidized from the upper part of the rich fluidized bed so that the upper part of the gasification chamber is a high-speed fluidized bed. It is characterized by supplying as.

【0011】本発明の1態様では、原料の熱分解ガス化
により生成したガスを分解・改質するために必要な高温
域を前記ガス化室の上部の高速流動層に形成するため
に、該ガス化室に酸素を含むガスを流動化ガスとして供
給することを特徴とする。すなわち、熱分解ガス化によ
り生成したガスを分解・改質することを目的として、高
速流動層を高温化するために酸素を含むガスを流動化ガ
スとしてガス化室に供給し、生成したガスの一部を燃焼
させる。酸素を含むガスは、ガス化室の下部および上部
のいずれか一方もしくは双方に供給する。
In one aspect of the present invention, in order to form a high temperature region necessary for decomposing and reforming the gas generated by the pyrolysis gasification of the raw material in the high-speed fluidized bed above the gasification chamber, It is characterized in that a gas containing oxygen is supplied to the gasification chamber as a fluidizing gas. That is, for the purpose of decomposing and reforming the gas generated by pyrolysis gasification, a gas containing oxygen is supplied as a fluidizing gas to the gasification chamber in order to raise the temperature of the high-speed fluidized bed, and the generated gas is Burn some. The gas containing oxygen is supplied to either or both of the lower part and the upper part of the gasification chamber.

【0012】本発明の1態様では、前記燃焼室は捕集さ
れた飛散粒子によって形成される流動層を有し、該燃焼
室に該飛散粒子中に含まれるチャー等の可燃分を燃焼さ
せるために酸素を含むガスを供給し、該可燃分の燃焼に
よって高温化した該飛散粒子を前記ガス化室に戻すこと
によって、該ガス化室における熱分解ガス化に必要な熱
を供給するようにしたことを特徴とする。すなわち、捕
集装置で分離された飛散粒子の少なくとも一部は燃焼室
に流入し燃焼室で流動層を形成し、含有されるチャーな
どの可燃分は流動層中で燃焼される。この可燃分の燃焼
熱によって飛散粒子は高温化して、ガス化室に戻され、
原料を熱分解ガス化する熱源となる。
In one aspect of the present invention, the combustion chamber has a fluidized bed formed by the collected scattered particles, for burning combustible components such as char contained in the scattered particles in the combustion chamber. Was supplied with a gas containing oxygen, and by returning the scattered particles, which had been heated to a high temperature by burning the combustibles, to the gasification chamber, the heat necessary for the pyrolysis gasification in the gasification chamber was supplied. It is characterized by That is, at least a part of the scattered particles separated by the collector flows into the combustion chamber to form a fluidized bed in the combustion chamber, and combustible components such as char contained are burned in the fluidized bed. By the heat of combustion of this combustible component, the temperature of the scattered particles rises and is returned to the gasification chamber,
It becomes a heat source for pyrolyzing and gasifying the raw material.

【0013】本発明の1態様では、前記燃焼室は隔壁に
よって仕切られた複数の室からなる内部循環型流動層を
有し、該燃焼室は主燃焼室と伝熱管を有する熱回収室と
からなり、該熱回収室に供給する酸素を含むガスの流量
を変化させることで該熱回収室における回収熱量を制御
し、流動層の層温を調節するようにしたことを特徴とす
る。すなわち、燃焼室は隔壁によって仕切られた複数の
室からなる内部循環流動層である。燃焼室は主燃焼室と
熱回収室とからなり、熱回収室には層内伝熱管が設置さ
れている。捕集装置で回収された飛散粒子は、粒子供給
口から燃焼室に流入し、チャー等の可燃分が酸素を含む
ガスによって燃焼され、燃焼排ガスはガス出口より排出
される。主燃焼室での燃焼により高温化した飛散粒子の
一部は隔壁を飛び越えて熱回収室に流入し、層内伝熱管
により熱回収される。熱回収室下部には主燃焼室との間
に開口部があり、熱回収された飛散粒子は主燃焼室に移
動する。一方、主燃焼室で高温化した飛散粒子の一部は
粒子排出口からガス化室に送られる。熱回収室下部から
供給する酸素を含むガスの流量を変えることで、飛散粒
子の移動量を調節し、熱回収量を変化させることで層温
を制御する。
In one aspect of the present invention, the combustion chamber has an internal circulation type fluidized bed composed of a plurality of chambers partitioned by partition walls, and the combustion chamber comprises a main combustion chamber and a heat recovery chamber having a heat transfer tube. Therefore, the amount of heat recovered in the heat recovery chamber is controlled by changing the flow rate of the gas containing oxygen supplied to the heat recovery chamber, and the bed temperature of the fluidized bed is adjusted. That is, the combustion chamber is an internal circulating fluidized bed composed of a plurality of chambers partitioned by partition walls. The combustion chamber is composed of a main combustion chamber and a heat recovery chamber, and an in-layer heat transfer tube is installed in the heat recovery chamber. The scattered particles collected by the collector flow into the combustion chamber from the particle supply port, combustible components such as char are burned by the gas containing oxygen, and the combustion exhaust gas is discharged from the gas outlet. Some of the scattered particles that have become hot due to the combustion in the main combustion chamber jump over the partition walls and flow into the heat recovery chamber where they are recovered by the in-layer heat transfer tubes. There is an opening between the lower part of the heat recovery chamber and the main combustion chamber, and the scattered particles of which heat is recovered move to the main combustion chamber. On the other hand, a part of the scattered particles that have become hot in the main combustion chamber are sent to the gasification chamber from the particle outlet. The bed temperature is controlled by changing the flow rate of the gas containing oxygen supplied from the lower part of the heat recovery chamber to adjust the moving amount of the scattered particles and changing the heat recovery amount.

【0014】本発明の1態様では、前記熱回収室内を酸
化雰囲気とすることを特徴とする。すなわち、熱回収室
下部から供給するガスに含まれる酸素の量を飛散粒子中
の可燃分の理論燃焼酸素量よりも多くすることで、熱回
収室内を酸化雰囲気にすることで層内伝熱管の塩素等に
よる腐食を低減することができる。
One aspect of the present invention is characterized in that the heat recovery chamber has an oxidizing atmosphere. That is, by increasing the amount of oxygen contained in the gas supplied from the lower part of the heat recovery chamber to be larger than the theoretical combustion oxygen amount of combustible components in the scattered particles, an oxidizing atmosphere is created in the heat recovery chamber so that the internal heat transfer tube Corrosion due to chlorine etc. can be reduced.

【0015】本発明の1態様では、前記ガス化室で原料
の熱分解・ガス化によって生成したガスを分解・改質す
るために、前記濃厚流動層または高速流動層を形成する
媒体粒子の少なくとも一部を触媒粒子としたことを特徴
とする。
In one aspect of the present invention, in order to decompose and reform the gas produced by the thermal decomposition and gasification of the raw material in the gasification chamber, at least the medium particles forming the rich fluidized bed or the fast fluidized bed. It is characterized in that a part thereof is used as catalyst particles.

【0016】本発明の1態様では、前記燃焼室にて、前
記触媒粒子の触媒表面に析出する炭素等を除去し再生す
ることを特徴とする。すなわち、媒体粒子の少なくとも
一部を触媒粒子とする場合、ガス化室内の高速流動層部
で原料の熱分解ガス化により生成したガスを分解・改質
し、この過程で触媒粒子表面に析出した炭素等は燃焼室
にて燃焼除去され触媒粒子は再生される。
One aspect of the present invention is characterized in that carbon and the like deposited on the catalyst surface of the catalyst particles are removed and regenerated in the combustion chamber. That is, when at least a part of the medium particles are used as the catalyst particles, the gas generated by the pyrolysis gasification of the raw material is decomposed and reformed in the high-speed fluidized bed portion in the gasification chamber, and in this process, it is deposited on the surface of the catalyst particles. Carbon and the like are burned and removed in the combustion chamber, and the catalyst particles are regenerated.

【0017】本発明の1態様では、前記可燃ガス中に含
まれる塩素化合物や硫黄化合物等の不純物を除去し、該
生成ガスを精製するために、前記濃厚流動層または高速
流動層を形成する媒体粒子の少なくとも一部をカルシウ
ム化合物等の吸収触媒粒子としたことを特徴とする。す
なわち、生成ガス中に含まれる塩素化合物や硫黄化合物
等を吸収除去し、生成ガスを精製するためにカルシウム
化合物などの吸収触媒を媒体粒子の少なくとも一部とす
ることで排出される可燃ガス中の有害成分濃度を低減す
ることができる。
In one aspect of the present invention, in order to remove impurities such as chlorine compounds and sulfur compounds contained in the combustible gas and to purify the produced gas, a medium for forming the concentrated fluidized bed or the fast fluidized bed. It is characterized in that at least a part of the particles are absorption catalyst particles such as a calcium compound. That is, by absorbing and removing chlorine compounds, sulfur compounds and the like contained in the produced gas, by using an absorption catalyst such as a calcium compound as at least a part of the medium particles in order to purify the produced gas, The harmful component concentration can be reduced.

【0018】本発明の1態様では、前記ガス化室で原料
を熱分解ガス化し、ついで得られたガスを分解・改質
し、前記捕集装置にて飛散粒子と分離して回収された可
燃ガスをさらに二次改質するために該捕集装置の後段に
クラッキング装置を設け、該クラッキング装置に導かれ
た可燃ガスを二次改質することを特徴とする。すなわ
ち、ガス化室で原料を熱分解ガス化し、ついで得られた
ガスを分解・改質し、捕集装置にて飛散粒子と分離して
回収された可燃ガスをさらに二次改質するために該捕集
装置の後段にクラッキング装置を設け、該クラッキング
装置に導かれた可燃ガスを二次改質することができる。
In one embodiment of the present invention, the raw material is pyrolyzed and gasified in the gasification chamber, the gas obtained is decomposed and reformed, and the flammable particles recovered by separating from the scattered particles by the trapping device. In order to further reform the gas further, a cracking device is provided in the latter stage of the trapping device, and the combustible gas introduced into the cracking device is secondarily reformed. In other words, in order to pyrolyze the raw material in the gasification chamber, decompose and reform the obtained gas, separate the combustible gas separated from the scattered particles by the trapping device, and further reform it. A cracking device can be provided in the latter stage of the trapping device to secondarily reform the combustible gas introduced to the cracking device.

【0019】本発明の1態様では、前記燃焼室に補助燃
料を供給することを特徴とする。すなわち、燃焼室に
は、必要に応じ、補助燃料を供給してもよく、飛散粒子
中に含まれるチャー等の可燃分に加えて補助燃料を燃焼
して燃焼排ガスを排出し、高温化した該飛散粒子をガス
化室に戻すことによって、該ガス化室における熱分解ガ
ス化に必要な熱を供給することもできる。
In one aspect of the present invention, auxiliary fuel is supplied to the combustion chamber. That is, if necessary, auxiliary fuel may be supplied to the combustion chamber, and in addition to combustible components such as char contained in the scattered particles, the auxiliary fuel is burned to discharge combustion exhaust gas, and the temperature is raised. By returning the scattered particles to the gasification chamber, it is possible to supply the heat necessary for the pyrolysis gasification in the gasification chamber.

【0020】本発明の統合型ガス化方法は、濃厚流動層
または高速流動層を下部に形成し、高速流動層を上部に
形成した循環型流動床ガス化炉を用いて原料を熱分解ガ
ス化するガス化工程と、該ガス化工程の後段で飛散粒子
を捕集するための捕集工程と、捕集された該飛散粒子中
のチャー等の可燃分の少なくとも一部を燃焼し、燃焼排
ガスを排出し、該飛散粒子をガス化工程に戻すことので
きる燃焼工程とを備え、該ガス化工程において生成し該
捕集工程にて分離された可燃ガスと該燃焼工程における
燃焼排ガスを混合することなく個別に取出すことができ
るようにしたことを特徴とするものである。本発明の1
態様では、前記ガス化工程で原料の熱分解・ガス化によ
って生成したガスを分解・改質するために、媒体粒子の
少なくとも一部を触媒粒子とし、前記燃焼工程にて該触
媒粒子の触媒表面に析出する炭素等を除去し再生するこ
とを特徴とする。
In the integrated gasification method of the present invention, a raw material is pyrolyzed and gasified using a circulating fluidized bed gasification furnace in which a concentrated fluidized bed or a high-speed fluidized bed is formed in the lower portion and a high-speed fluidized bed is formed in the upper portion. A gasification step to collect, a collection step for collecting the scattered particles in the latter stage of the gasification step, and burning at least a part of combustible components such as char in the collected scattered particles to produce a combustion exhaust gas. And a combustion process capable of returning the scattered particles to the gasification process, and mixing the combustible gas generated in the gasification process and separated in the collection process with the combustion exhaust gas in the combustion process. It is characterized in that it can be taken out individually without any need. 1 of the present invention
In the aspect, in order to decompose / reform the gas generated by the thermal decomposition / gasification of the raw material in the gasification step, at least a part of the medium particles are used as catalyst particles, and the catalyst surface of the catalyst particles is used in the combustion step. It is characterized in that the carbon and the like deposited on the surface are removed and regenerated.

【0021】本発明のガス化システムは、前述した構成
の統合型循環流動床ガス化炉と、該統合型循環流動床ガ
ス化炉の捕集装置から排出された可燃ガスを動力回収又
は発電又は化学合成等に利用し、該統合型循環流動床ガ
ス化炉の燃焼室から排出された燃焼排ガスから廃熱回収
を行うことを特徴とするものである。
The gasification system of the present invention comprises an integrated circulating fluidized bed gasification furnace having the above-mentioned structure, and a combustible gas discharged from the trap of the integrated circulating fluidized bed gasification furnace for power recovery or power generation or It is characterized in that it is used for chemical synthesis and the like, and waste heat is recovered from the combustion exhaust gas discharged from the combustion chamber of the integrated circulating fluidized bed gasification furnace.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面を参照しながら説明する。図1は、統合型循
環流動床ガス化炉の基本的な構成を示したものである。
統合型循環流動床ガス化炉は、ガス化室1、捕集装置
2、燃焼室3を併せ持つことにより構成されている。ガ
ス化室1には原料aが供給され、ガス化室1において原
料aの熱分解ガス化、および生成ガスの分解・改質が行
われる。ガス化室1内で生成されたチャーや生成ガスは
流動媒体とともに捕集装置2に流入する。捕集装置2で
は飛散粒子eの捕集と可燃ガスcの分離回収を行い、燃
焼室3では飛散粒子中のチャー等の可燃分の燃焼を行
う。ガス化室1の下部には濃厚流動層または高速流動層
が形成されている。そして、ガス化炉1の下部が濃厚流
動層である場合には、濃厚流動層上部から蒸気または窒
素などのガスを流動化ガスb2として供給することによ
ってガス化室上部を高速流動層とする。ガス化室1で
は、熱分解ガス化により生成したガスを分解・改質する
ことを目的として、高速流動層を高温化するために酸素
を含むガスを流動化ガスb1、b2として供給してもよ
く、生成したガスの一部を燃焼させてもよい。酸素を含
むガスは、b1とb2のいずれか一方もしくは双方に供
給する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the basic configuration of an integrated circulating fluidized bed gasification furnace.
The integrated circulating fluidized bed gasification furnace has a gasification chamber 1, a collection device 2, and a combustion chamber 3 together. The raw material a is supplied to the gasification chamber 1, and the pyrolysis gasification of the raw material a and the decomposition / reformation of the produced gas are performed in the gasification chamber 1. The char and generated gas generated in the gasification chamber 1 flow into the collector 2 together with the fluidized medium. The collection device 2 collects scattered particles e and separates and recovers the combustible gas c, and the combustion chamber 3 burns combustible components such as char in the scattered particles. In the lower part of the gasification chamber 1, a rich fluidized bed or a high speed fluidized bed is formed. When the lower part of the gasification furnace 1 is a rich fluidized bed, a gas such as steam or nitrogen is supplied as the fluidizing gas b2 from the upper part of the rich fluidized bed to make the upper part of the gasification chamber a fast fluidized bed. In the gasification chamber 1, for the purpose of decomposing and reforming the gas generated by the pyrolysis gasification, a gas containing oxygen may be supplied as the fluidizing gas b1 or b2 to raise the temperature of the fast fluidized bed. Of course, a part of the generated gas may be burned. The gas containing oxygen is supplied to either one or both of b1 and b2.

【0023】図2は、図1に示す統合型循環流動床ガス
化炉におけるガス化室の構成の一例を示す模式図であ
る。図2に示すように、ガス化室1の下部が濃厚流動層
の場合には、炉底から供給する流動化ガスb1を、周辺
部風箱71から供給する空塔速度が中央部風箱70から
供給する空塔速度の1.5倍以上となるようにすること
により、濃厚流動層内に中央部では流動化しつつ下降
し、周辺部では流動化しつつ上昇する流動媒体の旋回流
72が形成されるようにしてもよい。この旋回流により
原料を層内に均一に分散させることが可能であるから、
層内の温度は均一となる。またガス化室1の濃厚流動層
上部には流動化ガスb2が供給される。原料中の不燃物
fはガス化室1の炉底部に設けた不燃物排出口69から
系外に排出される。
FIG. 2 is a schematic diagram showing an example of the structure of the gasification chamber in the integrated circulating fluidized bed gasification furnace shown in FIG. As shown in FIG. 2, when the lower part of the gasification chamber 1 is a dense fluidized bed, the superficial velocity of the fluidized gas b1 supplied from the furnace bottom from the peripheral air box 71 is the central air box 70. By making the superficial velocity to be 1.5 times or more higher than the superficial velocity supplied from the inside, a swirling flow 72 of the fluid medium is formed in the rich fluidized bed, which fluidizes and descends in the central portion and rises in the peripheral portion while fluidizing. It may be done. By this swirling flow, it is possible to uniformly disperse the raw material in the layer,
The temperature in the layer is uniform. The fluidized gas b2 is supplied to the upper portion of the rich fluidized bed of the gasification chamber 1. The incombustible material f in the raw material is discharged out of the system through an incombustible material discharge port 69 provided in the furnace bottom of the gasification chamber 1.

【0024】また、炉底から供給する流動化ガスb1
を、中央部風箱70から供給する空塔速度が周辺部風箱
71から供給する空塔速度の1.5倍以上となるように
することにより濃厚流動層内に中央部では流動化しつつ
上昇し、周辺部では流動化しつつ下降する流動媒体の旋
回流を形成されるようにしてもよく、この旋回流により
原料中の不燃物fはガス化室1の炉底部中央に設けた不
燃物排出口から系外に排出される。これにより、不燃物
排出口を一つにすることができ、装置の簡易化を図るこ
とができる。
The fluidizing gas b1 supplied from the furnace bottom
By making the superficial velocity supplied from the central air box 70 to be 1.5 times or more the superficial velocity supplied from the peripheral air box 71, the fluidized ascending in the central part in the dense fluidized bed. However, a swirling flow of the fluidized medium that fluidizes and descends may be formed in the peripheral portion, and the incombustible substance f in the raw material is discharged by the swirling flow, which is provided in the center of the furnace bottom of the gasification chamber 1. It is discharged from the outlet to the outside of the system. As a result, the number of incombustible material discharge ports can be reduced to one, and the device can be simplified.

【0025】図1に示すように、ガス化室1から排出さ
れたガスおよび飛散粒子eは、捕集装置2に流入し、ガ
スと固形分に分離される。図1に示す捕集装置2は、遠
心力集塵を利用したサイクロン集塵装置である。ここで
分離された可燃ガスcは炉外に導出される。一方、補集
された飛散粒子eはループシール51を介して燃焼室3
へ流入する。ループシール51の飛散粒子のマテリアル
シール効果により、可燃ガスcと燃焼排ガスdの混合を
避けることができる。また、ループシール部の飛散粒子
は流動化させてもよく、流動化ガスには蒸気や窒素など
の不活性ガスを用いるほうが望ましい。捕集装置2で捕
集された飛散粒子eの一部を燃焼室3を介することなく
ガス化室1に供給するようにしてもよい。この場合、ル
ープシール51に供給する流動化ガス流量を変えること
で燃焼室3に供給する粒子量を調節することができる。
このループシール51は、Lバルブなどシール性を備え
た他の機構に置換してもよく、その機構の存在により可
燃ガスcと燃焼排ガスdの混合を避けることができれば
よい。
As shown in FIG. 1, the gas discharged from the gasification chamber 1 and the scattered particles e flow into the collector 2 and are separated into gas and solids. The collection device 2 shown in FIG. 1 is a cyclone dust collection device using centrifugal force dust collection. The combustible gas c separated here is led out of the furnace. On the other hand, the scattered particles e collected are passed through the loop seal 51 to the combustion chamber 3
Flow into. Due to the material sealing effect of the scattered particles of the loop seal 51, mixing of the combustible gas c and the combustion exhaust gas d can be avoided. Further, the particles scattered in the loop seal portion may be fluidized, and it is preferable to use an inert gas such as steam or nitrogen as the fluidizing gas. A part of the scattered particles e collected by the collecting device 2 may be supplied to the gasification chamber 1 without passing through the combustion chamber 3. In this case, the amount of particles supplied to the combustion chamber 3 can be adjusted by changing the flow rate of the fluidizing gas supplied to the loop seal 51.
The loop seal 51 may be replaced with another mechanism having a sealing property such as an L valve, and it is sufficient that the combustible gas c and the combustion exhaust gas d can be prevented from being mixed by the existence of the mechanism.

【0026】またガス化室1における媒体粒子の少なく
とも一部を触媒粒子とする場合、ガス化室1内の高速流
動層部で原料の熱分解ガス化により生成したガスを分解
・改質し、この過程で触媒粒子表面に析出した炭素等は
燃焼室3にて燃焼除去され触媒粒子は再生される。さら
に、ガス化室1で生成したガス中に含まれる塩素化合物
や硫黄化合物等を吸収除去し、生成ガスを精製するため
にカルシウム化合物などの吸収触媒を媒体粒子の少なく
とも一部とすることで排出される可燃ガスc中の有害成
分濃度を低減することができる。
When at least a part of the medium particles in the gasification chamber 1 are used as the catalyst particles, the gas generated by the pyrolysis gasification of the raw material is decomposed and reformed in the high-speed fluidized bed portion in the gasification chamber 1, In this process, carbon and the like deposited on the surface of the catalyst particles are burned and removed in the combustion chamber 3 to regenerate the catalyst particles. Further, chlorine compounds and sulfur compounds contained in the gas generated in the gasification chamber 1 are absorbed and removed, and an absorption catalyst such as a calcium compound is used as at least a part of the medium particles in order to purify the generated gas. The concentration of harmful components in the combustible gas c can be reduced.

【0027】捕集装置2で分離された飛散粒子eの少な
くとも一部は燃焼室3に流入し、燃焼室3に流入した飛
散粒子eに含有されるチャーなどの可燃分は燃焼室3で
燃焼される。燃焼室3には燃焼に必要な酸素を含むガス
b3を供給する。この燃焼熱によって飛散粒子eは高温
化して、ガス化室1に戻され、原料aを熱分解ガス化す
る熱源となる。
At least a part of the scattered particles e separated by the trap 2 flows into the combustion chamber 3, and combustible components such as char contained in the scattered particles e flowing into the combustion chamber 3 are burned in the combustion chamber 3. To be done. A gas b3 containing oxygen necessary for combustion is supplied to the combustion chamber 3. This combustion heat raises the temperature of the scattered particles e to return to the gasification chamber 1 and serves as a heat source for pyrolyzing and gasifying the raw material a.

【0028】図3は、図1に示す統合型循環流動床ガス
化炉における燃焼室の構成の一例を示す模式図である。
図3に示すように、燃焼室3は隔壁によって仕切られた
複数の室からなる内部循環流動層である。燃焼室3は主
燃焼室52と熱回収室53とからなり、熱回収室53に
は層内伝熱管4が設置されている。捕集装置2で回収さ
れた飛散粒子eは、粒子供給口55から燃焼室3に流入
し、チャー等の可燃分が酸素を含むガスb3によって燃
焼され、燃焼排ガスdはガス出口57より排出される。
主燃焼室52での燃焼により高温化した飛散粒子の一部
は61aの矢印で示すように仕切壁58を飛び越えて熱
回収室53に流入し、層内伝熱管4により熱回収され
る。熱回収室53の下部には主燃焼室52との間に開口
部60があり、熱回収された飛散粒子は61bの矢印で
示すように主燃焼室52に移動する。一方、主燃焼室5
2で高温化した飛散粒子eの一部は粒子排出口56から
ガス化室1に送られる。熱回収室下部風箱66から供給
する酸素を含むガスb3の流量を変えることで、61b
で示す飛散粒子の移動量を調節し、熱回収量を変化させ
ることで層温を制御する。ここで熱回収室53は必ずし
も必要ではなく、主燃焼室52における可燃分の燃焼に
より高温化した飛散粒子eをガス化室1に戻す際、ガス
化室1の層温制御のために飛散粒子eの温度を下げて供
給することが望ましい場合に熱回収を行うものである。
FIG. 3 is a schematic diagram showing an example of the structure of the combustion chamber in the integrated circulating fluidized bed gasification furnace shown in FIG.
As shown in FIG. 3, the combustion chamber 3 is an internal circulating fluidized bed composed of a plurality of chambers partitioned by partition walls. The combustion chamber 3 is composed of a main combustion chamber 52 and a heat recovery chamber 53, and the in-layer heat transfer tube 4 is installed in the heat recovery chamber 53. The scattered particles e collected by the collector 2 flow into the combustion chamber 3 from the particle supply port 55, combustible components such as char are burned by the gas b3 containing oxygen, and the combustion exhaust gas d is discharged from the gas outlet 57. It
A part of the scattered particles, which have been heated to a high temperature by the combustion in the main combustion chamber 52, jump over the partition wall 58 and flow into the heat recovery chamber 53 as indicated by an arrow 61a, and the heat is recovered by the in-layer heat transfer tube 4. An opening 60 is provided below the heat recovery chamber 53 between the heat recovery chamber 53 and the main combustion chamber 52, and the scattered particles of the heat recovered move to the main combustion chamber 52 as indicated by an arrow 61b. On the other hand, the main combustion chamber 5
A part of the scattered particles e whose temperature has been raised in 2 is sent to the gasification chamber 1 from the particle outlet 56. By changing the flow rate of the gas b3 containing oxygen supplied from the heat recovery chamber lower air box 66,
The layer temperature is controlled by adjusting the movement amount of the scattered particles and changing the heat recovery amount. Here, the heat recovery chamber 53 is not always necessary, and when returning the scattered particles e, which have been heated to a high temperature due to the combustion of combustible components in the main combustion chamber 52, to the gasification chamber 1, the scattered particles are used for controlling the layer temperature of the gasification chamber 1. The heat recovery is performed when it is desired to lower the temperature of e before supplying.

【0029】また熱回収室下部風箱66から供給するガ
スに含まれる酸素の量を飛散粒子中の可燃分の理論燃焼
酸素量よりも多くすることで、熱回収室53内を酸化雰
囲気にすることで層内伝熱管の塩素等による腐食を低減
することができる。燃焼室3における主燃焼室52に供
給される酸素を含む流動化ガスb3を、周辺部風箱65
から供給する空塔速度が中央部風箱64から供給する空
塔速度の1.5倍以上となるようにすることにより、主
燃焼室52内に中央部では流動化しつつ下降し、周辺部
では流動化しつつ上昇する流動媒体の旋回流62が形成
されるようにしてもよい。この旋回流により飛散粒子中
のチャー等の可燃分を層内に均一に分散させることが可
能であるから、層内の温度は均一となる。
Further, the amount of oxygen contained in the gas supplied from the lower air box 66 of the heat recovery chamber is made larger than the theoretical burned oxygen amount of the combustible components in the scattered particles, so that the inside of the heat recovery chamber 53 becomes an oxidizing atmosphere. As a result, it is possible to reduce corrosion of the in-layer heat transfer tube due to chlorine or the like. The fluidized gas b3 containing oxygen supplied to the main combustion chamber 52 in the combustion chamber 3 is supplied to the peripheral air box 65.
The superficial velocity supplied from the central wind box 64 is 1.5 times or more higher than the superficial velocity supplied from the central wind box 64, so that the central combustion chamber 52 fluidizes and descends in the central portion, and the peripheral combustion chamber 52 in the peripheral portion. A swirling flow 62 of the fluidized medium that rises while fluidizing may be formed. This swirling flow makes it possible to uniformly disperse combustible components such as char in the scattered particles in the layer, so that the temperature in the layer becomes uniform.

【0030】さらに、図3に示すように、仕切壁59を
設けて粒子排出口56と主燃焼室52の間に飛散粒子沈
降室54を設け、この飛散粒子沈降室風箱67に供給す
る流動化ガスb3の流量を調節することで粒子排出口5
6からガス化室1に供給される飛散粒子量を制御するこ
とも可能である。これにより、ガス化室1に供給するガ
スb1およびb2の流量を変えることなく、かつガス化
室1の炉底からの媒体粒子の排出を行うことなく高速流
動層の粒子濃度を変化させることが可能である。
Further, as shown in FIG. 3, a partition wall 59 is provided, a scattered particle settling chamber 54 is provided between the particle discharge port 56 and the main combustion chamber 52, and a flow supplied to the scattered particle settling chamber wind box 67. By adjusting the flow rate of the atomized gas b3, the particle discharge port 5
It is also possible to control the amount of scattered particles supplied from 6 to the gasification chamber 1. This makes it possible to change the particle concentration of the fast fluidized bed without changing the flow rates of the gases b1 and b2 supplied to the gasification chamber 1 and without discharging the medium particles from the furnace bottom of the gasification chamber 1. It is possible.

【0031】図4は、本発明の統合型循環流動床ガス化
炉を用いたガス化システムのフローの一例を示す図であ
る。図4に示すように、統合型循環流動床ガス化炉10
0における捕集装置2から回収された可燃ガスcは、後
段のプロセスにて動力回収や発電、あるいは化学合成等
に利用される。統合型循環流動床ガス化炉100におけ
る燃焼室3から排出された燃焼ガスdは後部廃熱回収部
5で減温されて系外に排出される。
FIG. 4 is a diagram showing an example of the flow of a gasification system using the integrated circulating fluidized bed gasification furnace of the present invention. As shown in FIG. 4, an integrated circulating fluidized bed gasifier 10
The combustible gas c collected from the collector 2 at 0 is used for power recovery, power generation, chemical synthesis, etc. in the subsequent process. The combustion gas d discharged from the combustion chamber 3 in the integrated circulating fluidized bed gasification furnace 100 is cooled in the rear waste heat recovery unit 5 and discharged to the outside of the system.

【0032】また、媒体粒子の少なくとも一部に触媒粒
子を用い、ガス化室1で原料を熱分解ガス化して得られ
たガスに上部の高速流動層域で酸素を含むガスを供給し
てその一部を燃焼させて高温化することで分解・改質す
るのではなく、ガスの燃焼の必要のない温度雰囲気で該
ガスを分解・改質することも可能である。ここで用いる
触媒粒子は、CaO、FeSiO、MgSiO、A
等であってよい。さらに、ガス化室1での分解
・改質反応において触媒粒子表面に析出した炭素等は、
後段の燃焼室において酸素を含むガスによって燃焼され
除去され、その結果、触媒粒子は再生される。
Further, catalyst particles are used as at least a part of the medium particles, and a gas containing oxygen is supplied to the gas obtained by pyrolyzing and gasifying the raw material in the gasification chamber 1 to supply gas containing oxygen in the upper high-speed fluidized bed region. Instead of decomposing / reforming by burning a part of the gas to raise its temperature, it is also possible to decompose / reform the gas in a temperature atmosphere that does not require gas combustion. The catalyst particles used here are CaO, FeSiO 2 , MgSiO 2 , A
It may be 1 2 O 3 or the like. Furthermore, carbon and the like deposited on the surface of the catalyst particles in the decomposition / reforming reaction in the gasification chamber 1
In the combustion chamber in the latter stage, the gas containing oxygen is burned and removed, and as a result, the catalyst particles are regenerated.

【0033】図5は、本発明の統合型循環流動床ガス化
炉を用いたガス化システムのフローの他の例を示す図で
ある。図5に示すように、ガス化室1で原料aを熱分解
ガス化し、ついで得られたガスを分解・改質し、捕集装
置2にて飛散粒子eと分離して回収された可燃ガスcを
さらに二次改質するために捕集装置2の後段にクラッキ
ング装置15を設け、クラッキング装置15に導かれた
可燃ガスcを二次改質することも可能である。このクラ
ッキング装置15は改質反応室15aと触媒再生室15
bとからなり、これらの部屋の間を粒子は循環するが、
ガスは混合しないような構造となっている。このような
装置の一例として内部循環型の流動層を用いることも可
能である。改質反応室15aには触媒再生室15bで再
生された改質用触媒と可燃ガスcが供給され、可燃ガス
cは改質される。一方、この改質工程にて触媒粒子上に
析出した炭素等を除去し触媒粒子を再生するために、触
媒粒子は触媒再生室15bに供給され、燃焼室3から排
出され触媒再生室15bに供給された燃焼排ガスdの少
なくとも一部と反応する。このようにして二次改質され
た生成ガスcは、動力回収または発電または化学合成原
料等として利用される。
FIG. 5 is a diagram showing another example of the flow of the gasification system using the integrated circulating fluidized bed gasification furnace of the present invention. As shown in FIG. 5, the raw material a is pyrolyzed and gasified in the gasification chamber 1, the obtained gas is decomposed and reformed, and the flammable gas recovered by separating from the scattered particles e by the trap 2 is collected. It is also possible to provide a cracking device 15 in the subsequent stage of the trapping device 2 in order to further secondary reform the c, and secondarily reform the combustible gas c introduced into the cracking device 15. The cracking device 15 includes a reforming reaction chamber 15a and a catalyst regeneration chamber 15
consists of b and particles circulate between these chambers,
The structure is such that the gases do not mix. It is also possible to use an internal circulation type fluidized bed as an example of such a device. The reforming catalyst regenerated in the catalyst regeneration chamber 15b and the combustible gas c are supplied to the reforming reaction chamber 15a, and the combustible gas c is reformed. On the other hand, in order to remove carbon and the like deposited on the catalyst particles in this reforming step and regenerate the catalyst particles, the catalyst particles are supplied to the catalyst regeneration chamber 15b, discharged from the combustion chamber 3 and supplied to the catalyst regeneration chamber 15b. It reacts with at least a part of the generated combustion exhaust gas d. The product gas c secondarily reformed in this way is used as power recovery or power generation or a raw material for chemical synthesis.

【0034】図6は、本発明の統合型循環流動床ガス化
炉を用いたガス化システムのフローの更に他の例を示す
図である。統合型循環流動床ガス化炉100のガス化室
1で生成され、捕集装置2から回収された可燃ガスc
は、ガス洗浄・冷却器6に供給される。ガス洗浄・冷却
器6にてガス中に含まれる塩化水素などの有害酸性ガス
等を除去されるとともに可燃ガスcはガスエンジン7に
供給できる温度まで冷却される。洗浄・冷却された可燃
ガスcは、ガスエンジン7に導かれ発電に供される。ガ
スエンジン7からの排出ガスd2は、廃熱ボイラ9に導
入され、熱回収された後に、誘因送風機13を介して煙
突14から系外へ排出される。
FIG. 6 is a diagram showing still another example of the flow of the gasification system using the integrated circulating fluidized bed gasification furnace of the present invention. Combustible gas c generated in the gasification chamber 1 of the integrated circulating fluidized bed gasification furnace 100 and recovered from the collector 2
Is supplied to the gas scrubber / cooler 6. The gas scrubber / cooler 6 removes harmful acidic gas such as hydrogen chloride contained in the gas and cools the combustible gas c to a temperature at which it can be supplied to the gas engine 7. The cleaned and cooled combustible gas c is guided to the gas engine 7 and used for power generation. Exhaust gas d2 from the gas engine 7 is introduced into the waste heat boiler 9 to recover heat, and then is discharged from the chimney 14 to the outside of the system via the induced blower 13.

【0035】統合型循環流動床ガス化炉100の燃焼室
3から排出される燃焼排ガスd1は、廃熱ボイラ9に導
入され、熱回収された後に、誘因送風機13を介して煙
突14から系外へ排出される。缶水は強制循環ポンプ1
2により廃熱ボイラ9に供給され、燃焼排ガスd1,d
2と熱交換して飽和蒸気となり、この飽和蒸気は統合型
循環流動床ガス化炉100の燃焼室3における熱回収室
53の層内伝熱管4に導かれる。層内伝熱管4において
熱交換して過熱蒸気となった缶水は蒸気タービン10に
導かれ発電に供される。凝縮した缶水は復水器11で復
水される。
The flue gas d1 discharged from the combustion chamber 3 of the integrated circulating fluidized bed gasification furnace 100 is introduced into the waste heat boiler 9 and heat is recovered, and thereafter, from the chimney 14 via the induced blower 13 to the outside of the system. Is discharged to. Canned water is a forced circulation pump 1
2 is supplied to the waste heat boiler 9 to generate combustion exhaust gas d1, d
It heat-exchanges with 2 to become saturated steam, and this saturated steam is guided to the in-layer heat transfer tube 4 of the heat recovery chamber 53 in the combustion chamber 3 of the integrated circulating fluidized bed gasification furnace 100. The can water that has undergone heat exchange in the in-layer heat transfer tube 4 and has become superheated steam is guided to the steam turbine 10 and used for power generation. The condensed can water is condensed in the condenser 11.

【0036】以上の実施例に示す方法と装置により、ガ
ス化室とチャー燃焼室の間に特別な機械的な流動媒体の
ハンドリングを必要とせず、性状の優れた生成ガスを安
定して得ることができ、高効率発電が可能なガス化シス
テムであって、かつ炉床面積の小さいコンパクトなシス
テムを提供することができる。
By the method and apparatus shown in the above embodiments, it is possible to stably obtain a product gas having excellent properties without requiring special mechanical fluid medium handling between the gasification chamber and the char combustion chamber. Thus, it is possible to provide a gasification system capable of high-efficiency power generation and a compact system having a small hearth area.

【0037】[0037]

【発明の効果】以上説明したように、本発明の統合型循
環流動床ガス化炉によれば、特別な機械的な流動媒体の
ハンドリングを必要とせず、性状の優れた生成ガスを安
定して得ることができる。また流動床ガス化炉を循環流
動床型とすることで炉床面積の小さいコンパクトなガス
化炉とすることができる。さらに、統合型循環流動床ガ
ス化炉を用いて高効率な動力回収または発電が可能なガ
ス化システムや各種化学合成用原料ガス製造システム等
を構成することができる。
As described above, according to the integrated circulating fluidized bed gasification furnace of the present invention, it is possible to stably generate a product gas having excellent properties without requiring special mechanical fluidized medium handling. Obtainable. Further, by making the fluidized bed gasification furnace a circulating fluidized bed type, it is possible to make a compact gasification furnace having a small floor area. Furthermore, a gasification system capable of highly efficient power recovery or power generation, a raw material gas production system for various chemical synthesis, and the like can be configured by using the integrated circulating fluidized bed gasification furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】統合型循環流動床ガス化炉の基本的な構成を示
した図である。
FIG. 1 is a diagram showing a basic configuration of an integrated circulating fluidized bed gasification furnace.

【図2】図1に示す統合型循環流動床ガス化炉における
ガス化室の構成の一例を示す模式図である。
FIG. 2 is a schematic diagram showing an example of the configuration of a gasification chamber in the integrated circulating fluidized bed gasification furnace shown in FIG.

【図3】図1に示す統合型循環流動床ガス化炉における
燃焼室の構成の一例を示す模式図である。
FIG. 3 is a schematic diagram showing an example of a configuration of a combustion chamber in the integrated circulating fluidized bed gasification furnace shown in FIG.

【図4】本発明の統合型循環流動床ガス化炉を用いたガ
ス化システムのフローの一例を示す図である。
FIG. 4 is a diagram showing an example of a flow of a gasification system using the integrated circulating fluidized bed gasification furnace of the present invention.

【図5】本発明の統合型循環流動床ガス化炉を用いたガ
ス化システムのフローの他の例を示す図である。
FIG. 5 is a diagram showing another example of the flow of the gasification system using the integrated circulating fluidized bed gasification furnace of the present invention.

【図6】本発明の統合型循環流動床ガス化炉を用いたガ
ス化システムのフローの更に他の例を示す図である。
FIG. 6 is a diagram showing still another example of the flow of the gasification system using the integrated circulating fluidized bed gasification furnace of the present invention.

【図7】従来の2塔循環型ガス化炉の説明図である。FIG. 7 is an explanatory diagram of a conventional two-column circulation type gasification furnace.

【図8】従来の流動床炉を用いた複合発電システムの説
明図である。
FIG. 8 is an explanatory diagram of a combined power generation system using a conventional fluidized bed furnace.

【符号の説明】[Explanation of symbols]

1 ガス化室 2 捕集装置 3 燃焼室 4 層内伝熱管 5 後部廃熱回収部 6 ガス洗浄・冷却器 7 ガスエンジン 8a ガスエンジン用発電機 8b 蒸気タービン用発電機 9 廃熱ボイラ 10 蒸気タービン 11 復水器 12 強制循環ポンプ 13 誘因送風機 14 煙突 15 クラッキング装置 15a 改質反応室 15b 触媒再生室 51 ループシール 52 主燃焼室 53 熱回収室 54 飛散粒子沈降室 55 飛散粒子供給口 56 飛散粒子排出口 57 燃焼排ガス排出口 58 主燃焼室−熱回収室間仕切壁 59 主燃焼室−飛散粒子沈降室間仕切壁 60 熱回収室−主燃焼室間開口部 61a 主燃焼室−熱回収室飛散粒子循環流 61b 熱回収室−主燃焼室飛散粒子循環流 62 主燃焼室内旋回流 63 主燃焼室−飛散粒子沈降室粒子循環流 64 主燃焼室中央部風箱 65 主燃焼室周辺部風箱 66 熱回収室風箱 67 飛散粒子沈降室風箱 68 ガス化室ガス分散板 69 不燃物排出口 70 ガス化室中央部風箱 71 ガス化室周辺部風箱 72 ガス化室内濃厚流動層旋回流 100 統合型循環流動床ガス化炉 a 原料 b1 ガス化室炉底供給ガス b2 ガス化室上部供給ガス b3 燃焼室供給ガス c 可燃ガス d 燃焼排ガス d1 燃焼室排出ガス d2 ガスエンジン排出ガス d3 廃熱ボイラ排出ガス e 飛散粒子 f 不燃物 1 gasification chamber 2 Collection device 3 Combustion chamber 4 layer heat transfer tube 5 Rear waste heat recovery section 6 Gas washer / cooler 7 gas engine 8a Gas engine generator 8b Steam turbine generator 9 Waste heat boiler 10 steam turbine 11 condenser 12 Forced circulation pump 13 Incentive blower 14 chimney 15 Cracking device 15a Reforming reaction chamber 15b Catalyst regeneration room 51 loop seal 52 Main combustion chamber 53 Heat recovery room 54 Scattering particle settling chamber 55 Scattered particle supply port 56 Scattered particle outlet 57 Combustion exhaust gas outlet 58 Partition wall between main combustion chamber and heat recovery chamber 59 Partition wall between main combustion chamber and scattered particle settling chamber 60 Heat recovery chamber-main combustion chamber opening 61a Main combustion chamber-heat recovery chamber Scattered particle circulation flow 61b Heat recovery chamber-Main combustion chamber Scattered particle circulation flow 62 Main combustion chamber swirl flow 63 Main combustion chamber-scattering particles sedimentation chamber Particle circulation flow 64 Main combustion chamber central air box 65 Wind box around the main combustion chamber 66 Heat Recovery Chamber Wind Box 67 Scattered Particle Settling Chamber Wind Box 68 Gasification chamber gas dispersion plate 69 Incombustibles outlet 70 Gasification chamber central air box 71 Wind box around the gasification chamber 72 Concentrated fluidized bed swirling flow in gasification chamber 100 Integrated circulating fluidized bed gasifier a raw material b1 Gasification chamber furnace bottom supply gas b2 Gas supply in upper part of gasification chamber b3 Combustion chamber supply gas c Combustible gas d Combustion exhaust gas d1 Combustion chamber exhaust gas d2 gas engine exhaust gas d3 Waste heat boiler exhaust gas e Scattered particles f Incombustibles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/16 F23G 5/30 B 5/30 E L M 5/46 B 5/46 F23C 11/02 311 (72)発明者 西浦 文敏 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 大下 孝裕 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 3K061 AA11 AB02 AC13 AC17 AC20 BA01 EA03 EA04 EA07 EB01 EB12 EB15 3K064 AA02 AA04 AB03 AC05 AD05 AD08 AE15 AF06 BA03 BA05 BA07 BA09 BA15 BA17 BA22 BB07 3K065 AA11 AB02 AC13 AC17 AC20 BA01 JA04 JA18 3K078 AA01 BA03 CA03 CA06 CA11 CA21 CA25 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F23G 5/16 F23G 5/30 B 5/30 E L M 5/46 B 5/46 F23C 11/02 311 (72) Inventor Fumitoshi Nishiura 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo Ebara Corporation (72) Inventor Takahiro Oshita 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo F-term in Ebara Corporation ( (Reference) 3K061 AA11 AB02 AC13 AC17 AC20 BA01 EA03 EA04 EA07 EB01 EB12 EB15 3K064 AA02 AA04 AB03 AC05 AD05 AD08 AE15 AF06 BA03 BA05 BA07 BA09 BA15 BA17 BA22 CA21 CA21 CA21 CA21 CA03 CA21 BA01 BA03 BA01 JA04 BA0 JA01 78

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 濃厚流動層または高速流動層を下部に有
し、かつ高速流動層を上部に有し、原料を熱分解ガス化
するガス化室と、 該ガス化室の後段に設けられ飛散粒子を捕集して該ガス
化室に戻し、該飛散粒子と分離した可燃ガスを後段プロ
セスに排出するための捕集装置と、 捕集された該飛散粒子中のチャー等の可燃分の少なくと
も一部を燃焼し、燃焼ガスを排出する燃焼室とを備え、 該燃焼室から該ガス化室に該飛散粒子を戻すように構成
し、 該捕集装置から排出された可燃ガスと該燃焼室から排出
された該燃焼ガスとを混合することなく個別に回収可能
としたことを特徴とする統合型循環流動床ガス化炉。
1. A gasification chamber having a dense fluidized bed or a high-speed fluidized bed in the lower part and a high-speed fluidized bed in the upper part, which pyrolyzes and gasifies a raw material, and a scatter provided in the latter stage of the gasification chamber. A trapping device for trapping the particles and returning them to the gasification chamber and discharging the combustible gas separated from the scattered particles to a subsequent process, and at least a combustible component such as char in the trapped scattered particles. And a combustion chamber configured to return the scattered particles from the combustion chamber to the gasification chamber, the combustion chamber being configured to burn a part of the combustion gas and to discharge the combustion gas, and the combustion chamber. An integrated circulating fluidized bed gasification furnace, characterized in that it can be individually recovered without mixing with the combustion gas discharged from the furnace.
【請求項2】 前記ガス化室の下部では濃厚流動層また
は高速流動層にて原料を熱分解ガス化して生成ガスとチ
ャーを形成し、ついで該ガス化室の上部では高速流動層
にてガスを分解・改質するようにしたことを特徴とする
請求項1記載の統合型循環流動床ガス化炉。
2. In the lower part of the gasification chamber, the raw material is pyrolyzed and gasified in a dense fluidized bed or a high-speed fluidized bed to form a product gas and char, and then in the upper part of the gasification chamber, a gas is formed in the high-speed fluidized bed. The integrated circulating fluidized bed gasification furnace according to claim 1, characterized in that it is decomposed and reformed.
【請求項3】 前記ガス化室の下部が濃厚流動層である
場合、該ガス化室の上部を高速流動層とするために濃厚
流動層上部から蒸気または窒素などのガスを流動化ガス
として供給することを特徴とする請求項1又は2記載の
統合型循環流動床ガス化炉。
3. When the lower part of the gasification chamber is a rich fluidized bed, a gas such as steam or nitrogen is supplied as a fluidizing gas from the upper part of the rich fluidized bed in order to make the upper part of the gasification chamber a high-speed fluidized bed. The integrated circulating fluidized bed gasification furnace according to claim 1 or 2, characterized in that.
【請求項4】 原料の熱分解ガス化により生成したガス
を分解・改質するために必要な高温域を前記ガス化室の
上部の高速流動層に形成するために、該ガス化室に酸素
を含むガスを流動化ガスとして供給することを特徴とす
る請求項1乃至3のいずれか1項に記載の統合型循環流
動床ガス化炉。
4. Oxygen is provided in the gasification chamber in order to form a high temperature region necessary for decomposing and reforming the gas generated by pyrolysis gasification of the raw material in the high-speed fluidized bed above the gasification chamber. The integrated circulating fluidized bed gasification furnace according to any one of claims 1 to 3, wherein a gas containing the gas is supplied as a fluidized gas.
【請求項5】 前記燃焼室は捕集された飛散粒子によっ
て形成される流動層を有し、該燃焼室に該飛散粒子中に
含まれるチャー等の可燃分を燃焼させるために酸素を含
むガスを供給し、該可燃分の燃焼によって高温化した該
飛散粒子を前記ガス化室に戻すことによって、該ガス化
室における熱分解ガス化に必要な熱を供給するようにし
たことを特徴とする請求項1乃至4のいずれか1項に記
載の統合型循環流動床ガス化炉。
5. The combustion chamber has a fluidized bed formed by the collected scattered particles, and a gas containing oxygen for burning combustible components such as char contained in the scattered particles in the combustion chamber. Is supplied to the gasification chamber to return the scattered particles that have been heated to a high temperature due to the combustion of the combustible component, thereby supplying the heat necessary for the pyrolysis gasification in the gasification chamber. An integrated circulating fluidized bed gasifier according to any one of claims 1 to 4.
【請求項6】 前記燃焼室は隔壁によって仕切られた複
数の室からなる内部循環型流動層を有し、該燃焼室は主
燃焼室と伝熱管を有する熱回収室とからなり、該熱回収
室に供給する酸素を含むガスの流量を変化させることで
該熱回収室における回収熱量を制御し、流動層の層温を
調節するようにしたことを特徴とする請求項1乃至5の
いずれか1項に記載の統合型循環流動床ガス化炉。
6. The combustion chamber has an internal circulation type fluidized bed composed of a plurality of chambers partitioned by partition walls, and the combustion chamber comprises a main combustion chamber and a heat recovery chamber having a heat transfer tube. The amount of heat recovered in the heat recovery chamber is controlled by changing the flow rate of the gas containing oxygen supplied to the chamber, and the bed temperature of the fluidized bed is adjusted. The integrated circulating fluidized bed gasification furnace according to Item 1.
【請求項7】 前記熱回収室内を酸化雰囲気とすること
を特徴とする請求項6記載の統合型循環流動床ガス化
炉。
7. The integrated circulating fluidized bed gasification furnace according to claim 6, wherein the heat recovery chamber has an oxidizing atmosphere.
【請求項8】 前記ガス化室で原料の熱分解・ガス化に
よって生成したガスを分解・改質するために、前記濃厚
流動層または高速流動層を形成する媒体粒子の少なくと
も一部を触媒粒子としたことを特徴とする請求項1乃至
7のいずれか1項に記載の統合型循環流動床ガス化炉。
8. In order to decompose / reform the gas generated by the thermal decomposition / gasification of the raw material in the gasification chamber, at least a part of the medium particles forming the concentrated fluidized bed or the high-speed fluidized bed is used as catalyst particles. The integrated circulating fluidized bed gasification furnace according to any one of claims 1 to 7, wherein
【請求項9】 前記燃焼室にて、前記触媒粒子の触媒表
面に析出する炭素等を除去し再生することを特徴とする
請求項8記載の統合型循環流動床ガス化炉。
9. The integrated circulating fluidized bed gasification furnace according to claim 8, wherein carbon and the like deposited on the catalyst surface of the catalyst particles are removed and regenerated in the combustion chamber.
【請求項10】 前記可燃ガス中に含まれる塩素化合物
や硫黄化合物等の不純物を除去し、該生成ガスを精製す
るために、前記濃厚流動層または高速流動層を形成する
媒体粒子の少なくとも一部をカルシウム化合物等の吸収
触媒粒子としたことを特徴とする請求項1乃至9のいず
れか1項に記載の統合型循環流動床ガス化炉。
10. At least a part of medium particles forming the concentrated fluidized bed or the high-velocity fluidized bed in order to remove impurities such as chlorine compounds and sulfur compounds contained in the combustible gas and to purify the produced gas. 10. The integrated circulating fluidized bed gasification furnace according to any one of claims 1 to 9, wherein is an absorption catalyst particle such as a calcium compound.
【請求項11】 前記ガス化室で原料を熱分解ガス化
し、ついで得られたガスを分解・改質し、前記捕集装置
にて飛散粒子と分離して回収された可燃ガスをさらに二
次改質するために該捕集装置の後段にクラッキング装置
を設け、該クラッキング装置に導かれた可燃ガスを二次
改質することを特徴とする請求項1乃至10のいずれか
1項に記載の統合型循環流動床ガス化炉。
11. The raw material is pyrolyzed and gasified in the gasification chamber, the gas obtained is then decomposed and reformed, and the combustible gas recovered by separating from the scattered particles by the trapping device is further secondary. The cracking device is provided in the latter stage of the trapping device for reforming, and the flammable gas introduced to the cracking device is secondarily reformed, and the cracking device is secondarily reformed. Integrated circulating fluidized bed gasifier.
【請求項12】 前記燃焼室に補助燃料を供給すること
を特徴とする請求項1乃至11のいずれか1項に記載の
統合型循環流動床ガス化炉。
12. The integrated circulating fluidized bed gasification furnace according to claim 1, wherein auxiliary fuel is supplied to the combustion chamber.
【請求項13】 濃厚流動層または高速流動層を下部に
形成し、高速流動層を上部に形成した循環型流動床ガス
化炉を用いて原料を熱分解ガス化するガス化工程と、 該ガス化工程の後段で飛散粒子を捕集するための捕集工
程と、 捕集された該飛散粒子中のチャー等の可燃分の少なくと
も一部を燃焼し、燃焼排ガスを排出し、該飛散粒子をガ
ス化工程に戻すことのできる燃焼工程とを備え、 該ガス化工程において生成し該捕集工程にて分離された
可燃ガスと該燃焼工程における燃焼排ガスを混合するこ
となく個別に取出すことができるようにしたことを特徴
とする統合型ガス化方法。
13. A gasification step of pyrolyzing and gasifying a raw material by using a circulating fluidized bed gasification furnace in which a dense fluidized bed or a high-speed fluidized bed is formed in a lower portion and a high-speed fluidized bed is formed in an upper portion, and the gas. A collecting step for collecting scattered particles in the latter stage of the liquefaction step, and burning at least a part of combustible components such as char in the collected scattered particles to discharge combustion exhaust gas to remove the scattered particles. A combustion process that can be returned to the gasification process is provided, and the combustible gas generated in the gasification process and separated in the collection process and the combustion exhaust gas in the combustion process can be individually taken out without mixing. An integrated gasification method characterized by the above.
【請求項14】 前記ガス化工程で原料の熱分解・ガス
化によって生成したガスを分解・改質するために、媒体
粒子の少なくとも一部を触媒粒子とし、前記燃焼工程に
て該触媒粒子の触媒表面に析出する炭素等を除去し再生
することを特徴とする請求項13に記載の統合型ガス化
方法。
14. In order to decompose / reform the gas generated by the thermal decomposition / gasification of the raw material in the gasification step, at least a part of the medium particles are used as catalyst particles, and the catalyst particles in the combustion step are used. The integrated gasification method according to claim 13, wherein carbon or the like deposited on the catalyst surface is removed and regenerated.
【請求項15】 請求項1乃至12のいずれか1項に記
載の統合型循環流動床ガス化炉と、該統合型循環流動床
ガス化炉の捕集装置から排出された可燃ガスを動力回収
又は発電又は化学合成等に利用し、該統合型循環流動床
ガス化炉の燃焼室から排出された燃焼排ガスから廃熱回
収を行うことを特徴とする統合型循環流動床ガス化炉を
用いたガス化システム。
15. The integrated circulating fluidized bed gasification furnace according to claim 1, and the power recovery of the combustible gas discharged from the collecting device of the integrated circulating fluidized bed gasification furnace. Alternatively, an integrated circulating fluidized bed gasification furnace is used, which is used for power generation or chemical synthesis and recovers waste heat from combustion exhaust gas discharged from the combustion chamber of the integrated circulating fluidized bed gasification furnace. Gasification system.
JP2001376520A 2001-12-10 2001-12-10 Integrated circulating fluidized bed gasifying furnace Pending JP2003176486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376520A JP2003176486A (en) 2001-12-10 2001-12-10 Integrated circulating fluidized bed gasifying furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376520A JP2003176486A (en) 2001-12-10 2001-12-10 Integrated circulating fluidized bed gasifying furnace

Publications (1)

Publication Number Publication Date
JP2003176486A true JP2003176486A (en) 2003-06-24

Family

ID=19184694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376520A Pending JP2003176486A (en) 2001-12-10 2001-12-10 Integrated circulating fluidized bed gasifying furnace

Country Status (1)

Country Link
JP (1) JP2003176486A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265454A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Circulating fluidized gasification furnace
KR100636881B1 (en) 2005-07-14 2006-10-20 한국과학기술원 Chemical-looping combustor using circulating fluidized bed with double loops
JP2007277376A (en) * 2006-04-05 2007-10-25 Ihi Corp Pyrolysis gasifying apparatus
JP2008504110A (en) * 2004-06-17 2008-02-14 ソライン・チェッキーニ・アンビエンテ・エッセチア・ソシエタ・ペル・アツイオーニ Recycling method and system for municipal solid waste, and method for using solid waste recovered fuel
JP2009512755A (en) * 2005-10-21 2009-03-26 テイラー・バイオマス・エナジー・エルエルシー Gasification process and system with in-situ tar removal
JP2009229042A (en) * 2008-03-25 2009-10-08 Ihi Corp Circulating fluidized bed gasifier and air flow rate control method and device therefor
JP2010512502A (en) * 2006-12-11 2010-04-22 フォスター ホイーラー エナージア オサケ ユキチュア Method and apparatus for controlling the temperature of a fluidized bed reactor
CN101245264B (en) * 2008-03-25 2011-02-16 东南大学 Single-bed self-heating type thermal decomposition gasification combustion reactor and thermal decomposition gasification combustion method
JP2011038695A (en) * 2009-08-11 2011-02-24 Jiro Sasaoka Fluidized-bed heat treatment device and its method
KR101035663B1 (en) * 2009-07-21 2011-05-19 한국에너지기술연구원 Chemical-looping Combustor and combustion method using thereof
KR101066187B1 (en) 2011-04-27 2011-09-21 한국생산기술연구원 Syngas production and tar reduction system by using air and steam at fluidized bed
US8444723B2 (en) 2007-03-01 2013-05-21 Ihi Corporation Fluidized bed gasification method
US8545579B2 (en) 2008-03-19 2013-10-01 Ihi Corporation Gasification furnace structure in gasification facility
WO2014148556A1 (en) 2013-03-21 2014-09-25 株式会社Ihi Gasified-gas generation system
JP6259552B1 (en) * 2017-09-29 2018-01-10 株式会社 ユーリカ エンジニアリング Gasification system with power generation equipment
KR101921132B1 (en) * 2017-05-08 2018-11-22 한국생산기술연구원 Hybrid fluidized bed reactor and pyrolysis apparatus, combustion apparatus and heat exchanger using the same
CN109404950A (en) * 2018-09-27 2019-03-01 哈尔滨工业大学 A kind of boiler flue gas treatment system of high efficiency, low cost
KR101997506B1 (en) * 2018-01-10 2019-07-08 부산대학교 산학협력단 Cyclone Gasifier
CN110511787A (en) * 2019-09-21 2019-11-29 贵州丝域环能科技有限公司 A kind of novel double-fluidized-bed device of organic solid castoff hydrogen manufacturing
CN110791326A (en) * 2019-11-21 2020-02-14 中国科学院工程热物理研究所 Circulating fluidized bed gasification device with auxiliary gasification bed and gasification method
CN112300837A (en) * 2020-09-27 2021-02-02 南京工业大学 Multi-element urban and rural organic solid waste synergistic hydrogen production device and method
WO2021213643A1 (en) * 2020-04-22 2021-10-28 Sumitomo SHI FW Energia Oy A fluidized bed reactor system and a method of operating a fluidized bed reactor system
KR20230070905A (en) * 2021-11-15 2023-05-23 한국에너지기술연구원 System and Method for contrilling intenal gas flow velocity of fluidized bed using section area changes

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504110A (en) * 2004-06-17 2008-02-14 ソライン・チェッキーニ・アンビエンテ・エッセチア・ソシエタ・ペル・アツイオーニ Recycling method and system for municipal solid waste, and method for using solid waste recovered fuel
JP4762981B2 (en) * 2004-06-17 2011-08-31 ソライン・チェッキーニ・アンビエンテ・エッセチア・ソシエタ・ペル・アツイオーニ Recycling method and system for municipal solid waste, and method for using solid waste recovered fuel
JP4546862B2 (en) * 2005-03-25 2010-09-22 メタウォーター株式会社 Circulating flow type gasifier
JP2006265454A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Circulating fluidized gasification furnace
KR100636881B1 (en) 2005-07-14 2006-10-20 한국과학기술원 Chemical-looping combustor using circulating fluidized bed with double loops
JP2009512755A (en) * 2005-10-21 2009-03-26 テイラー・バイオマス・エナジー・エルエルシー Gasification process and system with in-situ tar removal
JP2007277376A (en) * 2006-04-05 2007-10-25 Ihi Corp Pyrolysis gasifying apparatus
JP2010512502A (en) * 2006-12-11 2010-04-22 フォスター ホイーラー エナージア オサケ ユキチュア Method and apparatus for controlling the temperature of a fluidized bed reactor
US8444723B2 (en) 2007-03-01 2013-05-21 Ihi Corporation Fluidized bed gasification method
US8545579B2 (en) 2008-03-19 2013-10-01 Ihi Corporation Gasification furnace structure in gasification facility
CN101245264B (en) * 2008-03-25 2011-02-16 东南大学 Single-bed self-heating type thermal decomposition gasification combustion reactor and thermal decomposition gasification combustion method
JP2009229042A (en) * 2008-03-25 2009-10-08 Ihi Corp Circulating fluidized bed gasifier and air flow rate control method and device therefor
KR101035663B1 (en) * 2009-07-21 2011-05-19 한국에너지기술연구원 Chemical-looping Combustor and combustion method using thereof
JP2011038695A (en) * 2009-08-11 2011-02-24 Jiro Sasaoka Fluidized-bed heat treatment device and its method
WO2012148172A3 (en) * 2011-04-27 2013-03-21 Korea Institute Of Industrial Technology System for producing syngas and reducing tar using air and steam on fluidized bed
KR101066187B1 (en) 2011-04-27 2011-09-21 한국생산기술연구원 Syngas production and tar reduction system by using air and steam at fluidized bed
WO2012148172A2 (en) * 2011-04-27 2012-11-01 Korea Institute Of Industrial Technology System for producing syngas and reducing tar using air and steam on fluidized bed
WO2014148556A1 (en) 2013-03-21 2014-09-25 株式会社Ihi Gasified-gas generation system
KR101921132B1 (en) * 2017-05-08 2018-11-22 한국생산기술연구원 Hybrid fluidized bed reactor and pyrolysis apparatus, combustion apparatus and heat exchanger using the same
WO2019064494A1 (en) * 2017-09-29 2019-04-04 株式会社ユーリカエンジニアリング Gasification system included in power generating facility
JP6259552B1 (en) * 2017-09-29 2018-01-10 株式会社 ユーリカ エンジニアリング Gasification system with power generation equipment
KR101997506B1 (en) * 2018-01-10 2019-07-08 부산대학교 산학협력단 Cyclone Gasifier
CN109404950A (en) * 2018-09-27 2019-03-01 哈尔滨工业大学 A kind of boiler flue gas treatment system of high efficiency, low cost
CN110511787A (en) * 2019-09-21 2019-11-29 贵州丝域环能科技有限公司 A kind of novel double-fluidized-bed device of organic solid castoff hydrogen manufacturing
CN110791326A (en) * 2019-11-21 2020-02-14 中国科学院工程热物理研究所 Circulating fluidized bed gasification device with auxiliary gasification bed and gasification method
WO2021213643A1 (en) * 2020-04-22 2021-10-28 Sumitomo SHI FW Energia Oy A fluidized bed reactor system and a method of operating a fluidized bed reactor system
CN112300837A (en) * 2020-09-27 2021-02-02 南京工业大学 Multi-element urban and rural organic solid waste synergistic hydrogen production device and method
KR20230070905A (en) * 2021-11-15 2023-05-23 한국에너지기술연구원 System and Method for contrilling intenal gas flow velocity of fluidized bed using section area changes
KR102587565B1 (en) 2021-11-15 2023-10-12 한국에너지기술연구원 System and Method for contrilling intenal gas flow velocity of fluidized bed using section area changes

Similar Documents

Publication Publication Date Title
JP2003176486A (en) Integrated circulating fluidized bed gasifying furnace
EP1278813B1 (en) A method and a system for decomposition of moist fuel or other carbonaceous materials
AU759861B2 (en) Power generation system based on gasification of combustible material
JP3973840B2 (en) Solid fuel gasifier
US5243922A (en) Advanced staged combustion system for power generation from coal
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
US20040244289A1 (en) Process for reforming inflammable gas, apparatus for reforming inflammable gas and gasification apparatus
BG64909B1 (en) Method and device for pyrolyzing and gasifying organic substances or organic substance mixtures
KR20020026536A (en) Apparatus and method for cleaning acidic gas
EA022238B1 (en) Method and system for production of a clean hot gas based on solid fuels
JP2003238973A (en) Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
US20060137579A1 (en) Gasification system
WO1999023431A1 (en) Fluidized bed gasification combustion furnace
JP4589311B2 (en) Gasification method and apparatus
JP2009019870A (en) Fluidized bed gasification combustion furnace
JP2005207643A (en) Circulating fluidized-bed furnace and its operation method
JP2006275442A (en) Combustible incinerating, thermally decomposing, gasifying and treating method, and its treatment device
JP2004051745A (en) System of gasifying biomass
JP3770653B2 (en) Gasification combustion method using fluidized bed furnace
JP3839709B2 (en) Gas supply device, gas supply utilization system, gasification and melting system, and gas supply method
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP2011105890A (en) Circulating fluidized bed gasification reactor
JP2003171673A (en) Gas generator
JP2898625B1 (en) Method and apparatus for removing and decomposing dioxins with unburned ash
JP3663715B2 (en) Circulating fluidized bed boiler