WO2018030702A1 - Dual biomass gasification reactor equipped with dispersion plate for reducing flow rate of fluidized bed medium and gasification apparatus comprising same - Google Patents

Dual biomass gasification reactor equipped with dispersion plate for reducing flow rate of fluidized bed medium and gasification apparatus comprising same Download PDF

Info

Publication number
WO2018030702A1
WO2018030702A1 PCT/KR2017/008335 KR2017008335W WO2018030702A1 WO 2018030702 A1 WO2018030702 A1 WO 2018030702A1 KR 2017008335 W KR2017008335 W KR 2017008335W WO 2018030702 A1 WO2018030702 A1 WO 2018030702A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
biomass gasification
dispersion plate
fluidized bed
flow rate
Prior art date
Application number
PCT/KR2017/008335
Other languages
French (fr)
Korean (ko)
Inventor
김주식
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2018030702A1 publication Critical patent/WO2018030702A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion

Definitions

  • the present invention relates to a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium and a gasifier comprising the same.
  • the present invention is the result of research carried out by the Ministry of Trade, Industry and Energy and the Korea Institute of Energy Evaluation and Technology (21535011011559005901301) under the supervision of Chungwoo Ace Co., Ltd. And the development of biomass two-stage gasification module unit for producing low ammonia producer gas, and the research period is 2015.12.01. ⁇ 2016.09.30 (task unique number: 1415143434, detailed task number: 20153030091340).
  • biomass energy is produced by gas or pyrolysis of wood, waste, dry biomass, etc. to produce gas or oil, and used as energy.
  • gasification or pyrolysis is mainly performed using a fluidized bed gasification apparatus.
  • the fluidized bed gasifier refers to a device in which a solid layer is suspended due to a reaction gas having an upward flow to flow, such as a gas and a liquid, and gas and solid, solid and solid are mixed and reacted very quickly to generate a gas.
  • This fluidized bed gasifier has the advantages of complete reaction of fluid and medium (catalyst or adsorbent) to complete contact of gas and solid, resulting in fast reaction speed and increased efficiency, and fast reaction at low temperatures and reduced heat loss. have.
  • the fluidized bed gasifier has the greatest purpose in reducing the tar content in the gas produced through the reaction and producing a high calorific value gas as the solid is treated to obtain the gas.
  • Republic of Korea Patent No. 10-1503607 is composed of a reactor body, oxygen supply unit, fluidized bed synthesis gas reaction unit, a water gas reaction unit including a catalyst to produce a high concentration of hydrogen using biomass resources, using the power, Disclosed is a two-stage fluidized bed biomass gasification apparatus and method for use as a fuel cell, a chemical industrial material, etc., but still has a problem in that the hydrogen concentration in the produced gas is low and the tar in the produced gas is not effectively reduced. .
  • An object of the present invention is to include a carbon adsorbent in the form of a powder in the upper reactor of the two-stage reactor, and to include a dispersion plate for reducing the flow rate of the fluidized bed medium in the communication between the upper reactor and the lower reactor, the flow rate of the fluidized bed medium This increase prevents the blowing of the carbon adsorbent in the form of powder, which significantly reduces the tar content in the product gas produced through the reaction, and significantly increases the hydrogen concentration to produce a high calorific gas.
  • the present invention provides a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate.
  • another object of the present invention includes a double biomass gasification reactor including a dispersion plate for reducing the flow rate of the fluidized bed medium, it can be used stably of tar that can be used for power generation, fuel cells, chemical industry raw materials, etc.
  • the present invention provides a gasification apparatus including a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of a fluidized bed medium capable of producing a high calorific value gas having a high hydrogen concentration while having a low content.
  • the present invention provides a first reactor for gasifying the injected waste using an external heat source and its own heat source, and is installed to communicate with the first reactor, using a heat source of the first reactor, and A second reactor filled with a certain amount of carbon adsorbent to reduce the content of tar in the product gas produced in the first reactor, increase hydrogen production, and supply to a subsequent process, the first reactor having a certain amount of sand therein; Is filled and flows along the air stream of the external heat source to assist in the combustion of the waste gas and produce flammable gas and bio-char, and the upper surface is blocked in the communication portion of the first reactor and the second reactor.
  • the bottom surface is formed in an open cylindrical shape, and a plurality of holes are formed in the circumferential surface of the cylinder, and the bottom of the cylinder Les offers double the biomass gasification reactor which is installed in the extended edition distributed in the form of plates.
  • the second reactor may be fixed to the inner upper end of the first reactor so as to be located on the upper side of the inside of the first reactor, it may be fixed to have a predetermined interval with the inner circumference of the first reactor.
  • the second reactor may be installed on the top of the first reactor may have a two-stage form.
  • the cross sectional area of the second reactor may be wider than the cross sectional area of the first reactor.
  • the carbon adsorbent may include one or more selected from activated carbon and biochar.
  • the first reactor has a first pipe installed to communicate with the interior of the first reactor for discharging the surplus biochar to the outside to maintain a certain amount of the biochar inside the first reactor, and the gravity along the first pipe It may further include a receiving portion for storing the excess biochar discharged by.
  • the second reactor may further include a second pipe communicating the first reactor and the second reactor with each other so as to flow a surplus carbon adsorbent toward the first reactor so that a predetermined amount of the carbon adsorbent in the second reactor is maintained. .
  • a cyclone may be further installed inside the second reactor to prevent the outflow of the carbon adsorbent filled therein while discharging the product gas having reduced tar content in a subsequent process.
  • the present invention in order to achieve the above object is a waste injection means for injecting waste, the dual biomass gasification reactor of claim 1, the heat source supply means for supplying a preliminary heat source and air to the dual biomass gasification reactor of claim 1, And it provides a gasifier comprising a purifying means for purifying the exhaust gas discharged from the dual biomass gasification reactor of claim 1.
  • Dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium of the present invention is installed so as to communicate with the first reactor for gasifying the injected waste, and the first reactor and a predetermined amount of carbon adsorbent is filled therein And a second reactor for reducing the content of tar in the product gas produced in the reactor, increasing hydrogen production and feeding it to a subsequent process, wherein the first reactor assists in the combustion of waste gasification and combustible gases and bio-chars.
  • the upper surface is blocked at the communication portion of the first reactor and the second reactor, and the lower surface is formed into an open cylindrical shape, and as the dispersion plate having a plurality of holes is formed in the circumferential surface of the cylinder, Even if the flow rate is increased, the blowing phenomenon of powdered carbon adsorbent packed inside the reactor is prevented The resulting not only significantly reduce the tar content in the gas, the hydrogen concentration is significantly increased can be made of the calorific gas.
  • the gasifier comprising a gasification reactor having a dispersion plate for reducing the flow rate of the fluidized bed medium is a waste injection means for injecting waste, gasification reactor with a dispersion plate for reducing the flow rate of the fluidized bed medium of the present invention, heat source supply means, And a purifying means, it is possible to produce a high calorific value gas with a high hydrogen concentration while having a low content of tar that can be stably used for power generation, fuel cells, chemical industry raw materials and the like.
  • FIG. 1 is a conceptual diagram of a gasifier including a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium shown in FIG. 1.
  • FIG 3 is a cross-sectional view of a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium according to another embodiment of the present invention.
  • FIG. 5 is a view illustrating a dispersion plate for reducing the flow rate of the fluidized bed medium shown in FIG. 1.
  • FIG. 6 is a view illustrating a flow of generated gas in the dual biomass gasification reactor illustrated in FIG. 4.
  • a and / or B means A or B, or A and B.
  • waste may refer to any resource that can be utilized to generate biomass energy, such as waste wood and biomass.
  • the product gas may mean a gas generated by the waste injected into the first reactor by the heat source.
  • the fluidized bed medium may mean all materials including the product gas flowing inside the first reactor and the second reactor.
  • a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of a fluidized bed medium may be briefly referred to as a dual biomass gasification reactor.
  • FIG. 1 is a conceptual diagram of a gasifier including a dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of a fluidized bed medium according to an embodiment of the present invention
  • Figure 2 is shown in FIG. Is a cross-sectional view of a dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of the fluidized bed medium.
  • the gasifier of the embodiment of the present invention is waste injection means 10 for injecting waste, such as sewage sludge or waste wood, waste injected through the waste injection means 10 and the external heat source
  • waste injection means 10 for injecting waste, such as sewage sludge or waste wood
  • waste injection means 10 waste injection means 10 for injecting waste, such as sewage sludge or waste wood
  • the dual biomass gasification reactor 20 to supply a preliminary heat source and air It is composed of a heat source supply means 30, and a purifying means 40 for purifying the exhaust gas discharged from the double biomass gasification reactor 20 (claim 10)
  • carbon adsorbent in the form of powder even if the flow rate of the fluidized bed medium increases (223) is prevented from flying, and the tar content in the product gas produced through the reaction is not only significantly reduced, but also the hydrogen concentration is significantly increased to add high calorific value. It can be produced.
  • the waste injecting means 10 is to crush and inject waste such as sewage sludge or waste wood into a predetermined size, and is constituted in a general configuration relationship used in a gasifier.
  • Dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of the fluidized bed medium, as shown in Figure 1-2, the first reactor 210 having a volume of a certain size, and the first It consists of a second reactor 220 is installed above the inside of the reactor (210).
  • the first reactor 210 gasifies the injected waste using an external heat source and its own heat source (claim 1).
  • the heat source of the first reactor 210 may be a preliminary heat source, air and steam and a heat source supplied by the heat source supply means 30 of the present embodiment, the first reactor 210 is a heat source supply means 30 It may be formed in a form that can receive a heat source from). As shown in Figure 1-2, the first reactor 210 is filled with a certain amount of sand, the sand flows along the air stream of the external heat source to perform the smooth gasification of the waste and biochar (claim 1) And produce gas.
  • the first reactor 210 may be provided with a first pipe 211 connecting the interior of the first reactor 210 and the receiving portion 213. As shown in FIGS. 1-2, the first pipe 211 is configured to discharge the surplus biochar to the outside so that a certain amount of biochar generated during the combustion process inside the first reactor 210 may be maintained.
  • the interior of the 210 and the receiving portion 213 can communicate (claim 7), the surplus biochar inside the first reactor 210 flows along the first pipe 211 and stored in the receiving portion 213. Can be.
  • Receiving unit 213 stores the surplus bio-cha discharged by gravity along the first pipe (211) (claim 7).
  • the first pipe 211 is configured such that one end of the side connected to the first reactor 210 is formed at a position higher than the other end of the side connected to the receiving portion 213. Without using a mechanical device, biochar in the first reactor 210 may be allowed to pass through the first pipe 211 to reach the receiving portion 213 by gravity.
  • the end of one end of the side connected to the first reactor 210 may be formed in a bent shape so as not to be disturbed by the upflow in the first reactor 210.
  • FIG 3 is a cross-sectional view of a dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of a fluidized bed medium according to another embodiment of the present invention
  • Figure 4 is according to another embodiment of the present invention
  • the second reactor 220 is installed to communicate with the first reactor 210 and uses the heat source of the first reactor 210, and a certain amount of carbon adsorbent 223 is filled therein to generate the first reactor 210.
  • the tar content in the generated product gas is reduced and hydrogen production is increased and fed to subsequent processes (claim 1).
  • the dual biomass gasification reactor 20 is filled with a carbon adsorbent 223 in the form of powder in the second reactor 220 to adsorb tar in the product gas produced by burning in the first reactor 210.
  • a carbon adsorbent 223 in the form of powder in the second reactor 220 to adsorb tar in the product gas produced by burning in the first reactor 210.
  • the carbon adsorbent 223 may include one or more selected from activated carbon and biochar (claim 6).
  • any material that can help the production of hydrogen by promoting the reaction with water in the product gas can be added without limitation, For example, coke, pumice and the like can be added.
  • the bottom surface of the second reactor 220 connected to the first reactor 210 may be opened.
  • the dispersion plate 240 is formed on the bottom surface.
  • a carbon adsorbent 223 is filled in the second reactor 220, and the carbon adsorbent 223 may be positioned above the dispersion plate 240.
  • the generated gas generated in the first reactor 210 may be introduced into the second reactor 220.
  • the first reactor 210 and the second reactor 220 in the form as shown in Figures 2-4 dual biomass gasification reactor ( 20). 2-4, one side of the second reactor 220 communicating with the first reactor 210 is open, and a dispersion plate 240 is attached to one open side of the first reactor 220.
  • the generated gas generated at 210 may be introduced into the second reactor 220 through the dispersion plate 240 of the second reactor 220.
  • the second reactor 220 is spaced apart from the inner circumference of the first reactor 210 at an inner upper end of the first reactor 210 so as to be positioned at an upper side of the inside of the first reactor 210. It may be fixed to be spaced apart (claim 2).
  • the upper surface 241 and the circumferential surface 243 of the second reactor 220 is formed in a plate shape and the bottom surface is attached to the dispersion plate 240 in an open form, waste wood injected into the first reactor 210
  • the product gas in which the waste, such as biomass, is gasified may flow through the distribution plate 240 to the inside of the second reactor 220.
  • the dual biomass gasification reactor 20 of the present embodiment may be installed on the top of the first reactor 210 may have a two-stage form (claim 3).
  • the transverse cross-sectional area of the first reactor 210 located below and the transverse cross-sectional area of the second reactor 220 located above the first reactor 210 may be formed to be substantially the same. Can be.
  • the dual biomass gasification reactor 20 of the present embodiment as shown in FIG. 4, the second reactor 220 is formed in a two-stage shape installed on the top of the first reactor 210, the second reactor 220 Lateral cross-sectional area of the) may be formed larger than the lateral cross-sectional area of the first reactor 210 (claim 4).
  • FIGS. 3-4 when the first reactor 210 and the second reactor 220 are formed in a separated form, a communication portion between the first reactor 210 and the second reactor 220 is provided. If the length 230 is too long, there is a problem that the heat transfer is not efficient, so it may be preferable to form the longitudinal length of the communication portion 230 to be shorter than the longitudinal length of the first reactor 210.
  • the second reactor 220 is positioned at the top of the first reactor 210, so that the product gas generated in the first reactor 210 naturally moves upward to the second reactor ( The unnecessary by-products, which may be flowed to 220, are accumulated under the first reactor 210 by weight, and thus, unnecessary by-products may be prevented from flowing to the second reactor 220.
  • the second reactor 220 does not use a separate heat source, and thus the first reactor.
  • the heat source of 210 can be used as it is.
  • FIG. 5 (a) is a perspective view of the dispersion plate 240 for reducing the flow rate of the fluidized bed medium shown in Figures 1-4
  • Figure 5 (b) is a flow rate reduction of the fluidized bed medium shown in Figures 1-4
  • It is a rear view of the dispersion plate 240 for. 6 is a view showing the flow of the gas inside the two-stage biomass gasification reactor 20 shown in FIG.
  • the scale of the device for large-scale biomass energy production, or the flow rate of the generated gas in the reactor is very fast due to various conditions such as temperature or pressure, so that the catalyst or adsorbent filled in the reactor and Blowing and agglomeration of solid materials in the same powder form may occur.
  • the inside of the reactor may be filled.
  • the powdered carbon adsorbent 223 may be lost in all directions and may be lost or aggregated to form agglomerates, thereby causing a problem of reducing tar and reducing hydrogen generation efficiency of the reactor.
  • the solid material such as the carbon adsorbent 223 is filled in the pellet form, not in the form of a powder to prepare a blown or agglomerated at a high flow rate of the fluidized bed medium, but
  • the surface area is smaller than the powder form, and thus the tar reduction and hydrogen generation efficiency are lowered, and when the flow velocity of the fluidized bed medium is increased, even the pellet-type carbon adsorbent 223 is still flying.
  • the dispersion plate 240 as shown in FIG. 5 is installed in the communication portion 230 of the first reactor 210 and the second reactor 220.
  • Dispersion plate 240 is formed in a cylindrical shape of the top surface 241 is blocked and the bottom surface is open, a plurality of through-holes 247 is formed on the circumferential surface 243 of the cylinder and the bottom circumference of the cylinder is expanded in the form of a plate have. 2-4, the carbon adsorbent 223 in the form of powder may be filled in the upper surface 249 of the lower periphery extended in the form of a plate of the dispersion plate 240.
  • the powdered carbon adsorbent 223 is blown or agglomerated by reducing the flow rate of the generated gas by passing the generated gas generated in the first reactor 210 through the dispersion plate 240. Can be prevented.
  • the flow rate of the generated gas can be reduced by varying the direction in which the generated gas flows by the dispersion plate 240 several times instead of vertically rising by the dispersion plate 240 in a straight line.
  • the product gas of the first reactor 210 does not immediately rise vertically and flows to the second reactor 220, but the product gas of the first reactor 210 is collected to open the dispersion plate 240.
  • the product gas introduced into the open lower surface of the dispersion plate 240 is communicated through the circumferential surface 243 of the cylindrical dispersion plate 240, that is, the plurality of through holes 247 on the side surface ( As it flows to the 230 and flows to the second reactor 220 through the powdery carbon adsorbent 223 located on the upper surface 249 of the lower periphery extending in the form of a plate of the dispersion plate 240 to the side,
  • the flow direction of the gas varies several times.
  • the product gas generated in the first reactor 210 does not immediately rise vertically and flows to the second reactor 220, but the direction in which the product gas flows by the dispersion plate 240 is changed several times.
  • the flow rate of the can be reduced, accordingly, the blowing and agglomeration of the carbon adsorbent 223 located on the upper surface 249 of the lower periphery extended in the form of a plate of the dispersion plate 240 is reduced, the double biomass of the present embodiment Tar reduction and hydrogen production efficiency by the gasification reactor can be significantly improved.
  • the flow rate may be reduced, so that the generated gas is generated in the first reactor 210.
  • the circumference of the lower end of the distribution plate 240 is fitted with the circumference of the communication portion 230 in which the distribution plate 240 is installed so that the generated gas flows through the distribution plate 240 to the second reactor 220. It should be formed in the form.
  • a separate component such as a rubber ring may be added to the circumferential surface 243 of the distribution plate 240 to be in close contact with the inner circumferential surface 243 of the communication portion 230.
  • the dual biomass gasification reactor 20 including the dispersion plate 240 may be applied to a large-scale process or may be applied to a second reactor in the first reactor 210 even if the flow velocity of the fluidized bed medium is increased by conditions such as temperature and pressure.
  • the flow velocity of the fluidized bed medium flowing into the reactor 220 can be effectively reduced, blowing and agglomeration can be prevented even when using the carbon adsorbent 223 in the form of powder, and the efficiency of tar removal and hydrogen generation is improved. You can.
  • the particle diameter or the number of the plurality of through holes 247 formed on the circumferential surface 243 of the dispersion plate 240 it is possible to adjust the degree of flow rate reduction of the fluidized bed medium by the dispersion plate 240, which is a two-stage biomass It can be freely adjusted according to the size of the gasification reactor 20, biomass energy generation amount and the like.
  • the tar content of the product gas passing through the carbon adsorbent 223 in the form of powder is reduced and a high calorific value gas with improved hydrogen concentration is produced.
  • the high calorific value generated gas having reduced tar content and improved hydrogen concentration may be flowed to a subsequent process through the cyclone 225.
  • the cyclone 225 prevents the outflow of the carbon adsorbent 223 filled therein while discharging the product gas having reduced tar content in the second reactor 220 in a subsequent process (claim 9).
  • the cyclone 225 may have a structure in which a lower end of the cyclone 225 is bent so that tar is reduced and the hydrogen concentration does not interfere with the rise of the high calorific value gas.
  • the surface adjacent to the inner space of the first reactor among the peripheral surfaces of the cylinder of the dispersion plate may include a coating with nickel.
  • the surface adjacent to the inner space of the first reactor in addition to the circumferential surface of the cylinder of one surface of the dispersion plate of the gasification reactor may include a coating with nickel (242). As described above, when the surface adjacent to the inner space of the first reactor of one side of the dispersion plate is coated with nickel, tar and ammonia present in the first reactor may react with nickel to reduce the content of tar and ammonia in the gas. .
  • the sand packed inside the first reactor allows for smooth gasification of the waste while flowing along the air stream of the external heat source, and can remove tar deposited on the nickel coating layer, thereby inhibiting inactivation of nickel. can do.
  • the second reactor 220 communicates the inside of the first reactor 210 and the inside of the second reactor 220 with each other so that the carbon adsorbent 223 inside the second reactor 220 is maintained in a certain amount.
  • a second pipe 221 is installed which flows toward the first reactor 210 (claim 8).
  • the excess carbon adsorbent 223 of the second reactor 220 may flow along the second pipe to the first reactor 210 and then flow through the first pipe 211 to be stored in the receiving portion 213. .
  • the second pipe 221 may be in communication with the inside at a predetermined height of the second reactor 220 and may pass through the distribution plate 240 to communicate with the first reactor 210.
  • the present invention is not limited thereto and may be implemented in various forms capable of communicating the second reactor 220 and the first reactor 210.
  • the lower end of the second pipe 221 is the first pipe 211 so that the carbon adsorbent 223 discharged through the second pipe 221 may be stored in the accommodating part 213 through the first pipe 211. It should be formed higher than the top of In addition, at the lower end of the second pipe 221 and the lower end of the first pipe 211, a separate carbon adsorbent 223 discharged from the second pipe 221 flows to the first pipe 211. The configuration of may be added.
  • the dual biomass gasification reactor 20 can reduce the amount of particles contained in the product gas in the following manner.
  • the surplus biochar in the first reactor 210 is discharged to the receiving portion 213 through the first pipe 211, and the carbon adsorbent 223 inside the second reactor 220 through the cyclone 225.
  • the excess carbon adsorbent 223 inside the second reactor 220 through the first pipe 210 to the receiving portion 213 through the second pipe 221. have.
  • the carbon adsorbent filled in the dual biomass gasification reactor may be in the form of a powder, and the carbon adsorbent in the form of pellets may be used in a powder form according to external conditions such as reaction conditions and biomass energy generation.
  • the heat source supply means 30 serves to supply a preliminary heat source and air to the first reactor 210 and also to supply water vapor as necessary, and is formed in a general configuration relationship used in a fluidized bed gasifier.
  • the purifying means 40 serves to purify the exhaust gas discharged from the second reactor 220 to be used for electric power production, etc., and is formed in a general configuration relationship used in the fluidized bed gasifier.
  • Gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of the fluidized bed medium of the present embodiment can adjust the flow rate of the fluidized bed medium in the reactor, so it can be applied to large scale processes as well as small scale processes Can be utilized in
  • the gasification apparatus including the gasification reactor 20 with the dispersion plate 240 for reducing the flow rate of the fluidized bed medium of the embodiment of the present invention is a waste injection means 10 for injecting waste, the fluidized bed medium of the present invention As it includes a gasification reactor 20, a heat source supply means 30, and a purification means 40 provided with a dispersion plate 240 for reducing the flow rate, power generation, fuel cells, chemicals, as well as small scale processes It can be stably applied to industrial raw materials to produce high calorific value gas with high hydrogen concentration while having low tar content.
  • Example 1 the upper surface of the present embodiment is clogged and the bottom surface is formed in an open cylindrical shape. And while installed in the communication portion of the second reactor, Comparative Example 2, unlike the present embodiment is provided with a plate-shaped dispersion plate is formed with a plurality of holes.
  • Example 1 Comparative Example 1 Comparative Example 2 First reactor ⁇ ⁇ ⁇ Second reactor ⁇ ⁇ ⁇ Dispersion ⁇ (flow rate reduction type) X ⁇ (flat type) Carbon adsorbent in powder form ⁇ X ⁇
  • the gasification of the biomass was carried out under the reaction conditions as shown in Table 2 using a gasification apparatus including a gasification reactor having the configuration of Table 1, and the tar content, condensation tar removal efficiency, and hydrogen concentration in the generated gas were Shown in The condensation tar removal efficiency of Table 3 below is expressed by calculating the amount of the final generated condensation tar of Example 1 and Comparative Example 2 by the amount of the final generated condensation tar of Comparative Example 1.
  • Example 1 flow rate reduction type dispersion plate
  • Comparative Example 1 Carbon Adsorbent X
  • Comparative Example 2 flat dispersion plate
  • H 2 vol%) 17.3 8.6 19.0
  • concentration of tar in the product gas mg / Nm 3
  • Detection x 1024 Detection x Amount of condensation tar (g / kg of wood) 0.13 29.31 1.80 Condensation tar removal efficiency (%) 99.6 base 93.8
  • Example 1 through the comparison between Example 1 and Comparative Example 1, when the gasifier of Example 1 containing the carbon adsorbent is used, the amount of hydrogen produced is significantly higher than that of the gasifier of Comparative Example 1 that does not include the carbon adsorbent. It can be seen that there are many and the amount of condensation tar is also very small. That is, it is judged that by using the gasifier containing the carbon adsorbent of the present embodiment, it is possible to effectively reduce the tar and to significantly increase the production of hydrogen, thereby producing a gas having a high calorific value.
  • Example 1 in the case of using the gasifier of Example 1 provided with a dispersion plate of the present embodiment, of the Comparative Example 2 provided with a flat plate dispersion plate in the form of a plate with a plurality of conventional holes It can be seen that the hydrogen production similar to the case of using a gasifier. In particular, when the gasifier of Example 1 was used, the amount of condensation tar was significantly smaller than that of the gasifier of Comparative Example 1, and the condensation tar removal efficiency was also significantly higher.
  • waste injection means 20 gasification reactor
  • first reactor 211 first pipe
  • second pipe 223 carbon adsorbent
  • dispersion plate 241 upper surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The present invention relates to a dual biomass gasification reactor equipped with a dispersion plate for reducing a flow rate of a fluidized bed medium and a gasification apparatus comprising the same. The dual biomass gasification reactor equipped with a dispersion plate for reducing a flow rate of a fluidized bed medium comprises: a first reactor for gasifying waste fed thereto; and a second reactor installed to communicate with the first reactor and filled with a predetermined amount of carbon adsorbent to reduce a tar content in a product gas produced in the first reactor, and to increase hydrogen production, and to supply a resulting product gas to a subsequent process, wherein the first reactor helps the waste combust and gasify, thereby producing combustible gas and bio-char, and wherein the dispersion plate is in a cylindrical form with a closed top surface and an open bottom surface and has a plurality of holes formed in a circumferential surface thereof. The dispersion plate installed on a communicating portion of the first and the second reactor prevents the powdery carbon adsorbent filled in the reactor from being blown out even when the flow rate of the fluidized bed medium is increased, so that the product gas produced through the reaction has not only significantly reduced tar content but also a remarkably increased hydrogen concentration. Therefore, a high-calorific gas can be manufactured.

Description

유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기 및 이를 포함하는 가스화 장치Dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium and a gasifier comprising the same
본 발명은 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기 및 이를 포함하는 가스화 장치에 관한 것이다.The present invention relates to a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium and a gasifier comprising the same.
본 발명은 청우에이스(주)의 주관 하에 대한민국 산업통상자원부와 한국에너지기술평가원의 신재생에너지핵심기술개발(21535011011559005901301)지원으로 수행된 연구 결과로서, 연구과제명은 분산전원용 가스엔진 활용을 위한 초저타르 및 저암모니아 프로듀서가스 생산용 바이오매스 이단가스화 모듈단위 개발이고, 연구기간은 2015.12.01.~2016.09.30이다(과제고유번호 : 1415143434, 세부과제번호 : 20153030091340).The present invention is the result of research carried out by the Ministry of Trade, Industry and Energy and the Korea Institute of Energy Evaluation and Technology (21535011011559005901301) under the supervision of Chungwoo Ace Co., Ltd. And the development of biomass two-stage gasification module unit for producing low ammonia producer gas, and the research period is 2015.12.01. ~ 2016.09.30 (task unique number: 1415143434, detailed task number: 20153030091340).
최근 환경오염에 대한 문제가 사회적 이슈로 부각되면서 기존의 화석연료를 재활용하거나 재생 가능한 에너지를 변환시켜 이용하는 태양에너지, 지열에너지, 해양에너지, 바이오매스 에너지 등을 포함하는 신재생에너지에 대한 관심이 높아지고 있다. 특히, 버려지는 폐기물을 재활용하거나 목재 또는 건조 바이오매스를 활용하여 자원의 순환률을 높이면서도 탄소중립(Carbon-neutral)을 위한 자원으로 인정받는 바이오매스 에너지의 활용도가 점차 증가하고 있어, 바이오매스 에너지 생성을 위한 장치의 효율을 높이기 위한 다양한 방법이 모색되고 있다.Recently, as the problem of environmental pollution has emerged as a social issue, interest in renewable energy, including solar energy, geothermal energy, marine energy, and biomass energy, which uses existing fossil fuels or converts renewable energy, has increased. have. In particular, the utilization of biomass energy, which is recognized as a resource for carbon-neutral, is increasing while recycling wastes or increasing the circulation rate of resources by using wood or dry biomass. Various methods have been sought to increase the efficiency of the device for generation.
일반적으로 바이오매스 에너지는 목재, 폐기물, 건조 바이오매스 등을 가스화 내지 열분해하여 가스나 오일을 생산함으로써 이를 제조함으로써 이를 에너지로 활용하는데, 이러한 가스화 내지 열분해는 주로 유동층 가스화 장치를 이용하여 실시된다.In general, biomass energy is produced by gas or pyrolysis of wood, waste, dry biomass, etc. to produce gas or oil, and used as energy. Such gasification or pyrolysis is mainly performed using a fluidized bed gasification apparatus.
유동층 가스화 장치는 상향 흐름을 갖는 반응 기체로 인해 고체층이 부유하여 기체 및 액체와 같은 유동을 하며, 기체와 고체, 고체와 고체가 매우 빠르게 혼합되어 반응됨으로서 가스를 생성하는 장치를 말한다. 이러한 유동층 가스화 장치는 유동층 매체와 고체(촉매 내지 흡착제)의 완전 혼합을 통해 기체와 고체의 접촉이 완벽히 일어나 반응속도가 빠르고 효율이 증대되며, 낮은 온도에서도 반응이 빠르고 열손실을 줄일 수 있는 이점이 있다.The fluidized bed gasifier refers to a device in which a solid layer is suspended due to a reaction gas having an upward flow to flow, such as a gas and a liquid, and gas and solid, solid and solid are mixed and reacted very quickly to generate a gas. This fluidized bed gasifier has the advantages of complete reaction of fluid and medium (catalyst or adsorbent) to complete contact of gas and solid, resulting in fast reaction speed and increased efficiency, and fast reaction at low temperatures and reduced heat loss. have.
특히, 유동층 가스화 장치는 고체를 처리하여 가스를 얻음에 따라, 반응을 통해 생성된 가스 내의 타르 함량을 줄이고 고발열량의 가스를 생성하는 데에 가장 큰 목적이 있다. 대한민국 등록특허 제10-1503607호에서는 반응기 본체, 산소 공급부, 유동층 합성가스 반응부, 촉매를 포함하는 수성가스 반응부 등으로 구성되어 바이오매스 자원들을 이용하여 고농도의 수소를 생산하고 이를 이용하여 전력, 연료전지, 화학산업원료 등으로 이용할 수 있도록 하는 2단 유동층 바이오매스 가스화 장치 및 방법을 개시하고 있으나, 여전히 생성된 가스 내의 수소 농도가 낮으며 생성된 가스 내의 타르가 효율적으로 저감되지 못하는 문제가 있었다.In particular, the fluidized bed gasifier has the greatest purpose in reducing the tar content in the gas produced through the reaction and producing a high calorific value gas as the solid is treated to obtain the gas. Republic of Korea Patent No. 10-1503607 is composed of a reactor body, oxygen supply unit, fluidized bed synthesis gas reaction unit, a water gas reaction unit including a catalyst to produce a high concentration of hydrogen using biomass resources, using the power, Disclosed is a two-stage fluidized bed biomass gasification apparatus and method for use as a fuel cell, a chemical industrial material, etc., but still has a problem in that the hydrogen concentration in the produced gas is low and the tar in the produced gas is not effectively reduced. .
또한, 상기의 특허를 포함하는 종래기술에서 대량의 바이오매스 에너지 생산을 위해 상기와 같은 유동층 가스화 장치를 스케일 업(Scale-up)하는 경우, 유동층 매체의 빠른 유속에 의해 반응기 내부에 충진된 파우더 형태의 고체(촉매 내지 흡착제)의 날림 및 뭉침 현상이 발생되어 장치의 효율이 저하되는 문제가 있었다. 이에 따라, 파우더 형태의 고체(촉매 내지 흡착제)를 압착하여 펠렛(pellet) 형태의 고체(촉매 내지 흡착제)를 사용하였으나, 이 경우 파우더 형태에 비해 펠렛 형태의 표면적이 매우 적어져 여전히 타르 제거 및 수소 생성 효율이 감소되는 문제가 있었다.In addition, in the prior art including the above patent, when scaling up such a fluidized bed gasifier for producing a large amount of biomass energy, a powder form filled inside the reactor by a high flow rate of the fluidized bed medium Blowing and agglomeration of solids (catalysts to adsorbents) may occur, resulting in a decrease in efficiency of the apparatus. Accordingly, the solid in the form of a powder (catalyst or adsorbent) was pressed to use a solid in the form of a pellet (catalyst or the adsorbent), but in this case, the surface area of the pellet form is much smaller than that of the powder form, which still removes tar and hydrogen. There was a problem that the production efficiency is reduced.
본 발명의 목적은 이단 반응기 중 상부 반응기의 내부에 파우더 형태의 탄소 흡착제를 포함하고, 상부 반응기 및 하부 반응기 사이의 연통부위에 유동층 매체의 유속 저감을 위한 분산판을 포함함에 따라, 유동층 매체의 유속이 증가하여도 파우더 형태의 탄소 흡착제의 날림 현상이 방지되어 반응을 통해 생성된 생성가스 내의 타르 함량이 현저히 감소될 뿐 아니라, 수소 농도가 현저히 증가하여 고발열량의 가스를 제조할 수 있는 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기를 제공하는 데에 있다.An object of the present invention is to include a carbon adsorbent in the form of a powder in the upper reactor of the two-stage reactor, and to include a dispersion plate for reducing the flow rate of the fluidized bed medium in the communication between the upper reactor and the lower reactor, the flow rate of the fluidized bed medium This increase prevents the blowing of the carbon adsorbent in the form of powder, which significantly reduces the tar content in the product gas produced through the reaction, and significantly increases the hydrogen concentration to produce a high calorific gas. The present invention provides a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate.
또한, 본 발명의 다른 목적은 상기의 유동층 매체의 유속 저감을 위한 분산판을 포함하는 이중 바이오매스 가스화 반응기를 포함함에 따라, 전력 생산, 연료전지, 화학산업원료 등에 안정적으로 이용될 수 있는 타르의 함량이 적으면서도 수소 농도가 높은 고발열량의 가스를 생산할 수 있는 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기를 포함하는 가스화 장치를 제공하는 데에 있다.In addition, another object of the present invention includes a double biomass gasification reactor including a dispersion plate for reducing the flow rate of the fluidized bed medium, it can be used stably of tar that can be used for power generation, fuel cells, chemical industry raw materials, etc. The present invention provides a gasification apparatus including a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of a fluidized bed medium capable of producing a high calorific value gas having a high hydrogen concentration while having a low content.
상기된 바와 같은 기술적 과제로 한정되지 않으며, 이하의 설명으로부터 또 다른 기술적 과제가 도출될 수 있다.It is not limited to the technical problem as described above, another technical problem can be derived from the following description.
상기 목적을 달성하기 위하여 본 발명은 주입된 폐기물을 외부의 열원과 자체의 열원을 이용하여 가스화하는 제 1 반응기, 및 상기 제 1 반응기에 연통되도록 설치되어 상기 제 1 반응기의 열원을 이용하며 내부에 일정량의 탄소 흡착제가 충진되어 상기 제 1 반응기에서 생성된 생성가스 내의 타르의 함량을 저감시키고 수소 생산을 증대시켜 후속 공정으로 공급하는 제 2 반응기를 포함하고, 상기 제 1 반응기는 내부에 일정량의 모래가 충진되어 상기 외부의 열원의 기류를 따라 유동하면서 폐기물의 연소를 도와 가스화하고 가연성 가스 및 바이오챠르(bio-char)를 생성하며, 상기 제 1 반응기 및 상기 제 2 반응기의 연통부위에 상면은 막혀있고 하면은 개방된 원통 형태로 형성되어 상기 원통의 둘레면에는 다수의 구멍이 형성되어 있고 상기 원통의 하단 둘레는 판 형태로 확장되어 있는 분산판이 설치되는 이중 바이오매스 가스화 반응기를 제공한다.In order to achieve the above object, the present invention provides a first reactor for gasifying the injected waste using an external heat source and its own heat source, and is installed to communicate with the first reactor, using a heat source of the first reactor, and A second reactor filled with a certain amount of carbon adsorbent to reduce the content of tar in the product gas produced in the first reactor, increase hydrogen production, and supply to a subsequent process, the first reactor having a certain amount of sand therein; Is filled and flows along the air stream of the external heat source to assist in the combustion of the waste gas and produce flammable gas and bio-char, and the upper surface is blocked in the communication portion of the first reactor and the second reactor. And the bottom surface is formed in an open cylindrical shape, and a plurality of holes are formed in the circumferential surface of the cylinder, and the bottom of the cylinder Les offers double the biomass gasification reactor which is installed in the extended edition distributed in the form of plates.
상기 제 2 반응기는 상기 제 1 반응기의 내부 중에서 상부 쪽에 위치하도록 상기 제 1 반응기의 내측 상단에 고정하되, 상기 제 1 반응기의 내측 둘레와 일정 간격을 갖도록 고정될 수 있다.The second reactor may be fixed to the inner upper end of the first reactor so as to be located on the upper side of the inside of the first reactor, it may be fixed to have a predetermined interval with the inner circumference of the first reactor.
상기 제 2 반응기가 상기 제 1 반응기의 상단에 설치되어 이단 형태를 갖을 수 있다.The second reactor may be installed on the top of the first reactor may have a two-stage form.
상기 제 2 반응기의 횡 단면적이 상기 제 1 반응기의 횡 단면적 보다 더 넓을 수 있다.The cross sectional area of the second reactor may be wider than the cross sectional area of the first reactor.
상기 탄소 흡착제는 활성탄, 바이오챠르 중에서 선택되는 하나 이상을 포함할 수 있다.The carbon adsorbent may include one or more selected from activated carbon and biochar.
상기 제 1 반응기는 상기 제 1 반응기 내부의 바이오챠르가 일정량 유지되도록 잉여 바이오챠르를 외부로 배출하기 위해 상기 제 1 반응기의 내부와 연통되도록 설치되는 제 1 파이프, 및 상기 제 1 파이프를 따라 중력에 의해 배출되는 상기 잉여 바이오챠르를 저장하는 수용부를 더 포함할 수 있다.The first reactor has a first pipe installed to communicate with the interior of the first reactor for discharging the surplus biochar to the outside to maintain a certain amount of the biochar inside the first reactor, and the gravity along the first pipe It may further include a receiving portion for storing the excess biochar discharged by.
상기 제 2 반응기는 상기 제 1 반응기와 상기 제 2 반응기를 서로 연통시켜 상기 제 2 반응기 내부의 탄소 흡착제가 일정량 유지되도록 잉여 탄소 흡착제를 상기 제 1 반응기 쪽으로 유동시키는 제 2 파이프를 더 포함할 수 있다.The second reactor may further include a second pipe communicating the first reactor and the second reactor with each other so as to flow a surplus carbon adsorbent toward the first reactor so that a predetermined amount of the carbon adsorbent in the second reactor is maintained. .
상기 제 2 반응기의 내부에는 타르의 함량이 저감된 생성가스를 후속 공정으로 배출하면서 내부에 충진된 상기 탄소 흡착제의 유출을 막는 사이클론이 더 설치될 수 있다.A cyclone may be further installed inside the second reactor to prevent the outflow of the carbon adsorbent filled therein while discharging the product gas having reduced tar content in a subsequent process.
또한, 상기 목적을 달성하기 위해여 본 발명은 폐기물을 주입하는 폐기물 주입수단, 제 1 항의 이중 바이오매스 가스화 반응기, 상기 제 1 항의 이중 바이오매스 가스화 반응기에 예비 열원과 공기를 공급하는 열원공급수단, 및 상기 제 1 항의 이중 바이오매스 가스화 반응기에서 배출되는 배출가스를 정제하는 정제수단을 포함하는 가스화 장치를 제공한다.In addition, the present invention in order to achieve the above object is a waste injection means for injecting waste, the dual biomass gasification reactor of claim 1, the heat source supply means for supplying a preliminary heat source and air to the dual biomass gasification reactor of claim 1, And it provides a gasifier comprising a purifying means for purifying the exhaust gas discharged from the dual biomass gasification reactor of claim 1.
본 발명의 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기는 주입된 폐기물을 가스화하는 제 1 반응기, 및 제 1 반응기에 연통되도록 설치되며 내부에 일정량의 탄소 흡착제가 충진되어 제 1 반응기에서 생성된 생성가스 내의 타르의 함량을 저감시키고 수소 생산을 증대시켜 후속 공정으로 공급하는 제 2 반응기를 포함하고, 제 1 반응기는 폐기물의 연소를 도와 가스화하고 가연성 가스 및 바이오챠르(bio-char)를 생성하며, 제 1 반응기 및 제 2 반응기의 연통부위에 상면은 막혀있고 하면은 개방된 원통 형태로 형성되어 원통의 둘레면에는 다수의 구멍이 형성되어 있는 분산판이 설치됨에 따라, 유동층 매체의 유속이 증가하여도 반응기 내부에 충진된 파우더 형태의 탄소 흡착제의 날림 현상이 방지되어 반응을 통해 생성된 생성가스 내의 타르 함량이 현저히 감소될 뿐 아니라, 수소 농도가 현저히 증가하여 고발열량의 가스를 제조할 수 있다.Dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium of the present invention is installed so as to communicate with the first reactor for gasifying the injected waste, and the first reactor and a predetermined amount of carbon adsorbent is filled therein And a second reactor for reducing the content of tar in the product gas produced in the reactor, increasing hydrogen production and feeding it to a subsequent process, wherein the first reactor assists in the combustion of waste gasification and combustible gases and bio-chars. ), The upper surface is blocked at the communication portion of the first reactor and the second reactor, and the lower surface is formed into an open cylindrical shape, and as the dispersion plate having a plurality of holes is formed in the circumferential surface of the cylinder, Even if the flow rate is increased, the blowing phenomenon of powdered carbon adsorbent packed inside the reactor is prevented The resulting not only significantly reduce the tar content in the gas, the hydrogen concentration is significantly increased can be made of the calorific gas.
또한, 유동층 매체의 유속 저감을 위한 분산판이 구비된 가스화 반응기를 포함하는 가스화 장치는 폐기물을 주입하는 폐기물 주입수단, 본 발명의 유동층 매체의 유속 저감을 위한 분산판이 구비된 가스화 반응기, 열원공급수단, 및 정제수단을 포함함에 따라, 전력 생산, 연료전지, 화학산업원료 등에 안정적으로 이용될 수 있는 타르의 함량이 적으면서도 수소 농도가 높은 고발열량의 가스를 생산할 수 있다.In addition, the gasifier comprising a gasification reactor having a dispersion plate for reducing the flow rate of the fluidized bed medium is a waste injection means for injecting waste, gasification reactor with a dispersion plate for reducing the flow rate of the fluidized bed medium of the present invention, heat source supply means, And a purifying means, it is possible to produce a high calorific value gas with a high hydrogen concentration while having a low content of tar that can be stably used for power generation, fuel cells, chemical industry raw materials and the like.
도 1은 본 발명의 일 실시예에 따른 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기를 포함하는 가스화 장치의 개념도이다.1 is a conceptual diagram of a gasifier including a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium according to an embodiment of the present invention.
도 2는 도 1에 도시된 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기의 단면도이다.FIG. 2 is a cross-sectional view of a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium shown in FIG. 1.
도 3는 본 발명의 다른 실시예에 따른 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기의 단면도이다.3 is a cross-sectional view of a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기의 단면도이다.4 is a cross-sectional view of a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of the fluidized bed medium according to another embodiment of the present invention.
도 5은 도 1에 도시된 유동층 매체의 유속 저감을 위한 분산판을 도시한 도면이다.FIG. 5 is a view illustrating a dispersion plate for reducing the flow rate of the fluidized bed medium shown in FIG. 1.
도 6은 4에 도시된 이중 바이오매스 가스화 반응기 내부에서의 생성가스의 흐름을 나타낸 도면이다.FIG. 6 is a view illustrating a flow of generated gas in the dual biomass gasification reactor illustrated in FIG. 4.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
본 발명의 명세서 및 청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims of the present invention are not to be construed in a conventional or dictionary sense, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way. Based on the principle, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
본 발명의 명세서 전체에 있어서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification of the present invention, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated. .
본 발명의 명세서 전체에 있어서, "A 및/또는 B"는, A 또는 B, 또는 A 및 B를 의미한다.In the specification of the present invention, "A and / or B" means A or B, or A and B.
본 발명의 명세서 전체에 있어서, 폐기물은 폐목재, 바이오매스 등 바이오매스 에너지 생성에 활용될 수 있는 모든 자원을 의미할 수 있다.Throughout the specification of the present invention, waste may refer to any resource that can be utilized to generate biomass energy, such as waste wood and biomass.
본 발명의 명세서 전체에 있어서, 생성가스는 제 1 반응기로 주입된 폐기물이 열원에 의해 연소됨으로써 생성된 가스를 의미할 수 있다.In the entire specification of the present invention, the product gas may mean a gas generated by the waste injected into the first reactor by the heat source.
본 발명의 명세서 전체에 있어서, 유동층 매체는 제 1 반응기 및 제 2 반응기 내부를 유동하는 생성가스를 포함하는 모든 물질을 의미할 수 있다.Throughout the specification of the present invention, the fluidized bed medium may mean all materials including the product gas flowing inside the first reactor and the second reactor.
본 발명의 명세서 전체에 있어서, 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기는 이중 바이오매스 가스화 반응기로 간략하게 호칭될 수 있다. Throughout the description of the present invention, a dual biomass gasification reactor equipped with a dispersion plate for reducing the flow rate of a fluidized bed medium may be briefly referred to as a dual biomass gasification reactor.
이하, 첨부된 도면을 참조하여 본 발명을 구체적으로 설명하였으나, 본 발명이 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
도 1은 본 발명의 일 실시예에 따른 유동층 매체의 유속 저감을 위한 분산판(240)이 구비된 이중 바이오매스 가스화 반응기(20)를 포함하는 가스화 장치의 개념도이며, 도 2는 도 1에 도시된 유동층 매체의 유속 저감을 위한 분산판(240)이 구비된 이중 바이오매스 가스화 반응기(20)의 단면도 이다.1 is a conceptual diagram of a gasifier including a dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of a fluidized bed medium according to an embodiment of the present invention, Figure 2 is shown in FIG. Is a cross-sectional view of a dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of the fluidized bed medium.
도 1에 도시된 바와 같이, 본 발명의 실시예의 가스화 장치는 하수 슬러지나 폐목재 등의 폐기물을 주입하는 폐기물 주입수단(10), 폐기물 주입수단(10)을 통해 주입된 폐기물을 외부의 열원과 폐기물 자체의 열원을 이용하여 가스화하고 생성된 생성가스 내의 타르를 흡착 내지 분해하여 타르의 함량을 줄이는 이중 바이오매스 가스화 반응기(20), 이중 바이오매스 가스화 반응기(20)에 예비 열원과 공기를 공급하는 열원공급수단(30), 및 이중 바이오매스 가스화 반응기(20)에서 배출되는 배출가스를 정제하는 정제수단(40)으로 구성(청구항10)되며, 유동층 매체의 유속이 증가하여도 파우더 형태의 탄소 흡착제(223)의 날림 현상이 방지되어 반응을 통해 생성된 생성가스 내의 타르 함량이 현저히 감소될 뿐 아니라, 수소 농도가 현저히 증가하여 고발열량의 가스를 제조할 수 있다.As shown in Figure 1, the gasifier of the embodiment of the present invention is waste injection means 10 for injecting waste, such as sewage sludge or waste wood, waste injected through the waste injection means 10 and the external heat source By using a heat source of the waste itself gasification and adsorbing or decomposition of the tar in the generated gas to reduce the tar content of the double biomass gasification reactor 20, the dual biomass gasification reactor 20 to supply a preliminary heat source and air It is composed of a heat source supply means 30, and a purifying means 40 for purifying the exhaust gas discharged from the double biomass gasification reactor 20 (claim 10), carbon adsorbent in the form of powder even if the flow rate of the fluidized bed medium increases (223) is prevented from flying, and the tar content in the product gas produced through the reaction is not only significantly reduced, but also the hydrogen concentration is significantly increased to add high calorific value. It can be produced.
폐기물 주입수단(10)은 하수 슬러지나 폐목재 등의 폐기물을 일정 크기로 분쇄하여 주입하는 것으로서, 가스화 장치에서 이용하는 일반적인 구성관계로 구성된다.The waste injecting means 10 is to crush and inject waste such as sewage sludge or waste wood into a predetermined size, and is constituted in a general configuration relationship used in a gasifier.
유동층 매체의 유속 저감을 위한 분산판(240)이 구비된 이중 바이오매스 가스화 반응기(20)는 도 1-2에 도시된 바와 같이, 일정 크기의 용적을 갖는 제 1 반응기(210), 및 제 1 반응기(210)의 내부 상측에 설치되는 제 2 반응기(220)로 구성된다.Dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of the fluidized bed medium, as shown in Figure 1-2, the first reactor 210 having a volume of a certain size, and the first It consists of a second reactor 220 is installed above the inside of the reactor (210).
제 1 반응기(210)는 주입된 폐기물을 외부의 열원과 자체의 열원을 이용하여 가스화(청구항1)한다. 이때, 제 1 반응기(210)의 열원은 본 실시예의 열원공급수단(30)에서 공급되는 예비 열원, 공기 및 수증기와 폐기물 자체의 열원일 수 있으며, 제 1 반응기(210)는 열원공급수단(30)으로부터 열원을 공급받을 수 있는 형태로 형성될 수 있다. 도 1-2에 도시된 바와 같이, 제 1 반응기(210)의 내부에는 일정량의 모래가 충진되며, 모래는 외부의 열원의 기류를 따라 유동하면서 폐기물의 원활한 가스화를 수행하고 바이오챠르(청구항1) 및 생성가스를 생성한다.The first reactor 210 gasifies the injected waste using an external heat source and its own heat source (claim 1). At this time, the heat source of the first reactor 210 may be a preliminary heat source, air and steam and a heat source supplied by the heat source supply means 30 of the present embodiment, the first reactor 210 is a heat source supply means 30 It may be formed in a form that can receive a heat source from). As shown in Figure 1-2, the first reactor 210 is filled with a certain amount of sand, the sand flows along the air stream of the external heat source to perform the smooth gasification of the waste and biochar (claim 1) And produce gas.
제 1 반응기(210)에는 제 1 반응기(210)의 내부와 수용부(213)를 연결하는 제 1 파이프(211)가 설치될 수 있다. 도 1-2에 도시된 바와 같이, 제 1 파이프(211)는 제 1 반응기(210) 내부의 연소 과정 중에서 생성된 바이오챠르가 일정량 유지될 수 있도록 잉여 바이오챠르를 외부로 배출하기 위해 제 1 반응기(210)의 내부와 수용부(213)를 연통(청구항7)시킬 수 있으며, 제 1 반응기(210) 내부의 잉여 바이오챠르는 제 1 파이프(211)를 따라 유동하여 수용부(213)에 저장될 수 있다.The first reactor 210 may be provided with a first pipe 211 connecting the interior of the first reactor 210 and the receiving portion 213. As shown in FIGS. 1-2, the first pipe 211 is configured to discharge the surplus biochar to the outside so that a certain amount of biochar generated during the combustion process inside the first reactor 210 may be maintained. The interior of the 210 and the receiving portion 213 can communicate (claim 7), the surplus biochar inside the first reactor 210 flows along the first pipe 211 and stored in the receiving portion 213. Can be.
수용부(213)는 제 1 파이프(211)를 따라 중력에 의해 배출되는 잉여 바이오챠를를 저장한다(청구항7). 도 1-2를 참조하면, 제 1 파이프(211)는 제 1 반응기(210)와 연결되는 측의 일단이 수용부(213)와 연결되는 측의 타단 보다 높은 위치에 형성되도록 구성하여, 별도의 기계적 장치를 사용하지 않고도, 제 1 반응기(210) 내의 바이오챠르가 중력에 의해 제 1 파이프(211)를 통과하여 수용부(213)에 도달할 수 있도록 할 수 있다. 또한, 제 1 반응기(210)와 연결되는 측의 일단의 끝을 구부러진 형태로 형성하여 제 1 반응기(210) 내의 상향류에 의해 방해를 받지 않도록 할 수 있다.Receiving unit 213 stores the surplus bio-cha discharged by gravity along the first pipe (211) (claim 7). Referring to FIGS. 1-2, the first pipe 211 is configured such that one end of the side connected to the first reactor 210 is formed at a position higher than the other end of the side connected to the receiving portion 213. Without using a mechanical device, biochar in the first reactor 210 may be allowed to pass through the first pipe 211 to reach the receiving portion 213 by gravity. In addition, the end of one end of the side connected to the first reactor 210 may be formed in a bent shape so as not to be disturbed by the upflow in the first reactor 210.
도 3은 본 발명의 다른 실시예에 따른 유동층 매체의 유속 저감을 위한 분산판(240)이 구비된 이중 바이오매스 가스화 반응기(20)의 단면도이며, 도 4는 본 발명의 또 다른 실시예에 따른 유동층 매체의 유속 저감을 위한 분산판(240)이 구비된 이중 바이오매스 가스화 반응기(20)의 단면도이다. 3 is a cross-sectional view of a dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of a fluidized bed medium according to another embodiment of the present invention, Figure 4 is according to another embodiment of the present invention A cross sectional view of a dual biomass gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow velocity of a fluidized bed medium.
제 2 반응기(220)는 제 1 반응기(210)에 연통되도록 설치되어 제 1 반응기(210)의 열원을 이용하며, 내부에 일정량의 탄소 흡착제(223)가 충진되어 제 1 반응기(210)에서 생성된 생성가스 내의 타르 함량을 저감시키고 수소 생산을 증대시켜 후속 공정으로 공급한다(청구항1).The second reactor 220 is installed to communicate with the first reactor 210 and uses the heat source of the first reactor 210, and a certain amount of carbon adsorbent 223 is filled therein to generate the first reactor 210. The tar content in the generated product gas is reduced and hydrogen production is increased and fed to subsequent processes (claim 1).
본 실시예의 이중 바이오매스 가스화 반응기(20)는 제 2 반응기(220) 내부에 파우더 형태의 탄소 흡착제(223)를 충진함으로써 제 1 반응기(210)에서 연소되어 생성된 생성가스 내의 타르를 흡착하여 타르의 함량을 줄이거나 타르의 분해를 촉진하는 촉매 역할을 하여 생성가스 내의 타르의 함량을 현저히 줄일 뿐만 아니라, 생성가스 내의 수분과의 반응을 촉진시킴으로써 수소의 생산을 도와 고발열량의 가스를 제조할 수 있도록 한다.The dual biomass gasification reactor 20 according to the present embodiment is filled with a carbon adsorbent 223 in the form of powder in the second reactor 220 to adsorb tar in the product gas produced by burning in the first reactor 210. By reducing the content of or promoting the decomposition of tar, as well as reducing the content of tar in the generated gas significantly, and promotes the reaction with water in the generated gas to help the production of hydrogen to produce a high calorific value gas Make sure
이러한 탄소 흡착제(223)는 활성탄, 바이오챠르 중에서 선택되는 하나 이상을 포함(청구항6)할 수 있다. 아울러, 타르를 흡착하여 타르의 함량이 줄이거나 타르의 분해를 촉진하는 촉매 역할을 하며, 생성가스 내의 수분과의 반응을 촉진시켜 수소의 생산을 도울 수 있는 물질이라면 제한 없이 더 추가될 수 있으며, 예를 들어, 코크스, 경석 등이 추가될 수 있다.The carbon adsorbent 223 may include one or more selected from activated carbon and biochar (claim 6). In addition, by adsorbing the tar to reduce the tar content or serves as a catalyst to promote the decomposition of the tar, any material that can help the production of hydrogen by promoting the reaction with water in the product gas can be added without limitation, For example, coke, pumice and the like can be added.
도 1-4를 참조하면, 제 2 반응기(220)는 제 1 반응기(210)와 연통되도록 설치됨에 따라, 제 1 반응기(210)와 연결되는 제 2 반응기(220)의 하면은 개방된 형태로 형성되고, 하면에는 분산판(240)이 설치된다. 또한, 제 2 반응기(220) 내부에는 탄소 흡착제(223)가 충진되며, 이러한 탄소 흡착제(223)는 분산판(240)의 상부에 위치될 수 있다.1-4, as the second reactor 220 is installed to communicate with the first reactor 210, the bottom surface of the second reactor 220 connected to the first reactor 210 may be opened. The dispersion plate 240 is formed on the bottom surface. In addition, a carbon adsorbent 223 is filled in the second reactor 220, and the carbon adsorbent 223 may be positioned above the dispersion plate 240.
본 실시예의 이중 바이오매스 가스화 반응기(20)를 구성하는 제 1 반응기(210) 및 제 2 반응기(220)는 제 1 반응기(210)에서 생성된 생성가스가 제 2 반응기(220)로 유입될 수 있는 형태라면 제한 없이 다양한 형태로 구현될 수 있으며, 본 실시예에서는 도 2-4에 도시된 바와 같은 형태로 제 1 반응기(210)와 제 2 반응기(220)를 배치함으로써 이중 바이오매스 가스화 반응기(20)를 구현한다. 또한, 도 2-4에 도시된 바와 같이, 제 1 반응기(210)와 연통되는 제 2 반응기(220)의 일면은 개방되어 있으며, 개방된 일면에는 분산판(240)이 부착되어 있어 제 1 반응기(210)에서 생성된 생성가스가 제 2 반응기(220)의 분산판(240)를 통해 제 2 반응기(220) 내부로 유입될 수 있다.In the first reactor 210 and the second reactor 220 constituting the dual biomass gasification reactor 20 of the present embodiment, the generated gas generated in the first reactor 210 may be introduced into the second reactor 220. If there is a form can be implemented in various forms without limitation, in the present embodiment by placing the first reactor 210 and the second reactor 220 in the form as shown in Figures 2-4 dual biomass gasification reactor ( 20). 2-4, one side of the second reactor 220 communicating with the first reactor 210 is open, and a dispersion plate 240 is attached to one open side of the first reactor 220. The generated gas generated at 210 may be introduced into the second reactor 220 through the dispersion plate 240 of the second reactor 220.
도 2에 도시된 바와 같이, 제 2 반응기(220)는 제 1 반응기(210)의 내부 중에서 상부 쪽에 위치하도록 제 1 반응기(210)의 내측 상단에 제 1 반응기(210)의 내측 둘레와 일정 간격 이격되도록 고정(청구항2)될 수 있다. 제 2 반응기(220)의 상면(241)과 둘레면(243)은 판 형태로 형성되며 하면은 개방된 형태로 분산판(240)이 부착됨에 따라, 제 1 반응기(210)로 주입된 폐목재, 바이오매스 등과 같은 폐기물이 가스화된 생성가스는 분산판(240)을 통과하여 제 2 반응기(220)의 내부로 유동될 수 있다.As shown in FIG. 2, the second reactor 220 is spaced apart from the inner circumference of the first reactor 210 at an inner upper end of the first reactor 210 so as to be positioned at an upper side of the inside of the first reactor 210. It may be fixed to be spaced apart (claim 2). The upper surface 241 and the circumferential surface 243 of the second reactor 220 is formed in a plate shape and the bottom surface is attached to the dispersion plate 240 in an open form, waste wood injected into the first reactor 210 The product gas in which the waste, such as biomass, is gasified may flow through the distribution plate 240 to the inside of the second reactor 220.
또한, 본 실시예의 이중 바이오매스 가스화 반응기(20)는 도 3에 도시된 바와 같이, 제 2 반응기(220)가 제 1 반응기(210)의 상단에 설치되어 이단 형태(청구항3)를 가질 수 있다. 이때, 도 3에 도시된 바와 같이, 하측에 위치되는 제 1 반응기(210)의 횡 단면적과 제 1 반응기(210)의 상측에 위치되는 제 2 반응기(220)의 횡 단멱적은 거의 동일하도록 형성될 수 있다.In addition, the dual biomass gasification reactor 20 of the present embodiment, as shown in Figure 3, the second reactor 220 may be installed on the top of the first reactor 210 may have a two-stage form (claim 3). . In this case, as shown in FIG. 3, the transverse cross-sectional area of the first reactor 210 located below and the transverse cross-sectional area of the second reactor 220 located above the first reactor 210 may be formed to be substantially the same. Can be.
또한, 본 실시예의 이중 바이오매스 가스화 반응기(20)는 도 4에 도시된 바와 같이, 제 2 반응기(220)가 제 1 반응기(210)에 상단에 설치된 이단 형태로 형성되어, 제 2 반응기(220)의 횡 단면적이 제 1 반응기(210)의 횡 단면적 보다 더 넓게 형성(청구항4)될 수 있다. 다만, 도 3-4에 도시된 바와 같이, 제 1 반응기(210)와 제 2 반응기(220)가 분리된 형태로 형성될 경우에는 제 1 반응기(210) 및 제 2 반응기(220) 간의 연통부위(230)이 너무 길어지게 되면 열전달이 효율적이지 못한 문제가 있으므로, 연통부위(230)의 종방향의 길이가 제 1 반응기(210)의 종방향의 길이 보다 짧도록 형성하는 것이 좋을 수 있다.In addition, the dual biomass gasification reactor 20 of the present embodiment, as shown in FIG. 4, the second reactor 220 is formed in a two-stage shape installed on the top of the first reactor 210, the second reactor 220 Lateral cross-sectional area of the) may be formed larger than the lateral cross-sectional area of the first reactor 210 (claim 4). However, as shown in FIGS. 3-4, when the first reactor 210 and the second reactor 220 are formed in a separated form, a communication portion between the first reactor 210 and the second reactor 220 is provided. If the length 230 is too long, there is a problem that the heat transfer is not efficient, so it may be preferable to form the longitudinal length of the communication portion 230 to be shorter than the longitudinal length of the first reactor 210.
도 2-4에 도시된 바와 같이, 제 1 반응기(210)의 상부에 제 2 반응기(220)가 위치됨으로써, 제 1 반응기(210)에서 생성된 생성가스는 자연스럽게 상부로 이동하여 제 2 반응기(220)로 유동될 수 있으면서도 불필요한 부산물들은 무게에 의해 제 1 반응기(210)의 하측에 쌓이게 됨에 따라, 불필요한 부산물들이 제 2 반응기(220)로 유동되는 것을 방지할 수 있다. 또한, 제 1 반응기(210)에서 생성된 생성가스가 연통부위(230)을 거쳐 제 2 반응기(220)로 바로 유동됨에 따라, 제 2 반응기(220)는 별도의 열원을 사용하지 않고 제 1 반응기(210)의 열원을 그대로 이용할 수 있다.As shown in FIGS. 2-4, the second reactor 220 is positioned at the top of the first reactor 210, so that the product gas generated in the first reactor 210 naturally moves upward to the second reactor ( The unnecessary by-products, which may be flowed to 220, are accumulated under the first reactor 210 by weight, and thus, unnecessary by-products may be prevented from flowing to the second reactor 220. In addition, as the generated gas generated in the first reactor 210 flows directly to the second reactor 220 via the communication site 230, the second reactor 220 does not use a separate heat source, and thus the first reactor. The heat source of 210 can be used as it is.
도 5의 (a)는 도 1-4에 도시된 유동층 매체의 유속 저감을 위한 분산판(240)의 사시도이며, 도 5의 (b)는 도 1-4에 도시된 유동층 매체의 유속 저감을 위한 분산판(240)의 배면도이다. 또한, 도 6은 도 4에 도시된 이단 바이오매스 가스화 반응기(20) 내부의 가스의 흐름을 나타낸 도면이다.5 (a) is a perspective view of the dispersion plate 240 for reducing the flow rate of the fluidized bed medium shown in Figures 1-4, Figure 5 (b) is a flow rate reduction of the fluidized bed medium shown in Figures 1-4 It is a rear view of the dispersion plate 240 for. 6 is a view showing the flow of the gas inside the two-stage biomass gasification reactor 20 shown in FIG.
한편, 대규모 바이오매스 에너지의 생산을 위해 장치를 대규모로 스케일 업(Scale-up)하거나, 온도 내지 압력 등 다양한 조건에 의해 반응기 내부의 생성가스의 유속이 매우 빨라져 반응기 내부에 충진된 촉매 또는 흡착제와 같은 파우더 형태의 고체상 물질의 날림 및 뭉침 현상이 발생될 수 있다. 더 상세히 설명하면, 제 1 반응기(210)에서 생성된 다량의 생성가스가 반응기의 규모 또는 온도, 압력 등과 같은 다양한 조건에 의해 빠른 속도로 제 2 반응기(220)로 유동되면, 반응기 내부에 충진되어 있는 파우더 형태의 탄소 흡착제(223)가 사방으로 날리며 소실되거나, 입자가 뭉쳐 덩어리를 형성할 수 있어, 반응기의 타르 저감 및 수소 생성 효율이 저하되는 문제가 발생될 수 있다.On the other hand, the scale of the device for large-scale biomass energy production, or the flow rate of the generated gas in the reactor is very fast due to various conditions such as temperature or pressure, so that the catalyst or adsorbent filled in the reactor and Blowing and agglomeration of solid materials in the same powder form may occur. In more detail, when a large amount of product gas generated in the first reactor 210 flows to the second reactor 220 at a high speed by various conditions such as the scale of the reactor, temperature, pressure, etc., the inside of the reactor may be filled. The powdered carbon adsorbent 223 may be lost in all directions and may be lost or aggregated to form agglomerates, thereby causing a problem of reducing tar and reducing hydrogen generation efficiency of the reactor.
종래에는 상술한 바와 같은 문제를 해결하기 위해, 탄소 흡착제(223)와 같이 반응기 내부에 충진되는 고체상의 물질들을 파우더 형태가 아닌 펠렛 형태로 제조하여 유동층 매체의 빠른 유속에도 날리거나 뭉치지 않도록 하였으나, 이와 같은 경우, 파우더 형태에 비해 표면적이 작아져 타르 저감 및 수소 생성 효율이 저하되고, 유동층 매체의 유속이 빨라지게 되면 펠렛 형태의 탄소 흡착제(223) 마저도 날리는 문제가 여전히 발생되고 있다.Conventionally, in order to solve the problem as described above, the solid material, such as the carbon adsorbent 223 is filled in the pellet form, not in the form of a powder to prepare a blown or agglomerated at a high flow rate of the fluidized bed medium, but In the same case, the surface area is smaller than the powder form, and thus the tar reduction and hydrogen generation efficiency are lowered, and when the flow velocity of the fluidized bed medium is increased, even the pellet-type carbon adsorbent 223 is still flying.
이러한 문제를 해결하기 위해, 본 실시예에서는 제 1 반응기(210) 및 제 2 반응기(220)의 연통부위(230)에 도 5에 도시된 바와 같은 분산판(240) 설치한다.In order to solve this problem, in the present embodiment, the dispersion plate 240 as shown in FIG. 5 is installed in the communication portion 230 of the first reactor 210 and the second reactor 220.
분산판(240)은 상면(241)은 막혀있고 하면은 개방된 원통 형태로 형성되어 원통의 둘레면(243)에는 다수의 통공(247)이 형성되어 있고 원통의 하단 둘레는 판 형태로 확장되어 있다. 도 2-4를 참조하면, 분산판(240)의 판 형태로 확장된 하단 둘레의 상면(249)에에 파우더 형태의 탄소 흡착제(223)가 충진될 수 있다. Dispersion plate 240 is formed in a cylindrical shape of the top surface 241 is blocked and the bottom surface is open, a plurality of through-holes 247 is formed on the circumferential surface 243 of the cylinder and the bottom circumference of the cylinder is expanded in the form of a plate have. 2-4, the carbon adsorbent 223 in the form of powder may be filled in the upper surface 249 of the lower periphery extended in the form of a plate of the dispersion plate 240.
도 6에 도시된 바와 같이, 제 1 반응기(210)에서 생성된 생성가스가 분산판(240)을 통과하도록 하여 생성가스의 유속을 저감시킴으로써 파우더 형태의 탄소 흡착제(223)가 날리거나 뭉치는 현상을 방지할 수 있다. 특히, 분산판(240)에 의해 생성가스 직선으로 수직 상승하는 것이 아니라, 분산판(240)에 의해 생성가스가 흐르는 방향이 여러 차례 변동됨으로써 생성가스의 유속은 저감될 수 있다.As shown in FIG. 6, the powdered carbon adsorbent 223 is blown or agglomerated by reducing the flow rate of the generated gas by passing the generated gas generated in the first reactor 210 through the dispersion plate 240. Can be prevented. In particular, the flow rate of the generated gas can be reduced by varying the direction in which the generated gas flows by the dispersion plate 240 several times instead of vertically rising by the dispersion plate 240 in a straight line.
도 6을 참조하면, 제 1 반응기(210)의 생성가스는 곧바로 수직 상승하여 제 2 반응기(220)로 유동되는 것이 아니라, 제 1 반응기(210)의 생성가스가 모여서 분산판(240)의 개방된 하면을 통과하고, 분산판(240)의 개방된 하면으로 유입된 생성가스가 원통 형상의 분산판(240)의 둘레면(243) 즉, 측면의 다수의 통공(247)을 통해 연통부위(230)로 유동되면서 분산판(240)의 판 형태로 확장된 하단 둘레의 상면(249)에 위치한 파우더 형태의 탄소 흡착제(223)를 측면으로 통과하여 제 2 반응기(220)로 유동됨에 따라, 생성가스의 흐름 방향이 여러 차례 변동된다.Referring to FIG. 6, the product gas of the first reactor 210 does not immediately rise vertically and flows to the second reactor 220, but the product gas of the first reactor 210 is collected to open the dispersion plate 240. After passing through the lower surface, the product gas introduced into the open lower surface of the dispersion plate 240 is communicated through the circumferential surface 243 of the cylindrical dispersion plate 240, that is, the plurality of through holes 247 on the side surface ( As it flows to the 230 and flows to the second reactor 220 through the powdery carbon adsorbent 223 located on the upper surface 249 of the lower periphery extending in the form of a plate of the dispersion plate 240 to the side, The flow direction of the gas varies several times.
즉, 제 1 반응기(210)에서 생성된 생성가스가 곧바로 수직으로 상승하여 제 2 반응기(220)로 유동되는 것이 아니라, 분산판(240)에 의해 생성가스가 흐르는 방향이 여러 차례 변동됨으로써 생성가스의 유속은 저감될 수 있으며, 이에 따라, 분산판(240)의 판 형태로 확장된 하단 둘레의 상면(249)에 위치한 탄소 흡착제(223)의 날림 및 뭉침 현상이 저하되어 본 실시예의 이중 바이오매스 가스화 반응기에 의한 타르 저감 및 수소 생성 효율은 현저히 향상될 수 있다. That is, the product gas generated in the first reactor 210 does not immediately rise vertically and flows to the second reactor 220, but the direction in which the product gas flows by the dispersion plate 240 is changed several times. The flow rate of the can be reduced, accordingly, the blowing and agglomeration of the carbon adsorbent 223 located on the upper surface 249 of the lower periphery extended in the form of a plate of the dispersion plate 240 is reduced, the double biomass of the present embodiment Tar reduction and hydrogen production efficiency by the gasification reactor can be significantly improved.
도 6을 참조하면, 제 1 반응기(210)에서 생성된 생성가스는 분산판(240)을 통과하여 제 2 반응기(220)로 유동됨으로써 유속이 저감될 수 있으므로, 제 1 반응기(210)에서 생성된 생성가스가 분산판(240)을 통과하여 제 2 반응기(220)로 유동될 수 있도록 분산판(240)의 하단 둘레는 분산판(240)이 설치되는 연통부위(230)의 둘레와 꼭 맞는 형태로 형성되어야 한다. 또한, 분산판(240)의 둘레면(243)에는 연통부위(230)의 내측 둘레면(243)과 밀착되기 위한 고무링과 같은 별도의 구성요소가 추가될 수 있다.Referring to FIG. 6, since the generated gas generated in the first reactor 210 flows through the dispersion plate 240 to the second reactor 220, the flow rate may be reduced, so that the generated gas is generated in the first reactor 210. The circumference of the lower end of the distribution plate 240 is fitted with the circumference of the communication portion 230 in which the distribution plate 240 is installed so that the generated gas flows through the distribution plate 240 to the second reactor 220. It should be formed in the form. In addition, a separate component such as a rubber ring may be added to the circumferential surface 243 of the distribution plate 240 to be in close contact with the inner circumferential surface 243 of the communication portion 230.
한편, 도 4-6에 도시된 바와 같이, 제 2 반응기(220)의 횡 단면적이 제 1 반응기(210)의 횡 단면적 보다 넓게 형성될 경우, 제 1 반응기(210) 및 제 2 반응기(220)의 연통부위(230)이 제 1 반응기 측에서 제 2 반응기 측으로 갈수록 면적이 넓어지는 형태로 형성됨에 따라, 분산판(240)의 통공(247)을 빠져나간 생성가스의 유속이 더욱 저감될 수 있다.On the other hand, as shown in Figure 4-6, when the transverse cross-sectional area of the second reactor 220 is formed wider than the transverse cross-sectional area of the first reactor 210, the first reactor 210 and the second reactor 220 As the communication portion 230 is formed in such a shape that the area becomes wider from the first reactor side to the second reactor side, the flow rate of the generated gas exiting the through hole 247 of the dispersion plate 240 may be further reduced. .
상술한 바와 같이 분산판(240)이 구비된 이중 바이오매스 가스화 반응기(20)는 대규모 공정에 적용되거나 온도, 압력 등의 조건에 의해 유동층 매체의 유속이 빨라져도 제 1 반응기(210)에서 제 2 반응기(220)로 유동하는 유동층 매체의 유속을 효과적으로 저감시킬 수 있음에 따라, 파우더 형태의 탄소 흡착제(223)를 사용하여도 날림 및 뭉침 현상이 방지할 수 있으며, 타르 제거 및 수소 생성 효율을 향상시킬 수 있다. 또한, 분산판(240)의 둘레면(243)에 형성된 다수의 통공(247)의 입경 내지 개수를 조절하여 분산판(240)에 의한 유동층 매체의 유속 감소 정도를 조절할 수 있으며, 이는 이단 바이오매스 가스화 반응기(20)의 규모, 바이오매스 에너지 생성량 등에 따라 자유롭게 조절될 수 있다.As described above, the dual biomass gasification reactor 20 including the dispersion plate 240 may be applied to a large-scale process or may be applied to a second reactor in the first reactor 210 even if the flow velocity of the fluidized bed medium is increased by conditions such as temperature and pressure. As the flow velocity of the fluidized bed medium flowing into the reactor 220 can be effectively reduced, blowing and agglomeration can be prevented even when using the carbon adsorbent 223 in the form of powder, and the efficiency of tar removal and hydrogen generation is improved. You can. In addition, by adjusting the particle diameter or the number of the plurality of through holes 247 formed on the circumferential surface 243 of the dispersion plate 240, it is possible to adjust the degree of flow rate reduction of the fluidized bed medium by the dispersion plate 240, which is a two-stage biomass It can be freely adjusted according to the size of the gasification reactor 20, biomass energy generation amount and the like.
도 6에 도시된 바와 같이, 파우더 형태의 탄소 흡착제(223)를 통과한 생성가스의 타르 함량이 줄어들고 수소 농도가 향상된 고발열량의 가스가 생성된다. 이와 같이, 타르의 함량이 줄고 수소 농도가 향상된 고발열량의 생성가스는 사이클론(225)을 통해 후속 공정으로 유동될 수 있다. 사이클론(225)은 제 2 반응기(220)의 내부에 타르의 함량이 저감된 생성가스를 후속 공정으로 배출하면서 내부에 충진된 탄소 흡착제(223)의 유출을 막는다(청구항9). 이때, 사이클론(225)은 타르가 저감되고 수소 농도가 향상된 고발열량의 가스의 상승에 방해를 받지 않도록 사이클론(225)의 하단이 구부러진 구조를 갖을 수 있다.As shown in Figure 6, the tar content of the product gas passing through the carbon adsorbent 223 in the form of powder is reduced and a high calorific value gas with improved hydrogen concentration is produced. As such, the high calorific value generated gas having reduced tar content and improved hydrogen concentration may be flowed to a subsequent process through the cyclone 225. The cyclone 225 prevents the outflow of the carbon adsorbent 223 filled therein while discharging the product gas having reduced tar content in the second reactor 220 in a subsequent process (claim 9). At this time, the cyclone 225 may have a structure in which a lower end of the cyclone 225 is bent so that tar is reduced and the hydrogen concentration does not interfere with the rise of the high calorific value gas.
상기 분산판의 원통의 둘레면 중 상기 제1반응기의 내부 공간와 인접한 면은 니켈로 코팅된 것을 포함할 수 있다. 나아가 일 구현예에서, 상기 가스화 반응기의 분산판의 일면 중 원통의 둘레면 외에도 제1반응기의 내부 공간와 인접한 면은, 니켈로 코팅된 것을 포함할 수 있다(242). 상기와 같이, 분산판의 일면 중 제1반응기의 내부 공간과 인접한 면이 니켈로 코팅된 경우, 제1 반응기 중에 존재하는 타르 및 암모니아가 니켈과 반응하여 가스 내의 타르 및 암모니아의 함량을 감소시킬수 있다. The surface adjacent to the inner space of the first reactor among the peripheral surfaces of the cylinder of the dispersion plate may include a coating with nickel. Furthermore, in one embodiment, the surface adjacent to the inner space of the first reactor in addition to the circumferential surface of the cylinder of one surface of the dispersion plate of the gasification reactor may include a coating with nickel (242). As described above, when the surface adjacent to the inner space of the first reactor of one side of the dispersion plate is coated with nickel, tar and ammonia present in the first reactor may react with nickel to reduce the content of tar and ammonia in the gas. .
일 구현예에서, 제 1 반응기 내부에 충진된 모래는 외부의 열원의 기류를 따라 유동하면서 폐기물의 원활한 가스화를 수행하고, 니켈 코팅 층 상에 침착된 타르를 제거할 수 있어, 니켈의 비활성화를 억제할 수 있다.In one embodiment, the sand packed inside the first reactor allows for smooth gasification of the waste while flowing along the air stream of the external heat source, and can remove tar deposited on the nickel coating layer, thereby inhibiting inactivation of nickel. can do.
또한, 제 2 반응기(220)에는 제 1 반응기(210) 내부와 제 2 반응기(220) 내부를 서로 연통시켜 제 2 반응기(220) 내부의 탄소 흡착제(223)가 일정량 유지되도록 잉여 탄소 흡착제(223)를 제 1 반응기(210) 쪽으로 유동시키는 제 2 파이프(221)가 설치된다(청구항8). 제 2 반응기(220)의 잉여 탄소 흡착제(223)는 제 2 파이트를 따라 제 1 반응기(210)로 유동한 후, 제 1 파이프(211)를 통해 유동되어 수용부(213)에 저장될 수 있다.In addition, the second reactor 220 communicates the inside of the first reactor 210 and the inside of the second reactor 220 with each other so that the carbon adsorbent 223 inside the second reactor 220 is maintained in a certain amount. ), A second pipe 221 is installed which flows toward the first reactor 210 (claim 8). The excess carbon adsorbent 223 of the second reactor 220 may flow along the second pipe to the first reactor 210 and then flow through the first pipe 211 to be stored in the receiving portion 213. .
도 2-4에 도시된 바와 같이, 제 2 파이프(221)는 제 2 반응기(220)의 일정 높이에서 내부와 연통되어 분산판(240)을 통과하여 제 1 반응기(210)와 연통될 수 있으나, 이에 제한되지 않으며 제 2 반응기(220)와 제 1 반응기(210)를 연통할 수 있는 다양한 형태로 구현 될 수 있다.As shown in FIGS. 2-4, the second pipe 221 may be in communication with the inside at a predetermined height of the second reactor 220 and may pass through the distribution plate 240 to communicate with the first reactor 210. However, the present invention is not limited thereto and may be implemented in various forms capable of communicating the second reactor 220 and the first reactor 210.
다만, 제 2 파이프(221)를 통해 배출된 탄소 흡착제(223)가 제 1 파이프(211)를 통해 수용부(213)에 저장될 수 있도록 제 2 파이프(221)의 하단은 제 1 파이프(211)의 상단 보다 높은 위치에 형성되어야 한다. 또한, 제 2 파이프(221)의 하단과 제 1 파이프(211)의 하단에는 제 2 파이프(221)에서 배출된 파우더 형태의 탄소 흡착제(223)가 제 1 파이프(211)로 유동되도록 하기 위한 별도의 구성이 추가될 수 있다.However, the lower end of the second pipe 221 is the first pipe 211 so that the carbon adsorbent 223 discharged through the second pipe 221 may be stored in the accommodating part 213 through the first pipe 211. It should be formed higher than the top of In addition, at the lower end of the second pipe 221 and the lower end of the first pipe 211, a separate carbon adsorbent 223 discharged from the second pipe 221 flows to the first pipe 211. The configuration of may be added.
한편, 이중 바이오매스 가스화 반응기(20)는 생성가스 내에 포함되는 입자의 양을 다음과 같은 방법으로 줄일 수 있다. 예를 들어, 제 1 파이프(211)를 통해 제 1 반응기(210) 내의 잉여 바이오차르를 수용부(213)로 배출하고, 사이클론(225)을 통해 제 2 반응기(220) 내부의 탄소 흡착제(223)의 유출을 방지하고, 제 2 파이프(221)를 통해 제 2 반응기(220) 내부의 잉여 탄소 흡착제(223)를 제 1 반응기(210)를 거쳐 수용부(213)로 배출하는 방법이 있을 수 있다.On the other hand, the dual biomass gasification reactor 20 can reduce the amount of particles contained in the product gas in the following manner. For example, the surplus biochar in the first reactor 210 is discharged to the receiving portion 213 through the first pipe 211, and the carbon adsorbent 223 inside the second reactor 220 through the cyclone 225. ) And discharge the excess carbon adsorbent 223 inside the second reactor 220 through the first pipe 210 to the receiving portion 213 through the second pipe 221. have.
상술한 바와 같은, 이중 바이오매스 가스화 반응기의 내부에 충진되는 탄소 흡착제는 파우더 형태 일 수 있으며, 반응 조건, 바이오매스 에너지 생성량 등 외부 조건에 따라 파우더 형태를 뭉친 펠렛 형태의 탄소 흡착제가 사용될 수 있다.As described above, the carbon adsorbent filled in the dual biomass gasification reactor may be in the form of a powder, and the carbon adsorbent in the form of pellets may be used in a powder form according to external conditions such as reaction conditions and biomass energy generation.
열원공급수단(30)은 제 1 반응기(210)에 예비 열원과 공기를 공급하고 필요에 따라 수증기 또한 공급하는 역할을 하는 것으로서, 유동층 가스화 장치에서 이용하는 일반적인 구성관계로 형성된다.The heat source supply means 30 serves to supply a preliminary heat source and air to the first reactor 210 and also to supply water vapor as necessary, and is formed in a general configuration relationship used in a fluidized bed gasifier.
정제수단(40)은 제 2 반응기(220)에서 배출되는 배출가스를 전력생산 등에 이용할 수 있도록 정제하는 역할을 하는 것으로서, 유동층 가스화 장치에서 이용하는 일반적인 구성관계로 형성된다.The purifying means 40 serves to purify the exhaust gas discharged from the second reactor 220 to be used for electric power production, etc., and is formed in a general configuration relationship used in the fluidized bed gasifier.
본 실시예의 유동층 매체의 유속 저감을 위한 분산판(240)이 구비된 가스화 반응기(20)는 반응기 내부의 유동층 매체의 유속을 조절할 수 있으므로 소규모 공정 뿐 아니라, 대규모 공정에도 적용가능 하여 더욱 광범위한 산업분야에서 활용될 수 있다. Gasification reactor 20 equipped with a dispersion plate 240 for reducing the flow rate of the fluidized bed medium of the present embodiment can adjust the flow rate of the fluidized bed medium in the reactor, so it can be applied to large scale processes as well as small scale processes Can be utilized in
즉, 본 발명의 실시예의 유동층 매체의 유속 저감을 위한 분산판(240)이 구비된 가스화 반응기(20)를 포함하는 가스화 장치는 폐기물을 주입하는 폐기물 주입수단(10), 본 발명의 유동층 매체의 유속 저감을 위한 분산판(240)이 구비된 가스화 반응기(20), 열원공급수단(30), 및 정제수단(40)을 포함함에 따라, 소규모 공정 뿐 아니라 대규모 공정의 전력 생산, 연료전지, 화학산업원료 등에 안정적으로 적용되어 타르의 함량이 적으면서도 수소 농도가 높은 고발열량의 가스를 생산할 수 있다.That is, the gasification apparatus including the gasification reactor 20 with the dispersion plate 240 for reducing the flow rate of the fluidized bed medium of the embodiment of the present invention is a waste injection means 10 for injecting waste, the fluidized bed medium of the present invention As it includes a gasification reactor 20, a heat source supply means 30, and a purification means 40 provided with a dispersion plate 240 for reducing the flow rate, power generation, fuel cells, chemicals, as well as small scale processes It can be stably applied to industrial raw materials to produce high calorific value gas with high hydrogen concentration while having low tar content.
실험예Experimental Example
이하에서는 앞서 개시된 바와 같이 구성된 본 발명의 실시예에 따른 이중 바이오매스 가스화 반응기가 구비된 가스화 장치를 제작하여 생성가스 내의 타르 저감 및 수소 생성 효율을 실험하였다.Hereinafter, a gasification apparatus equipped with a dual biomass gasification reactor according to an embodiment of the present invention configured as described above was tested for tar reduction and hydrogen generation efficiency in the generated gas.
먼저, 하기의 표 1의 구성을 포함하는 실시예 1, 비교예 1, 및 비교예 2의 가스화 반응기를 포함하는 가스화 장치를 구성하였다.First, the gasification apparatus containing the gasification reactor of Example 1, the comparative example 1, and the comparative example 2 containing the structure of following Table 1 was comprised.
실시예 1에는 본 실시예의 상면은 막혀있고 하면은 개방된 원통 형태로 형성되어 상기 원통의 둘레면에는 다수의 통공이 형성되어 있고 상기 원통의 하단 둘레는 판 형태로 확장되어 있는 분산판이 제 1 반응기 및 제 2 반응기의 연통부위에 설치되는 반면, 비교예 2에는 본 실시예와 달리 다수의 구멍이 형성된 평판 형태의 분산판이 설치된다.In Example 1, the upper surface of the present embodiment is clogged and the bottom surface is formed in an open cylindrical shape. And while installed in the communication portion of the second reactor, Comparative Example 2, unlike the present embodiment is provided with a plate-shaped dispersion plate is formed with a plurality of holes.
실시예1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2
제 1 반응기First reactor
제 2 반응기Second reactor
분산판Dispersion ○(유속저감형)○ (flow rate reduction type) XX ○(평면형)○ (flat type)
파우더 형태의탄소흡착제 Carbon adsorbent in powder form XX
이후, 각각의 제 1 반응기에 동일한 양의 폐목재를 투입하여 가스화 반응을 진행하였으며, 반응조건은 하기의 표 2에 나타내었다. Thereafter, the same amount of waste wood was added to each of the first reactors to proceed with the gasification reaction, and the reaction conditions are shown in Table 2 below.
실시예1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2
Reactor 1 temperature(℃)Reactor 1 temperature (℃) 803803 793793 784784
Reactor 2 temperature(℃)Reactor 2 temperature (℃) 808808 800800 807807
Equivalence ratioEquivalence ratio 0.310.31 0.310.31 0.310.31
Feed rate(g/min)Feed rate (g / min) 1010 1010 88
표 1의 구성을 갖는 가스화 반응기를 포함하는 가스화 장치를 이용하여 표 2와 같은 반응 조건으로 바이오매스의 가스화 반응을 진행하였으며, 생성된 생성가스 내의 타르 함량, 응축 타르 제거효율 및 수소 농도는 표 3에 나타내었다. 하기의 표 3의 응축 타르 제거 효율은 비교예 1의 최종 생성된 응축 타르의 양 대비 실시예 1 및 비교예 2의 최종 생성된 응축 타르의 양을 %로 계산하여 나타내었다.The gasification of the biomass was carried out under the reaction conditions as shown in Table 2 using a gasification apparatus including a gasification reactor having the configuration of Table 1, and the tar content, condensation tar removal efficiency, and hydrogen concentration in the generated gas were Shown in The condensation tar removal efficiency of Table 3 below is expressed by calculating the amount of the final generated condensation tar of Example 1 and Comparative Example 2 by the amount of the final generated condensation tar of Comparative Example 1.
실시예1(유속저감형 분산판)Example 1 (flow rate reduction type dispersion plate) 비교예 1(탄소흡착제 X)Comparative Example 1 (Carbon Adsorbent X ) 비교예 2(평면 분산판)Comparative Example 2 (flat dispersion plate)
H2(vol%)H 2 (vol%) 17.317.3 8.68.6 19.019.0
생산가스 내의 타르의 농도 (mg/Nm3)The concentration of tar in the product gas (mg / Nm 3 ) 검출xDetection x 10241024 검출xDetection x
응축 타르의 양(g/kg of wood)Amount of condensation tar (g / kg of wood) 0.130.13 29.3129.31 1.801.80
응축 타르 제거 효율(%)Condensation tar removal efficiency (%) 99.699.6 basebase 93.893.8
먼저, 실시예 1과 비교예 1의 비교를 통해, 탄소 흡착제를 포함하는 실시예 1의 가스화 장치를 이용한 경우, 탄소 흡착제를 포함하지 않는 비교예 1의 가스화 장치를 이용한 경우 보다 수소의 생성량이 현저히 많고, 응축 타르의 양 또한 현저히 적은 것을 알 수 있다. 즉, 본 실시예의 탄소 흡착제를 포함하는 가스화 장치를 사용함으로써 타르를 효과적으로 저감시키고 수소의 생성을 현저히 증가시켜 고발열량의 가스를 제조할 수 있다고 판단된다.First, through the comparison between Example 1 and Comparative Example 1, when the gasifier of Example 1 containing the carbon adsorbent is used, the amount of hydrogen produced is significantly higher than that of the gasifier of Comparative Example 1 that does not include the carbon adsorbent. It can be seen that there are many and the amount of condensation tar is also very small. That is, it is judged that by using the gasifier containing the carbon adsorbent of the present embodiment, it is possible to effectively reduce the tar and to significantly increase the production of hydrogen, thereby producing a gas having a high calorific value.
또한, 실시예 1과 비교예 2의 비교를 통해, 본 실시예의 분산판이 구비된 실시예 1의 가스화 장치를 이용한 경우, 종래의 다수의 구멍이 형성된 평판 형태의 평판분산판이 구비된 비교예 2의 가스화 장치를 이용한 경우와 유사한 수소 생성량을 보임을 알 수 있다. 특히, 실시예 1의 가스화 장치를 이용한 경우, 비교예 1의 가스화 장치를 이용한 경우 보다 응축 타르의 양이 현저히 적었으며, 응축 타르 제거 효율 또한 현저히 높았다.In addition, through the comparison between Example 1 and Comparative Example 2, in the case of using the gasifier of Example 1 provided with a dispersion plate of the present embodiment, of the Comparative Example 2 provided with a flat plate dispersion plate in the form of a plate with a plurality of conventional holes It can be seen that the hydrogen production similar to the case of using a gasifier. In particular, when the gasifier of Example 1 was used, the amount of condensation tar was significantly smaller than that of the gasifier of Comparative Example 1, and the condensation tar removal efficiency was also significantly higher.
이는, 본 실시예의 분산판을 포함함에 따라, 제 1 반응기에서 제 2 반응기로 유동하는 유동층 매체의 유속을 효과적으로 저감시켜, 탄소 흡착제의 날림 및 뭉침 현상이 방지되어 타르 저감 효율 및 수소 생성 효율이 향상된 것으로 판단된다. 또한, 이와 같은 분산판이 구비된 경우, 유동층 매체의 유속이 효과적으로 저감할 수 있어, 소규모 공정 뿐 아니라, 유동층 매체의 유속이 빠르거나 스케일 업(scale-up)된 대규모 공정에 적용될 수 있다고 판단된다.This effectively reduces the flow rate of the fluidized bed medium flowing from the first reactor to the second reactor, by preventing the blowing and coalescing of the carbon adsorbent, thereby improving tar reduction efficiency and hydrogen generation efficiency. It seems to be. In addition, when such a dispersion plate is provided, it is determined that the flow velocity of the fluidized bed medium can be effectively reduced, so that the flow rate of the fluidized bed medium can be applied not only to a small scale process but also to a large scale process in which the flow rate of the fluidized bed medium is fast or scaled up.
전술한 바와 같이, 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 기술을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.As described above, the description of the present invention is for the purpose of illustration, and those skilled in the art to which the present invention belongs may easily change to other specific forms without changing the technical spirit or essential features of the present invention. I can understand. Therefore, it is to be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
[부호의 설명][Description of the code]
10 : 폐기물 주입수단 20 : 가스화 반응기10: waste injection means 20: gasification reactor
30 : 열원공급수단 40 : 정제수단30: heat source supply means 40: purification means
210 : 제 1 반응기 211 : 제 1 파이프210: first reactor 211: first pipe
213 : 수용부 220 : 제 2 반응기213: receiving portion 220: second reactor
221 : 제 2 파이프 223 : 탄소 흡착제221: second pipe 223: carbon adsorbent
225 : 사이클론 230 : 연통부위225: cyclone 230: communication site
240 : 분산판 241 : 상면240: dispersion plate 241: upper surface
242: 니켈코팅층 243 : 둘레면 242: nickel coating layer 243: circumferential surface
245 : 개방된 하면 247 : 통공 245: open the lower surface 247: through
249 : 분산판(240)의 판 형태로 확장된 하단 둘레의 상면249: upper surface of the lower periphery extended in the form of a plate of the dispersion plate 240

Claims (10)

  1. 주입된 폐기물을 외부의 열원과 자체의 열원을 이용하여 가스화하는 제 1 반응기; 및 A first reactor for gasifying the injected waste using an external heat source and its own heat source; And
    상기 제 1 반응기에 연통되도록 설치되어 상기 제 1 반응기의 열원을 이용하며 내부에 일정량의 탄소 흡착제가 충진되어 상기 제 1 반응기에서 생성된 생성가스 내의 타르의 함량을 저감시키고 수소 생산을 증대시켜 후속 공정으로 공급하는 제 2 반응기;를 포함하고,It is installed to communicate with the first reactor to use the heat source of the first reactor and filled with a certain amount of carbon adsorbent therein to reduce the content of tar in the product gas produced in the first reactor and increase the hydrogen production subsequent process It includes; a second reactor for supplying,
    상기 제 1 반응기는 내부에 일정량의 모래가 충진되어 상기 외부의 열원의 기류를 따라 유동하면서 폐기물의 연소를 도와 가스화하고 가연성 가스 및 바이오챠르(bio-char)를 생성하며,The first reactor is filled with a certain amount of sand inside to flow along the air stream of the external heat source to help the combustion of the waste gas to produce gas and bio-char (combustible gas),
    상기 제 1 반응기 및 상기 제 2 반응기의 연통부위에At the communication site of the first reactor and the second reactor
    상면은 막혀있고 하면은 개방된 원통 형태로 형성되어 상기 원통의 둘레면에는 다수의 통공이 형성되어 있고 상기 원통의 하단 둘레는 판 형태로 확장되어 있는 분산판이 설치되는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.Double biomass gasification characterized in that the upper surface is blocked and the lower surface is formed in an open cylindrical shape, a plurality of through-holes are formed on the circumferential surface of the cylinder, and the bottom plate of the cylinder is expanded in the form of a plate. Reactor.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 반응기는 상기 제 1 반응기의 내부 중에서 상부 쪽에 위치하도록 상기 제 1 반응기의 내측 상단에 고정하되, 상기 제 1 반응기의 내측 둘레와 일정 간격을 갖도록 고정되는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The second reactor is fixed to the inner top of the first reactor so as to be located in the upper side of the inside of the first reactor, the dual biomass gasification reactor, characterized in that fixed to have a predetermined interval with the inner circumference of the first reactor .
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 반응기가 상기 제 1 반응기의 상단에 설치되어 이단 형태를 갖는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.Dual biomass gasification reactor, characterized in that the second reactor is installed on top of the first reactor having a two-stage form.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제 2 반응기의 횡 단면적이 상기 제 1 반응기의 횡 단면적 보다 더 넓은 것을 특징으로 하는 이중 바이오매스 가스화 반응기.Dual biomass gasification reactor, characterized in that the cross-sectional area of the second reactor is larger than the cross-sectional area of the first reactor.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 탄소 흡착제는 활성탄, 바이오챠르 중에서 선택되는 하나 이상을 포함하는 이중 바이오매스 가스화 반응기.The carbon adsorbent is a double biomass gasification reactor comprising one or more selected from activated carbon, biochar.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 반응기는The first reactor
    상기 제 1 반응기 내부의 바이오챠르가 일정량 유지되도록 잉여 바이오챠르를 외부로 배출하기 위해 상기 제 1 반응기의 내부와 연통되도록 설치되는 제 1 파이프; 및A first pipe installed to communicate with the inside of the first reactor to discharge the surplus biochar to the outside so that the biochar inside the first reactor is maintained in a predetermined amount; And
    상기 제 1 파이프를 따라 중력에 의해 배출되는 상기 잉여 바이오챠르를 저장하는 수용부를 더 포함하는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.And a receiving portion for storing the surplus biochar discharged by gravity along the first pipe.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 제 2 반응기는The second reactor
    상기 제 1 반응기와 상기 제 2 반응기를 서로 연통시켜 상기 제 2 반응기 내부의 탄소 흡착제가 일정량 유지되도록 잉여 탄소 흡착제를 상기 제 1 반응기 쪽으로 유동시키는 제 2 파이프를 더 포함하는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The dual biomass further comprises a second pipe in communication with the first reactor and the second reactor to flow a surplus carbon adsorbent toward the first reactor to maintain a predetermined amount of the carbon adsorbent in the second reactor. Gasification reactor.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 반응기의 내부에는 타르의 함량이 저감된 생성가스를 후속 공정으로 배출하면서 내부에 충진된 상기 탄소 흡착제의 유출을 막는 사이클론이 더 설치되는 것을 특징으로 하는 이중 바이오매스 가스화 반응기.The inside of the second reactor is a double biomass gasification reactor characterized in that the cyclone is further installed to prevent the outflow of the carbon adsorbent filled therein while discharging the product gas of reduced tar content in a subsequent process.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 분산판의 원통의 둘레면 중 상기 제1반응기의 내부 공간와 인접한 면은 니켈로 코팅된 것을 포함하는, 이중 바이오매스 가스화 반응기.The biomass gasification reactor of claim 1, wherein the surface adjacent to the inner space of the first reactor is coated with nickel.
  10. 폐기물을 주입하는 폐기물 주입수단;Waste injecting means for injecting waste;
    제 1 항 내지 제9항 중 어느 한 항의 이중 바이오매스 가스화 반응기;10. A dual biomass gasification reactor according to any one of claims 1 to 9;
    상기 제 1 항의 이중 바이오매스 가스화 반응기에 예비 열원과 공기를 공급하는 열원공급수단; 및Heat source supply means for supplying a preliminary heat source and air to the dual biomass gasification reactor of claim 1; And
    상기 제 1 항의 이중 바이오매스 가스화 반응기에서 배출되는 배출가스를 정제하는 정제수단을 포함하는 것을 특징으로 하는 가스화 장치.Gasifier device comprising a purifying means for purifying the exhaust gas discharged from the dual biomass gasification reactor of claim 1.
PCT/KR2017/008335 2016-08-09 2017-08-02 Dual biomass gasification reactor equipped with dispersion plate for reducing flow rate of fluidized bed medium and gasification apparatus comprising same WO2018030702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0101274 2016-08-09
KR1020160101274A KR101813225B1 (en) 2016-08-09 2016-08-09 Apparatus and reactor comprising distribution plate for reducing flow rate of fluidized medium

Publications (1)

Publication Number Publication Date
WO2018030702A1 true WO2018030702A1 (en) 2018-02-15

Family

ID=60939152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008335 WO2018030702A1 (en) 2016-08-09 2017-08-02 Dual biomass gasification reactor equipped with dispersion plate for reducing flow rate of fluidized bed medium and gasification apparatus comprising same

Country Status (2)

Country Link
KR (1) KR101813225B1 (en)
WO (1) WO2018030702A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994203A (en) * 2022-05-27 2022-09-02 中国海洋大学 Solid biomass fuel two-stage catalytic gasification measuring device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130655A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Apparatus and method for removing tar contained in ammonia water
KR102458035B1 (en) * 2020-08-10 2022-10-26 한국에너지기술연구원 A biomass fluidized bed gasification system
CN113355115A (en) * 2021-06-03 2021-09-07 栖霞市泰宇生物工程有限公司 Biochar production equipment
KR102427903B1 (en) * 2021-10-20 2022-08-04 (주)에스지이에너지 A biomass gasification system
KR102543372B1 (en) 2021-10-22 2023-06-13 박창호 A shoe dryer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090038223A1 (en) * 2007-08-10 2009-02-12 Siemens Aktiengesellschaft Coating the crude gas tract of a fly-stream gasification plant with a heat-resistant anti-stick layer
KR20090030255A (en) * 2006-04-11 2009-03-24 서모 테크놀로지스 엘엘씨 Methods and apaaratus for solid carbonaceous materials synthesis gas generation
KR20100100885A (en) * 2007-11-16 2010-09-15 니꼴라 위골렝 Method using solar energy, microwaves and plasmas to produce a liquid fuel and hydrogen from biomass or fossil coal
KR20100108944A (en) * 2009-03-31 2010-10-08 서울시립대학교 산학협력단 Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
KR101438335B1 (en) * 2013-09-25 2014-09-04 서울시립대학교 산학협력단 Three stage gasifier for the production of low-tar producer gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503607B1 (en) 2013-11-20 2015-03-24 전북대학교산학협력단 2 stage fluidized bed biomass gasifier for hydrogen production and method of preparing hydrogen using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090030255A (en) * 2006-04-11 2009-03-24 서모 테크놀로지스 엘엘씨 Methods and apaaratus for solid carbonaceous materials synthesis gas generation
US20090038223A1 (en) * 2007-08-10 2009-02-12 Siemens Aktiengesellschaft Coating the crude gas tract of a fly-stream gasification plant with a heat-resistant anti-stick layer
KR20100100885A (en) * 2007-11-16 2010-09-15 니꼴라 위골렝 Method using solar energy, microwaves and plasmas to produce a liquid fuel and hydrogen from biomass or fossil coal
KR20100108944A (en) * 2009-03-31 2010-10-08 서울시립대학교 산학협력단 Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
KR101438335B1 (en) * 2013-09-25 2014-09-04 서울시립대학교 산학협력단 Three stage gasifier for the production of low-tar producer gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994203A (en) * 2022-05-27 2022-09-02 中国海洋大学 Solid biomass fuel two-stage catalytic gasification measuring device

Also Published As

Publication number Publication date
KR101813225B1 (en) 2017-12-29

Similar Documents

Publication Publication Date Title
WO2018030702A1 (en) Dual biomass gasification reactor equipped with dispersion plate for reducing flow rate of fluidized bed medium and gasification apparatus comprising same
WO2014069840A1 (en) Dual biomass gasification reactor having nickel distribution plate and biomass gasifier having same
CN102703131B (en) Two-stage gasification method and gasification device for fuels with wide size distribution
KR101271793B1 (en) Gasification apparatus with dual-type fluidized bed reactors
CN101130697B (en) Serial fluid bed biomass gasifying device embedded with isolater and method thereof
CN112619630A (en) Useless active carbon regeneration system
CN109963928B (en) Improved gasification system and method
WO2015099250A1 (en) Dual fluidized bed indirect gasifier
WO2016088959A1 (en) Combined heat and power generation system using biomass gasification
KR20100108944A (en) Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
CN106336907B (en) Cyclone pyrolysis high-flux circulating gasification device and process
KR101438335B1 (en) Three stage gasifier for the production of low-tar producer gas
WO2014098524A1 (en) Circulating fluidized bed gasifier having heat exchanger
CN205740917U (en) A kind of solid waste three combination pyrolytic gasification and coke tar cracking integral system
WO2014104712A1 (en) Gasification combined facility for carbon fuel including pneumatic conveying dryer
CN108504389A (en) A kind of carbon-based fuel burning chemistry chains gasification coupling device and method
WO2014092447A1 (en) Gasification process and system using dryer integrated with water-gas shift catalyst
CN109294625B (en) Fluidized gasification pre-oxidation reactor
CN215464467U (en) Useless active carbon regeneration system
CN215828695U (en) Coal gasification furnace and coal gasification system
CN108587662A (en) A kind of the two-part pyrolysis installation and method of solid fuel
CN1279311C (en) Multi-nozzle spraying fluidized bed gasifier
CN105885948B (en) Cyclone separation type biomass gasification device
CN113234461A (en) Heat carrier type organic solid waste treatment process and system
WO2021096319A1 (en) Rotating methane pyrolysis solar reactor, and method for producing hydrogen and carbon black using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839720

Country of ref document: EP

Kind code of ref document: A1