WO2017057942A1 - Apparatus and method for manufacturing carbon monoxide using steam plasma - Google Patents

Apparatus and method for manufacturing carbon monoxide using steam plasma Download PDF

Info

Publication number
WO2017057942A1
WO2017057942A1 PCT/KR2016/010963 KR2016010963W WO2017057942A1 WO 2017057942 A1 WO2017057942 A1 WO 2017057942A1 KR 2016010963 W KR2016010963 W KR 2016010963W WO 2017057942 A1 WO2017057942 A1 WO 2017057942A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
plasma
gasification reactor
carbon monoxide
gas
Prior art date
Application number
PCT/KR2016/010963
Other languages
French (fr)
Korean (ko)
Inventor
박세근
Original Assignee
주식회사 윈테크에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 윈테크에너지 filed Critical 주식회사 윈테크에너지
Publication of WO2017057942A1 publication Critical patent/WO2017057942A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a carbon monoxide production apparatus and a manufacturing method using a steam plasma, and more specifically, to produce carbon monoxide, hydrogen and carbon dioxide by reacting a carbon component (coal) to steam activated in a plasma state by microwave,
  • the present invention relates to a carbon monoxide production apparatus and a manufacturing method using a steam plasma for separating and separating carbon monoxide.
  • Carbon monoxide is produced by natural gas, heavy oil decomposition, naphtha reforming, etc., but the manufacturing cost is high, and the need for the production of cheap carbon monoxide is urgently needed due to the economic problems caused by applying the manufacturing method to the carbon monoxide chemical process.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus and method for producing carbon monoxide of high purity at low cost from steam and carbon components (coal) using microwaves.
  • Another object of the present invention is to compress the carbon dioxide obtained when separating the final gas instead of air, such as coal (pulverized coal) injection to suppress the amount of nitrogen gas that interferes with the separation of carbon monoxide to facilitate the separation of carbon monoxide, It is to provide a carbon monoxide production apparatus and method for reducing the emissions of carbon dioxide.
  • Another object of the present invention is to design the gasification reactor of the steam plasma gasifier in a large-size hexahedral structure to facilitate the attachment of the steam plasma torch, to enlarge and simplify the installation area of the torch, 10 to 100 in one gasification reactor It is to provide a large scale steam plasma gasifier on a commercial scale by allowing the attachment of two steam plasma torches.
  • Another object of the present invention is to design a steam plasma gasifier and a waste heat recovery boiler integrally, which greatly reduces the area of the facility site and simplifies the facility, thereby reducing the capital investment cost and reducing the failure frequency of the facility. This is to provide a standard model of commercial steam plasma gasifier that can be increased.
  • the present invention includes a steam plasma torch connected to a steam boiler, a microwave generator, a pulverized coal supply, an oxygen supply;
  • a gasification reactor for generating a synthesis gas by high-temperature reaction of plasma activated steam and pulverized coal with a flame of a plasma torch by microwaves of the microwave generator;
  • a heat recovery steam boiler for recovering waste heat from the synthesis gas of the gasification reactor;
  • a dust removal facility for removing dust in the syngas;
  • a gas purification facility for removing two components (SOx, H 2 S, etc.) in the synthesis gas;
  • a primary circulation adsorption gas separator for separating carbon monoxide in the purified syngas;
  • a secondary circulation adsorption gas separator for separating hydrogen from the residual gas that has undergone the primary separation process;
  • a carbon dioxide storage tank for storing carbon dioxide obtained in the secondary separation process;
  • Provided is a carbon monoxide production apparatus using a steam plasma comprising a carbon dioxide compressor for using the stored carbon dioxide in
  • the gasification reactor has a structure in which the heat recovery steam boiler is integrated with each other with a partition wall therebetween.
  • the gasification reactor is designed in a large-capacity hexahedral structure can be installed 10 to 100 steam plasma torches on the three walls of the gasification reactor except the upper and lower walls and the heat recovery steam boiler side, 10 installed on three walls Plasma flames generated from ⁇ 100 steam plasma torches form a fire ball at the central portion of the gasification reactor, and have a characteristic of rapidly reaching the temperature required for the gasification reaction.
  • the gas purification facility further comprises a disk filter for removing the salt (salt) generated.
  • the present invention comprises the steps of moving the steam of the steam boiler to the passage of the microwave generated by the microwave generator to activate the plasma state; Injecting the pulverized coal injected from the pulverized coal feeder and the oxygen supplied from the oxygen feeder into the gasification reactor together with the activated steam in the plasma state to generate a syngas by high temperature reaction with a plasma flame; Recovering waste heat of the syngas generated in the gasification reactor with a heat recovery steam boiler integrated with the gasification reactor with a partition therebetween; Removing fugitives such as ash dust in the synthesis gas that has been heated and lowered by using a dust removal facility such as a bag filter; Removing the binary components (SOx, H 2 S, etc.) in the dust-removed syngas using a wet gas purification facility; Separating carbon monoxide in the purified syngas in a first circulation adsorption gas separator (600); Separating hydrogen in the residual gas that has undergone the primary separation process in a secondary circulation adsorption type
  • the step of generating the syngas in the gasification reactor is carried out at atmospheric pressure or a pressure condition slightly lower than atmospheric pressure.
  • the step of generating the synthesis gas in the gasification reactor is configured to finish the gasification reaction in the flame (Fire Ball) formed by combining a plurality of plasma flames in the central portion of the gasification reactor.
  • the steam produced in the heat recovery steam boiler is configured to be used as a steam raw material of the synthesis gas generating step.
  • the present invention can significantly reduce the manufacturing cost compared to conventional natural gas modified carbon monoxide production by using low-grade coal as a carbon raw material in the production of carbon monoxide using steam plasma by lowering the raw material price of ketone, acetic acid production, etc. It has the effect of contributing to the activation of related industries.
  • the present invention is to compress the carbon dioxide obtained when separating the final gas instead of air, such as coal (pulverized coal) injection to suppress the incorporation of nitrogen gas that interferes with the separation of carbon monoxide to facilitate the separation of carbon monoxide and discharge of carbon dioxide as a greenhouse gas It also has the effect of reducing.
  • the apparatus for producing carbon monoxide using the steam plasma of the present invention integrates the steam boiler with the gasification reactor and recycles the waste heat of the syngas leaving the gasification reactor directly to the steam production heat source of the steam boiler, thereby reducing the steam production cost and simplifying the equipment. In addition, it reduces the frequency of equipment failure and increases the reliability of the equipment.
  • the present invention is to design the gasification reactor of the steam plasma gasifier in a hexagonal large capacity structure to facilitate the attachment of the steam plasma torch, to enlarge and simplify the torch installation area, 10 to 100 steam plasma in one gasification reactor Being able to attach the torch has the effect of providing a large scale steam plasma gasifier on a commercial scale.
  • the steam plasma gasification reactor of the present invention has a sufficient role as a commercial model has an effect that greatly contributes to the development of related industries hydrogen production, syngas power generation, fuel cells, hydrogen vehicles, chemical industry and the like.
  • the present invention is the integrated design of the gasification reactor and waste heat recovery boiler to reduce the facility investment cost by greatly reducing the area of the facility site, simplifying the facility, simplify the facility and reduce the frequency of failure of the facility It has the effect of providing a standard model of a commercial steam plasma gasifier to increase the reliability.
  • FIG. 1 is a schematic diagram of a carbon monoxide production process using a steam plasma according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a hexahedral large-capacity gasification reactor according to an embodiment of the present invention
  • FIG. 3 is a conceptual diagram showing a gasification operation situation inside the hexahedral large-capacity gasification reactor according to an embodiment of the present invention
  • FIG. 4 is a conceptual diagram of a gasification reactor having a total of 48 steam plasma torches in a 4 ⁇ 4 arrangement per side over three sides of a hexahedral mass gasification reactor in accordance with one embodiment of the present invention
  • FIG. 5 is a conceptual view of installing 48 steam plasma torches in each gasification reactor in a conventional cylindrical small-capacity gasification reactor.
  • Carbon monoxide production apparatus using a steam plasma by activating steam in a microwave to generate hydrogen radicals and oxygen radicals in the plasma state (Formula 1), the carbon material such as coal in the gasification reactor hydrogen in the plasma state Reacting with radicals, oxygen radicals or some unactivated steam to produce carbon monoxide, carbon dioxide and hydrogen (Formula 2, 3, 4), including hydrogen produced by the bonding of hydrogen radicals together in a gasification reactor (Formula 5) And a process of separating and manufacturing carbon monoxide having a purity of 99% or higher in a primary circulation adsorption gas separator (PSA) by cooling and compressing the synthesis gas.
  • PSA primary circulation adsorption gas separator
  • reaction temperature, reaction time, and reaction pressure are important reaction factors, and since gasification by steam plasma is possible to react at normal pressure because the reaction rate is very fast, in the present invention, the structure of the gasification reactor is conventional high pressure. It was used as a large-capacity structure of atmospheric hexagonal shape in a small-capacity structure for atmospheric pressure.
  • the gasification reactor by converting the gasification reactor into a hexahedral large capacity suitable for atmospheric pressure reaction, the installation of the plasma torch peripheral facilities is facilitated, so that 10 to 100 plasma torches can be installed per gasification reactor, thereby increasing the unit capacity of the gasification reactor. Increasingly, the commercial operation of plasma gasification facilities has become possible.
  • the gasification reactor is integrally designed with the heat recovery steam boiler, thereby simplifying the installation, thereby increasing the economic effect due to the reduction of the installation area, the reduction of the installation cost, and the reduction of the failure frequency.
  • FIG. 1 is a schematic diagram of a carbon monoxide production process using a steam plasma according to an embodiment of the present invention.
  • Carbon monoxide manufacturing apparatus using a steam plasma is a steam plasma torch 100, which is connected to a steam boiler 110, microwave generator 120, pulverized coal supply 130, oxygen supply 140 Wow; Plasma activated steam by the microwaves of the microwave generator 120, pulverized coal injected from the pulverized coal supplier 130, and oxygen supplied from the oxygen supplier 140 to the flame 210 of the plasma torch 100.
  • a gasification reactor 200 for generating a synthesis gas by reacting at a high temperature;
  • a heat recovery steam boiler (300) for recovering waste heat from the synthesis gas of the gasification reactor (200);
  • a dust removal facility 400 for removing dust in the syngas;
  • a gas purification facility 500 for removing two components (SOx, H 2 S, etc.) in the dust from which dust has been removed;
  • a primary circulation adsorption gas separator 600 for separating carbon monoxide in the purified syngas;
  • a secondary circulation adsorption gas separator 700 for separating hydrogen in the residual gas that has undergone the primary separation process;
  • a carbon dioxide storage tank 720 for storing carbon dioxide obtained in the secondary separation process;
  • the carbon dioxide stored in the pulverized coal supply of the pulverized coal feeder 130 and the dust of the dust removal facility 400 comprises a carbon dioxide compressor 730 for use as a working gas.
  • Carbon monoxide production apparatus using a steam plasma has a structure in which the gasification reactor 200 and the heat recovery steam boiler 300 is integrated with a partition wall therebetween.
  • barrier ribs have a function of sufficiently securing the gasification reaction time in the gasification reactor 200 and at the same time filtering out dust in the syngas and reducing dust from adhering to the heat recovery coil of the heat recovery steam boiler 300. .
  • Operation of the carbon monoxide production apparatus using the steam plasma according to an embodiment of the present invention and a method for producing carbon monoxide are as follows.
  • Steam (5 to 10 kg / cm2) of the steam boiler 110 is moved to the passage of the microwave (300MHz ⁇ 30GHz) made in the microwave generator 120 to activate in the plasma state, and sprayed from the pulverized coal supply 130
  • the pulverized coal and the oxygen supplied from the oxygen supplier 140 are introduced into the gasification reactor 200 together with the steam activated in the plasma state to generate a synthesis gas by reacting a high temperature (1,100 to 1,500 ° C) with the plasma flame 210. .
  • the gasification reactor 200 is operated at atmospheric pressure or a pressure slightly lower than atmospheric pressure, and pulverized coal and oxygen are introduced from the inlet of the plasma flame 210 and proceed inside the gasification reactor 200 together with the plasma flame 210. Reaction with the steam in the state, the reaction is completed in the flame column (Fire Ball) formed by a plurality of plasma flames 210 in the central portion of the gasification reactor 200.
  • the flame column Fire Ball
  • Oxygen supply 140 is operated only at the beginning of operation in order to quickly increase the temperature of the gasification reactor 200 to the reaction temperature and can be stopped in the steady state state, which is incomplete combustion of the input pulverized coal to the carbon monoxide It is also necessary to increase the production rate.
  • the steam boiler 110 is also operated only at the beginning of operation, since the steam produced by the heat recovery steam boiler 300 may maintain a steady working state, the operation of the steam boiler 110 in a steady working state. You can also stop.
  • the synthesis gas generated in the gasification reactor 200 passes through two partitions 250 and 260 to extend the reaction time, thereby increasing the completion of the reaction.
  • the waste heat of the generated syngas is recovered by the heat recovery steam boiler 300 to produce steam. Since the outlet temperature of the synthesis gas outlet temperature of 1,100 to 1,500 ° C. can be recovered to 200 to 250 ° C., the steam is recovered using the recovered heat. By producing 7-15 kg / cm 2), it is possible to cover the steam raw material of the above-described steam plasma torch 100 side.
  • the fugitives such as ash dust in the synthesis gas whose temperature is lowered to 200 to 250 ° C. by heat recovery are removed using a dust removal facility 400 such as a bag filter, and the dust of the dust removal facility 400 is removed.
  • a dust removal facility 400 such as a bag filter
  • the dust of the dust removal facility 400 is removed.
  • As the hair working gas by compressing and utilizing the carbon dioxide obtained in the secondary separation process of the synthesis gas, it is possible to prevent the outflow of carbon dioxide, which is a greenhouse gas, or the mixing of outside air.
  • the binary gas (SOx, H 2 S, etc.) of the synthetic gas from which ash is removed is removed by using a gas refining plant 500, and when the gas is purified, a wet method is used, and as a spray liquid, caustic soda (NaOH) An aqueous solution or an aqueous solution of magnesium hydroxide (Mg (OH) 2 ) is used, and the salt generated at this time is removed by the disk filter 510 and stored in the salt storage tank 530, and the circulating aqueous solution is cooled by the cooler 520. ) And replenish as much as it is lost while reusing it to suppress waste water generation.
  • CaOH caustic soda
  • Mg (OH) 2 magnesium hydroxide
  • the carbon monoxide in the synthesis gas After cooling the synthesis gas passed through the gas purification plant 500 with the cooler 540, and then compressed by the compressor 550 and sent to the primary circulation adsorption gas separator (PSA; 600), the carbon monoxide in the synthesis gas has a purity of 99% or more. It is separated into a state and stored in the carbon monoxide storage tank 610.
  • PSA primary circulation adsorption gas separator
  • PSA secondary circulating adsorption gas separator
  • the carbon dioxide obtained in the secondary separation process is stored in the carbon dioxide storage tank 720, the stored carbon dioxide is compressed by the compressor 730, the dust dust of the pulverized coal injection and dust removal facility 400 of the pulverized coal supplier 130 is used as the working gas. do.
  • the purpose of this is to compress carbon dioxide instead of air for pulverized coal injection, to suppress the amount of nitrogen gas that is hindered from separating carbon monoxide, thereby facilitating the separation of carbon monoxide and reducing the emission of carbon dioxide, which is a greenhouse gas.
  • FIG. 2 is a conceptual diagram of a gasification reactor according to an embodiment of the present invention
  • Figure 3 is a conceptual diagram showing the gasification operation status inside the gasification reactor.
  • Gasification reactor 200 has a structure that is integrated with the heat recovery steam boiler 300 and the partitions (250, 260) between.
  • the gasification reactor 200 is designed in a large-capacity hexahedral structure, 10 to three walls of the gasification reactor 200 except for the upper and lower surfaces of the heat recovery steam boiler 300 side. One hundred steam plasma torches 100 may be installed.
  • the plasma flame 210 generated from 10 to 100 steam plasma torches 100 installed on three walls has a flame pillar at a central portion of the gasification reactor 200. It is possible to quickly reach the temperature required for the gasification reaction by forming a fire ball.
  • FIG. 4 is a conceptual diagram of a gasification reactor having a total of 48 steam plasma torches in a total 4 ⁇ 4 arrangement on each side across three sides of a gasification reactor in accordance with an embodiment of the present invention
  • FIG. 5 is a conventional cylindrical small capacity gasification reactor. This is a conceptual diagram in which 48 steam plasma torches in 12 are installed in each gasification reactor.
  • the gasification reactor 200 is integrated with the heat recovery steam boiler 300 and designed in a large-capacity hexahedral structure, the heat recovery steam boiler 300 side wall 16 steam plasma torches 100 are arranged on three walls of one gasification reactor 200 except for upper and lower surfaces in a 4 ⁇ 4 arrangement, and a total of 48 steam plasma torches 100 are provided.
  • the area required for installation is estimated to be approximately 19.37m ⁇ 30.13m ⁇ 584m2.
  • the carbon monoxide production apparatus using the steam plasma is a heat recovery steam boiler 300 by directly integrating the heat recovery steam boiler 300 with the gasification reactor 200 to directly waste heat of the synthesis gas leaving the gasification reactor 200
  • a heat recovery steam boiler 300 by directly integrating the heat recovery steam boiler 300 with the gasification reactor 200 to directly waste heat of the synthesis gas leaving the gasification reactor 200
  • the manufactured syngas is passed through a heat recovery steam boiler and ash and other solids are removed from the bag filter.
  • the purified syngas is transferred to a primary circulating adsorption gas separator to separate and store carbon monoxide having a purity of 99%.
  • the residual gas from the primary separation process is transferred to a secondary circulating adsorption gas separator to separate hydrogen of 99% purity and store it.
  • the carbon dioxide obtained in the secondary separation process is compressed and stored in the dust of the pulverized coal injection and dust removal facility 400 of the pulverized coal feeder 130 for use as a working gas.
  • Table 1 below shows a gas composition table for each process section of Example 1.
  • Example 1 of the present invention as shown in Table 1, the content of carbon monoxide is improved to 99% by primary circulating adsorption gas separation, and the flow rate (LPM) is about 10% lower than that of the rear end of the gasification reactor. This occurred due to the efficiency (90%) of the primary circulating adsorption gas separator.
  • the carbon monoxide production apparatus and manufacturing method using the steam plasma of the present invention can significantly reduce the manufacturing cost compared to the conventional natural gas modified carbon monoxide production by using low-carbon coal as a carbon raw material when manufacturing carbon monoxide. Therefore, it has industrial applicability that contributes to vitalization of related industries by lowering raw material prices such as carbon monoxide-based ketones and acetic acid production.
  • the apparatus for producing carbon monoxide using the steam plasma of the present invention integrates the steam boiler with the gasification reactor and directly recycles the waste heat of the syngas leaving the gasification reactor to the steam production heat source of the steam boiler, thereby reducing the steam production cost and simplifying the equipment. It has the industrial applicability to increase the reliability of the equipment by reducing the frequency of equipment failure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to an apparatus and method for manufacturing carbon monoxide using steam plasma. The apparatus for manufacturing carbon monoxide using steam plasma, according to the present invention, comprises: a steam-plasma torch (100) connected to a steam boiler (110), a microwave generator (120), a pulverized-coal feeder (130), and an oxygen supplier (140); a gasification reactor (200) generating a synthesis gas by making steam brought into plasma by microwaves of the microwave generator (120), pulverized coal sprayed by the pulverized-coal feeder (130), and oxygen supplied by the oxygen supplier (140) undergo a high-temperature reaction using a flame (210) of the plasma torch (100); a heat recovery steam boiler (300) collecting waste heat from the synthesis gas of the gasification reactor (200); dust removal equipment (400) removing dust in the synthesis gas; gas refinement equipment (500) removing binary gases (SOx, H2S , and the like) from the synthesis gas; a primary swing adsorption type gas separator (600) separating carbon monoxide from the refined synthesis gas; a secondary swing adsorption type gas separator (700) separating hydrogen from the residual gas having undergone the primary separation process; and a carbon dioxide storage tank storing carbon dioxide obtained in the secondary separation process.

Description

스팀 플라즈마를 이용한 일산화탄소 제조장치 및 제조방법Carbon monoxide production apparatus and method using steam plasma
본 발명은 스팀 플라즈마를 이용한 일산화탄소 제조장치 및 제조방법에 관한 것으로, 보다 상세하게는 마이크로웨이브에 의해 플라즈마 상태로 활성화되어 있는 스팀에 탄소성분(석탄)을 반응시켜 일산화탄소, 수소 및 이산화탄소를 제조하고, 그 중 일산화탄소를 정제분리하는 스팀 플라즈마를 이용한 일산화탄소 제조장치 및 제조방법에 관한 것이다.The present invention relates to a carbon monoxide production apparatus and a manufacturing method using a steam plasma, and more specifically, to produce carbon monoxide, hydrogen and carbon dioxide by reacting a carbon component (coal) to steam activated in a plasma state by microwave, The present invention relates to a carbon monoxide production apparatus and a manufacturing method using a steam plasma for separating and separating carbon monoxide.
일산화탄소는 천연가스·중질유 분해·나프타 개질 등에 의해 제조되고 있으나 제조비용이 높아, 일산화탄소 시장인 화학공정 등에 이들 제조법을 적용할 경우 야기되는 경제성 문제로 인하여 저렴한 일산화탄소의 생산에 대한 필요성이 절실해지고 있다.Carbon monoxide is produced by natural gas, heavy oil decomposition, naphtha reforming, etc., but the manufacturing cost is high, and the need for the production of cheap carbon monoxide is urgently needed due to the economic problems caused by applying the manufacturing method to the carbon monoxide chemical process.
이에 따라 스팀과 마이크로웨이브 플라즈마를 이용한 가스화 공정이 주목받고 있으나, 종래의 스팀 플라즈마 가스화기의 경우, 가스화기에 설치되는 마이크로파 발생기의 최대용량이 100kW이므로 상업용 규모의 스팀 플라즈마 가스화기를 확보하기 위하여 수십 개의 마이크로파 발생기가 필요하게 되었다.Accordingly, the gasification process using steam and microwave plasma has attracted attention, but in the case of the conventional steam plasma gasifier, since the maximum capacity of the microwave generator installed in the gasifier is 100 kW, dozens of There is a need for a microwave generator.
그러나 종래의 원통형(Cylinder) 또는 그와 유사한 구조의 스팀 플라즈마 가스화기는 스팀 플라즈마 토치의 부착면적이 협소할 뿐만 아니라, 마이크로웨이브 도파관 부착·석탄 주입·스팀 주입 등에 관련된 스팀 플라즈마 토치 주변의 부대설비가 복잡하여 단위 스팀 플라즈마 가스화기에 부착되는 스팀 플라즈마 토치의 개수에 제약(3~6개)이 따르며, 이를 극복하기 위해 소형 가스화기를 여러 개 병렬로 연결하여 가스화기의 용량을 어느 정도 증대시킬 수는 있으나, 이로 인하여 스팀 플라즈마 가스화 장치의 설치 및 유지관리비가 상승하고 설치부지의 면적도 크게 늘어나는 등의 문제점도 안게 되었다.However, conventional cylindrical plasma or gasifiers having a cylindrical or similar structure not only have a small attachment area for the steam plasma torch, but also have complicated facilities around the steam plasma torch related to microwave waveguide attachment, coal injection, and steam injection. The number of steam plasma torch attached to the unit steam plasma gasifier is limited (3 to 6) .To overcome this, the capacity of the gasifier can be increased to some extent by connecting several small gasifiers in parallel. As a result, the installation and maintenance costs of the steam plasma gasifier increased and the area of the installation site also increased.
본 발명은 상기 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 마이크로웨이브를 이용하여 스팀과 탄소성분(석탄)으로부터 고순도의 일산화탄소를 저렴하게 생산하는 장치 및 방법을 제공하기 위함이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus and method for producing carbon monoxide of high purity at low cost from steam and carbon components (coal) using microwaves.
본 발명의 다른 목적은 석탄(미분탄)주입 등에 공기 대신 최종가스 분리시 얻어지는 이산화탄소를 압축하여 사용함으로써 일산화탄소의 분리시 방해가 되는 질소가스의 발생량을 억제하여 일산화탄소의 분리를 원활하게 하고, 온실가스인 이산화탄소의 배출도 감축하는 일산화탄소 제조장치 및 제조방법을 제공하기 위함이다.Another object of the present invention is to compress the carbon dioxide obtained when separating the final gas instead of air, such as coal (pulverized coal) injection to suppress the amount of nitrogen gas that interferes with the separation of carbon monoxide to facilitate the separation of carbon monoxide, It is to provide a carbon monoxide production apparatus and method for reducing the emissions of carbon dioxide.
본 발명의 또 다른 목적은 스팀 플라즈마 가스화기의 가스화 반응기를 대용량의 육면체형 구조로 설계하여 스팀 플라즈마 토치의 부착을 용이하게 하고, 토치 설치면적을 확대 및 단순화하여, 1개의 가스화 반응기에 10∼100개의 스팀 플라즈마 토치를 부착할 수 있도록 함으로써 상업적 규모의 대용량 스팀 플라즈마 가스화기를 제공하기 위함이다.Another object of the present invention is to design the gasification reactor of the steam plasma gasifier in a large-size hexahedral structure to facilitate the attachment of the steam plasma torch, to enlarge and simplify the installation area of the torch, 10 to 100 in one gasification reactor It is to provide a large scale steam plasma gasifier on a commercial scale by allowing the attachment of two steam plasma torches.
본 발명의 또 다른 목적은 스팀 플라즈마 가스화기와 폐열회수 보일러를 일체형으로 설계함으로써 시설부지의 면적을 크게 축소시키고 설비의 단순화를 기하여 설비투자비를 절감할 뿐만 아니라, 설비의 고장빈도를 줄여 설비의 신뢰도를 높일 수 있는 상업용 스팀 플라즈마 가스화기의 표준모델을 제공하기 위함이다.Another object of the present invention is to design a steam plasma gasifier and a waste heat recovery boiler integrally, which greatly reduces the area of the facility site and simplifies the facility, thereby reducing the capital investment cost and reducing the failure frequency of the facility. This is to provide a standard model of commercial steam plasma gasifier that can be increased.
상기 과제를 해결하기 위하여 본 발명은 스팀 보일러, 마이크로웨이브 발생기, 미분탄 공급기, 산소 공급기에 연결되어 있는 스팀 플라즈마 토치와; 상기 마이크로웨이브 발생기의 마이크로웨이브에 의해 플라즈마 활성화된 스팀과 미분탄을 플라즈마 토치의 화염으로 고온반응시켜 합성가스를 발생시키는 가스화 반응기와; 상기 가스화 반응기의 합성가스로부터 폐열을 회수하는 열회수 스팀보일러와; 상기 합성가스 중의 분진을 제거하는 분진제거설비와; 상기 합성가스 중의 이성분(SOx, H2S 등)을 제거하는 가스정제설비와; 상기 정제된 합성가스 중의 일산화탄소를 분리하는 1차 순환흡착식 가스분리기와; 상기 1차 분리과정을 거친 잔여가스에서 수소를 분리하는 2차 순환흡착식 가스분리기와; 상기 2차 분리과정에서 얻어지는 이산화탄소를 저장하는 이산화탄소 저장탱크와; 저장된 이산화탄소를 미분탄 공급기의 미분탄 분사 및 분진제거설비의 분진털이 작업가스에 사용하기 위한 이산화탄소 압축기를 포함하여 이루어지는 스팀 플라즈마를 이용한 일산화탄소 제조장치를 제공한다.In order to solve the above problems, the present invention includes a steam plasma torch connected to a steam boiler, a microwave generator, a pulverized coal supply, an oxygen supply; A gasification reactor for generating a synthesis gas by high-temperature reaction of plasma activated steam and pulverized coal with a flame of a plasma torch by microwaves of the microwave generator; A heat recovery steam boiler for recovering waste heat from the synthesis gas of the gasification reactor; A dust removal facility for removing dust in the syngas; A gas purification facility for removing two components (SOx, H 2 S, etc.) in the synthesis gas; A primary circulation adsorption gas separator for separating carbon monoxide in the purified syngas; A secondary circulation adsorption gas separator for separating hydrogen from the residual gas that has undergone the primary separation process; A carbon dioxide storage tank for storing carbon dioxide obtained in the secondary separation process; Provided is a carbon monoxide production apparatus using a steam plasma comprising a carbon dioxide compressor for using the stored carbon dioxide in the pulverized coal injection of the pulverized coal feeder and the dust hair of the dust removal equipment for the working gas.
여기서 상기 가스화 반응기는 격벽을 사이에 두고 상기 열회수 스팀보일러와 서로 일체화되는 구조로 이루어진다.Here, the gasification reactor has a structure in which the heat recovery steam boiler is integrated with each other with a partition wall therebetween.
또한 상기 가스화 반응기는 대용량의 육면체형 구조로 설계되어 열회수 스팀보일러 측의 벽면과 상·하면을 제외한 가스화 반응기의 3개 벽면에 10∼100개의 스팀 플라즈마 토치를 설치할 수 있고, 3개 벽면에 설치된 10∼100개의 스팀 플라즈마 토치로부터 발생되는 플라즈마 화염이 가스화 반응기의 중앙 부위에서 화염기둥(Fire Ball)을 형성하여 가스화 반응에 필요한 온도에 신속하게 도달되는 특징을 가진다.In addition, the gasification reactor is designed in a large-capacity hexahedral structure can be installed 10 to 100 steam plasma torches on the three walls of the gasification reactor except the upper and lower walls and the heat recovery steam boiler side, 10 installed on three walls Plasma flames generated from ˜100 steam plasma torches form a fire ball at the central portion of the gasification reactor, and have a characteristic of rapidly reaching the temperature required for the gasification reaction.
또한 상기 가스정제설비는 생성되는 염(salt)을 제거하기 위한 디스크필터를 더 구비한다.In addition, the gas purification facility further comprises a disk filter for removing the salt (salt) generated.
또한 본 발명은 스팀 보일러의 스팀을 마이크로웨이브 발생기에서 발생된 마이크로웨이브의 통로로 이동시켜 플라즈마 상태로 활성화시키는 단계; 미분탄 공급기로부터 분사되는 미분탄과 산소 공급기로부터 공급되는 산소를 상기 플라즈마 상태로 활성화한 스팀과 함께 가스화 반응기로 들여보내 플라즈마 화염으로 고온반응시켜 합성가스를 발생시키는 단계; 가스화 반응기에서 생성된 합성가스의 폐열을 격벽을 사이에 두고 상기 가스화 반응기와 일체화되어 있는 열회수 스팀보일러로 회수하는 단계; 열회수되어 온도가 낮아진 합성가스 중의 회(Ash)분진 등 비산물질을 백필터(Bag Filter) 등의 분진 제거설비를 사용하여 제거하는 단계; 분진이 제거된 합성가스 중의 이성분(SOx, H2S 등)을 습식방식의 가스 정제설비를 사용하여 제거하는 단계; 정제된 합성가스 중의 일산화탄소를 1차 순환흡착식 가스분리기(600)에서 분리하는 단계; 1차 분리과정을 거친 잔여가스 중의 수소를 2차 순환흡착식 가스분리기(700)에서 분리하는 단계; 2차 분리과정을 거치고 남은 이산화탄소를 저장하는 단계;를 포함하여 이루어지는 스팀 플라즈마를 이용한 일산화탄소 제조방법을 제공한다.In another aspect, the present invention comprises the steps of moving the steam of the steam boiler to the passage of the microwave generated by the microwave generator to activate the plasma state; Injecting the pulverized coal injected from the pulverized coal feeder and the oxygen supplied from the oxygen feeder into the gasification reactor together with the activated steam in the plasma state to generate a syngas by high temperature reaction with a plasma flame; Recovering waste heat of the syngas generated in the gasification reactor with a heat recovery steam boiler integrated with the gasification reactor with a partition therebetween; Removing fugitives such as ash dust in the synthesis gas that has been heated and lowered by using a dust removal facility such as a bag filter; Removing the binary components (SOx, H 2 S, etc.) in the dust-removed syngas using a wet gas purification facility; Separating carbon monoxide in the purified syngas in a first circulation adsorption gas separator (600); Separating hydrogen in the residual gas that has undergone the primary separation process in a secondary circulation adsorption type gas separator (700); It provides a method for producing carbon monoxide using a steam plasma comprising a; and the step of storing the remaining carbon dioxide after the secondary separation process.
여기서 상기 가스화 반응기에서 합성가스를 발생시키는 단계는 대기압 또는 대기압보다 조금 낮은 압력조건에서 이루어진다.Here, the step of generating the syngas in the gasification reactor is carried out at atmospheric pressure or a pressure condition slightly lower than atmospheric pressure.
또한 상기 가스화 반응기에서 합성가스를 발생시키는 단계는 가스화 반응기의 중앙부위에서 복수 개의 플라즈마 화염이 합해져 형성되는 화염기둥(Fire Ball) 속에서 가스화 반응이 마무리되도록 구성된다.In addition, the step of generating the synthesis gas in the gasification reactor is configured to finish the gasification reaction in the flame (Fire Ball) formed by combining a plurality of plasma flames in the central portion of the gasification reactor.
또한 상기 열회수 스팀보일러에서 생산되는 스팀은 합성가스 발생단계의 스팀원료로 활용할 수 있도록 구성된다.In addition, the steam produced in the heat recovery steam boiler is configured to be used as a steam raw material of the synthesis gas generating step.
또한 상기 2차 분리과정을 거치고 남은 이산화탄소를 미분탄 공급기의 미분탄 분사에 사용하거나 분진 제거설비의 분진털이 작업가스로 사용함으로써 온실가스인 이산화탄소의 외부 유출이나 외부 공기의 혼입을 방지하도록 구성된다.In addition, by using the remaining carbon dioxide after the second separation process in the pulverized coal injection of the pulverized coal feeder or the dust of the dust removal equipment as a working gas is configured to prevent the outflow of carbon dioxide, which is a greenhouse gas or the mixing of outside air.
본 발명은 스팀 플라즈마를 이용한 일산화탄소 제조시 탄소원료로서 저급탄을 사용함으로써 기존의 천연개스 개질 일산화탄소 제조에 비해 제조단가를 크게 줄일 수 있어 일산화탄소를 원료로 하는 케톤, 초산제조 등의 원료가격을 낮춤으로써 관련산업의 활성화에 기여하는 효과를 가진다.The present invention can significantly reduce the manufacturing cost compared to conventional natural gas modified carbon monoxide production by using low-grade coal as a carbon raw material in the production of carbon monoxide using steam plasma by lowering the raw material price of ketone, acetic acid production, etc. It has the effect of contributing to the activation of related industries.
또한 본 발명은 석탄(미분탄)주입 등에 공기 대신 최종가스 분리시 얻어지는 이산화탄소를 압축하여 사용함으로써 일산화탄소의 분리시 방해가 되는 질소가스의 혼입을 억제하여 일산화탄소의 분리를 원활하게 하고 온실가스인 이산화탄소의 배출도 감축하는 효과를 가진다.In addition, the present invention is to compress the carbon dioxide obtained when separating the final gas instead of air, such as coal (pulverized coal) injection to suppress the incorporation of nitrogen gas that interferes with the separation of carbon monoxide to facilitate the separation of carbon monoxide and discharge of carbon dioxide as a greenhouse gas It also has the effect of reducing.
또한 본 발명의 스팀 플라즈마를 이용한 일산화탄소 제조장치는 스팀 보일러를 가스화 반응기와 일체화하여 가스화 반응기를 나오는 합성가스의 폐열을 바로 스팀 보일러의 스팀 생산열원으로 재활용함으로써 스팀 생산비를 절감할 뿐만 아니라 설비의 단순화를 기하고 설비 고장빈도를 줄여 설비의 신뢰도를 높이는 효과를 가진다.In addition, the apparatus for producing carbon monoxide using the steam plasma of the present invention integrates the steam boiler with the gasification reactor and recycles the waste heat of the syngas leaving the gasification reactor directly to the steam production heat source of the steam boiler, thereby reducing the steam production cost and simplifying the equipment. In addition, it reduces the frequency of equipment failure and increases the reliability of the equipment.
또한 본 발명은 스팀 플라즈마 가스화기의 가스화 반응기를 육면체형 대용량 구조로 설계하여 스팀 플라즈마 토치의 부착을 용이하게 하고, 토치 설치면적을 확대 및 단순화하여, 1기의 가스화 반응기에 10∼100개의 스팀 플라즈마 토치를 부착할 수 있도록 함으로써 상업적 규모의 대용량 스팀 플라즈마 가스화기를 제공하는 효과를 가진다.In addition, the present invention is to design the gasification reactor of the steam plasma gasifier in a hexagonal large capacity structure to facilitate the attachment of the steam plasma torch, to enlarge and simplify the torch installation area, 10 to 100 steam plasma in one gasification reactor Being able to attach the torch has the effect of providing a large scale steam plasma gasifier on a commercial scale.
또한 본 발명의 스팀 플라즈마 가스화 반응기는 상업적 모델로서 충분히 역할을 수행하여 연관 산업인 수소 제조, 합성가스 발전, 연료전지, 수소 자동차, 화학산업 등의 발전에 크게 기여하는 효과를 가진다.In addition, the steam plasma gasification reactor of the present invention has a sufficient role as a commercial model has an effect that greatly contributes to the development of related industries hydrogen production, syngas power generation, fuel cells, hydrogen vehicles, chemical industry and the like.
또한 본 발명은 가스화 반응기와 폐열회수 보일러를 일체형으로 설계함으로써 시설부지의 면적을 크게 축소시키고 설비의 단순화를 기하여 설비투자비를 절감할 뿐만 아니라, 설비의 단순화를 기하고 설비의 고장빈도를 줄여 설비의 신뢰도를 높일 수 있는 상업용 스팀 플라즈마 가스화기의 표준모델을 제공하는 효과를 가진다.In addition, the present invention is the integrated design of the gasification reactor and waste heat recovery boiler to reduce the facility investment cost by greatly reducing the area of the facility site, simplifying the facility, simplify the facility and reduce the frequency of failure of the facility It has the effect of providing a standard model of a commercial steam plasma gasifier to increase the reliability.
도 1은 본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 일산화탄소 제조공정의 개략도이고,1 is a schematic diagram of a carbon monoxide production process using a steam plasma according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 육면체형 대용량 가스화 반응기의 개념도이며,2 is a conceptual diagram of a hexahedral large-capacity gasification reactor according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 육면체형 대용량 가스화 반응기 내부의 가스화 작업상황을 나타낸 개념도이며,3 is a conceptual diagram showing a gasification operation situation inside the hexahedral large-capacity gasification reactor according to an embodiment of the present invention,
도 4는 본 발명의 일 실시예에 따라 육면체형 대용량 가스화 반응기의 3면에 걸쳐 각 면당 4×4 배열로 도합 48개의 스팀 플라즈마 토치를 구비하고 있는 가스화 반응기의 개념도이고, 4 is a conceptual diagram of a gasification reactor having a total of 48 steam plasma torches in a 4 × 4 arrangement per side over three sides of a hexahedral mass gasification reactor in accordance with one embodiment of the present invention;
도 5는 종래의 원통형 소용량 가스화 반응기 12기에 48개의 스팀 플라즈마 토치를 각각의 가스화 반응기에 나누어 설치할 경우의 개념도이다.FIG. 5 is a conceptual view of installing 48 steam plasma torches in each gasification reactor in a conventional cylindrical small-capacity gasification reactor.
[부호의 설명][Description of the code]
100; 스팀 플라즈마 토치100; Steam plasma torch
110; 스팀 보일러110; a steam boiler
110'; 스팀 보일러110 '; a steam boiler
120; 마이크로웨이브 발생기120; Microwave generator
130; 미분탄 공급기130; Pulverized coal feeder
140; 산소 공급기140; Oxygen supply
200; 가스화 반응기200; Gasification reactor
200'; 원통형 소용량 가스화 반응기200 '; Cylindrical small capacity gasification reactor
210; 플라즈마 화염210; Plasma flame
220; 화염기둥(Fire Ball)220; Fire Ball
250; 격벽250; septum
260; 격벽260; septum
300; 열회수 스팀보일러300; Heat recovery steam boiler
400; 분진 제거설비400; Dust Removal Equipment
500; 가스정제설비500; Gas Purification Facility
510; 디스크필터510; Disc filter
520; 냉각기520; cooler
530; 염(salt) 저장탱크530; Salt Storage Tank
540; 냉각기540; cooler
550; 압축기550; compressor
600; 1차 순환흡착식 가스분리기600; Primary Circulating Adsorption Gas Separator
610; 일산화탄소 저장탱크610; Carbon Monoxide Storage Tank
700; 2차 순환흡착식 가스분리기700; 2nd circulation adsorption gas separator
710; 수소 저장탱크710; Hydrogen storage tank
720; 이산화탄소 저장탱크720; Carbon dioxide storage tank
730; 이산화탄소 압축기730; CO2 compressor
본 발명에 따른 스팀 플라즈마를 이용한 일산화탄소 제조장치는 스팀을 마이크로웨이브로 활성화시켜 플라즈마 상태의 수소 라디칼과 산소 라디칼을 생성시킨 후(화학식 1), 가스화 반응기에서 석탄 등의 카본물질을 상기 플라즈마 상태의 수소 라디칼, 산소 라디칼 또는 일부 미활성화된 스팀과 반응시켜 일산화탄소, 이산화탄소 및 수소를 생성시키고(화학식 2, 3, 4), 여기에 가스화 반응기에서 수소 라디칼이 서로 결합하여 생성된 수소(화학식 5)도 포함시켜 이루어진 합성가스를 냉각 및 압축하여 1차 순환흡착식 가스분리기(PSA)에서 순도 99% 이상의 일산화탄소를 분리하여 제조하는 공정을 포함하고 있다.Carbon monoxide production apparatus using a steam plasma according to the present invention by activating steam in a microwave to generate hydrogen radicals and oxygen radicals in the plasma state (Formula 1), the carbon material such as coal in the gasification reactor hydrogen in the plasma state Reacting with radicals, oxygen radicals or some unactivated steam to produce carbon monoxide, carbon dioxide and hydrogen (Formula 2, 3, 4), including hydrogen produced by the bonding of hydrogen radicals together in a gasification reactor (Formula 5) And a process of separating and manufacturing carbon monoxide having a purity of 99% or higher in a primary circulation adsorption gas separator (PSA) by cooling and compressing the synthesis gas.
[화학식 1][Formula 1]
H20 → 2HR + OR H 2 0 → 2H R + O R
[화학식 2][Formula 2]
C + O2 → CO2 C + O 2 → CO 2
[화학식 3][Formula 3]
2C + O2 → 2CO2C + O 2 → 2CO
[화학식 4][Formula 4]
C + H2O → CO + H2 C + H 2 O → CO + H 2
[화학식 5][Formula 5]
2HR → H2 2H R → H 2
여기서 스팀 플라즈마 가스화 반응기는 반응온도·반응시간·반응압력이 중요한 반응요소이며, 스팀 플라즈마에 의한 가스화는 반응속도가 매우 빨라 상압에서의 반응이 가능하므로, 본 발명에서는 가스화 반응기의 구조를 종래의 고압용 원통형 소용량 구조에서 상압용 육면체형의 대용량 구조로 개조하여 사용하였다.Here, in the steam plasma gasification reactor, reaction temperature, reaction time, and reaction pressure are important reaction factors, and since gasification by steam plasma is possible to react at normal pressure because the reaction rate is very fast, in the present invention, the structure of the gasification reactor is conventional high pressure. It was used as a large-capacity structure of atmospheric hexagonal shape in a small-capacity structure for atmospheric pressure.
이와 같이 가스화 반응기를 육면체형의 대용량 구조로 개조함으로써 플라즈마 토치의 주변설비인 마이크로웨이브 도파관의 부착이나 석탄 주입, 스팀 주입, 산소 주입 등에 따른 복잡한 관련설비를 플라즈마 토치의 주변에 쉽게 설치할 수 있으며, 또한 여러 개(10~100개)의 플라즈마 토치를 1기의 가스화 반응기에 모두 수용하여 설치할 수 있게 된다.By converting the gasification reactor into a hexagonal large-capacity structure, complicated related facilities such as the attachment of microwave waveguides, coal injection, steam injection, and oxygen injection, which are peripheral devices of the plasma torch, can be easily installed around the plasma torch. Several (10-100) plasma torches can be accommodated and installed in one gasification reactor.
특히, 마이크로웨이브 발생기 1기의 최대용량이 100kW 정도이고 플라즈마 토치 하나에 1기의 마이크로웨이브 발생기가 설치되는 점을 고려하면 상업적 규모의 가스화기에서는 수십 개의 플라즈마 토치가 필요하게 되나, 플라즈마 토치의 설치면적이 불충분한 종래의 고압용 원통형 구조의 소용량 가스화 반응기의 경우, 가스화 반응기만 수십 기를 병렬로 연결할 수밖에 없어 상업화하기에 부적합하였다.Especially, considering that the maximum capacity of one microwave generator is about 100kW and one microwave generator is installed in one plasma torch, commercial gasifiers require dozens of plasma torches. In the case of the conventional high-capacity, small-capacity gasification reactor having insufficient area, only gasification reactors are inadequate for commercialization because only several gasification reactors can be connected in parallel.
본 발명에서는 가스화 반응기를 상압 반응에 적합한 육면체형 대용량으로 개조함으로써 플라즈마 토치 주변시설의 설치가 용이해져 가스화 반응기 1기당 10∼100개의 플라즈마 토치의 설치가 가능해지고, 이로 인하여 가스화 반응기의 단위용량이 크게 증가되어 플라즈마 가스화 시설의 상업운전이 가능해지게 되었다.In the present invention, by converting the gasification reactor into a hexahedral large capacity suitable for atmospheric pressure reaction, the installation of the plasma torch peripheral facilities is facilitated, so that 10 to 100 plasma torches can be installed per gasification reactor, thereby increasing the unit capacity of the gasification reactor. Increasingly, the commercial operation of plasma gasification facilities has become possible.
또한, 본 발명에서는 가스화 반응기를 열회수 스팀보일러와 일체형으로 설계하여 설비를 단순화함으로써 설치면적의 감소, 설비비의 절감, 고장빈도의 감소 등으로 인한 경제적 효과도 높이게 되었다. In addition, in the present invention, the gasification reactor is integrally designed with the heat recovery steam boiler, thereby simplifying the installation, thereby increasing the economic effect due to the reduction of the installation area, the reduction of the installation cost, and the reduction of the failure frequency.
이하, 첨부된 도면에 의거하여 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 일산화탄소 제조공정의 개략도이다.1 is a schematic diagram of a carbon monoxide production process using a steam plasma according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 일산화탄소 제조장치는 스팀 보일러(110), 마이크로웨이브 발생기(120), 미분탄 공급기(130), 산소 공급기(140)에 연결되어 있는 스팀 플라즈마 토치(100)와; 상기 마이크로웨이브 발생기(120)의 마이크로웨이브에 의해 플라즈마 활성화된 스팀, 상기 미분탄 공급기(130)에서 분사되는 미분탄, 상기 산소공급기(140)로부터 공급되는 산소를 플라즈마 토치(100)의 화염(210)으로 고온반응시켜 합성가스를 발생시키는 가스화 반응기(200)와; 상기 가스화 반응기(200)의 합성가스로부터 폐열을 회수하는 열회수 스팀보일러(300)와; 상기 합성가스 중의 분진을 제거하는 분진제거설비(400)와; 분진이 제거된 합성가스 중의 이성분(SOx, H2S 등)을 제거하는 가스정제설비(500)와; 정제된 합성가스 중의 일산화탄소를 분리하는 1차 순환흡착식 가스분리기(600)와; 상기 1차 분리과정을 거친 잔여가스 중의 수소를 분리하는 2차 순환흡착식 가스분리기(700)와; 상기 2차 분리과정에서 얻어지는 이산화탄소를 저장하는 이산화탄소 저장탱크(720)와; 저장된 이산화탄소를 미분탄 공급기(130)의 미분탄 분사 및 분진 제거설비(400)의 분진털이 작업가스로 사용하기 위한 이산화탄소 압축기(730)를 포함하여 이루어진다.Carbon monoxide manufacturing apparatus using a steam plasma according to an embodiment of the present invention is a steam plasma torch 100, which is connected to a steam boiler 110, microwave generator 120, pulverized coal supply 130, oxygen supply 140 Wow; Plasma activated steam by the microwaves of the microwave generator 120, pulverized coal injected from the pulverized coal supplier 130, and oxygen supplied from the oxygen supplier 140 to the flame 210 of the plasma torch 100. A gasification reactor 200 for generating a synthesis gas by reacting at a high temperature; A heat recovery steam boiler (300) for recovering waste heat from the synthesis gas of the gasification reactor (200); A dust removal facility 400 for removing dust in the syngas; A gas purification facility 500 for removing two components (SOx, H 2 S, etc.) in the dust from which dust has been removed; A primary circulation adsorption gas separator 600 for separating carbon monoxide in the purified syngas; A secondary circulation adsorption gas separator 700 for separating hydrogen in the residual gas that has undergone the primary separation process; A carbon dioxide storage tank 720 for storing carbon dioxide obtained in the secondary separation process; The carbon dioxide stored in the pulverized coal supply of the pulverized coal feeder 130 and the dust of the dust removal facility 400 comprises a carbon dioxide compressor 730 for use as a working gas.
본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 일산화탄소 제조장치는 상기 가스화 반응기(200)와 상기 열회수 스팀보일러(300)가 격벽을 사이에 두고 서로 일체화되는 구조로 이루어진다.Carbon monoxide production apparatus using a steam plasma according to an embodiment of the present invention has a structure in which the gasification reactor 200 and the heat recovery steam boiler 300 is integrated with a partition wall therebetween.
이들 격벽은 가스화 반응기(200)에서의 가스화 반응시간을 충분히 확보할 수 있도록 함과 동시에, 합성가스 중의 분진을 걸러내어 분진이 열회수 스팀보일러(300)의 열회수 코일에 부착되는 것을 감소시키는 기능을 가진다.These barrier ribs have a function of sufficiently securing the gasification reaction time in the gasification reactor 200 and at the same time filtering out dust in the syngas and reducing dust from adhering to the heat recovery coil of the heat recovery steam boiler 300. .
본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 일산화탄소 제조장치의 작동과 일산화탄소의 제조방법은 다음과 같다.Operation of the carbon monoxide production apparatus using the steam plasma according to an embodiment of the present invention and a method for producing carbon monoxide are as follows.
스팀 보일러(110)의 스팀(5∼10 kg/c㎡)을 마이크로웨이브 발생기(120)에서 만들어진 마이크로웨이브(300MHz∼30GHz)의 통로로 이동시켜 플라즈마 상태로 활성화시키고, 미분탄 공급기(130)로부터 분사되는 미분탄과 산소 공급기(140)로부터 공급되는 산소를 상기 플라즈마 상태로 활성화한 스팀과 함께 가스화 반응기(200)에 유입시켜 플라즈마 화염(210)으로 고온반응(1,100∼1,500℃)시켜 합성가스를 생성시킨다.Steam (5 to 10 kg / c㎡) of the steam boiler 110 is moved to the passage of the microwave (300MHz ~ 30GHz) made in the microwave generator 120 to activate in the plasma state, and sprayed from the pulverized coal supply 130 The pulverized coal and the oxygen supplied from the oxygen supplier 140 are introduced into the gasification reactor 200 together with the steam activated in the plasma state to generate a synthesis gas by reacting a high temperature (1,100 to 1,500 ° C) with the plasma flame 210. .
이때 가스화 반응기(200)는 대기압 또는 대기압보다 조금 낮은 압력조건에서 운전되고, 미분탄과 산소는 플라즈마 화염(210)의 입구에서부터 투입되어 플라즈마 화염(210)과 함께 가스화 반응기(200) 내측으로 진행하면서 플라즈마 상태의 스팀과 반응하고, 가스화 반응기(200)의 중앙부위에서 복수 개의 플라즈마 화염(210)들이 형성하는 화염기둥(Fire Ball) 속에서 반응이 마무리된다.At this time, the gasification reactor 200 is operated at atmospheric pressure or a pressure slightly lower than atmospheric pressure, and pulverized coal and oxygen are introduced from the inlet of the plasma flame 210 and proceed inside the gasification reactor 200 together with the plasma flame 210. Reaction with the steam in the state, the reaction is completed in the flame column (Fire Ball) formed by a plurality of plasma flames 210 in the central portion of the gasification reactor 200.
산소 공급기(140)는 가스화 반응기(200)의 온도를 반응온도로 신속하게 높이기 위해 운전초기에만 가동되고 정상작업 상태(steady state)에서는 가동을 중지할 수 있는데 이는 투입되는 미분탄을 불완전 연소시켜 일산화탄소의 생성율을 높이기 위해서도 필요하다. Oxygen supply 140 is operated only at the beginning of operation in order to quickly increase the temperature of the gasification reactor 200 to the reaction temperature and can be stopped in the steady state state, which is incomplete combustion of the input pulverized coal to the carbon monoxide It is also necessary to increase the production rate.
또한 스팀 보일러(110)도 운전초기에만 가동하면 이후 열회수 스팀보일러(300)에서 생산되는 스팀으로 정상작업 상태(steady state)를 유지할 수 있으므로 정상작업 상태(steady state)에서는 스팀 보일러(110)의 운전도 중지할 수 있다.In addition, if the steam boiler 110 is also operated only at the beginning of operation, since the steam produced by the heat recovery steam boiler 300 may maintain a steady working state, the operation of the steam boiler 110 in a steady working state. You can also stop.
이와 같이 가스화 반응기(200)에서 생성된 합성가스는 2개의 격벽(250, 260)을 거치면서 반응 지속시간(retention time)이 연장되어 반응의 완결도가 한층 높아지게 된다.As described above, the synthesis gas generated in the gasification reactor 200 passes through two partitions 250 and 260 to extend the reaction time, thereby increasing the completion of the reaction.
또한 생성된 합성가스의 폐열을 열회수 스팀보일러(300)로 회수하여 스팀을 생산하게 되는데, 1,100∼1,500℃의 합성가스 출구온도를 200∼250℃까지 열회수가 가능하므로 그 회수열을 이용하여 스팀(7∼15 kg/c㎡)을 생산함으로써 전술한 스팀 플라즈마 토치(100)측의 스팀원료를 충당할 수 있다.In addition, the waste heat of the generated syngas is recovered by the heat recovery steam boiler 300 to produce steam. Since the outlet temperature of the synthesis gas outlet temperature of 1,100 to 1,500 ° C. can be recovered to 200 to 250 ° C., the steam is recovered using the recovered heat. By producing 7-15 kg / cm 2), it is possible to cover the steam raw material of the above-described steam plasma torch 100 side.
열회수되어 온도가 200∼250℃로 낮아진 합성가스 중의 회(Ash)분진 등 비산물질은 백필터(Bag Filter) 등의 분진 제거설비(400)를 사용하여 제거하며, 분진 제거설비(400)의 분진털이 작업가스로는 합성가스의 2차 분리과정에서 얻어지는 이산화탄소를 압축시켜 활용함으로써 온실가스인 이산화탄소의 외부 유출이나 외부 공기의 혼입을 방지할 수 있다.The fugitives such as ash dust in the synthesis gas whose temperature is lowered to 200 to 250 ° C. by heat recovery are removed using a dust removal facility 400 such as a bag filter, and the dust of the dust removal facility 400 is removed. As the hair working gas, by compressing and utilizing the carbon dioxide obtained in the secondary separation process of the synthesis gas, it is possible to prevent the outflow of carbon dioxide, which is a greenhouse gas, or the mixing of outside air.
회분 등이 제거된 합성가스 중 이성분 가스(SOx, H2S 등)는 가스 정제설비(500)를 사용하여 제거하며, 가스 정제시에는 습식방식을 사용하는데 분무액체로는 가성소다(NaOH) 수용액이나 수산화마그네슘(Mg(OH)2)수용액을 사용하며 이때 발생되는 염(salt)은 디스크 필터(510)로 제거하여 염(salt)저장탱크(530)에 저장되고, 순환 수용액은 냉각기(520)로 냉각하여 재사용하면서 소실되는 양만큼 보충하여 폐수의 발생을 억제한다.The binary gas (SOx, H 2 S, etc.) of the synthetic gas from which ash is removed is removed by using a gas refining plant 500, and when the gas is purified, a wet method is used, and as a spray liquid, caustic soda (NaOH) An aqueous solution or an aqueous solution of magnesium hydroxide (Mg (OH) 2 ) is used, and the salt generated at this time is removed by the disk filter 510 and stored in the salt storage tank 530, and the circulating aqueous solution is cooled by the cooler 520. ) And replenish as much as it is lost while reusing it to suppress waste water generation.
가스 정제설비(500)를 통과한 합성가스를 냉각기(540)로 냉각한 다음 압축기(550)로 압축하여 1차 순환흡착식 가스분리기(PSA; 600)로 이송하면 합성가스 중의 일산화탄소가 순도 99% 이상의 상태로 분리되어 나오며 이를 일산화탄소 저장탱크(610)에 저장한다.After cooling the synthesis gas passed through the gas purification plant 500 with the cooler 540, and then compressed by the compressor 550 and sent to the primary circulation adsorption gas separator (PSA; 600), the carbon monoxide in the synthesis gas has a purity of 99% or more. It is separated into a state and stored in the carbon monoxide storage tank 610.
1차 분리과정을 거친 잔여가스(수소, 이산화탄소)를 2차 순환흡착식 가스분리기(PSA; 700)에 이송하여 순도 99% 이상의 수소를 분리하고 이를 수소 저장탱크(710)에 저장한다.The residual gas (hydrogen, carbon dioxide), which has undergone the primary separation process, is transferred to a secondary circulating adsorption gas separator (PSA) 700 to separate hydrogen having a purity of 99% or higher and stored in the hydrogen storage tank 710.
2차 분리과정에서 얻어지는 이산화탄소는 이산화탄소 저장탱크(720)에 저장되며, 저장된 이산화탄소는 압축기(730)로 압축되어 미분탄 공급기(130)의 미분탄 분사 및 분진 제거설비(400)의 분진털이 작업가스로 사용된다. 이는 미분탄 분사 등에 공기 대신 이산화탄소를 압축하여 사용함으로써 일산화탄소의 분리시 방해가 되는 질소가스의 발생량을 억제하여 일산화탄소의 분리를 원활하게 하고 온실가스인 이산화탄소의 배출도 감축하기 위함이다.The carbon dioxide obtained in the secondary separation process is stored in the carbon dioxide storage tank 720, the stored carbon dioxide is compressed by the compressor 730, the dust dust of the pulverized coal injection and dust removal facility 400 of the pulverized coal supplier 130 is used as the working gas. do. The purpose of this is to compress carbon dioxide instead of air for pulverized coal injection, to suppress the amount of nitrogen gas that is hindered from separating carbon monoxide, thereby facilitating the separation of carbon monoxide and reducing the emission of carbon dioxide, which is a greenhouse gas.
도 2는 본 발명의 일 실시예에 따른 가스화 반응기의 개념도이며, 도 3은 가스화 반응기 내부의 가스화 작업상황을 나타낸 개념도이다.2 is a conceptual diagram of a gasification reactor according to an embodiment of the present invention, Figure 3 is a conceptual diagram showing the gasification operation status inside the gasification reactor.
본 발명의 일 실시예에 따른 가스화 반응기(200)는 열회수 스팀보일러(300)와 격벽(250, 260)을 사이에 두고 일체화되는 구조로 이루어진다. Gasification reactor 200 according to an embodiment of the present invention has a structure that is integrated with the heat recovery steam boiler 300 and the partitions (250, 260) between.
본 발명의 일 실시예에 따른 가스화 반응기(200)는 대용량의 육면체형 구조로 설계되어, 열회수 스팀보일러(300) 측의 벽면과 상·하면을 제외한 가스화 반응기(200)의 3개 벽면에 10∼100개의 스팀 플라즈마 토치(100)를 설치할 수 있다.The gasification reactor 200 according to an embodiment of the present invention is designed in a large-capacity hexahedral structure, 10 to three walls of the gasification reactor 200 except for the upper and lower surfaces of the heat recovery steam boiler 300 side. One hundred steam plasma torches 100 may be installed.
또한 본 발명의 일 실시예에 따른 가스화 반응기(200)는 3개 벽면에 설치된 10∼100개의 스팀 플라즈마 토치(100)로부터 발생되는 플라즈마 화염(210)이 가스화 반응기(200)의 중앙 부위에서 화염기둥(Fire Ball)을 형성하여 가스화 반응에 필요한 온도에 신속하게 도달할 수 있다.In addition, in the gasification reactor 200 according to an embodiment of the present invention, the plasma flame 210 generated from 10 to 100 steam plasma torches 100 installed on three walls has a flame pillar at a central portion of the gasification reactor 200. It is possible to quickly reach the temperature required for the gasification reaction by forming a fire ball.
도 4는 본 발명의 일 실시예에 따라 가스화 반응기의 3면에 걸쳐 각 면당 4×4 배열로 도합 48개의 스팀 플라즈마 토치를 구비하고 있는 가스화 반응기의 개념도이고, 도 5는 종래의 원통형 소용량 가스화 반응기 12개에 48개의 스팀 플라즈마 토치를 각각의 가스화 반응기에 나누어 설치할 경우의 개념도이다.4 is a conceptual diagram of a gasification reactor having a total of 48 steam plasma torches in a total 4 × 4 arrangement on each side across three sides of a gasification reactor in accordance with an embodiment of the present invention, and FIG. 5 is a conventional cylindrical small capacity gasification reactor. This is a conceptual diagram in which 48 steam plasma torches in 12 are installed in each gasification reactor.
도 4에서 알 수 있는 바와 같이 본 발명의 일 실시예에 따른 가스화 반응기(200)는 열회수 스팀보일러(300)와 일체화되고 대용량의 육면체형 구조로 설계되어 있어, 열회수 스팀보일러(300) 측의 벽면과 상·하면을 제외한 가스화 반응기(200) 1기의 3개 벽면에 4×4 배열로 16개의 스팀 플라즈마 토치(100)를 가져 도합 48개의 스팀 플라즈마 토치(100)를 구비하고 있으며, 이들 설비의 설치에 소요되는 면적은 대략 19.37m × 30.13m ≒ 584㎡ 로 산정된다.As can be seen in Figure 4 the gasification reactor 200 according to an embodiment of the present invention is integrated with the heat recovery steam boiler 300 and designed in a large-capacity hexahedral structure, the heat recovery steam boiler 300 side wall 16 steam plasma torches 100 are arranged on three walls of one gasification reactor 200 except for upper and lower surfaces in a 4 × 4 arrangement, and a total of 48 steam plasma torches 100 are provided. The area required for installation is estimated to be approximately 19.37m × 30.13m ≒ 584㎡.
한편 도 5에서 알 수 있는 바와 같이 본 발명의 일 실시예에 따른 가스화 반응기 1기에 설치된 48개의 스팀 플라즈마 토치를 종래의 원통형 소용량 가스화 반응기(200') 12기에 각각 4개씩 나누어 설치하고 부대설비로서 스팀 보일러(110')를 포함시킬 경우, 이들 설비의 설치에 소요되는 면적은 대략 30.77m × 52.56m ≒ 1,617㎡ 로 산정되어, 본 발명의 일 실시예에 따른 가스화기(가스화 반응기 및 열회수 스팀 보일러)는 종래의 실린더형 소용량 가스화 반응기(스팀 보일러 포함)에 비해 설치면적에서 64%나 절감되는 효과를 가져 공장부지의 구입비를 포함한 설비투자비 등을 크게 절감하는 효과를 가진다.On the other hand, as can be seen in Figure 5, 48 steam plasma torch installed in one gasification reactor according to an embodiment of the present invention divided into four each installed in 12 conventional cylindrical small-capacity gasification reactor (200 ') and steam as an auxiliary equipment In the case of including the boiler 110 ', the area required for installation of these facilities is estimated to be approximately 30.77m × 52.56m ≒ 1,617m 2, so that the gasifier (gasification reactor and heat recovery steam boiler) according to one embodiment of the present invention. Compared with the conventional cylindrical small-capacity gasification reactor (including steam boilers), the installation area has an effect of 64% reduction in installation area, which greatly reduces the facility investment cost including the purchase cost of the factory site.
또한 본 발명의 일 실시예에 따른 스팀 플라즈마를 이용한 일산화탄소 제조장치는 열회수 스팀 보일러(300)를 가스화 반응기(200)와 일체화하여 가스화 반응기(200)를 나오는 합성가스의 폐열을 바로 열회수 스팀 보일러(300)의 스팀 생산열원으로 재활용함으로써 플라즈마 상태로 활성화시킬 스팀원료의 생산비를 절감할 뿐만 아니라 설비의 단순화를 기하고 설비 고장빈도를 줄여 설비의 신뢰도를 높이는 효과를 가진다.In addition, the carbon monoxide production apparatus using the steam plasma according to an embodiment of the present invention is a heat recovery steam boiler 300 by directly integrating the heat recovery steam boiler 300 with the gasification reactor 200 to directly waste heat of the synthesis gas leaving the gasification reactor 200 By not only reducing the production cost of steam raw material to be activated in the plasma state by recycling it as a steam production heat source, but also simplifying the equipment and reducing the frequency of equipment failure, it has the effect of increasing the reliability of the equipment.
이하 본 발명에 따른 스팀 플라즈마를 이용한 일산화탄소의 제조방법을 하나의 실시예에 의거하여 다시 자세히 설명하기로 하지만 이는 예시로서 제시되는 것이며 이에 의하여 본 발명이 한정되는 것은 아니다.Hereinafter, the method for producing carbon monoxide using the steam plasma according to the present invention will be described in detail again based on one embodiment, which is presented as an example and the present invention is not limited thereto.
[실시예 1]Example 1
1. 스팀 보일러(110)를 가동하여 스팀압력을 7 kg/c㎡ 로 유지하며 응축수를 제거한다.1. Operate the steam boiler 110 to maintain steam pressure of 7 kg / c㎡ and remove condensate.
2. 마이크로웨이브 발생장치에 전원을 공급하고 냉각수를 투입하여 가동준비 상태로 만든 다음, 마이크로웨이브를 도파관을 통해 주입하면서 응축수가 제거된 스팀을 주입하여 플라즈마 화염을 점화시킨다.2. Power up the microwave generator, turn on the coolant and make it ready for operation. Then, inject the microwave through the waveguide and inject steam from the condensate to ignite the plasma flame.
3. 화염이 정상상태가 되면 준비된 미분탄 분말과 산소를 서서히 투입하면서 온도를 관찰하여 1,000℃가 되면 산소를 서서히 줄인다.3. When the flame reaches a steady state, slowly add the prepared pulverized coal powder and oxygen and observe the temperature, and gradually reduce the oxygen when it reaches 1,000 ℃.
4. 가스화 반응기의 내부온도가 1,200℃ 이상이 되면 스팀을 추가로 주입하여 안정화 상태로 만든다.4. When the internal temperature of the gasification reactor is 1,200 ℃ or more, steam is additionally injected to make it stabilized.
5. 제조된 합성가스를 열회수 스팀보일러를 거치게 하고, 분진 제거설비(Bag Filter)에서 회분(Ash) 및 기타 고형물을 제거한다.5. The manufactured syngas is passed through a heat recovery steam boiler and ash and other solids are removed from the bag filter.
6. 가스 정제설비에서 가성소다 수용액과 접촉시켜 이성분(H2S, SOx)을 제거한다.6. Remove gaseous soda (H 2 S, SOx) by contact with aqueous solution of caustic soda in gas refinery.
7. 정제된 합성가스를 1차 순환흡착식 가스분리기에 이송하여 순도 99%의 일산화탄소를 분리하고 이를 저장한다.7. The purified syngas is transferred to a primary circulating adsorption gas separator to separate and store carbon monoxide having a purity of 99%.
8. 1차 분리과정을 거친 잔여가스를 2차 순환흡착식 가스분리기에 이송하여 순도 99%의 수소를 분리하고 이를 저장한다.8. The residual gas from the primary separation process is transferred to a secondary circulating adsorption gas separator to separate hydrogen of 99% purity and store it.
9. 2차 분리과정에 얻어지는 이산화탄소는 압축하여 미분탄 공급기(130)의 미분탄 분사 및 분진 제거설비(400)의 분진털이 작업가스로 사용하기 위하여 저장해둔다.9. The carbon dioxide obtained in the secondary separation process is compressed and stored in the dust of the pulverized coal injection and dust removal facility 400 of the pulverized coal feeder 130 for use as a working gas.
아래 [표 1]은 [실시예 1]의 공정구간 별 가스 조성표를 나타내고 있다. Table 1 below shows a gas composition table for each process section of Example 1.
구 분 division 가스화 반응기 후단 조성Gasification reactor backstage composition 1차 순환흡착식가스분리기 후단 조성Rear stage of the first circulation adsorption gas separator 2차 순환흡착식 가스분리기 후단 조성Rear stage composition of the second circulation adsorption gas separator
가스명Gas name 함량(%)content(%) 유량(LPM)Flow rate (LPM) 함량(%)content(%) 유량(LPM)Flow rate (LPM) 함량(%)content(%) 유량(LPM)Flow rate (LPM)
COCO 39.039.0 7,4887,488 9999 6,7396,739
H2 H 2 41.041.0 7,8727,872 -- -- 9999 7,0857,085
CO2 CO 2 19.919.9 3,8213,821 -- -- -- --
N2 N 2 0.10.1 1919 -- -- -- --
소 계sub Total 100.0100.0 19,20019,200 9999 6,7396,739 9999 7,0857,085
[표 1]에서와 같이 본 발명의 [실시예 1]에서는 1차 순환흡착식 가스분리에 의해 일산화탄소의 함량이 99%로 향상되고, 유량(LPM)은 가스화 반응기 후단 조성에 비해 10% 정도의 손실이 발생하였는데 이는 1차 순환흡착식 가스분리기의 효율(90%)에 기인한 것으로 보인다.In Example 1 of the present invention, as shown in Table 1, the content of carbon monoxide is improved to 99% by primary circulating adsorption gas separation, and the flow rate (LPM) is about 10% lower than that of the rear end of the gasification reactor. This occurred due to the efficiency (90%) of the primary circulating adsorption gas separator.
상기 기재사항으로부터 알 수 있는 바와 같이, 본 발명의 스팀플라즈마를 이용한 일산화탄소 제조장치 및 제조방법은 일산화탄소 제조시 탄소원료로서 저급탄을 사용함으로써 기존의 천연개스 개질 일산화탄소 제조에 비해 제조단가를 크게 줄일 수 있어 일산화탄소를 원료로 하는 케톤, 초산제조 등의 원료가격을 낮춤으로써 관련산업의 활성화에 기여하는 산업상의 이용가능성을 가진다.As can be seen from the above description, the carbon monoxide production apparatus and manufacturing method using the steam plasma of the present invention can significantly reduce the manufacturing cost compared to the conventional natural gas modified carbon monoxide production by using low-carbon coal as a carbon raw material when manufacturing carbon monoxide. Therefore, it has industrial applicability that contributes to vitalization of related industries by lowering raw material prices such as carbon monoxide-based ketones and acetic acid production.
또한 본 발명의 스팀 플라즈마를 이용한 일산화탄소 제조장치는 스팀 보일러를 가스화 반응기와 일체화하여 가스화 반응기를 나오는 합성가스의 폐열을 바로 스팀 보일러의 스팀 생산열원으로 재활용함으로써 스팀 생산비를 절감할 뿐만 아니라 설비의 단순화를 기하고 설비 고장빈도를 줄여 설비의 신뢰도를 높이는 산업상의 이용가능성을 가진다.In addition, the apparatus for producing carbon monoxide using the steam plasma of the present invention integrates the steam boiler with the gasification reactor and directly recycles the waste heat of the syngas leaving the gasification reactor to the steam production heat source of the steam boiler, thereby reducing the steam production cost and simplifying the equipment. It has the industrial applicability to increase the reliability of the equipment by reducing the frequency of equipment failure.

Claims (10)

  1. 스팀 플라즈마를 이용한 일산화탄소 제조장치로서,An apparatus for producing carbon monoxide using steam plasma,
    스팀 보일러(110), 마이크로웨이브 발생기(120), 미분탄 공급기(130), 산소 공급기(140)에 연결되어 있는 스팀 플라즈마 토치(100)와;A steam plasma torch 100 connected to the steam boiler 110, the microwave generator 120, the pulverized coal supply 130, and the oxygen supply 140;
    상기 마이크로웨이브 발생기(120)의 마이크로웨이브에 의해 플라즈마 활성화된 스팀, 상기 미분탄 공급기(130)에서 분사되는 미분탄, 상기 산소공급기(140)로부터 공급되는 산소를 플라즈마 토치(100)의 화염(210)으로 고온반응시켜 합성가스를 발생시키는 가스화 반응기(200)와;Plasma activated steam by the microwaves of the microwave generator 120, pulverized coal injected from the pulverized coal supplier 130, and oxygen supplied from the oxygen supplier 140 to the flame 210 of the plasma torch 100. A gasification reactor 200 for generating a synthesis gas by reacting at a high temperature;
    격벽(250, 260)을 사이에 두고 상기 가스화 반응기(200)와 서로 일체화되는 구조로 이루어지고, 상기 가스화 반응기(200)의 합성가스로부터 폐열을 회수하는 열회수 스팀보일러(300)와;A heat recovery steam boiler (300) configured to be integral with the gasification reactor (200) with partitions (250, 260) therebetween and to recover waste heat from the synthesis gas of the gasification reactor (200);
    상기 합성가스 중의 분진을 제거하는 분진제거설비(400)와;A dust removal facility 400 for removing dust in the syngas;
    상기 합성가스 중의 이성분(SOx, H2S 등)을 제거하는 가스정제설비(500)와;A gas purification facility 500 for removing two components (SOx, H 2 S, etc.) in the synthesis gas;
    상기 정제된 합성가스 중의 일산화탄소를 분리하는 1차 순환흡착식 가스분리기(600)와;A primary circulation adsorption gas separator 600 for separating carbon monoxide in the purified syngas;
    상기 1차 분리과정을 거친 잔여가스에서 수소를 분리하는 2차 순환흡착식 가스분리기(700)와;A secondary circulation adsorption gas separator 700 for separating hydrogen from the residual gas that has undergone the primary separation process;
    상기 2차 분리과정에서 얻어지는 이산화탄소를 저장하는 이산화탄소 저장탱크(720)와;A carbon dioxide storage tank 720 for storing carbon dioxide obtained in the secondary separation process;
    저장된 이산화탄소를 미분탄 공급기(130)의 미분탄 분사 및 분진제거설비(400)의 분진털이 작업가스에 사용하기 위한 이산화탄소 압축기(730)를 포함하여 이루어지는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조장치.The apparatus for producing carbon monoxide using steam plasma, comprising: a carbon dioxide compressor (730) for using the stored carbon dioxide in the powdered coal injection and dust removal facilities (400) of the pulverized coal supplier (130) for the working gas.
  2. 제 1항에 있어서,The method of claim 1,
    상기 가스화 반응기(200)는 육면체형 구조로 설계되어, 열회수The gasification reactor 200 is designed in a hexahedral structure, heat recovery
    스팀보일러(300) 측의 벽면과 상·하면을 제외한 가스화 반응기(200)의 3개 벽면에 10∼100개의 스팀 플라즈마 토치(100)를 설치할 수 있는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조장치.An apparatus for producing carbon monoxide using steam plasma, wherein 10 to 100 steam plasma torches 100 may be installed on three wall surfaces of the gasification reactor 200 except for the upper and lower surfaces of the wall and the steam boiler 300.
  3. 제 2항에 있어서,The method of claim 2,
    상기 가스화 반응기(200)는 3개 벽면에 설치된 10∼100개의 스팀 플라즈마 토치(100)로부터 발생되는 플라즈마 화염(210)이 가스화 반응기(200)의 중앙 부위에서 화염기둥(Fire Ball)을 형성하여 가스화 반응에 필요한 온도에 신속하게 도달하는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조장치.In the gasification reactor 200, a plasma flame 210 generated from 10 to 100 steam plasma torches 100 installed on three walls forms gas balls by forming a fire ball at a central portion of the gasification reactor 200. Carbon monoxide production apparatus using a steam plasma, characterized in that to quickly reach the temperature required for the reaction.
  4. 제 1항에 있어서,The method of claim 1,
    상기 가스 정제설비(500)는 생성되는 염(salt)을 제거하기 위한 디스크 필터(510)를 더 구비하는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조장치.The gas purification system 500 is a carbon monoxide production apparatus using a steam plasma, characterized in that further comprising a disk filter (510) for removing the salt (salt) generated.
  5. 스팀 플라즈마를 이용한 일산화탄소 제조방법으로서,As a method of producing carbon monoxide using a steam plasma,
    스팀 보일러(110)의 스팀을 마이크로웨이브 발생기(120)에서 발생된 마이크로웨이브의 통로로 이동시켜 플라즈마 상태로 활성화시키는 단계;Moving steam of the steam boiler 110 into a passage of the microwave generated by the microwave generator 120 to activate the plasma state;
    미분탄 공급기(130)로부터 분사되는 미분탄과 산소 공급기(140)로부터 공급되는 산소를 상기 플라즈마 상태로 활성화한 스팀과 함께 가스화 반응기(200)로 들여보내 플라즈마 화염(210)으로 고온반응시켜 합성가스를 발생시키는 단계;The pulverized coal injected from the pulverized coal supplier 130 and the oxygen supplied from the oxygen supplier 140 are introduced into the gasification reactor 200 together with the steam activated in the plasma state and reacted at a high temperature with a plasma flame 210 to generate syngas. Making a step;
    가스화 반응기(200)에서 생성된 합성가스의 폐열을 격벽(250, 260)을 사이에 두고 상기 가스화 반응기(200)와 일체화되어 있는 열회수 스팀보일러(300)로 회수하는 단계;Recovering the waste heat of the syngas generated in the gasification reactor 200 to the heat recovery steam boiler 300 integrated with the gasification reactor 200 with the partition walls 250 and 260 therebetween;
    열회수되어 온도가 낮아진 합성가스 중의 회(Ash)분진 등 비산물질을 백필터(Bag Filter) 등의 분진 제거설비(400)를 사용하여 제거하는 단계;Removing fugitives such as ash dust in the synthesis gas that has been heated and lowered by using a dust removal facility 400 such as a bag filter;
    분진이 제거된 합성가스 중의 이성분(SOx, H2S 등)을 습식방식의 가스 정제설비(500)를 사용하여 제거하는 단계;Removing the two components (SOx, H 2 S, etc.) in the dust from which the dust has been removed by using a wet gas refining apparatus 500;
    정제된 합성가스 중의 일산화탄소를 1차 순환흡착식 가스분리기(600)에서 분리하는 단계;Separating carbon monoxide in the purified syngas in a first circulation adsorption gas separator (600);
    1차 분리과정을 거친 잔여가스 중의 수소를 2차 순환흡착식 가스분리기(700)에서 분리하는 단계;Separating hydrogen in the residual gas that has undergone the primary separation process in a secondary circulation adsorption type gas separator (700);
    2차 분리과정에서 얻어지는 이산화탄소를 저장하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조방법.Storing carbon dioxide obtained in the secondary separation process; Carbon monoxide production method using a steam plasma comprising a.
  6. 제 5항에 있어서,The method of claim 5,
    상기 가스화 반응기(200)에서 합성가스를 발생시키는 단계는 대기압 또는 대기압보다 조금 낮은 압력조건에서 이루어지는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조방법.Generating the synthesis gas in the gasification reactor 200 is a method of producing carbon monoxide using steam plasma, characterized in that the pressure is made under a pressure condition slightly lower than atmospheric pressure.
  7. 제 5항에 있어서,The method of claim 5,
    상기 가스화 반응기(200)에서 합성가스를 발생시키는 단계는 가스화 반응기(200)의 중앙 부위에서 복수 개의 플라즈마 화염(210)들이 형성하는 화염기둥(Fire Ball) 속에서 가스화 반응이 마무리되는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조방법.Generating the synthesis gas in the gasification reactor 200 is characterized in that the gasification reaction is finished in a flame column (Fire Ball) formed by a plurality of plasma flames 210 in the central portion of the gasification reactor 200 Carbon monoxide production method using steam plasma.
  8. 제 5항에 있어서,The method of claim 5,
    상기 열회수 스팀보일러(300)에서 생산되는 스팀을 합성가스 발생 단계의 스팀원료로 활용할 수 있는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조방법.Method for producing carbon monoxide using steam plasma, characterized in that the steam produced in the heat recovery steam boiler 300 can be used as a steam raw material of the synthesis gas generating step.
  9. 제 5항에 있어서,The method of claim 5,
    상기 2차 분리과정에서 얻어지는 이산화탄소를 미분탄 공급기(130)의 미분탄 분사 및 분진 제거설비(400)의 분진털이 작업가스로 사용함으로써 온실가스인 이산화탄소의 외부 유출이나 외부 공기의 혼입을 방지하는 것을 특징으로 하는 스팀 플라즈마를 이용한 일산화탄소 제조방법.The carbon dioxide obtained in the secondary separation process is used for the dust of the pulverized coal injection and dust removal facility 400 of the pulverized coal supplier 130 as a working gas, thereby preventing the outflow of carbon dioxide, which is a greenhouse gas, or the mixing of external air. Carbon monoxide production method using a steam plasma.
  10. 스팀 플라즈마를 이용한 가스화 반응기에 있어서,In the gasification reactor using a steam plasma,
    격벽(250, 260)을 사이에 두고 열회수 스팀보일러(300)와 서로 일체화되며, 육면체형 구조로 설계되어 상기 열회수 스팀보일러(300) 측의 벽면과 상·하면을 제외한 3개 벽면에 10∼100개의 스팀 플라즈마 토치(100)를 설치할 수 있으며, 상기 3개 벽면에 설치된 10∼100개의 스팀 플라즈마 토치(100)로부터 발생되는 플라즈마 화염(210)이 상기 육면체형 구조의 중앙 부위에서 화염기둥(Fire Ball)을 형성하여 가스화 반응에 필요한 온도까지 신속하게 도달하는 것을 특징으로 하는 스팀 플라즈마를 이용한 가스화 반응기(200).It is integrated with each other with the heat recovery steam boiler 300 with the partitions 250 and 260 interposed therebetween. Steam plasma torch 100 may be installed, and the plasma flame 210 generated from the 10 to 100 steam plasma torch 100 installed on the three walls has a flame column at the central portion of the hexahedral structure. The gasification reactor 200 using the steam plasma, characterized in that to reach a temperature required for the gasification reaction by forming a).
PCT/KR2016/010963 2015-10-02 2016-09-30 Apparatus and method for manufacturing carbon monoxide using steam plasma WO2017057942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0138910 2015-10-02
KR1020150138910A KR101664833B1 (en) 2015-10-02 2015-10-02 Apparatus for manufacturing carbon monoxide using a microwave plasma and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017057942A1 true WO2017057942A1 (en) 2017-04-06

Family

ID=57174180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010963 WO2017057942A1 (en) 2015-10-02 2016-09-30 Apparatus and method for manufacturing carbon monoxide using steam plasma

Country Status (2)

Country Link
KR (1) KR101664833B1 (en)
WO (1) WO2017057942A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517618B1 (en) * 2016-09-23 2023-04-10 고등기술연구원연구조합 Carbonylsulfid Hydrolysis Reaction System
CN108531220B (en) * 2017-03-02 2020-09-11 中国石油化工股份有限公司 System and method for biomass microwave pyrolysis high-yield gas
KR102509945B1 (en) * 2022-06-02 2023-03-14 (주)비에스산업개발 A systems for gasifying combustible waste
KR102629240B1 (en) 2023-03-28 2024-01-26 최병렬 System of production bioethanol and biodiesel and renewable crude oil based on quantum theory

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990074976A (en) * 1998-03-16 1999-10-05 윤명조 Waste Recycling Process and Device Using Hydrogen-Oxygen Plasma Torch
KR20120064030A (en) * 2010-12-08 2012-06-18 에스케이이노베이션 주식회사 Carbon dioxide free gasification
KR101255152B1 (en) * 2010-12-01 2013-04-22 한국기초과학지원연구원 Power generation system using plasma gasifier
KR101326670B1 (en) * 2013-06-07 2013-11-08 한국에너지기술연구원 Circulating fluidized bed plasma gasifier with microwave plasma torch
KR20130131068A (en) * 2012-05-23 2013-12-03 인하대학교 산학협력단 Process for the preparation of synthetic gas using steam plasma coal gasfication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990074976A (en) * 1998-03-16 1999-10-05 윤명조 Waste Recycling Process and Device Using Hydrogen-Oxygen Plasma Torch
KR101255152B1 (en) * 2010-12-01 2013-04-22 한국기초과학지원연구원 Power generation system using plasma gasifier
KR20120064030A (en) * 2010-12-08 2012-06-18 에스케이이노베이션 주식회사 Carbon dioxide free gasification
KR20130131068A (en) * 2012-05-23 2013-12-03 인하대학교 산학협력단 Process for the preparation of synthetic gas using steam plasma coal gasfication system
KR101326670B1 (en) * 2013-06-07 2013-11-08 한국에너지기술연구원 Circulating fluidized bed plasma gasifier with microwave plasma torch

Also Published As

Publication number Publication date
KR101664833B1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
WO2017003066A1 (en) Hydrogen generator and hydrogen production method, using steam plasma
WO2017057942A1 (en) Apparatus and method for manufacturing carbon monoxide using steam plasma
US10077407B2 (en) Method and system for recycling carbon dioxide from biomass gasification
WO2013097535A1 (en) Biomass gasification island process under high temperature and atmospheric pressure
EP2751293B1 (en) Method of operating regenerative heaters in blast furnace plant
WO2011087199A1 (en) Molten iron manufacturing apparatus for reducing emissions of carbon dioxide
WO2014104596A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
JP6573137B2 (en) Industrial production plant that minimizes greenhouse gas emissions, especially carbon dioxide emissions, and method of operation thereof
CN101802496B (en) Feed injector cooling apparatus and method of assembly
WO2011081276A1 (en) Apparatus for manufacturing molten iron
KR20040067952A (en) Generating method and system of MHD
WO2018004070A1 (en) Apparatus for manufacturing molten iron and method for manufacturing molten iron by using same
KR20160066122A (en) Method of Increasing the Heat Recovery using Coke Dry Quenching
WO2012138191A2 (en) Apparatus and method for treating coke oven gas
JP4515975B2 (en) System and method using reformed gas
US5425229A (en) Process for utilizing the energy contained in the blast furnace gas of a shaft furnace
WO2022025487A1 (en) Method for producing hydrogen or hydrogen-rich syngas by using carbon material, and apparatus for producing same
WO2012091422A2 (en) Device for manufacturing reduced iron using nuclear reactor and method for manufacturing reduced iron using same
CN106085506B (en) Plasma gasification device
CN107274952B (en) Treatment system of medium-low radioactivity nuclear waste and power generation system with same
WO2014038853A1 (en) Gasifier
US20230294987A1 (en) Apparatus for producing hydrogen gas
CN115245951B (en) Method for improving thermal efficiency of treating hazardous waste by plasma gasification melting furnace
CN219489918U (en) High-carbon raw material acetylene generator
US20230312339A1 (en) Apparatus for producing hydrogen gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16852088

Country of ref document: EP

Kind code of ref document: A1