WO2014069216A1 - タービン翼 - Google Patents

タービン翼 Download PDF

Info

Publication number
WO2014069216A1
WO2014069216A1 PCT/JP2013/077727 JP2013077727W WO2014069216A1 WO 2014069216 A1 WO2014069216 A1 WO 2014069216A1 JP 2013077727 W JP2013077727 W JP 2013077727W WO 2014069216 A1 WO2014069216 A1 WO 2014069216A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
blade
ventral
dorsal
trailing edge
Prior art date
Application number
PCT/JP2013/077727
Other languages
English (en)
French (fr)
Inventor
正昭 浜辺
あゆみ 儘田
るり子 山脇
浩志 濱崎
高橋 晃
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP13851985.5A priority Critical patent/EP2921646B1/en
Priority to CA2889832A priority patent/CA2889832C/en
Publication of WO2014069216A1 publication Critical patent/WO2014069216A1/ja
Priority to US14/700,517 priority patent/US10024167B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a turbine blade used in, for example, an aircraft jet engine.
  • profile loss is attracting attention.
  • This profile loss is mainly due to a loss of velocity distribution based on the wake from the trailing edge of the turbine blade.
  • An important point for reducing the profile loss is how to reduce the velocity distribution deficiency.
  • the thinner the blade trailing edge of the turbine blade the smaller the velocity distribution defect.
  • the shape of the blade back line and blade belly side line connected by a semicircle arc of a perfect circle, or the shape connected by a straight line perpendicular to the camber line is the blade trailing edge. Many are adopted.
  • the thickness of the blade trailing edge cannot be less than the diameter of the semicircle. Therefore, the thickness of the blade trailing edge becomes relatively large, the wake from the blade trailing edge of the turbine blade becomes large, and the velocity distribution defect becomes relatively large.
  • Patent Document 1 Conventionally, as a turbine blade formed so as to reduce the velocity distribution defect, there is one disclosed in Patent Document 1, for example.
  • the radius of curvature gradually decreases from either the blade back line or the blade vent line toward the rear end located on the most downstream side in the fluid flow direction.
  • the radius of curvature becomes the smallest at the end, and then the radius of curvature gradually increases from the rear end toward the other side of the wing back side line or wing ventral side line. It has the structure which has the curved surface of the rear edge part which reaches the other.
  • the present invention has been made by paying attention to the above-mentioned conventional problems, and after ensuring that the strength is ensured and the weight of the blade is increased or the structural design is affected, loss due to velocity distribution loss
  • An object of the present invention is to provide a turbine blade that can further improve the performance while suppressing the amount of the pressure and can increase the work.
  • the present invention is a turbine having a profile having a blade back side line, a blade back side line, and a blade trailing edge located between the rear ends of the blade back side line and the blade back side line.
  • the blade trailing edge in the profile is a ventral arc having a constant radius of curvature from the rear end of the blade ventral line toward the camber line of the profile, and the ventral arc with the camber line in between.
  • the back side line part Connecting the back side line part which goes to the camber line from the rear end of the blade back side line through a region closer to the camber line than the symmetrical curve which forms a line symmetry with the curve, the back side line part, A configuration represented by an elliptical configuration line and a straight line constituting the ellipse.
  • the camber line which is the airfoil centerline, is curved, but is substantially straight at the trailing edge of the blade. Therefore, the turbine blade according to the present invention also has a camber at the trailing edge of the blade.
  • the line is treated as a straight line.
  • the straight line of the dorsal line portion is between a dorsal line-side ellipse component line connected to the rear end of the wing dorsal line and an arc-curve-like ellipse component line connected to the ventral arc curve. It is set as the structure located in.
  • the back-side near-ellipse constituent line and the arc-shaped near-ellipse constituent line located on both sides of the straight line may be the same ellipse constituent line or different ellipse constituent lines.
  • connection point between the rear end of the blade dorsal line and the dorsal line portion is not less than the length of the radius of curvature of the ventral arc curve from the rearmost end of the blade trailing edge in the profile, and the blade It is assumed that the position is within a range of 10% or less of the chord length.
  • connection point between the rear end of the blade dorsal line and the dorsal line portion is not less than three times the length of the radius of curvature of the ventral arc curve from the rearmost end of the blade trailing edge in the profile. And it is set as the structure located in the range of 10% or less of chord length.
  • the near position (near point) S is set based on the radius R of the ventral arc curve 11.
  • the radius R of this circle is often set to 0.5% to 2% of the chord length C.
  • the position (distant point) farthest from the rearmost end 5a of the blade trailing edge 5 that can be a connection point P between the rear end of the blade backside line 2 and the elliptical component line 12a closer to the backside line of the backside line portion 12 is the blade
  • the profile is set to 10% or less of the chord length from the rearmost end 5a of the blade trailing edge 5 in the profile.
  • the connection point P between the rear end of the blade back line 2 and the ellipsoidal component line 12 a closer to the back line of the back line portion 12 is located 5% of the chord length C from the rearmost end 5 a of the blade trailing edge 5. It shows the case.
  • connection point between the ventral arc curve and the arc-shaped elliptical component line in the dorsal line portion is around the center of the ventral arc curve located on the camber line and the camber line. It is set as the structure located in the range of 30 degrees each on the back ventral side.
  • connection point between the ventral arc curve and the dorsal line portion can be shifted to the dorsal ventral side of the camber line, the degree of freedom in how to connect the dorsal and abdominal curves is expanded, and manufacturing It will be easier.
  • the dorsal line portion forming the blade trailing edge passes through a region closer to the camber line than the symmetrical curve portion that is in line symmetry with the ventral arc curve with the camber line in between. Since it reaches the camber line from the rear end of the dorsal line, the thickness of only the blade trailing edge can be reduced while maintaining the blade thickness in the part from the blade leading edge to the blade trailing edge in the profile, As a result, it is possible to reduce the loss due to velocity distribution deficiency without reducing the strength and without causing the concern that the blade weight will increase or the structural design will be affected. Can be increased.
  • the back side line part that forms the trailing edge of the wing is configured to be represented by an elliptical constituent line and a straight line that form an ellipse, so the main stream (air flow) at the back side line part is accelerated and the boundary layer is
  • the mainstream is shaped to wrap around from the dorsal line portion to the ventral arc curve by the Coanda effect, and the outflow angle from the trailing edge of the mainstream blade is increased.
  • the strength is ensured, and the loss due to the velocity distribution deficiency is suppressed and the performance is further improved without causing the fear that the blade weight may increase or the influence on the structural design.
  • the outflow angle from the mainstream blade trailing edge can be increased, resulting in a very good effect of increasing work.
  • FIG. 2 is a profile explanatory diagram illustrating a setting point of a connection point between a rear end of a blade back side line and a back side line portion of a blade rear edge in the turbine blade of FIG. 1. It is profile explanatory drawing which shows the condition where the mainstream turns around by the Coanda effect from the back side line
  • FIG. 1 to 3 show the profile of a turbine blade according to an embodiment of the present invention.
  • the turbine blade 1 has a profile including a blade back side line 2, a blade ventral side line 3, a blade leading edge 4, and a blade trailing edge 5. As shown in the enlarged portion, the blade trailing edge 5 in the profile is located between the trailing ends of the blade back side line 2 and the blade ventral side line 3.
  • the blade trailing edge 5 in the profile is composed of a ventral arc curve 11 having a constant radius of curvature from the rear end of the blade ventral line 3 toward the camber line CL of the profile, and a dorsal line portion 12.
  • the dorsal line portion 12 is a symmetrical curve portion (curved portion indicated by a two-dot chain line in the enlarged portion of FIG. 1) that is symmetrical with the ventral curve portion 4 with the camber line CL between the rear end of the blade dorsal line 2. That is, it passes through a region closer to the camber line CL than the conventional backside line portion) and is directed toward the camber line CL.
  • the ventral arc curve 11 and the dorsal line portion 12 are connected to each other on the camber line CL.
  • the dorsal line portion 12 is an ellipse constituting line extending from the center of the curved portion along the major axis a direction of the ellipse A to the center of the curved portion along the minor axis b direction, that is, the ellipse of the same ellipse A. It is represented by component lines 12a, 12c and a straight line 12b.
  • the straight line 12b of the dorsal line portion 12 is formed into an elliptical component line 12a closer to the dorsal line connected to the rear end of the wing dorsal line 2 and the ventral arc curve 11. It is located between the arcuate curved line ellipse constituting line 12c connected at the rearmost end 5a of the blade trailing edge 5.
  • connection point P between the rear end of the blade back side line 2 and the elliptical component line 12a closer to the back side line portion 12 suppresses the change in the natural frequency while reducing the thickness of the blade trailing edge 5.
  • the profile is set at a position of 5% C (C is the chord length) from the rearmost end 5a of the blade trailing edge 5 in the profile.
  • the back line portion 12 that forms the blade trailing edge 5 has a region closer to the camber line CL than the symmetrical curve portion from the rear end of the blade back line 2.
  • the mainstream FP at the dorsal line portion 12 is accelerated, and the coanda effect causes the shape to wrap around from the dorsal line portion 12 to the ventral arc curve 11, as shown in FIG. 3.
  • the outflow angle of the mainstream FP from the blade trailing edge 5 is increased.
  • the blade trailing edge (blade back side line and blade backside line in the conventional turbine blade indicated by a two-dot chain line in the enlarged portion of FIG.
  • connection point between the ventral arc curve 11 that forms the blade trailing edge 5 of the turbine blade 1 according to the present invention and the elliptic curve line 12c near the arc curve of the dorsal line portion 12 is on the camber line CL.
  • the connection point Q with the component line 12c may be positioned around the center O of the ventral arc curve 11 located on the camber line CL and at a 30 ° portion on the back side of the camber line CL.
  • connection point Q between the ventral arc curve 11 and the ellipse constituting line 12c closer to the arc curve of the dorsal line portion 12 is positioned around the center O of the ventral arc curve 11 and in the range of 30 ° on the ventral side of the camber line CL. It is good also as a structure.
  • connection point Q between the ventral arc curve 11 and the elliptical line 12c closer to the arc curve of the dorsal line portion 12 can be shifted to the dorsal ventral side of the camber line CL, the ventral arc curve 11 and back The degree of freedom in how to connect the side line portions 12 will be widened, and manufacturing will be facilitated.
  • the back-side line-side elliptical constituent line 12a and the arc-curve-side elliptical constituent line 12c located on both sides of the straight line 12b of the backside line portion 12 are the same elliptical constituent lines of the same ellipse A.
  • the present invention is not limited to this, and the back side line-side elliptical constituent line 12a and the arc curve-side elliptical constituent line 12c may be elliptical constituent lines different from each other.
  • the configuration of the turbine blade according to the present invention is not limited to the above-described embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 翼背側ライン2と、翼腹側ライン3と、翼背側ライン2及び翼腹側ライン3の各後端間に位置する翼後縁5を有するプロファイルのタービン翼1であって、プロファイルにおける翼後縁5は、翼腹側ライン3の後端からプロファイルのキャンバラインCLに向かう曲率半径一定の腹側円弧曲線11と、キャンバラインCLを間にして腹側円弧曲線11と線対称を成す対称曲線よりもキャンバラインCLに近い領域を通過して翼背側ライン2の後端からキャンバラインCLに向かう背側線部12とを接続して成り、背側線部12は、楕円を構成する楕円構成線12a,12cと直線12bとで表される。強度を確保しつつ、翼重量が増加したり構造設計へ影響が及んだりする懸念を生じさせずに、後縁からの後流に基づく速度分布欠損を少なく抑えて、性能をより一層向上させることが可能である。

Description

タービン翼
 本発明は、例えば、航空機用ジェットエンジンに用いられるタービン翼に関するものである。
 上記したようなタービン翼の性能向上を図るうえで、プロファイル損失が注目される。このプロファイル損失は、タービン翼の翼後縁からの後流に基づく速度分布欠損による損失が主要なものである。このプロファイル損失を低減させるための重要なポイントは、如何にして速度分布欠損を少なく抑えるかである。
 ここで、タービン翼の翼後縁の厚みが薄ければ薄いほど速度分布欠損が少なくなることが知られている。タービン翼のプロファイルにおいて、翼背側ラインと翼腹側ラインとが真円の略半円分の円弧で結ばれた形状や、キャンバラインに対して垂直な直線で結ばれた形状が翼後縁に多く採用される。
 このように、タービン翼のプロファイルにおいて、翼後縁が半円形状を成している場合には、この翼後縁の厚みを半円の直径以下にすることはできない。したがって、翼後縁の厚みが比較的大きくなり、タービン翼の翼後縁からの後流も大きくなって速度分布欠損が比較的大きくなってしまう。
 従来において、上記速度分布欠損を小さくするべく形成されたタービン翼としては、例えば、特許文献1に開示されたものがある。
 特許文献1に記載されたタービン翼は、翼背側ライン又は翼腹側ラインのいずれか一方から流体の流れ方向の最も下流側に位置する後端部に向かって漸次曲率半径が減少して後端部で曲率半径が最も小さくなり、その後、後端部から翼背側ライン又は翼腹側ラインのいずれか他方に向かって漸次曲率半径が増加して翼背側ライン又は翼腹側ラインのいずれか他方に至る後縁部の曲面を有する構成を成している。
特開2011-017290号公報
 上記した特許文献1に開示されているタービン翼において、翼後縁を半円形状としているタービン翼と比べて、十分な強度を有したまま翼後縁の厚みを薄くすることができるものの、翼弦長が伸びる。したがって、翼弦長が伸びる分だけ翼重量の増加や、翼間の軸方向クリアランスが変わることによる構造設計への影響が懸念されており、これを解決することが従来の課題となっている。
 本発明は、上記した従来の課題に着目してなされたもので、強度を確保すると共に翼重量が増加したり構造設計へ影響が及んだりする懸念を払拭したうえで、速度分布欠損による損失を少なく抑えて、性能をより一層向上させることが可能であると共に、仕事を増加させることができるタービン翼を提供することを目的としている。
 上記した目的を達成するべく、本発明は、翼背側ラインと、翼腹側ラインと、前記翼背側ライン及び翼腹側ラインの各後端間に位置する翼後縁を有するプロファイルのタービン翼であって、前記プロファイルにおける翼後縁は、前記翼腹側ラインの後端から前記プロファイルのキャンバラインに向かう曲率半径一定の腹側円弧曲線と、前記キャンバラインを間にして前記腹側円弧曲線と線対称を成す対称曲線よりも該キャンバラインに近い領域を通過して前記翼背側ラインの後端から前記キャンバラインに向かう背側線部とを接続して成り、前記背側線部は、楕円を構成する楕円構成線と直線とで表される構成とする。
 なお、キャンバの付いたタービン翼の場合、翼形中心線であるキャンバラインは曲線になるが、翼後縁ではほぼ直線となることから、本発明に係るタービン翼においても、翼後縁におけるキャンバラインを直線として扱っている。
 好ましくは、前記背側線部の直線は、前記翼背側ラインの後端に接続される背側ライン寄り楕円構成線と、前記腹側円弧曲線に接続される円弧曲線寄り楕円構成線との間に位置している構成とする。
 この場合、直線の両側に位置する背側ライン寄り楕円構成線及び円弧曲線寄り楕円構成線は、同じ楕円の構成線であってもよいし違う楕円の構成線であってもよい。
 また、好ましくは、前記翼背側ラインの後端と前記背側線部との接続点は、前記プロファイルにおける翼後縁の最後端から前記腹側円弧曲線の曲率半径の長さ寸法以上で且つ翼弦長の10%以下の範囲内に位置している構成とする。
 さらに、好ましくは、前記翼背側ラインの後端と前記背側線部との接続点は、前記プロファイルにおける翼後縁の最後端から前記腹側円弧曲線の曲率半径の三倍の長さ寸法以上で且つ翼弦長の10%以下の範囲内に位置している構成としている。
 ここで、図2に示すように、翼背側ライン2の後端と背側線部12の背側ライン寄り楕円構成線12aとの接続点Pになり得る最も翼後縁5の最後端5aに近い位置(近地点)Sは、腹側円弧曲線11の半径Rに基づいて設定される。翼弦長をCとした場合においてこの円の半径Rは翼弦長Cの0.5%~2%に設定されることが多い。
 一方、翼背側ライン2の後端と背側線部12の背側ライン寄り楕円構成線12aとの接続点Pになり得る最も翼後縁5の最後端5aから遠い位置(遠地点)は、翼後縁5の薄肉化を図りつつ固有振動数の変化を少なく抑えるうえで、プロファイルにおける翼後縁5の最後端5aから翼弦長の10%以下に設定した。図2では、翼背側ライン2の後端と背側線部12の背側ライン寄り楕円構成線12aとの接続点Pを翼後縁5の最後端5aから翼弦長Cの5%の位置とした場合を示している。
 さらにまた、好ましくは、前記腹側円弧曲線と前記背側線部における前記円弧曲線寄り楕円構成線との接続点は、前記キャンバライン上に位置する前記腹側円弧曲線の中心周りで且つ該キャンバラインの背腹側各30°の範囲内に位置している構成とする。
 この場合には、腹側円弧曲線と背側線部との接続点をキャンバラインの背腹側にシフトさせ得るので、背腹両曲線の接続のさせ方における自由度が広がることとなって、製造の容易化が図られることとなる。
 本発明に係るタービン翼において、翼後縁を形成する背側線部は、キャンバラインを間にして腹側円弧曲線と線対称を成す対称曲線部よりも該キャンバラインに近い領域を通過して翼背側ラインの後端からキャンバライン付近に至っているので、プロファイルにおける翼前縁から翼後縁に至る部分での翼厚を維持しつつ、翼後縁のみの厚さを薄くすることができ、その結果、強度を低下させることなく、また、翼重量が増加したり構造設計へ影響が及んだりする懸念を生じさせることなく、速度分布欠損による損失を少なく抑え得ることとなり、タービン翼の仕事を増加させ得ることとなる。
 加えて、翼後縁を形成する背側線部が、楕円を構成する楕円構成線と直線とで表される構成としているので、背側線部での主流(空気流れ)が加速されて境界層が小さくなり、加えて、主流がコアンダ効果によって背側線部から腹側円弧曲線へと回り込むような形になって、主流の翼後縁からの流出角度が増加することとなる。
 本発明に係るタービン翼では、強度を確保し、そして、翼重量が増加する危惧や構造設計に影響が波及する懸念を抱かせることなく、速度分布欠損による損失を少なく抑えて、性能をより一層向上させることが可能であると共に、主流の翼後縁からの流出角度を増加させて、仕事を増やすことができるという非常に優れた効果がもたらされる。
本発明の一実施例によるタービン翼のプロファイル説明図である。 図1のタービン翼における翼背側ラインの後端と翼後縁の背側線部との接続点の設定要領を示すプロファイル説明図である。 図1のタービン翼の背側線部から腹側円弧曲線へと主流がコアンダ効果によって回り込む状況を示すプロファイル説明図である。 従来のタービン翼の背側線部を主流が流れる状況を示すプロファイル説明図である。 図1のタービン翼による全圧損失係数の低減度合いを示すグラフである。 本発明の他の実施例によるタービン翼の翼後縁の最後端部分を拡大して示すプロファイル説明図である。
 以下、本発明を図面に基づいて説明する。
 図1~図3は本発明の一実施例に係るタービン翼のプロファイルを示している。
 図1に示すように、このタービン翼1は、翼背側ライン2と、翼腹側ライン3と、翼前縁4と、翼後縁5とを具備したプロファイルを有しており、図1の拡大部分に示すように、プロファイルにおける翼後縁5は、翼背側ライン2及び翼腹側ライン3の各後端間に位置している。
 プロファイルにおける翼後縁5は、翼腹側ライン3の後端からプロファイルのキャンバラインCLに向かう曲率半径一定の腹側円弧曲線11と、背側線部12とから成っている。背側線部12は、翼背側ライン2の後端からキャンバラインCLを間にして腹側曲線部4と線対称を成す対称曲線部(図1の拡大部分に二点鎖線で示す曲線部、すなわち、従来の背側線部)よりもキャンバラインCLに近い領域を通過してキャンバラインCLに向かっている。腹側円弧曲線11と背側線部12とは、キャンバラインCL上で互いに接続されている。
 背側線部12は、図2にも示すように、楕円Aの長径a方向に沿う曲線部分の中央から短径b方向に沿う曲線部分の中央にかけての楕円構成線、すなわち、同じ楕円Aの楕円構成線12a,12cと直線12bとで表され、背側線部12の直線12bは、翼背側ライン2の後端に接続される背側ライン寄り楕円構成線12aと、腹側円弧曲線11に翼後縁5の最後端5aで接続される円弧曲線寄り楕円構成線12cとの間に位置している。
 この場合、翼背側ライン2の後端と背側線部12の背側ライン寄り楕円構成線12aとの接続点Pは、翼後縁5の薄肉化を図りつつ固有振動数の変化を少なく抑えるうえで、プロファイルにおける翼後縁5の最後端5aから5%C(Cは翼弦長)の位置に設定している。
 上記したように、この実施例に係るタービン翼1では、翼後縁5を形成する背側線部12が、翼背側ライン2の後端から上記対称曲線部よりもキャンバラインCLに近い領域を通過するようにしているので、図3に示すように、背側線部12での主流FPが加速されて、コアンダ効果によって背側線部12から腹側円弧曲線11へと回り込むような形になり、図4に示す従来の翼後縁55からまっすぐ流出する従来主流FBと比べて、主流FPの翼後縁5からの流出角度が増加することとなる。
 つまり、プロファイルにおける翼前縁4から翼後縁5に至る部分での翼厚を維持しつつ、図1の拡大部分に二点鎖線で示す従来のタービン翼における翼後縁(翼背側ラインと翼腹側ラインとを真円の略半円分の円弧で結んだ翼後縁)と比べて、翼後縁5のみの厚さを薄くすることで、強度を低下させることなく、また、翼重量が増加したり構造設計へ影響が及んだりする懸念を生じさせることなく、速度分布欠損による損失を少なく抑え得ると共に、タービン翼1の仕事を増加させ得ることとなる。
 そこで、本実施例によるタービン翼1及び上記従来のタービン翼において、レイノルズ数を大きくして流れ場を次第に乱流に近づける場合の各々の全圧損失係数の低減度合いを比較したところ、図5のグラフに示す結果が得られた。
 図5に示すように、レイノルズ数が小さい場合において、本実施例によるタービン翼1と従来のタービン翼との間には、全圧損失係数の低減度合いに大きな違いは見られないが、レイノルズ数が大きい場合には、本実施例によるタービン翼1の方が従来のタービン翼よりも全圧損失係数が6%も低減していることが判る。これにより、本実施例のタービン翼1では、翼後縁5からの後流に基づく速度分布欠損による損失を少なく抑え得ることが実証できた。
 上記した実施例では、本発明に係るタービン翼1の翼後縁5を形成する腹側円弧曲線11と背側線部12の円弧曲線寄り楕円構成線12cとの接続点が、キャンバラインCL上の翼後縁5の最後端5aに位置している場合を説明したが、これに限定されるものではなく、図6に示すように、腹側円弧曲線11と背側線部12の円弧曲線寄り楕円構成線12cとの接続点Qが、キャンバラインCL上に位置する腹側円弧曲線11の中心O周りで且つキャンバラインCLの背側30°の部位に位置している構成としてもよい。
 また、腹側円弧曲線11と背側線部12の円弧曲線寄り楕円構成線12cとの接続点Qを腹側円弧曲線11の中心O周りで且つキャンバラインCLの腹側30°の範囲に位置させる構成としてもよい。
 この場合には、腹側円弧曲線11と背側線部12の円弧曲線寄り楕円構成線12cとの接続点QをキャンバラインCLの背腹側にシフトさせ得ることから、腹側円弧曲線11及び背側線部12の接続のさせ方における自由度が広がることとなり、製造の容易化が図られることとなる。
 さらに、上記した実施例では、背側線部12の直線12bの両側に位置する背側ライン寄り楕円構成線12a及び円弧曲線寄り楕円構成線12cが互いに同じ楕円Aの楕円構成線である場合を示したが、これに限定されるものではなく、背側ライン寄り楕円構成線12a及び円弧曲線寄り楕円構成線12cが互いに異なる楕円の構成線であってもよい。
 本発明に係るタービン翼の構成は、上記した実施例に限定されるものではない。
1 タービン翼
2 翼背側ライン
3 翼腹側ライン
5 翼後縁
5a 翼後縁の最後端
11 腹側円弧曲線
12 背側線部
12a 背側ライン寄り楕円構成線
12b 直線
12c 円弧曲線寄り楕円構成線
A 楕円
C 翼弦長
CL キャンバライン
O 腹側円弧曲線の中心
P 翼背側ラインと背側線部との接続点
Q 腹側円弧曲線と背側線部との接続点
R 腹側円弧曲線の半径

Claims (5)

  1.  翼背側ラインと、
     翼腹側ラインと、
     前記翼背側ライン及び翼腹側ラインの各後端間に位置する翼後縁を有するプロファイルのタービン翼であって、
     前記プロファイルにおける翼後縁は、
     前記翼腹側ラインの後端から前記プロファイルのキャンバラインに向かう曲率半径一定の腹側円弧曲線と、
     前記キャンバラインを間にして前記腹側円弧曲線と線対称を成す対称曲線よりも該キャンバラインに近い領域を通過して前記翼背側ラインの後端から前記キャンバラインに向かう背側線部とを接続して成り、
     前記背側線部は、楕円を構成する楕円構成線と直線とで表されるタービン翼。
  2.  前記背側線部の直線は、前記翼背側ラインの後端に接続される背側ライン寄り楕円構成線と、前記腹側円弧曲線に接続される円弧曲線寄り楕円構成線との間に位置している請求項1に記載のタービン翼。
  3.  前記翼背側ラインの後端と前記背側線部との接続点は、前記プロファイルにおける翼後縁の最後端から前記腹側円弧曲線の曲率半径の長さ寸法以上で且つ翼弦長の10%以下の範囲内に位置している請求項1又は2に記載のタービン翼。
  4.  前記翼背側ラインの後端と前記背側線部との接続点は、前記プロファイルにおける翼後縁の最後端から前記腹側円弧曲線における曲率半径の三倍の長さ寸法以上で且つ翼弦長の10%以下の範囲内に位置している請求項1又は2に記載のタービン翼。
  5.  前記腹側円弧曲線と前記背側線部との接続点は、前記キャンバライン上に位置する前記腹側円弧曲線の中心周りで且つ該キャンバラインの背腹側各30°の範囲内に位置している請求項1~4のいずれか一つの項に記載のタービン翼。
PCT/JP2013/077727 2012-10-31 2013-10-11 タービン翼 WO2014069216A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13851985.5A EP2921646B1 (en) 2012-10-31 2013-10-11 Turbine blade
CA2889832A CA2889832C (en) 2012-10-31 2013-10-11 Turbine blade with loss-suppressing trailing edge
US14/700,517 US10024167B2 (en) 2012-10-31 2015-04-30 Turbine blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012240579A JP5999348B2 (ja) 2012-10-31 2012-10-31 タービン翼
JP2012-240579 2012-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/700,517 Continuation US10024167B2 (en) 2012-10-31 2015-04-30 Turbine blade

Publications (1)

Publication Number Publication Date
WO2014069216A1 true WO2014069216A1 (ja) 2014-05-08

Family

ID=50627130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077727 WO2014069216A1 (ja) 2012-10-31 2013-10-11 タービン翼

Country Status (5)

Country Link
US (1) US10024167B2 (ja)
EP (1) EP2921646B1 (ja)
JP (1) JP5999348B2 (ja)
CA (1) CA2889832C (ja)
WO (1) WO2014069216A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282786B2 (ja) * 2015-08-11 2018-02-21 株式会社東芝 タービン翼、タービン翼の製造方法及び軸流タービン
CA3069372A1 (en) * 2017-09-29 2019-04-04 Ihi Corporation Method for modifying blades of fan, compressor and turbine of axial flow type, and blade obtained by modification
JP7467416B2 (ja) * 2018-09-12 2024-04-15 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング タービン翼形部のためのハイブリッド楕円-円形後縁
WO2022118500A1 (ja) 2020-12-03 2022-06-09 株式会社Ihi 軸流型のファン、圧縮機及びタービンの翼の改造方法、及び当該改造により得られる翼
US11840939B1 (en) * 2022-06-08 2023-12-12 General Electric Company Gas turbine engine with an airfoil
US11952912B2 (en) 2022-08-24 2024-04-09 General Electric Company Turbine engine airfoil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113906A (en) * 1981-01-06 1982-07-15 Toshiba Corp Vane of turbine
JP2003254002A (ja) * 2002-03-01 2003-09-10 Honda Motor Co Ltd 軸流型タービンのタービン翼型およびタービン翼
JP2005076533A (ja) * 2003-08-29 2005-03-24 Toshiba Corp タービン翼
JP2011017290A (ja) 2009-07-09 2011-01-27 Mitsubishi Heavy Ind Ltd 翼体および回転機械
WO2012147938A1 (ja) * 2011-04-28 2012-11-01 株式会社Ihi タービン翼

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1080102A (en) 1913-09-15 1913-12-02 Elisha B Cutten Process of reducing zinc compounds.
US1504710A (en) * 1922-04-01 1924-08-12 Allis Chalmers Mfg Co Rotor
US3820918A (en) * 1972-01-21 1974-06-28 N A S A Supersonic fan blading
DE2524250A1 (de) * 1975-05-31 1976-12-02 Maschf Augsburg Nuernberg Ag Laufschaufelkranz grosser umfangsgeschwindigkeit fuer thermische, axial durchstroemte turbomaschinen
US4431376A (en) * 1980-10-27 1984-02-14 United Technologies Corporation Airfoil shape for arrays of airfoils
DE10039642C2 (de) * 2000-08-14 2002-06-13 Honda Motor Co Ltd Turbinenblattluftflügel und Turbinenblatt für eine Axialstromturbine
US6769879B1 (en) * 2003-07-11 2004-08-03 General Electric Company Airfoil shape for a turbine bucket
DE102004009696B3 (de) * 2004-02-27 2005-08-18 Honda Motor Co., Ltd. Turbinen-Flügelprofil für Axial-Turbine und Turbinenschaufel für Axial-Turbine
US7547187B2 (en) * 2005-03-31 2009-06-16 Hitachi, Ltd. Axial turbine
DE102005025213B4 (de) * 2005-06-01 2014-05-15 Honda Motor Co., Ltd. Schaufel einer Axialströmungsmaschine
DE102008017624A1 (de) * 2008-04-04 2009-10-08 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur aerodynamischen Ausformung der Vorderkante von Bliskschaufeln
JP6030853B2 (ja) * 2011-06-29 2016-11-24 三菱日立パワーシステムズ株式会社 タービン動翼及び軸流タービン
US8998577B2 (en) * 2011-11-03 2015-04-07 General Electric Company Turbine last stage flow path

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113906A (en) * 1981-01-06 1982-07-15 Toshiba Corp Vane of turbine
JP2003254002A (ja) * 2002-03-01 2003-09-10 Honda Motor Co Ltd 軸流型タービンのタービン翼型およびタービン翼
JP2005076533A (ja) * 2003-08-29 2005-03-24 Toshiba Corp タービン翼
JP2011017290A (ja) 2009-07-09 2011-01-27 Mitsubishi Heavy Ind Ltd 翼体および回転機械
WO2012147938A1 (ja) * 2011-04-28 2012-11-01 株式会社Ihi タービン翼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2921646A4

Also Published As

Publication number Publication date
US20150233253A1 (en) 2015-08-20
EP2921646B1 (en) 2017-07-19
EP2921646A1 (en) 2015-09-23
CA2889832A1 (en) 2014-05-08
EP2921646A4 (en) 2016-08-24
JP5999348B2 (ja) 2016-09-28
US10024167B2 (en) 2018-07-17
CA2889832C (en) 2017-01-03
JP2014088858A (ja) 2014-05-15

Similar Documents

Publication Publication Date Title
JP5549825B2 (ja) タービン翼
WO2014069216A1 (ja) タービン翼
JP5300874B2 (ja) 非軸対称プラットフォームならびに外輪上の陥没および突起を備えるブレード
JP5558095B2 (ja) タービン動翼翼列および蒸気タービン
JP5946707B2 (ja) 軸流タービン動翼
JP6524258B2 (ja) タービンロータ翼の断面形状を決定するための方法
JP5530453B2 (ja) 翼の形状および対応する翼を最適化する方法
CN105008668A (zh) 具有扭曲的肋的扭曲的燃气涡轮发动机翼面
WO2015041801A3 (en) Diffuser with strut-induced vortex mixing
WO2015134005A8 (en) Turbine airfoil cooling system for bow vane
CN105026072A (zh) 用于具有扭曲的肋的扭曲的燃气涡轮发动机翼面的铸造型芯
JP2014528552A (ja) 湾曲部を含むターボ機械センターブレード
JP2012047085A (ja) タービンインペラ
JP2004293335A (ja) 高転向・高遷音速翼
CN115176070A (zh) 涡轮机部件或部件的组合件
JP7210324B2 (ja) 翼及びこれを備えた機械
JP3570438B2 (ja) 翼列の2次流れ低減方法とその翼形
KR20180022773A (ko) 터보 기계류 회전자 블레이드
WO2019239451A1 (ja) 回転翼及びこの回転翼を備える遠心圧縮機
JP2010203456A (ja) 高転向・高遷音速翼
JP2019027751A5 (ja)
JP2014118970A (ja) 軸流型圧縮機用翼の翼形
JP2014001687A (ja) インペラ及び遠心圧縮機
WO2019071446A1 (zh) 复合式复合涡流生成消波装置
JP6774044B2 (ja) ファン及び圧縮機の静翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2889832

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013851985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013851985

Country of ref document: EP