WO2017003066A1 - Hydrogen generator and hydrogen production method, using steam plasma - Google Patents

Hydrogen generator and hydrogen production method, using steam plasma Download PDF

Info

Publication number
WO2017003066A1
WO2017003066A1 PCT/KR2016/003111 KR2016003111W WO2017003066A1 WO 2017003066 A1 WO2017003066 A1 WO 2017003066A1 KR 2016003111 W KR2016003111 W KR 2016003111W WO 2017003066 A1 WO2017003066 A1 WO 2017003066A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
plasma
hydrogen
gasification reactor
gas
Prior art date
Application number
PCT/KR2016/003111
Other languages
French (fr)
Korean (ko)
Inventor
박세근
Original Assignee
주식회사 윈테크에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 윈테크에너지 filed Critical 주식회사 윈테크에너지
Priority to CN201680031590.1A priority Critical patent/CN107667162A/en
Publication of WO2017003066A1 publication Critical patent/WO2017003066A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1618Modification of synthesis gas composition, e.g. to meet some criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an apparatus for producing hydrogen and a method for producing hydrogen using steam plasma, and more particularly, to produce hydrogen, carbon dioxide, and carbon monoxide by reacting carbon components with steam activated in a plasma state by microwaves.
  • the present invention relates to a hydrogen production apparatus and a hydrogen production method using a steam plasma to further produce hydrogen by further secondary reaction with steam.
  • Hydrogen was produced by natural gas, naphtha reforming, electrolysis of water, etc., but the manufacturing cost is high. Therefore, hydrogen is used to produce cheap hydrogen due to the economic problems caused by applying these methods to fuel cells, automobiles, oil refining, and chemical processes. The need for help is urgent.
  • a conventional cylindrical plasma or gasifier having a similar structure to a steam plasma torch has a narrow attachment area of the steam plasma torch, and is also associated with microwave waveguide attachment, coal injection, steam injection, and the like.
  • the number of steam plasma torch attached to the unit steam plasma gasifier is limited due to the complicated facilities around the torch (3 ⁇ 4) .
  • the capacity of the gasifier is connected by connecting several small gasifiers in parallel. To increase to some extent, this has caused problems such as increased installation and maintenance costs of the steam plasma gasifier and a large area of the installation site.
  • the present invention has been made to solve the above problems of the steam plasma gasifier, by designing the gasification reactor of the steam plasma gasifier in a large-hexahedral structure to facilitate the attachment of the steam plasma torch, enlarge the torch installation area and For simplicity, it is an object to provide a large scale steam plasma gasifier on a commercial scale by being able to attach 10 to 100 steam plasma torches to one gasification reactor.
  • the present invention is designed to integrally design the steam plasma gasifier and heat recovery boiler to reduce the facility investment cost by greatly reducing the area of the facility site and simplify the facility, as well as to reduce the failure frequency of the facility to increase the reliability of the commercial
  • Another object is to provide a standard model of a steam plasma gasifier.
  • the present invention includes a steam plasma torch connected to a steam boiler, a microwave generator, a pulverized coal supply, and an oxygen supply; A gasification reactor for generating a synthesis gas by high-temperature reaction of plasma activated steam and pulverized coal with a flame of a plasma torch by microwaves of the microwave generator; A heat recovery steam boiler for recovering retained heat from the synthesis gas of the gasification reactor; A gas purification facility for removing sulfides, etc.
  • a dust removal facility for removing dust in the syngas
  • a carbon monoxide converter which converts carbon monoxide in the syngas passed through the dust removal facility into carbon dioxide and hydrogen by catalytic reaction with steam
  • a circulating adsorption gas separator for separating hydrogen from the gas exiting the carbon monoxide converter; It provides a hydrogen production apparatus using a steam plasma comprising a hydrogen storage tank for storing the separated hydrogen.
  • the gasification reactor has a structure in which the heat recovery steam boiler is integrated with each other with a partition wall therebetween.
  • the gasification reactor is designed in a large-capacity hexahedral structure can be installed 10 to 100 steam plasma torches on the three walls of the gasification reactor except the upper and lower walls and the heat recovery steam boiler side, 10 installed on three walls Plasma flames generated from ⁇ 100 steam plasma torches form a fire ball at the central portion of the gasification reactor, and have a characteristic of rapidly reaching the temperature required for the gasification reaction.
  • the gas purification equipment is configured to use a semi-dry slurry spray method by slaked lime.
  • the present invention comprises the steps of moving the steam of the steam boiler to the passage of the microwave generated by the microwave generator to activate the plasma state; Injecting the pulverized coal injected from the pulverized coal feeder and the oxygen supplied from the oxygen feeder into the gasification reactor together with the activated steam in the plasma state to generate a syngas by high temperature reaction with a plasma flame; Recovering heat of the synthesis gas generated in the gasification reactor with a heat recovery steam boiler integrated with the gasification reactor with a partition therebetween; Sulfur components in the synthesis gas, which have been heated down and lowered in temperature, are removed using a semi-dry slurry spray method, and ash dust and slurry are used for dust removal equipment such as bag filters.
  • Removing by Compressing the synthesis gas passing through the dust removal equipment and mixing it with the steam of the steam boiler in a carbon monoxide converter to convert most of the carbon monoxide into hydrogen and carbon dioxide by a catalytic reaction; It provides a hydrogen production method using a steam plasma comprising a; cooling the gas from the carbon monoxide converter and separating in a circulating adsorption type gas separator to produce hydrogen with a purity of 99% or more in a hydrogen storage tank.
  • the step of generating the syngas in the gasification reactor is performed at atmospheric pressure or a pressure condition slightly lower than atmospheric pressure.
  • the step of generating the synthesis gas in the gasification reactor is configured to finish the gasification reaction in the flame (Fire Ball) formed by combining a plurality of plasma flames in the central portion of the gasification reactor.
  • the present invention provides a method for producing hydrogen using a steam plasma that can replace all the steam required for the syngas generation step and the carbon monoxide conversion step by utilizing the steam produced in the heat recovery steam boiler.
  • the present invention provides a method for producing hydrogen using a steam plasma that can prevent the outflow of gas or mixing of outside air by using the dust of the dust removal equipment to cool and compress some of the synthesis gas as the working gas.
  • the present invention is to design the gasification reactor of the steam plasma gasifier in a hexagonal large capacity structure to facilitate the attachment of the steam plasma torch, enlarge and simplify the torch installation area, 10 to 100 steam plasma torch in one gasification reactor By attaching it has the effect of providing a large-scale steam plasma gasifier on a commercial scale.
  • the steam plasma gasification reactor of the present invention has a sufficient role as a commercial model has an effect that greatly contributes to the development of related industries hydrogen production, syngas power generation, fuel cells, hydrogen vehicles, chemical industry and the like.
  • the present invention by designing a gasification reactor and a heat recovery boiler integrally, the commercial steam plasma gas that can greatly reduce the facility investment cost by reducing the area of the facility site and simplify the equipment, as well as reduce the equipment failure frequency and increase the reliability of the equipment It has the effect of providing a standard model of firearms.
  • the steam plasma gasification reactor according to the present invention can significantly reduce the manufacturing cost of hydrogen than the existing natural gas reforming hydrogen process by using low-grade coal as a carbon raw material, causing economic effects on related industries that use hydrogen as a fuel cell. And it has the effect of advancing the hydrogen economic era of clean energy.
  • FIG. 1 is a hydrogen production apparatus and process diagram using a steam plasma according to an embodiment of the present invention
  • FIG. 2 is a side conceptual view of a gasification reactor according to an embodiment of the present invention
  • FIG. 3 is a conceptual view from above of a gasification operation situation in a gasification reactor according to an embodiment of the present invention
  • FIG. 4 is a conceptual view from above of a gasification reactor having a total of 48 steam plasma torches in a total 4 ⁇ 4 arrangement on each side across three sides of the gasification reactor in accordance with one embodiment of the present invention
  • FIG. 5 is a conceptual diagram when 48 conventional steam plasma torches are installed in each gasification reactor in 12 conventional cylindrical small capacity gasification reactors.
  • Hydrogen production apparatus using a steam plasma is activated by steam in a microwave to generate hydrogen radicals and oxygen radicals in the plasma state (Formula 1), the carbon material such as coal or organic matter in the gasification reactor of the plasma state Reacting with hydrogen radicals, oxygen radicals or some unactivated steam to produce carbon monoxide, carbon dioxide and hydrogen (Formula 2, 3, 4), and the hydrogen produced by combining hydrogen radicals in the gasification reactor with the generated gases ( Injecting a synthesis gas consisting of Chemical Formula 5) with steam to a carbon monoxide converter (CO Shifter) includes the production of hydrogen and carbon monoxide is converted to carbon dioxide and discharged (Formula 6).
  • a synthesis gas consisting of Chemical Formula 5 with steam to a carbon monoxide converter
  • CO Shifter carbon monoxide converter
  • reaction temperature, reaction time, and reaction pressure are important factors, and since gasification by steam plasma is possible to react at normal pressure because the reaction rate is very fast, in the present invention, the structure of the gasification reactor is conventional The focus was on converting from the cylindrical small capacity structure to the large capacity structure of atmospheric hexagonal shape.
  • the gasification reactor has a large-capacity structure of a hexahedron
  • complex facilities such as microwave waveguide attachment, coal injection, steam injection, and oxygen injection, which are peripheral devices of the plasma torch, can be easily installed around the plasma torch. Can be accommodated and installed in one gasification reactor.
  • the gasification reactor is manufactured in a large capacity hexahedron suitable for the atmospheric pressure reaction, so that 10 to 100 plasma torches can be installed per gasification reactor, and thus the unit capacity of the gasification reactor is large. Increasingly, the commercial operation of plasma gasification facilities has become possible.
  • the gasification reactor is integrally designed with the heat recovery steam boiler, thereby simplifying the facility, thereby increasing economic effects such as reducing the installation area, reducing the facility cost, and reducing the frequency of failure.
  • FIG. 1 is a hydrogen production apparatus and hydrogen production process diagram using a steam plasma according to an embodiment of the present invention.
  • Hydrogen production apparatus using a steam plasma is a steam plasma torch 100 is connected to the steam boiler 110, microwave generator 120, pulverized coal supply 130, oxygen supply 140 Wow;
  • a gas purification facility 400 for removing sulfides, etc.
  • a dust removal facility 500 for removing dust in the syngas
  • a carbon monoxide converter 600 for catalytically reacting carbon monoxide in the synthesis gas passed through the dust removal facility 500 to convert carbon dioxide and hydrogen
  • a circulating adsorption gas separator (700) for separating hydrogen from the gas exiting the carbon monoxide converter (600); It comprises a hydrogen storage tank 800 for storing the separated hydrogen.
  • Hydrogen production apparatus using a steam plasma has a structure in which the gasification reactor 200 and the heat recovery steam boiler 300 is integrated with the partitions (250, 260) between.
  • partitions 250 and 260 ensure sufficient gasification reaction time in the gasification reactor 200, and filter the dust in the syngas to prevent the dust from adhering to the heat recovery coil of the heat recovery steam boiler 300. Has the function of reducing.
  • Steam (5 to 10 kg / cm2) of the steam boiler 110 is moved to the passage of the microwave (300MHz ⁇ 30GHz) made in the microwave generator 120 to activate in the plasma state, and sprayed from the pulverized coal supply 130
  • the pulverized coal and oxygen supplied from the oxygen supplier 140 are introduced into the gasification reactor 200 together with the steam activated in the plasma state to generate high temperature reaction (1,100 to 1,500 ° C.) with a plasma flame 210 to generate syngas. .
  • the gasification reactor 200 is operated at a pressure lower than the atmospheric pressure generated by the suction of the compressor (not shown) at the atmospheric pressure or the front end of the carbon monoxide converter 600, the pulverized coal and oxygen is the inlet of the plasma flame 210 Injected from the reaction with the plasma in the plasma state while proceeding to the inside of the gasification reactor 200 with the plasma flame 210, the flame column formed by a plurality of plasma flames 210 in the central portion of the gasification reactor 200 (Fire Ball The reaction ends in.
  • Oxygen supply 140 is operated only at the beginning of the operation to quickly increase the temperature of the gasification reactor 200 to the reaction temperature and can be stopped in the steady state (this operation is incomplete combustion of the pulverized coal injected) It is also necessary to increase the production rate of hydrogen.
  • the steam boiler 110 is also operated only at the beginning of operation, since the steam produced by the heat recovery steam boiler 300 may maintain a steady working state, the operation of the steam boiler 110 in a steady working state. You can also stop.
  • the synthesis gas generated in the gasification reactor 200 passes through two partitions 250 and 260 to extend the reaction time, thereby increasing the completion of the reaction.
  • steam is produced by recovering the heat of the generated synthesis gas to the heat recovery steam boiler 300. Since the recovery temperature of the synthesis gas outlet temperature of 1,100 to 1,500 ° C is possible to 250 to 350 ° C, the steam is recovered using the recovery heat. By producing (7 to 15 kg / cm 2), both the steam for the steam plasma torch 100 and the steam for the carbon monoxide converter 600 to be described later can be replaced, and some of the remaining steam can be sold.
  • Sulfur constituents (SOx, H 2 S, etc.) in the synthesis gas that has been lowered by heat recovery (250-350 ° C.) are removed by using a semi-dry slurry spray method of gas purification equipment 400 by lime water, and ash dust.
  • fugitives such as slurry are removed using a dust removal facility 500 such as a bag filter, and the dust of the dust removal facility 500 is cooled by using a part of the synthesis gas as a working gas. To prevent external leakage or mixing of outside air.
  • the gas from the carbon monoxide converter 600 is cooled and separated from the circulating adsorption gas separator 700 (PSA) to produce hydrogen having a purity of 99% or more, and the produced hydrogen is stored in the hydrogen storage tank 800.
  • PSA circulating adsorption gas separator 700
  • Figure 2 is a side conceptual view of a gasification reactor according to an embodiment of the present invention
  • Figure 3 is a conceptual view looking down from the gasification operation situation inside the gasification reactor.
  • Gasification reactor 200 has a structure that is integrated with the heat recovery steam boiler 300 and the partitions (250, 260) between.
  • the gasification reactor 200 is designed in a large-capacity hexahedral structure, 10 to three walls of the gasification reactor 200 except for the upper and lower surfaces of the heat recovery steam boiler 300 side. One hundred steam plasma torches 100 may be installed.
  • the plasma flame 210 generated from 10 to 100 steam plasma torches 100 installed on three walls has a flame pillar at a central portion of the gasification reactor 200. It is possible to quickly reach the temperature required for the gasification reaction by forming a fire ball.
  • FIG. 4 is a conceptual view from above of a gasification reactor having a total of 48 steam plasma torches in a total of 4 ⁇ 4 arrangements on each side across three sides of the gasification reactor in accordance with one embodiment of the invention, and FIG. It is a conceptual diagram when 48 small-capacity gasification reactors install 48 steam plasma torches in each gasification reactor.
  • the gasification reactor 200 is integrated with the heat recovery steam boiler 300 and designed in a large-capacity hexahedral structure, the heat recovery steam boiler 300 side wall It is equipped with 48 steam plasma torches 100 in a 4 ⁇ 4 arrangement on three walls of gasification reactor 200 except for the upper and lower surfaces, and has a total of 48 steam plasma torches 100.
  • the required area is estimated to be approximately 19.37m ⁇ 30.13m ⁇ 584m2.
  • the hydrogen production apparatus using the steam plasma according to an embodiment of the present invention by reducing the steam production cost by integrating the steam boiler with the gasification reactor by directly recycling the heat of synthesis gas leaving the gasification reactor as the steam production heat source of the steam boiler.
  • it has the effect of increasing the reliability of the equipment by simplifying the equipment and reducing the frequency of equipment failure.
  • the manufactured syngas is passed through a heat recovery steam boiler and contacted with slaked lime in a gas refinery to remove sulfur compounds (H 2 S, SOx) and isomers.
  • PSA pressure swing adsorption
  • Table 1 below shows a gas composition table for each process section of Example 1.
  • Example 1 of the present invention as shown in Table 1, the content of hydrogen is improved to 99.9% by circulating adsorption gas separation, and the flow rate (LPM) is 12,241.3 LPM (Liter Per Minute) at 13,601.4 after the carbon monoxide converter. The loss was about 10% compared to the LPM due to the efficiency (90%) of the circulating adsorption gas separator.
  • LPM flow rate
  • the hydrogen production apparatus and hydrogen production method using the steam plasma of the present invention by designing the gasification reactor of the steam plasma gasifier in a hexahedral large capacity structure to facilitate the attachment of the steam plasma torch, By expanding and simplifying the torch installation area, it is possible to attach 10 to 100 steam plasma torches to one gasification reactor, thereby having industrial applicability to provide a large scale steam plasma gasifier on a commercial scale.
  • the steam plasma gasification reactor of the present invention has an industrial applicability that contributes significantly to the development of related industries, such as hydrogen production, syngas generation, fuel cells, hydrogen automobiles, chemical industry, etc., by fully serving as a commercial model.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)

Abstract

The present invention relates to a hydrogen generator and a hydrogen production method, using steam plasma. The hydrogen generator using steam plasma according to the present invention involves processes which activate steam with microwave to produce hydrogen radicals and oxygen radicals of a plasma state (formula 1); in the gasification reactor, reacts carbon materials, such as coals or organics, etc., with the hydrogen radicals or the oxygen radicals of the plasma state, or partially inactivated steam to produce carbon monoxide, carbon dioxide and hydrogen (formula 2, 3, and 4); injects a syngas consisting of the produced gases and hydrogen which was produced as the hydrogen radicals are bonded to each other in the gasification reactor (formula 5), together with steam, into a CO shifter to further produce hydrogen; and converts carbon monoxide into carbon dioxide to discharge carbon dioxide (formula 6). The present invention has the effect of providing a commercial-size, large capacity of steam plasma gasification reactor with a hexahedral design structure to facilitate an attachment of a steam plasma torch and expand and simplify an installation area of a torch to be capable of attaching 10-100 steam plasma torches to one gasification reactor.

Description

스팀 플라즈마를 이용한 수소 제조장치 및 수소 제조방법Hydrogen production apparatus and hydrogen production method using steam plasma
본 발명은 스팀 플라즈마를 이용한 수소 제조장치 및 수소 제조방법에 관한 것으로, 보다 상세하게는 마이크로웨이브에 의해 플라즈마 상태로 활성화되어 있는 스팀에 탄소성분을 반응시켜 수소, 이산화탄소 및 일산화탄소를 제조하고, 일산화탄소를 다시 스팀과 2차 반응시켜 수소를 추가 제조하여 정제분리하는 스팀 플라즈마를 이용한 수소 제조장치 및 수소 제조방법에 관한 것이다.The present invention relates to an apparatus for producing hydrogen and a method for producing hydrogen using steam plasma, and more particularly, to produce hydrogen, carbon dioxide, and carbon monoxide by reacting carbon components with steam activated in a plasma state by microwaves. The present invention relates to a hydrogen production apparatus and a hydrogen production method using a steam plasma to further produce hydrogen by further secondary reaction with steam.
수소는 천연가스, 나프타 개질, 물의 전기분해 등에 의해 제조되었으나 제조비용이 높아, 수소 시장인 연료전지·자동차·정유·화학공정 등에 이들 제조법을 적용할 경우 야기되는 경제성 문제로 인하여 저렴한 수소의 생산에 대한 필요성이 절실해졌다.Hydrogen was produced by natural gas, naphtha reforming, electrolysis of water, etc., but the manufacturing cost is high. Therefore, hydrogen is used to produce cheap hydrogen due to the economic problems caused by applying these methods to fuel cells, automobiles, oil refining, and chemical processes. The need for help is urgent.
이에 따라 스팀과 마이크로웨이브 플라즈마를 이용한 가스화 공정이 주목받고 있으나, 종래의 스팀 플라즈마 가스화기의 경우, 가스화기에 설치되는 마이크로파 발생기의 최대용량이 100kW이므로 상업용 규모의 스팀 플라즈마 가스화기를 확보하기 위하여 수십 개의 마이크로파 발생기가 필요하게 되고, 또한 종래의 원통형(Cylinder) 또는 그와 유사한 구조의 스팀 플라즈마 가스화기는 스팀 플라즈마 토치의 부착면적이 협소할 뿐만 아니라, 마이크로웨이브 도파관 부착·석탄 주입·스팀 주입 등에 관련된 스팀 플라즈마 토치 주변의 부대설비가 복잡하여 단위 스팀 플라즈마 가스화기에 부착되는 스팀 플라즈마 토치의 개수에 한계(3~4개)가 있으며, 이를 극복하기 위하여 소형 가스화기를 여러 개 병렬로 연결하여 가스화기의 용량을 어느 정도 증대시킬 수는 있으나, 이로 인하여 스팀 플라즈마 가스화 장치의 설치 및 유지관리비가 상승되고 설치부지의 면적도 크게 차지하는 등의 문제점을 안게 되었다.Accordingly, the gasification process using steam and microwave plasma has attracted attention, but in the case of the conventional steam plasma gasifier, since the maximum capacity of the microwave generator installed in the gasifier is 100 kW, dozens of In addition to the need for a microwave generator, a conventional cylindrical plasma or gasifier having a similar structure to a steam plasma torch has a narrow attachment area of the steam plasma torch, and is also associated with microwave waveguide attachment, coal injection, steam injection, and the like. The number of steam plasma torch attached to the unit steam plasma gasifier is limited due to the complicated facilities around the torch (3 ~ 4) .To overcome this problem, the capacity of the gasifier is connected by connecting several small gasifiers in parallel. To increase to some extent However, this has caused problems such as increased installation and maintenance costs of the steam plasma gasifier and a large area of the installation site.
본 발명은 스팀 플라즈마 가스화기의 상기 문제점을 해결하기 위하여 안출된 것으로, 스팀 플라즈마 가스화기의 가스화 반응기를 대용량의 육면체형 구조로 설계하여 스팀 플라즈마 토치의 부착을 용이하게 하고, 토치 설치면적을 확대 및 단순화하여, 1개의 가스화 반응기에 10∼100개의 스팀 플라즈마 토치를 부착할 수 있도록 함으로써 상업적 규모의 대용량 스팀 플라즈마 가스화기를 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems of the steam plasma gasifier, by designing the gasification reactor of the steam plasma gasifier in a large-hexahedral structure to facilitate the attachment of the steam plasma torch, enlarge the torch installation area and For simplicity, it is an object to provide a large scale steam plasma gasifier on a commercial scale by being able to attach 10 to 100 steam plasma torches to one gasification reactor.
또한, 본 발명은 스팀 플라즈마 가스화기와 열회수 보일러를 일체형으로 설계함으로써 시설부지의 면적을 크게 축소시키고 설비의 단순화를 기하여 설비투자비를 절감할 뿐만 아니라 설비의 고장빈도를 줄여 설비의 신뢰도를 높일 수 있는 상업용 스팀 플라즈마 가스화기의 표준모델을 제공하는데 다른 목적이 있다.In addition, the present invention is designed to integrally design the steam plasma gasifier and heat recovery boiler to reduce the facility investment cost by greatly reducing the area of the facility site and simplify the facility, as well as to reduce the failure frequency of the facility to increase the reliability of the commercial Another object is to provide a standard model of a steam plasma gasifier.
상기 과제를 해결하기 위하여 본 발명은 스팀 보일러·마이크로웨이브 발생기·미분탄 공급기·산소 공급기에 연결되어 있는 스팀 플라즈마 토치와; 상기 마이크로웨이브 발생기의 마이크로웨이브에 의해 플라즈마 활성화된 스팀과 미분탄을 플라즈마 토치의 화염으로 고온반응시켜 합성가스를 발생시키는 가스화 반응기와; 상기 가스화 반응기의 합성가스로부터 보유열을 회수하는 열회수 스팀보일러와; 상기 합성가스 중의 황화물 등을 제거하는 가스정제설비와; 상기 합성가스 중의 분진을 제거하는 분진제거설비와; 상기 분진제거설비를 통과한 합성가스 중의 일산화탄소를 스팀과 촉매반응시켜 이산화탄소와 수소로 변환시키는 일산화탄소 변환기와; 상기 일산화탄소 변환기를 나오는 가스로부터 수소를 분리하는 순환식 흡착 가스분리기와; 상기 분리된 수소를 저장하는 수소 저장탱크를 포함하여 이루어지는 스팀 플라즈마를 이용한 수소 제조장치를 제공한다.In order to solve the above problems, the present invention includes a steam plasma torch connected to a steam boiler, a microwave generator, a pulverized coal supply, and an oxygen supply; A gasification reactor for generating a synthesis gas by high-temperature reaction of plasma activated steam and pulverized coal with a flame of a plasma torch by microwaves of the microwave generator; A heat recovery steam boiler for recovering retained heat from the synthesis gas of the gasification reactor; A gas purification facility for removing sulfides, etc. in the syngas; A dust removal facility for removing dust in the syngas; A carbon monoxide converter which converts carbon monoxide in the syngas passed through the dust removal facility into carbon dioxide and hydrogen by catalytic reaction with steam; A circulating adsorption gas separator for separating hydrogen from the gas exiting the carbon monoxide converter; It provides a hydrogen production apparatus using a steam plasma comprising a hydrogen storage tank for storing the separated hydrogen.
여기서 상기 가스화 반응기는 격벽을 사이에 두고 상기 열회수 스팀보일러와 서로 일체화되는 구조로 이루어진다.Here, the gasification reactor has a structure in which the heat recovery steam boiler is integrated with each other with a partition wall therebetween.
또한 상기 가스화 반응기는 대용량의 육면체형 구조로 설계되어 열회수 스팀보일러 측의 벽면과 상·하면을 제외한 가스화 반응기의 3개 벽면에 10∼100개의 스팀 플라즈마 토치를 설치할 수 있고, 3개 벽면에 설치된 10∼100개의 스팀 플라즈마 토치로부터 발생되는 플라즈마 화염이 가스화 반응기의 중앙 부위에서 화염기둥(Fire Ball)을 형성하여 가스화 반응에 필요한 온도에 신속하게 도달되는 특징을 가진다.In addition, the gasification reactor is designed in a large-capacity hexahedral structure can be installed 10 to 100 steam plasma torches on the three walls of the gasification reactor except the upper and lower walls and the heat recovery steam boiler side, 10 installed on three walls Plasma flames generated from ˜100 steam plasma torches form a fire ball at the central portion of the gasification reactor, and have a characteristic of rapidly reaching the temperature required for the gasification reaction.
또한 상기 가스정제설비는 소석회에 의한 반건식 슬러리 분무방식을 이용하도록 구성된다.In addition, the gas purification equipment is configured to use a semi-dry slurry spray method by slaked lime.
또한 본 발명은 스팀 보일러의 스팀을 마이크로웨이브 발생기에서 발생된 마이크로웨이브의 통로로 이동시켜 플라즈마 상태로 활성화시키는 단계; 미분탄 공급기로부터 분사되는 미분탄과 산소 공급기로부터 공급되는 산소를 상기 플라즈마 상태로 활성화한 스팀과 함께 가스화 반응기로 들여보내 플라즈마 화염으로 고온반응시켜 합성가스를 발생시키는 단계; 가스화 반응기에서 생성된 합성가스의 보유열을 격벽을 사이에 두고 상기 가스화 반응기와 일체화되어 있는 열회수 스팀보일러로 회수하는 단계; 열회수되어 온도가 낮아진 합성가스 중의 유황성분 등을 반건식 슬러리 분무방식의 가스 정제설비를 사용하여 제거하고, 회(Ash)분진, 슬러리 등 비산물질은 백필터(Bag Filter) 등의 분진 제거설비를 사용하여 제거하는 단계; 분진 제거설비를 통과한 합성가스를 압축하여 일산화탄소 변환기에 스팀 보일러의 스팀과 함께 혼입하여 대부분의 일산화탄소가 촉매반응에 의해 수소와 이산화탄소로 변환되는 단계; 일산화탄소 변환기에서 나오는 가스를 냉각하고 순환 흡착식 가스분리기에서 분리하여 순도 99% 이상의 수소를 제조하여 제조된 수소를 수소 저장탱크에 저장하는 단계;를 포함하여 이루어지는 스팀 플라즈마를 이용한 수소 제조방법을 제공한다.In another aspect, the present invention comprises the steps of moving the steam of the steam boiler to the passage of the microwave generated by the microwave generator to activate the plasma state; Injecting the pulverized coal injected from the pulverized coal feeder and the oxygen supplied from the oxygen feeder into the gasification reactor together with the activated steam in the plasma state to generate a syngas by high temperature reaction with a plasma flame; Recovering heat of the synthesis gas generated in the gasification reactor with a heat recovery steam boiler integrated with the gasification reactor with a partition therebetween; Sulfur components in the synthesis gas, which have been heated down and lowered in temperature, are removed using a semi-dry slurry spray method, and ash dust and slurry are used for dust removal equipment such as bag filters. Removing by; Compressing the synthesis gas passing through the dust removal equipment and mixing it with the steam of the steam boiler in a carbon monoxide converter to convert most of the carbon monoxide into hydrogen and carbon dioxide by a catalytic reaction; It provides a hydrogen production method using a steam plasma comprising a; cooling the gas from the carbon monoxide converter and separating in a circulating adsorption type gas separator to produce hydrogen with a purity of 99% or more in a hydrogen storage tank.
여기서 상기 가스화 반응기에서 합성가스를 발생시키는 단계는 대기압 또는 대기압보다 조금 낮은 압력조건에서 이루어진다.Here, the step of generating the syngas in the gasification reactor is performed at atmospheric pressure or a pressure condition slightly lower than atmospheric pressure.
또한 상기 가스화 반응기에서 합성가스를 발생시키는 단계는 가스화 반응기의 중앙부위에서 복수 개의 플라즈마 화염이 합해져 형성되는 화염기둥(Fire Ball) 속에서 가스화 반응이 마무리되도록 구성된다.In addition, the step of generating the synthesis gas in the gasification reactor is configured to finish the gasification reaction in the flame (Fire Ball) formed by combining a plurality of plasma flames in the central portion of the gasification reactor.
또한 본 발명은 열회수 스팀보일러에서 생산되는 스팀을 활용하여 합성가스 발생 단계 및 일산화탄소 변환 단계에 필요한 스팀을 모두 대체할 수 있는 스팀 플라즈마를 이용한 수소 제조방법을 제공한다.In another aspect, the present invention provides a method for producing hydrogen using a steam plasma that can replace all the steam required for the syngas generation step and the carbon monoxide conversion step by utilizing the steam produced in the heat recovery steam boiler.
또한 본 발명은 분진 제거설비의 분진털이 작업가스로서 합성가스 중 일부를 냉각 및 압축시켜 사용함으로써 가스의 외부 유출이나 외부 공기의 혼입을 방지할 수 있는 스팀 플라즈마를 이용한 수소 제조방법을 제공한다.In another aspect, the present invention provides a method for producing hydrogen using a steam plasma that can prevent the outflow of gas or mixing of outside air by using the dust of the dust removal equipment to cool and compress some of the synthesis gas as the working gas.
본 발명은 스팀 플라즈마 가스화기의 가스화 반응기를 육면체형 대용량 구조로 설계하여 스팀 플라즈마 토치의 부착을 용이하게 하고, 토치 설치면적을 확대 및 단순화하여, 1개의 가스화 반응기에 10∼100개의 스팀 플라즈마 토치를 부착할 수 있도록 함으로써 상업적 규모의 대용량 스팀 플라즈마 가스화기를 제공하는 효과를 가진다.The present invention is to design the gasification reactor of the steam plasma gasifier in a hexagonal large capacity structure to facilitate the attachment of the steam plasma torch, enlarge and simplify the torch installation area, 10 to 100 steam plasma torch in one gasification reactor By attaching it has the effect of providing a large-scale steam plasma gasifier on a commercial scale.
또한 본 발명의 스팀 플라즈마 가스화 반응기는 상업적 모델로서 충분히 역할을 수행하여 연관 산업인 수소 제조, 합성가스 발전, 연료전지, 수소 자동차, 화학산업 등의 발전에 크게 기여하는 효과를 가진다.In addition, the steam plasma gasification reactor of the present invention has a sufficient role as a commercial model has an effect that greatly contributes to the development of related industries hydrogen production, syngas power generation, fuel cells, hydrogen vehicles, chemical industry and the like.
또한 본 발명은 가스화 반응기와 열회수 보일러를 일체형으로 설계함으로써 시설부지의 면적을 크게 축소시키고 설비의 단순화를 기하여 설비투자비를 절감할 뿐만 아니라 설비 고장빈도를 줄여 설비의 신뢰도를 높일 수 있는 상업용 스팀 플라즈마 가스화기의 표준모델을 제공하는 효과를 가진다.In addition, the present invention by designing a gasification reactor and a heat recovery boiler integrally, the commercial steam plasma gas that can greatly reduce the facility investment cost by reducing the area of the facility site and simplify the equipment, as well as reduce the equipment failure frequency and increase the reliability of the equipment It has the effect of providing a standard model of firearms.
또한 본 발명에 따른 스팀 플라즈마 가스화 반응기는 탄소원료로서 저급탄을 사용함으로써 기존의 천연개스 개질 수소공법보다 수소의 제조단가를 크게 줄일 수 있어 연료전지 등 수소를 원료로 하는 관련산업에 대한 경제효과 유발 및 청정에너지인 수소 경제시대를 앞당길 수 있는 효과를 가진다.In addition, the steam plasma gasification reactor according to the present invention can significantly reduce the manufacturing cost of hydrogen than the existing natural gas reforming hydrogen process by using low-grade coal as a carbon raw material, causing economic effects on related industries that use hydrogen as a fuel cell. And it has the effect of advancing the hydrogen economic era of clean energy.
도 1은 본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 수소 제조장치 및 공정도이고,1 is a hydrogen production apparatus and process diagram using a steam plasma according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 가스화 반응기의 측면 개념도이며,2 is a side conceptual view of a gasification reactor according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 가스화 반응기 내부의 가스화 작업상황을 위에서 본 개념도이며,3 is a conceptual view from above of a gasification operation situation in a gasification reactor according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따라 가스화 반응기의 3면에 걸쳐 각 면당 4×4 배열로 도합 48개의 스팀 플라즈마 토치를 구비하고 있는 가스화 반응기를 위에서 본 개념도이고, 4 is a conceptual view from above of a gasification reactor having a total of 48 steam plasma torches in a total 4 × 4 arrangement on each side across three sides of the gasification reactor in accordance with one embodiment of the present invention;
도 5는 종래의 실린더형 소용량 가스화 반응기 12개에 48개의 스팀 플라즈마 토치를 각각의 가스화 반응기에 나누어 설치할 경우의 개념도이다.FIG. 5 is a conceptual diagram when 48 conventional steam plasma torches are installed in each gasification reactor in 12 conventional cylindrical small capacity gasification reactors.
[부호의 설명][Description of the code]
100; 스팀 플라즈마 토치100; Steam plasma torch
110; 스팀 보일러110; a steam boiler
110'; 스팀 보일러110 '; a steam boiler
111; 스팀 보일러111; a steam boiler
120; 마이크로웨이브 발생기120; Microwave generator
130; 미분탄 공급기130; Pulverized coal feeder
140; 산소 공급기140; Oxygen supply
200; 가스화 반응기200; Gasification reactor
200'; 실린더형 소용량 가스화 반응기200 '; Cylindrical Small Capacity Gasification Reactor
210; 플라즈마 화염210; Plasma flame
220; 화염기둥(Fire Ball)220; Fire Ball
250; 격벽250; septum
260; 격벽260; septum
300; 열회수 스팀보일러300; Heat recovery steam boiler
400; 가스정제설비400; Gas Purification Facility
410; 소석회 저장조410; Slaked lime storage tank
500; 분진 제거설비500; Dust Removal Equipment
600; 일산화탄소 변환기(CO Shifter)600; Carbon Monoxide Converter (CO Shifter)
700; 순환흡착식 가스분리기(PSA)700; Circulating adsorption gas separator (PSA)
800; 수소 저장탱크800; Hydrogen storage tank
본 발명에 따른 스팀 플라즈마를 이용한 수소 제조장치는 스팀을 마이크로웨이브로 활성화시켜 플라즈마 상태의 수소 라디칼과 산소 라디칼을 생성시킨 후(화학식 1), 가스화 반응기에서 석탄 또는 유기물 등 카본물질을 상기 플라즈마 상태의 수소 라디칼, 산소 라디칼 또는 일부 미활성화된 스팀과 반응시켜 일산화탄소, 이산화탄소 및 수소를 생성시키고(화학식 2, 3, 4), 상기 생성된 가스들과 가스화 반응기에서 수소 라디칼이 서로 결합하여 생성된 수소(화학식 5)로 이루어진 합성가스를 일산화탄소 변환기(CO Shifter)에 스팀과 함께 주입하여 수소를 추가 생산하고 일산화탄소는 이산화탄소로 변환하여 배출시키는 공정을 포함하고 있다(화학식 6).Hydrogen production apparatus using a steam plasma according to the present invention is activated by steam in a microwave to generate hydrogen radicals and oxygen radicals in the plasma state (Formula 1), the carbon material such as coal or organic matter in the gasification reactor of the plasma state Reacting with hydrogen radicals, oxygen radicals or some unactivated steam to produce carbon monoxide, carbon dioxide and hydrogen (Formula 2, 3, 4), and the hydrogen produced by combining hydrogen radicals in the gasification reactor with the generated gases ( Injecting a synthesis gas consisting of Chemical Formula 5) with steam to a carbon monoxide converter (CO Shifter) includes the production of hydrogen and carbon monoxide is converted to carbon dioxide and discharged (Formula 6).
[화학식 1][Formula 1]
H20 → 2HR + OR H 2 0 → 2H R + O R
[화학식 2][Formula 2]
C + O2 → CO2 C + O 2 → CO 2
[화학식 3][Formula 3]
2C + O2 → 2CO2C + O 2 → 2CO
[화학식 4][Formula 4]
C + H2O → CO + H2 C + H 2 O → CO + H 2
[화학식 5][Formula 5]
2HR → H2 2H R → H 2
[화학식 6][Formula 6]
CO + H2O → CO2 + H2 CO + H 2 O → CO 2 + H 2
또한, 스팀 플라즈마 가스화 반응기는 반응온도·반응시간·반응압력이 중요한 요소이며 스팀 플라즈마에 의한 가스화는 반응속도가 매우 빨라 상압에서의 반응이 가능하므로, 본 발명에서는 가스화 반응기의 구조를 종래의 고압용 원통형 소용량 구조에서 상압용 육면체형의 대용량 구조로 개조하는데에 착안점을 두었다.In addition, in the steam plasma gasification reactor, reaction temperature, reaction time, and reaction pressure are important factors, and since gasification by steam plasma is possible to react at normal pressure because the reaction rate is very fast, in the present invention, the structure of the gasification reactor is conventional The focus was on converting from the cylindrical small capacity structure to the large capacity structure of atmospheric hexagonal shape.
이와 같이 가스화 반응기를 육면체형의 대용량 구조로 함으로써 플라즈마 토치의 주변설비인 마이크로웨이브 도파관의 부착이나 석탄 주입·스팀 주입·산소 주입 등에 따른 복잡한 설비를 플라즈마 토치의 주변에 쉽게 설치할 수 있으며 여러 개의 플라즈마 토치를 1개의 가스화 반응기에 모두 수용하여 설치할 수 있게 되었다.As the gasification reactor has a large-capacity structure of a hexahedron, complex facilities such as microwave waveguide attachment, coal injection, steam injection, and oxygen injection, which are peripheral devices of the plasma torch, can be easily installed around the plasma torch. Can be accommodated and installed in one gasification reactor.
특히, 마이크로웨이브 발생기 1기의 최대용량이 100kW 정도이고 플라즈마 토치 하나에 1기의 마이크로웨이브 발생기가 설치되는 점을 고려하면, 상업적 규모의 가스화기에서는 수십 개의 플라즈마 토치가 필요하게 되나, 플라즈마 토치의 설치면적이 불충분한 종래의 고압용 원통형 구조의 소용량의 가스화 반응기의 경우, 가스화 반응기만 수십 기를 병렬로 연결할 수밖에 없어 상업화하기에 부적합하였다.In particular, considering that the maximum capacity of one microwave generator is about 100kW and one microwave generator is installed in one plasma torch, commercial gasifiers require dozens of plasma torches. In the case of a small-capacity gasification reactor having a high-pressure cylindrical structure having insufficient installation area, only a gasification reactor has to be connected in parallel with several dozen units, which is not suitable for commercialization.
본 발명에서는 가스화 반응기를 상압 반응에 적합한 육면체형 대용량으로 제작함으로써 플라즈마 토치 주변시설의 설치가 용이해져 가스화 반응기 1기당 10∼100개의 플라즈마 토치의 설치가 가능해지고, 이로 인하여 가스화 반응기의 단위용량이 크게 증가되어 플라즈마 가스화 시설의 상업운전이 가능해지게 되었다.In the present invention, since the gasification reactor is manufactured in a large capacity hexahedron suitable for the atmospheric pressure reaction, the installation of the plasma torch peripheral facilities is facilitated, so that 10 to 100 plasma torches can be installed per gasification reactor, and thus the unit capacity of the gasification reactor is large. Increasingly, the commercial operation of plasma gasification facilities has become possible.
또한, 본 발명에서는 가스화 반응기를 열회수 스팀보일러와 일체형으로 설계하여 설비를 단순화함으로써 설치면적 감소, 설비비 절감, 고장빈도 감소 등의 경제적 효과를 높이게 되었다. In addition, in the present invention, the gasification reactor is integrally designed with the heat recovery steam boiler, thereby simplifying the facility, thereby increasing economic effects such as reducing the installation area, reducing the facility cost, and reducing the frequency of failure.
이하, 첨부된 도면에 의거하여 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 수소 제조장치 및 수소 제조공정도이다.1 is a hydrogen production apparatus and hydrogen production process diagram using a steam plasma according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 수소 제조장치는 스팀 보일러(110), 마이크로웨이브 발생기(120), 미분탄 공급기(130), 산소 공급기(140)에 연결되어 있는 스팀 플라즈마 토치(100)와; 상기 마이크로웨이브 발생기(120)의 마이크로웨이브에 의해 플라즈마 활성화된 스팀과 미분탄을 플라즈마 토치(100)의 화염(210)으로 고온반응시켜 합성가스를 발생시키는 가스화 반응기(200)와; 상기 가스화 반응기(200)의 합성가스로부터 보유열을 회수하는 열회수 스팀보일러(300)와; 상기 합성가스 중의 황화물 등을 제거하는 가스정제설비(400)와; 상기 합성가스 중의 분진을 제거하는 분진제거설비(500)와; 상기 분진제거설비(500)를 통과한 합성가스 중의 일산화탄소를 스팀과 촉매반응시켜 이산화탄소와 수소로 변환시키는 일산화탄소 변환기(600)와; 상기 일산화탄소 변환기(600)를 나오는 가스로부터 수소를 분리하는 순환식 흡착 가스분리기(700)와; 분리된 수소를 저장하는 수소 저장탱크(800)를 포함하여 이루어진다.Hydrogen production apparatus using a steam plasma according to an embodiment of the present invention is a steam plasma torch 100 is connected to the steam boiler 110, microwave generator 120, pulverized coal supply 130, oxygen supply 140 Wow; A gasification reactor (200) for generating a synthesis gas by reacting the plasma activated steam and the pulverized coal with the flame (210) of the plasma torch (100) by the microwave of the microwave generator (120); A heat recovery steam boiler (300) for recovering retained heat from the synthesis gas of the gasification reactor (200); A gas purification facility 400 for removing sulfides, etc. in the syngas; A dust removal facility 500 for removing dust in the syngas; A carbon monoxide converter 600 for catalytically reacting carbon monoxide in the synthesis gas passed through the dust removal facility 500 to convert carbon dioxide and hydrogen; A circulating adsorption gas separator (700) for separating hydrogen from the gas exiting the carbon monoxide converter (600); It comprises a hydrogen storage tank 800 for storing the separated hydrogen.
본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 수소 제조장치는 상기 가스화 반응기(200)와 상기 열회수 스팀보일러(300)가 격벽(250, 260)을 사이에 두고 서로 일체화되는 구조로 이루어진다.Hydrogen production apparatus using a steam plasma according to an embodiment of the present invention has a structure in which the gasification reactor 200 and the heat recovery steam boiler 300 is integrated with the partitions (250, 260) between.
이들 격벽(250, 260)은 가스화 반응기(200)에서의 가스화 반응시간을 충분히 확보할 수 있도록 함과 동시에, 합성가스 중의 분진을 걸러내어 분진이 열회수 스팀보일러(300)의 열회수 코일에 부착되는 것을 감소시키는 기능을 가진다.These partitions 250 and 260 ensure sufficient gasification reaction time in the gasification reactor 200, and filter the dust in the syngas to prevent the dust from adhering to the heat recovery coil of the heat recovery steam boiler 300. Has the function of reducing.
본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 수소 제조장치의 작동과 수소 제조방법은 다음과 같다.Operation of the hydrogen production apparatus and the hydrogen production method using a steam plasma according to an embodiment of the present invention are as follows.
스팀 보일러(110)의 스팀(5∼10 kg/c㎡)을 마이크로웨이브 발생기(120)에서 만들어진 마이크로웨이브(300MHz∼30GHz)의 통로로 이동시켜 플라즈마 상태로 활성화시키고, 미분탄 공급기(130)로부터 분사되는 미분탄과 산소 공급기(140)로부터 공급되는 산소를 상기 플라즈마 상태로 활성화한 스팀과 함께 가스화 반응기(200)에 유입시켜 플라즈마 화염(210)으로 고온반응(1,100∼1,500℃)시켜 합성가스를 발생시킨다.Steam (5 to 10 kg / c㎡) of the steam boiler 110 is moved to the passage of the microwave (300MHz ~ 30GHz) made in the microwave generator 120 to activate in the plasma state, and sprayed from the pulverized coal supply 130 The pulverized coal and oxygen supplied from the oxygen supplier 140 are introduced into the gasification reactor 200 together with the steam activated in the plasma state to generate high temperature reaction (1,100 to 1,500 ° C.) with a plasma flame 210 to generate syngas. .
이때 가스화 반응기(200)는 대기압 또는 일산화탄소 변환기(600)의 전단부에서 압축기(미도시)의 흡입에 의해 발생하는 대기압보다 조금 낮은 압력조건에서 운전되고, 미분탄과 산소는 플라즈마 화염(210)의 입구에서부터 투입되어 플라즈마 화염(210)과 함께 가스화 반응기(200) 내측으로 진행하면서 플라즈마 상태의 스팀과 반응하고, 가스화 반응기(200)의 중앙부위에서 복수 개의 플라즈마 화염(210)들이 형성하는 화염기둥(Fire Ball) 속에서 반응이 마무리된다.At this time, the gasification reactor 200 is operated at a pressure lower than the atmospheric pressure generated by the suction of the compressor (not shown) at the atmospheric pressure or the front end of the carbon monoxide converter 600, the pulverized coal and oxygen is the inlet of the plasma flame 210 Injected from the reaction with the plasma in the plasma state while proceeding to the inside of the gasification reactor 200 with the plasma flame 210, the flame column formed by a plurality of plasma flames 210 in the central portion of the gasification reactor 200 (Fire Ball The reaction ends in.
산소 공급기(140)는 가스화 반응기(200)의 온도를 반응온도로 신속하게 높이기 위해 운전초기에만 가동되고 정상작업 상태(steady state)에서는 가동을 중지할 수 있는데 이러한 작업은 투입되는 미분탄을 불완전 연소시켜 수소의 생성율을 높이기 위해서도 필요하다. Oxygen supply 140 is operated only at the beginning of the operation to quickly increase the temperature of the gasification reactor 200 to the reaction temperature and can be stopped in the steady state (this operation is incomplete combustion of the pulverized coal injected) It is also necessary to increase the production rate of hydrogen.
또한 스팀 보일러(110)도 운전초기에만 가동하면 이후 열회수 스팀보일러(300)에서 생산되는 스팀으로 정상작업 상태(steady state)를 유지할 수 있으므로 정상작업 상태(steady state)에서는 스팀 보일러(110)의 운전도 중지할 수 있다.In addition, if the steam boiler 110 is also operated only at the beginning of operation, since the steam produced by the heat recovery steam boiler 300 may maintain a steady working state, the operation of the steam boiler 110 in a steady working state. You can also stop.
이와 같이 가스화 반응기(200)에서 생성된 합성가스는 2개의 격벽(250, 260)을 거치면서 반응 지속시간(retention time)이 연장되어 반응의 완결도가 한층 높아지게 된다.As described above, the synthesis gas generated in the gasification reactor 200 passes through two partitions 250 and 260 to extend the reaction time, thereby increasing the completion of the reaction.
또한 생성된 합성가스의 보유열을 열회수 스팀보일러(300)로 회수하여 스팀을 생산하게 되는데, 1,100∼1,500℃의 합성가스 출구온도를 250∼350℃까지 열회수가 가능하므로 그 회수열을 이용하여 스팀(7∼15 kg/c㎡)을 생산함으로써 전술한 스팀 플라즈마 토치(100)용의 스팀과 후술할 일산화탄소 변환기(600)용의 스팀을 모두 대체할 수 있고 일부 남는 스팀은 판매까지 할 수 있다.In addition, steam is produced by recovering the heat of the generated synthesis gas to the heat recovery steam boiler 300. Since the recovery temperature of the synthesis gas outlet temperature of 1,100 to 1,500 ° C is possible to 250 to 350 ° C, the steam is recovered using the recovery heat. By producing (7 to 15 kg / cm 2), both the steam for the steam plasma torch 100 and the steam for the carbon monoxide converter 600 to be described later can be replaced, and some of the remaining steam can be sold.
열회수되어 온도가 낮아진(250∼350℃) 합성가스 중의 유황성분(SOx, H2S 등)은 석회수에 의한 반건식 슬러리 분무방식의 가스 정제설비(400)를 사용하여 제거하고, 회(Ash)분진, 슬러리 등 비산물질은 백필터(Bag Filter) 등의 분진 제거설비(500)를 사용하여 제거하며, 분진 제거설비(500)의 분진털이 작업가스로 합성가스 중 일부를 냉각 및 압축시켜 활용함으로써 가스의 외부 유출이나 외부 공기의 혼입을 방지한다.Sulfur constituents (SOx, H 2 S, etc.) in the synthesis gas that has been lowered by heat recovery (250-350 ° C.) are removed by using a semi-dry slurry spray method of gas purification equipment 400 by lime water, and ash dust. And fugitives such as slurry are removed using a dust removal facility 500 such as a bag filter, and the dust of the dust removal facility 500 is cooled by using a part of the synthesis gas as a working gas. To prevent external leakage or mixing of outside air.
분진 제거설비(500)를 통과한 합성가스를 일산화탄소 변환기(600; CO Shifter)에 스팀 보일러(111)의 스팀과 함께 혼입하면 대부분(99.7%)의 일산화탄소가 촉매반응에 의해 수소와 이산화탄소로 변환된다.    When the synthesis gas passed through the dust removal facility 500 is mixed with the steam of the steam boiler 111 in the carbon monoxide converter 600 (CO shifter), most (99.7%) of carbon monoxide is converted into hydrogen and carbon dioxide by a catalytic reaction. .
일산화탄소 변환기(600)에서 나오는 가스를 냉각하고 순환흡착식 가스분리기(700; PSA)에서 분리하여 순도 99% 이상의 수소를 제조하고, 제조된 수소는 수소 저장탱크(800)에 저장한다.The gas from the carbon monoxide converter 600 is cooled and separated from the circulating adsorption gas separator 700 (PSA) to produce hydrogen having a purity of 99% or more, and the produced hydrogen is stored in the hydrogen storage tank 800.
도 2는 본 발명의 일 실시예에 따른 가스화 반응기의 측면 개념도이며, 도 3은 가스화 반응기 내부의 가스화 작업상황을 위에서 내려다 본 개념도이다.Figure 2 is a side conceptual view of a gasification reactor according to an embodiment of the present invention, Figure 3 is a conceptual view looking down from the gasification operation situation inside the gasification reactor.
본 발명의 일 실시예에 따른 가스화 반응기(200)는 열회수 스팀보일러(300)와 격벽(250, 260)을 사이에 두고 일체화되는 구조로 이루어진다. Gasification reactor 200 according to an embodiment of the present invention has a structure that is integrated with the heat recovery steam boiler 300 and the partitions (250, 260) between.
본 발명의 일 실시예에 따른 가스화 반응기(200)는 대용량의 육면체형 구조로 설계되어, 열회수 스팀보일러(300) 측의 벽면과 상·하면을 제외한 가스화 반응기(200)의 3개 벽면에 10∼100개의 스팀 플라즈마 토치(100)를 설치할 수 있다.The gasification reactor 200 according to an embodiment of the present invention is designed in a large-capacity hexahedral structure, 10 to three walls of the gasification reactor 200 except for the upper and lower surfaces of the heat recovery steam boiler 300 side. One hundred steam plasma torches 100 may be installed.
또한 본 발명의 일 실시예에 따른 가스화 반응기(200)는 3개 벽면에 설치된 10∼100개의 스팀 플라즈마 토치(100)로부터 발생되는 플라즈마 화염(210)이 가스화 반응기(200)의 중앙 부위에서 화염기둥(Fire Ball)을 형성하여 가스화 반응에 필요한 온도에 신속하게 도달할 수 있다.In addition, in the gasification reactor 200 according to an embodiment of the present invention, the plasma flame 210 generated from 10 to 100 steam plasma torches 100 installed on three walls has a flame pillar at a central portion of the gasification reactor 200. It is possible to quickly reach the temperature required for the gasification reaction by forming a fire ball.
도 4는 본 발명의 일 실시예에 따라 가스화 반응기의 3면에 걸쳐 각 면당 4×4 배열로 도합 48개의 스팀 플라즈마 토치를 구비하고 있는 가스화 반응기를 위에서 본 개념도이고, 도 5는 종래의 실린더형 소용량 가스화 반응기 12개에 48개의 스팀 플라즈마 토치를 각각의 가스화 반응기에 나누어 설치할 경우의 개념도이다.4 is a conceptual view from above of a gasification reactor having a total of 48 steam plasma torches in a total of 4 × 4 arrangements on each side across three sides of the gasification reactor in accordance with one embodiment of the invention, and FIG. It is a conceptual diagram when 48 small-capacity gasification reactors install 48 steam plasma torches in each gasification reactor.
도 4에서 알 수 있는 바와 같이 본 발명의 일 실시예에 따른 가스화 반응기(200)는 열회수 스팀보일러(300)와 일체화되고 대용량의 육면체형 구조로 설계되어 있어, 열회수 스팀보일러(300) 측의 벽면과 상·하면을 제외한 가스화 반응기(200)의 3개 벽면에 4×4 배열로 16개의 스팀 플라즈마 토치(100)를 가져 도합 48개의 스팀 플라즈마 토치(100)를 구비하고 있으며, 이들 설비의 설치에 소요되는 면적은 대략 19.37m × 30.13m ≒ 584㎡ 로 산정된다.As can be seen in Figure 4 the gasification reactor 200 according to an embodiment of the present invention is integrated with the heat recovery steam boiler 300 and designed in a large-capacity hexahedral structure, the heat recovery steam boiler 300 side wall It is equipped with 48 steam plasma torches 100 in a 4 × 4 arrangement on three walls of gasification reactor 200 except for the upper and lower surfaces, and has a total of 48 steam plasma torches 100. The required area is estimated to be approximately 19.37m × 30.13m ≒ 584㎡.
한편 도 5에서 알 수 있는 바와 같이 본 발명의 일 실시예에 따른 가스화 반응기 1기에 설치된 48개의 스팀 플라즈마 토치를 종래의 실린더형 소용량 가스화 반응기(200') 12기에 각각 4개씩 나누어 설치하고 부대설비로서 스팀 보일러(110')를 포함시킬 경우, 이들 설비의 설치에 소요되는 면적은 대략 30.77m × 52.56m ≒ 1,617㎡ 로 산정되어, 본 발명의 일 실시예에 따른 가스화기(가스화 반응기 및 열회수 스팀 보일러)는 설치면적에서 종래의 실린더형 소용량 가스화 반응기(스팀 보일러 포함)에 비해 64%나 절감되는 효과를 가져 공장부지의 구입비를 포함한 설비투자비 등을 크게 절감하는 효과를 가진다.On the other hand, as can be seen in Figure 5, 48 steam plasma torch installed in one gasification reactor according to an embodiment of the present invention divided into four installed in each of the conventional cylindrical small-capacity gasification reactor (200 ') of 12 each as an auxiliary facility In the case of including the steam boiler 110 ', the area required for installation of these facilities is estimated to be approximately 30.77 m x 52.56 m ≒ 1,617 m 2, and the gasifier (gasification reactor and heat recovery steam boiler) according to an embodiment of the present invention. ) Has a 64% reduction in installation area compared to conventional cylindrical small-capacity gasification reactors (including steam boilers), which greatly reduces equipment investment costs, including the purchase cost of factory sites.
또한 본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 수소 제조장치는 스팀 보일러를 가스화 반응기와 일체화하여 가스화 반응기를 나오는 합성가스의 보유열을 바로 스팀 보일러의 스팀 생산열원으로 재활용함으로써 스팀 생산비를 절감할 뿐만 아니라 설비의 단순화를 기하고 설비 고장빈도를 줄여 설비의 신뢰도를 높이는 효과를 가진다.In addition, the hydrogen production apparatus using the steam plasma according to an embodiment of the present invention by reducing the steam production cost by integrating the steam boiler with the gasification reactor by directly recycling the heat of synthesis gas leaving the gasification reactor as the steam production heat source of the steam boiler. In addition, it has the effect of increasing the reliability of the equipment by simplifying the equipment and reducing the frequency of equipment failure.
이하 본 발명에 따른 스팀 플라즈마를 이용한 수소 제조방법을 하나의 실시예에 의거하여 다시 자세히 설명하기로 하지만 이는 예시로서 제시되는 것이며 이에 의하여 본 발명이 한정되는 것은 아니다.Hereinafter, the hydrogen production method using the steam plasma according to the present invention will be described in detail again based on one embodiment, which is presented as an example and the present invention is not limited thereto.
[실시예 1]Example 1
1. 스팀 보일러(110)를 가동하여 스팀압력을 7 kg/c㎡ 로 유지하며 응축수를 제거한다.1. Operate the steam boiler 110 to maintain steam pressure of 7 kg / c㎡ and remove condensate.
2. 마이크로웨이브 발생장치에 전원을 공급하고 냉각수를 투입하여 가동준비 상태로 만든 다음, 마이크로웨이브를 도파관을 통해 주입하면서 응축수가 제거된 스팀을 주입하여 플라즈마 화염을 점화시킨다.2. Power up the microwave generator, turn on the coolant and make it ready for operation. Then, inject the microwave through the waveguide and inject steam from the condensate to ignite the plasma flame.
3. 화염의 상태가 정상적으로 되면 준비된 미분탄 분말과 산소를 서서히 투입하면서 온도를 관찰하여 1,000℃가 되면 산소를 서서히 줄인다.3. When the state of flame is normal, slowly pour the prepared pulverized coal powder and oxygen and observe the temperature, and gradually reduce the oxygen when it reaches 1,000 ℃.
4. 가스화 반응기의 내부온도가 1,200℃ 이상이 되면 스팀을 추가로 주입하여 안정화 상태로 만든다.4. When the internal temperature of the gasification reactor is 1,200 ℃ or more, steam is additionally injected to make it stabilized.
5. 제조된 합성가스를 열회수 스팀보일러를 거치게 하고, 가스 정제설비에서 소석회와 접촉시켜 황화합물(H2S, SOx) 및 이성물질을 제거한다.5. The manufactured syngas is passed through a heat recovery steam boiler and contacted with slaked lime in a gas refinery to remove sulfur compounds (H 2 S, SOx) and isomers.
6. 분진 제거설비(Bag Filter)에서 회분(Ash) 및 기타 고형물을 제거한다.6. Remove ash and other solids from the bag filter.
7. 정제된 합성가스를 압축하고 일산화탄소 변환기(CO Shifter)에 스팀과 함께 투입하여 추가의 수소와 이산화탄소를 제조한다.7. Compress the purified syngas and add it with steam to a CO shifter to produce additional hydrogen and carbon dioxide.
8. 제조된 2차 합성가스를 냉각수로 냉각한 후 순환 흡착식 가스분리기(PSA; Pressure Swing Adsorption)에서 수소를 분리하여 저장한다.8. After cooling the prepared secondary synthesis gas with cooling water, hydrogen is separated and stored in a pressure swing adsorption (PSA).
아래 [표 1]은 [실시예 1]의 공정구간 별 가스 조성표를 나타내고 있다. Table 1 below shows a gas composition table for each process section of Example 1.
구 분 division 가스화 반응기 후단 조성Gasification reactor backstage composition 일산화탄소 변환기후단 조성Rear end composition of carbon monoxide converter 순환 흡착식 가스분리기후단 조성Circulating Adsorption Gas Separator Back Composition
가스명Gas name 함량(%)content(%) 유량(LPM)Flow rate (LPM) 함량(%)content(%) 유량(LPM)Flow rate (LPM) 함량(%)content(%) 유량(LPM)Flow rate (LPM)
H2 H 2 39.839.8 7,641.67,641.6 54.554.5 13,601.413,601.4 99.999.9 12,241.312,241.3
COCO 32.032.0 6,144,06,144,0 0.020.02 5.05.0 -- --
CO2 CO 2 18.218.2 3,494.43,494.4 37.7837.78 9,454.29,454.2 -- --
N2 N 2 10.010.0 1920.01920.0 7.77.7 1,920.01,920.0 -- --
소 계sub Total 100.0100.0 19,20019,200 100.0100.0 24,980.624,980.6 99.999.9 12,241.312,241.3
[표 1]에서와 같이 본 발명의 [실시예 1]에서는 순환흡착식 가스분리에 의해 수소의 함량이 99.9%로 향상되고, 유량(LPM)은 12,241.3 LPM(Liter Per Minute)로 일산화탄소 변환기 후단의 13,601.4 LPM에 비해 10% 정도의 손실이 발생하였는데 이는 순환흡착식 가스분리기의 효율(90%)에 기인한 것이다.In Example 1 of the present invention, as shown in Table 1, the content of hydrogen is improved to 99.9% by circulating adsorption gas separation, and the flow rate (LPM) is 12,241.3 LPM (Liter Per Minute) at 13,601.4 after the carbon monoxide converter. The loss was about 10% compared to the LPM due to the efficiency (90%) of the circulating adsorption gas separator.
상기 기재사항으로부터 알 수 있는 바와 같이, 본 발명의 스팀플라즈마를 이용한 수소 제조장치 및 수소 제조방법은 스팀 플라즈마 가스화기의 가스화 반응기를 육면체형 대용량 구조로 설계하여 스팀 플라즈마 토치의 부착을 용이하게 하고, 토치 설치면적을 확대 및 단순화하여, 1개의 가스화 반응기에 10∼100개의 스팀 플라즈마 토치를 부착할 수 있도록 함으로써 상업적 규모의 대용량 스팀 플라즈마 가스화기를 제공하는 산업상의 이용가능성을 가진다.As can be seen from the above description, the hydrogen production apparatus and hydrogen production method using the steam plasma of the present invention by designing the gasification reactor of the steam plasma gasifier in a hexahedral large capacity structure to facilitate the attachment of the steam plasma torch, By expanding and simplifying the torch installation area, it is possible to attach 10 to 100 steam plasma torches to one gasification reactor, thereby having industrial applicability to provide a large scale steam plasma gasifier on a commercial scale.
또한 본 발명의 스팀 플라즈마 가스화 반응기는 상업적 모델로서 충분히 역할을 수행하여 연관 산업인 수소 제조, 합성가스 발전, 연료전지, 수소 자동차, 화학산업 등의 발전에 크게 기여하는 산업상의 이용가능성을 가진다.In addition, the steam plasma gasification reactor of the present invention has an industrial applicability that contributes significantly to the development of related industries, such as hydrogen production, syngas generation, fuel cells, hydrogen automobiles, chemical industry, etc., by fully serving as a commercial model.

Claims (11)

  1. 스팀 플라즈마를 이용한 수소 제조장치로서,An apparatus for producing hydrogen using steam plasma,
    스팀 보일러(110), 마이크로웨이브 발생기(120), 미분탄 공급기(130), 산소 공급기(140)에 연결되어 있는 스팀 플라즈마 토치(100)와;A steam plasma torch 100 connected to the steam boiler 110, the microwave generator 120, the pulverized coal supply 130, and the oxygen supply 140;
    상기 마이크로웨이브 발생기(120)의 마이크로웨이브에 의해 플라즈마 활성화된 스팀과 미분탄을 플라즈마 토치(100)의 화염(210)으로 고온반응시켜 합성가스를 발생시키는 가스화 반응기(200)와;A gasification reactor (200) for generating a synthesis gas by reacting the plasma activated steam and the pulverized coal with the flame (210) of the plasma torch (100) by the microwave of the microwave generator (120);
    상기 가스화 반응기(200)의 합성가스로부터 열을 회수하는 열회수 스팀보일러(300)와;A heat recovery steam boiler (300) for recovering heat from the synthesis gas of the gasification reactor (200);
    상기 합성가스 중의 황화물 등을 제거하는 가스정제설비(400)와;A gas purification facility 400 for removing sulfides, etc. in the syngas;
    상기 합성가스 중의 분진을 제거하는 분진제거설비(500)와;A dust removal facility 500 for removing dust in the syngas;
    상기 분진제거설비(500)를 통과한 합성가스 중의 일산화탄소를 스팀과 촉매반응시켜 이산화탄소와 수소로 변환시키는 일산화탄소 변환기(600)와;A carbon monoxide converter 600 for catalytically reacting carbon monoxide in the synthesis gas passed through the dust removal facility 500 to convert carbon dioxide and hydrogen;
    상기 일산화탄소 변환기(600)를 나오는 가스로부터 수소를 분리하는 순환식 흡착 가스분리기(700)와;A circulating adsorption gas separator (700) for separating hydrogen from the gas exiting the carbon monoxide converter (600);
    상기 분리된 수소를 저장하는 수소 저장탱크(800)를 포함하여 이루어지는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조장치.Hydrogen production apparatus using a steam plasma, characterized in that comprises a hydrogen storage tank (800) for storing the separated hydrogen.
  2. 제 1항에 있어서,The method of claim 1,
    상기 가스화 반응기(200)와 상기 열회수 스팀보일러(300)는 격벽(250, 260)을 사이에 두고 서로 일체화되는 구조로 이루어지는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조장치.The gasification reactor (200) and the heat recovery steam boiler 300 is a hydrogen production apparatus using a steam plasma, characterized in that made of a structure that is integrated with each other with the partitions (250, 260) therebetween.
  3. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2,
    상기 가스화 반응기(200)는 육면체형 구조로 설계되어, 열회수 스팀보일러(300) 측의 벽면과 상·하면을 제외한 가스화 반응기(200)의 3개 벽면에 10∼100개의 스팀 플라즈마 토치(100)를 설치할 수 있는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조장치.The gasification reactor 200 is designed in a hexahedral structure, 10 to 100 steam plasma torch 100 on the three walls of the gasification reactor 200 except for the top and bottom and the wall surface of the heat recovery steam boiler 300 side Hydrogen production apparatus using a steam plasma, characterized in that can be installed.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 가스화 반응기(200)는 3개 벽면에 설치된 10∼100개의 스팀 플라즈마 토치(100)로부터 발생되는 플라즈마 화염(210)이 가스화 반응기(200)의 중앙 부위에서 화염기둥(Fire Ball)을 형성하여 가스화 반응에 필요한 온도에 신속하게 도달하는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조장치.In the gasification reactor 200, a plasma flame 210 generated from 10 to 100 steam plasma torches 100 installed on three walls forms gas balls by forming a fire ball at a central portion of the gasification reactor 200. Hydrogen production apparatus using a steam plasma, characterized in that to quickly reach the temperature required for the reaction.
  5. 제 1항에 있어서,The method of claim 1,
    상기 가스정제설비(400)는 소석회에 의한 반건식 슬러리 분무방식을 이용하는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조장치.The gas purification facility 400 is a hydrogen production apparatus using a steam plasma, characterized in that using a semi-dry slurry spraying method by slaked lime.
  6. 스팀 플라즈마를 이용한 수소 제조방법으로서,As a hydrogen production method using a steam plasma,
    스팀 보일러(110)의 스팀을 마이크로웨이브 발생기(120)에서 발생된 마이크로웨이브의 통로로 이동시켜 플라즈마 상태로 활성화시키는 단계;Moving the steam of the steam boiler 110 into a passage of the microwave generated by the microwave generator 120 to activate the plasma state;
    미분탄 공급기(130)로부터 분사되는 미분탄과 산소 공급기(140)로부터 공급되는 산소를 상기 플라즈마 상태로 활성화한 스팀과 함께 가스화 반응기(200)로 들여보내 플라즈마 화염(210)으로 고온반응시켜 합성가스를 발생시키는 단계;The pulverized coal injected from the pulverized coal supplier 130 and the oxygen supplied from the oxygen supplier 140 are introduced into the gasification reactor 200 together with the steam activated in the plasma state and reacted at a high temperature with a plasma flame 210 to generate syngas. Making a step;
    가스화 반응기(200)에서 생성된 합성가스의 보유열을 격벽(250, 260)을 사이에 두고 상기 가스화 반응기(200)와 일체화되어 있는 열회수 스팀보일러(300)로 회수하는 단계;Recovering the heat of the synthesis gas generated in the gasification reactor 200 to the heat recovery steam boiler 300 integrated with the gasification reactor 200 with the partition walls 250 and 260 therebetween;
    열회수되어 온도가 낮아진 합성가스 중의 유황성분 등을 반건식 슬러리 분무방식의 가스 정제설비(400)를 사용하여 제거하고, 회(Ash)분진, 슬러리 등 비산물질은 백필터(Bag Filter) 등의 분진 제거설비(500)를 사용하여 제거하는 단계;Sulfur components, etc., in the synthesis gas, which have been heated down and lowered in temperature, are removed using a semi-dry slurry spraying gas purifier 400, and ash dust, slurry and other fugitive substances are removed in the bag filter. Removing using plant 500;
    분진 제거설비(500)를 통과한 합성가스를 일산화탄소 변환기(600)에 스팀 보일러(111)의 스팀과 함께 혼입시켜 일산화탄소를 수소와 이산화탄소로 변환시키는 단계;Incorporating the synthesis gas passed through the dust removal facility 500 with the steam of the steam boiler 111 in the carbon monoxide converter 600 to convert carbon monoxide into hydrogen and carbon dioxide;
    일산화탄소 변환기(600)에서 나오는 가스를 냉각·압축하고 순환 흡착식 가스분리기(700)에서 분리하여 순도 99% 이상의 수소를 제조하여 제조된 수소를 수소 저장탱크(800)에 저장하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조방법.Cooling and compressing the gas from the carbon monoxide converter 600, separated from the circulating adsorption type gas separator 700 to produce hydrogen with a purity of 99% or more and to store the hydrogen produced in the hydrogen storage tank (800); Hydrogen production method using a steam plasma, characterized in that.
  7. 제 6항에 있어서,The method of claim 6,
    상기 가스화 반응기(200)에서 합성가스를 발생시키는 단계는 대기압 또는 대기압보다 조금 낮은 압력조건에서 이루어지는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조방법.Generating the synthesis gas in the gasification reactor 200 is hydrogen production method using a steam plasma, characterized in that the pressure is made under a pressure condition slightly lower than atmospheric pressure.
  8. 제 6항에 있어서,The method of claim 6,
    상기 가스화 반응기(200)에서 합성가스를 발생시키는 단계는 가스화 반응기(200)의 중앙 부위에서 복수 개의 플라즈마 화염(210)들이 형성하는 화염기둥(Fire Ball) 속에서 가스화 반응이 마무리되는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조방법.Generating the synthesis gas in the gasification reactor 200 is characterized in that the gasification reaction is finished in a flame column (Fire Ball) formed by a plurality of plasma flames 210 in the central portion of the gasification reactor 200 Hydrogen production method using steam plasma.
  9. 제 6항에 있어서,The method of claim 6,
    상기 열회수 스팀보일러(300)에서 생산되는 스팀을 활용하여 합성가스 발생 단계 및 일산화탄소 변환 단계에 필요한 스팀을 모두 대체할 수 있는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조방법.Method for producing hydrogen using a steam plasma, characterized in that by using the steam produced in the heat recovery steam boiler 300 can replace all the steam required for the synthesis gas generation step and carbon monoxide conversion step.
  10. 제 6항에 있어서,The method of claim 6,
    상기 분진 제거설비(500)의 분진털이 작업가스로 합성가스 중 일부를 냉각 및 압축시켜 사용함으로써 가스의 외부 유출이나 외부 공기의 혼입을 방지하는 것을 특징으로 하는 스팀 플라즈마를 이용한 수소 제조방법.Particle dust of the dust removal facility 500 is hydrogen production method using a steam plasma, characterized in that to prevent the outflow of the gas or the mixing of the outside air by using a portion of the synthesis gas to cool and compress the working gas.
  11. 스팀 플라즈마를 이용한 가스화 반응기에 있어서,In the gasification reactor using a steam plasma,
    격벽(250, 260)을 사이에 두고 열회수 스팀보일러(300)와 서로 일체화되며, 육면체형 구조로 설계되어 상기 열회수 스팀보일러(300) 측의 벽면과 상·하면을 제외한 3개 벽면에 10∼100개의 스팀 플라즈마 토치(100)를 설치할 수 있으며, 상기 3개 벽면에 설치된 10∼100개의 스팀 플라즈마 토치(100)로부터 발생되는 플라즈마 화염(210)이 상기 육면체형 구조의 중앙 부위에서 화염기둥(Fire Ball)을 형성하여 가스화 반응에 필요한 온도까지 신속하게 도달하는 것을 특징으로 하는 스팀 플라즈마를 이용한 가스화 반응기(200).It is integrated with each other with the heat recovery steam boiler 300 with the partitions 250 and 260 interposed therebetween, and is designed in a hexahedral structure so that the wall surfaces and upper and lower surfaces of the heat recovery steam boiler 300 side are 10 to 100. Steam plasma torch 100 may be installed, and the plasma flame 210 generated from the 10 to 100 steam plasma torch 100 installed on the three walls has a flame column at the central portion of the hexahedral structure. The gasification reactor 200 using the steam plasma, characterized in that to reach a temperature required for the gasification reaction by forming a).
PCT/KR2016/003111 2015-06-30 2016-03-28 Hydrogen generator and hydrogen production method, using steam plasma WO2017003066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680031590.1A CN107667162A (en) 2015-06-30 2016-03-28 Utilize the device for producing hydrogen and hydrogen production process of steam plasma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0093042 2015-06-30
KR1020150093042A KR101594350B1 (en) 2015-06-30 2015-06-30 Apparatus for manufacturing hydrogen using a steam plasma and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017003066A1 true WO2017003066A1 (en) 2017-01-05

Family

ID=55448124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003111 WO2017003066A1 (en) 2015-06-30 2016-03-28 Hydrogen generator and hydrogen production method, using steam plasma

Country Status (3)

Country Link
KR (1) KR101594350B1 (en)
CN (1) CN107667162A (en)
WO (1) WO2017003066A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521210A1 (en) * 2018-04-18 2019-11-15 Gs Gruber Schmidt Carbon dioxide and water vapor Plasma Gasification of biogenic residues to produce syngas for dimethyl ether
CN114875426A (en) * 2022-04-20 2022-08-09 常熟亨通新能源产业研究院有限公司 Steam plasma hydrogen production system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938471B (en) * 2018-11-06 2021-06-29 杨岚岚 Automatic system for hydrogen production
KR102563650B1 (en) * 2021-05-24 2023-08-08 곽건화 Hydrogen fuel production system for possible continuously producing of hydrogen fuel
KR102588810B1 (en) * 2021-09-02 2023-10-16 엄환섭 Apparatus and method of synthetic gas production from reforming of bio-oil by microwave plasma torch
CN114091312B (en) * 2022-01-17 2022-04-26 倍有智能科技(深圳)有限公司 Fault detection method for aluminum water reaction hydrogen production device
KR20230135974A (en) 2022-03-17 2023-09-26 현대자동차주식회사 Equipment for preparing hydrogen gas
KR20230135975A (en) 2022-03-17 2023-09-26 현대자동차주식회사 Equipment for preparing hydrogen gas
KR20230135973A (en) 2022-03-17 2023-09-26 현대자동차주식회사 Method for preparing hydrogen gas and equipment thereof
CN114855189A (en) * 2022-04-20 2022-08-05 常熟亨通新能源产业研究院有限公司 Novel renewable energy hydrogen production system
KR102578356B1 (en) 2023-02-28 2023-09-15 최병렬 High-performance Green Hydrogen Production Cell Stack using Freshwater and Seawater, Hydrogen FuelCell and Liquefied Hydrogen Production, Ammonia Production and Hydrogen Separation Cell Stack Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039701A (en) * 1999-07-28 2001-02-13 Takeshi Hatanaka Method and device for producing hydrogen, and power system
JP2002226201A (en) * 2001-01-29 2002-08-14 Takeshi Hatanaka Production method for hydrogen and apparatus therefor
KR100636853B1 (en) * 2002-05-08 2006-10-19 로우 에드먼드 킨 온 Hazardous waste treatment method and apparatus
JP2008169821A (en) * 2007-01-07 2008-07-24 Kunio Yagi Engine driven by steam plasma arc
KR20150017795A (en) * 2013-08-07 2015-02-23 주식회사 윈테크이엔지 Apparatus for purification of graphite using a microwave plasma and the method for purification thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525118B (en) * 2008-03-07 2010-12-22 周开根 Gasification process for producing synthesis gas from garbage and biomass raw materials
CN102530859B (en) * 2011-12-29 2013-11-06 武汉凯迪工程技术研究总院有限公司 External-heating-type microwave plasma gasification furnace and synthesis gas production method
CN204325282U (en) * 2014-12-09 2015-05-13 中国东方电气集团有限公司 Plasma asistance rubbish fluidized bed gasification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039701A (en) * 1999-07-28 2001-02-13 Takeshi Hatanaka Method and device for producing hydrogen, and power system
JP2002226201A (en) * 2001-01-29 2002-08-14 Takeshi Hatanaka Production method for hydrogen and apparatus therefor
KR100636853B1 (en) * 2002-05-08 2006-10-19 로우 에드먼드 킨 온 Hazardous waste treatment method and apparatus
JP2008169821A (en) * 2007-01-07 2008-07-24 Kunio Yagi Engine driven by steam plasma arc
KR20150017795A (en) * 2013-08-07 2015-02-23 주식회사 윈테크이엔지 Apparatus for purification of graphite using a microwave plasma and the method for purification thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521210A1 (en) * 2018-04-18 2019-11-15 Gs Gruber Schmidt Carbon dioxide and water vapor Plasma Gasification of biogenic residues to produce syngas for dimethyl ether
CN114875426A (en) * 2022-04-20 2022-08-09 常熟亨通新能源产业研究院有限公司 Steam plasma hydrogen production system

Also Published As

Publication number Publication date
CN107667162A (en) 2018-02-06
KR101594350B1 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
WO2017003066A1 (en) Hydrogen generator and hydrogen production method, using steam plasma
RU2604624C2 (en) Method and device for gasification of biomass by recycling carbon dioxide without oxygen
WO2017057942A1 (en) Apparatus and method for manufacturing carbon monoxide using steam plasma
WO2013097535A1 (en) Biomass gasification island process under high temperature and atmospheric pressure
CN102181315B (en) Process for producing natural gas by coal coking and pyrolysis coal gas thereof
KR20160018484A (en) Solid fuel staged gasification-combustion dual-bed polygeneration system and method
WO2011087199A1 (en) Molten iron manufacturing apparatus for reducing emissions of carbon dioxide
JP6573137B2 (en) Industrial production plant that minimizes greenhouse gas emissions, especially carbon dioxide emissions, and method of operation thereof
WO2015078297A1 (en) Process and system for coupling pressurized pyrolysis of biomasses
US11220642B2 (en) Pulverized coal gasification device and process for producing high heating value coal gas with low carbon residue content
CN103911179B (en) Coal gasification method and device
WO2011081276A1 (en) Apparatus for manufacturing molten iron
WO2014069840A1 (en) Dual biomass gasification reactor having nickel distribution plate and biomass gasifier having same
WO2018030702A1 (en) Dual biomass gasification reactor equipped with dispersion plate for reducing flow rate of fluidized bed medium and gasification apparatus comprising same
WO2014104438A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
CN207362104U (en) A kind of device using coke-stove gas production ethylene glycol
WO2012138191A2 (en) Apparatus and method for treating coke oven gas
WO2014092447A1 (en) Gasification process and system using dryer integrated with water-gas shift catalyst
CN204939411U (en) The hot analytical system of a kind of fluidized bed coal
CN214830145U (en) Hydrogen production line
CN206692604U (en) A kind of system for preparing water-gas with oven gas and water-coal-slurry
CN205999341U (en) Plasma (orifice) gas gasifying device
CN104877701B (en) A kind of two-part coal hydrogenation reactor and the method carrying out three grades of gas solid separation thereof
US7883682B2 (en) Carbon dioxide rich off-gas from a two stage gasification process
CN106085506B (en) Plasma gasification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16818099

Country of ref document: EP

Kind code of ref document: A1