WO2012147938A1 - タービン翼 - Google Patents

タービン翼 Download PDF

Info

Publication number
WO2012147938A1
WO2012147938A1 PCT/JP2012/061422 JP2012061422W WO2012147938A1 WO 2012147938 A1 WO2012147938 A1 WO 2012147938A1 JP 2012061422 W JP2012061422 W JP 2012061422W WO 2012147938 A1 WO2012147938 A1 WO 2012147938A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
line
curve portion
dorsal
ventral
Prior art date
Application number
PCT/JP2012/061422
Other languages
English (en)
French (fr)
Inventor
正昭 浜辺
あゆみ 儘田
るり子 山脇
浩志 濱崎
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2013512478A priority Critical patent/JP5549825B2/ja
Priority to EP12776447.0A priority patent/EP2703600B1/en
Priority to CA2833859A priority patent/CA2833859C/en
Publication of WO2012147938A1 publication Critical patent/WO2012147938A1/ja
Priority to US14/113,265 priority patent/US9371734B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/322Arrangement of components according to their shape tangential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/17Purpose of the control system to control boundary layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a turbine blade used in, for example, an aircraft jet engine.
  • profile loss is attracting attention.
  • This profile loss is mainly due to a loss of velocity distribution based on the wake from the trailing edge of the turbine blade.
  • An important point for reducing the profile loss is how to reduce the velocity distribution deficiency.
  • the thinner the blade trailing edge of the turbine blade the smaller the velocity distribution defect.
  • the shape of the blade back line and blade belly side line connected by a semicircle arc of a perfect circle, or the shape connected by a straight line perpendicular to the camber line is the blade trailing edge. Many are adopted.
  • the thickness of the blade trailing edge cannot be less than the diameter of the semicircle. Therefore, the thickness of the blade trailing edge becomes relatively large, the wake from the blade trailing edge of the turbine blade becomes large, and the velocity distribution defect becomes relatively large.
  • Patent Document 1 Conventionally, as a turbine blade formed so as to reduce the velocity distribution defect, there is one disclosed in Patent Document 1, for example.
  • the radius of curvature gradually decreases from either the blade back line or the blade vent line toward the rear end portion located on the most downstream side in the fluid flow direction.
  • the radius of curvature becomes the smallest at the end, and then the radius of curvature gradually increases from the rear end toward the other side of the wing back side line or wing ventral side line. It has the structure which has the curved surface of the rear edge part leading to the other.
  • the thickness of the blade trailing edge can be reduced while maintaining sufficient strength as compared with a turbine blade having a semicircular blade trailing edge.
  • the string length increases. Therefore, there is a concern about the influence on the structural design due to the increase in the blade weight and the change in the axial clearance between the blades as the chord length increases, and it has been a conventional problem to solve this.
  • the present invention has been made by paying attention to the above-mentioned conventional problems, and after ensuring that the strength is ensured and the weight of the blade is increased or the structural design is affected, loss due to velocity distribution loss
  • An object of the present invention is to provide a turbine blade that can further improve the performance while suppressing the amount of the pressure and can increase the work.
  • the present invention has a blade trailing edge formed by connecting a blade back side line, a blade blade side line, and the rear ends of the blade back side line and the blade blade side line with curves.
  • a curve forming a blade trailing edge in the profile includes a ventral curve portion having an arc shape with a constant radius of curvature from a rear end of the blade ventral line toward the camber line of the profile, and the camber A dorsal curve portion that passes through a region closer to the camber line than a symmetric curve portion that is in line symmetry with the ventral curve portion with a line in between, and from the rear end of the blade dorsal line toward the camber line It is assumed that the connection is made.
  • the camber line which is the airfoil centerline, is curved, but is substantially straight at the trailing edge of the blade. Therefore, the turbine blade according to the present invention also has a camber at the trailing edge of the blade.
  • the line is treated as a straight line.
  • the dorsal curve portion has a configuration represented by an elliptical configuration line extending from the center of the curved portion along the major axis direction of the ellipse to the center of the curved portion along the minor axis direction.
  • connection point between the rear end of the blade dorsal line and the back curve portion is not less than the length of the radius of the ventral curve portion from the rearmost end of the blade trailing edge in the profile and the blade. It is assumed that the position is within a range of 10% or less of the chord length.
  • connection point between the rear end of the blade dorsal line and the dorsal curve portion is not less than three times the length of the radius at the ventral curve portion from the rearmost end of the blade trailing edge in the profile. And it is set as the structure located in the range of 10% or less of chord length.
  • a position (near point) S closest to the rearmost end 5a of the blade trailing edge 5 that can be a connection point P between the rear end of the blade backside line 2 and the back curve portion 4b is: It is set based on the radius R of the ventral side curved portion 4a having an arc shape. When the chord length is C, the radius R of this circle is often set to 0.5% to 2% of the chord length C.
  • the most distant position (far point) from the rearmost end 5a of the blade trailing edge 5 that can be the connection point P between the rear end of the blade backside line 2 and the back curve portion 4b is to reduce the thickness of the blade trailing edge 5.
  • the profile was set to 10% or less of the chord length from the rearmost end 5a of the blade trailing edge 5 in the profile.
  • FIG. 2 shows a case where the connection point P between the rear end of the blade back side line 2 and the back curve portion 4 b is set to a position 5% of the chord length C from the rearmost end 5 a of the blade trailing edge 5.
  • connection point between the ventral curve portion and the dorsal curve portion is about 30 ° around the center of the ventral curve portion located on the camber line and 30 ° on the dorsal ventral side of the camber line. It is set as the structure located in the range.
  • connection point between the ventral curve portion and the dorsal curve portion can be shifted to both the dorsal side and the ventral side of the camber line, how to connect the ventral curve portion and the dorsal curve portion.
  • the degree of freedom increases in manufacturing.
  • the dorsal curve portion of the curve forming the blade trailing edge passes through a region closer to the camber line than the symmetrical curve portion that is in line symmetry with the ventral curve portion with the camber line in between. Since the rear end of the blade back line reaches the camber line, the main flow (air flow) at the back curve is accelerated and the boundary layer becomes smaller. In addition, the main flow becomes the dorsal curve by the Coanda effect. As a result, the outflow angle from the trailing edge of the main wing increases.
  • the strength is ensured, and the loss due to the velocity distribution deficiency is suppressed and the performance is further improved without causing the fear that the blade weight may increase or the influence on the structural design.
  • the outflow angle from the mainstream blade trailing edge can be increased, resulting in a very good effect of increasing work.
  • FIG. 1 and 2 show the profile of a turbine blade according to an embodiment of the present invention.
  • the turbine blade 1 has a profile including a blade back side line 2, a blade ventral side line 3, a blade trailing edge 5, and a blade leading edge 6.
  • the rear ends of the blade back side line 2 and the blade ventral side line 3 are connected by a curve 4 in the profile.
  • the curve 4 forming the blade trailing edge 5 in the profile is composed of a ventral curve portion 4a and a dorsal curve portion 4b.
  • the ventral curve portion 4a has an arc shape with a constant radius of curvature from the rear end of the wing ventral line 3 toward the camber line CL of the profile.
  • the dorsal curve portion 4b is a symmetrical curve portion (a curve portion indicated by a two-dot chain line in the enlarged portion of FIG. 1) that is symmetrical with the ventral curve portion 4 with the camber line CL from the rear end of the blade dorsal line 2 in between. That is, it passes toward the camber line CL through a region closer to the camber line CL than the conventional back side curve portion).
  • the ventral curve portion 4a and the dorsal curve portion 4b are connected to each other in the vicinity of the camber line CL.
  • the dorsal curve portion 4 b is represented by an elliptical component line extending from the center of the curved portion along the major axis a direction of the ellipse A to the center of the curved portion along the minor axis b direction. Yes.
  • connection point P between the rear end of the blade back line 2 and the back curve portion 4b of the curve 4 is to reduce the change in the natural frequency while reducing the thickness of the blade trailing edge 5. It is set at a position of 5% C (C is the chord length) from the rearmost end 5a of the blade trailing edge 5.
  • the back curve portion 4b of the curve 4 forming the blade trailing edge 5 is connected to the camber line CL from the rear end of the blade back side line 2 than the symmetrical curve portion.
  • the mainstream FP in the dorsal curve portion 4b is accelerated, and the Coanda effect causes the dorsal curve portion 4b to the ventral curve portion. 4a, and the outflow angle of the mainstream FP from the blade trailing edge 5 is increased as compared with the conventional mainstream FB that flows straight out from the conventional blade trailing edge 55 shown in FIG.
  • the blade trailing edge (blade back side line and blade backside line in the conventional turbine blade indicated by a two-dot chain line in the enlarged portion of FIG.
  • connection point between the ventral curve portion 4a and the dorsal curve portion 4b of the curve 4 forming the blade trailing edge 5 in the turbine blade 1 according to the present invention is the blade trailing edge 5 on the camber line CL.
  • the present invention is not limited to this.
  • the connection point Q between the ventral curve portion 4a and the dorsal curve portion 4b of the curve 4 is described. However, it is good also as a structure located in the site
  • connection point Q between the ventral curve portion 4a and the dorsal curve portion 4b of the curve 4 may be positioned around the center O of the ventral curve portion 4a and in the range of 30 ° on the ventral side of the camber line CL. .
  • connection point Q between the ventral curve portion 4a and the dorsal curve portion 4b can be shifted to the dorsal ventral side of the camber line CL, the connection between the ventral curve portion 4a and the dorsal curve portion 4b is possible. As a result, the degree of freedom in the method of spreading increases, and the manufacture becomes easier.
  • the configuration of the turbine blade according to the present invention is not limited to the above-described embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

翼背側ライン(2)と、翼腹側ライン(3)と、翼背側ライン(2)及び翼腹側ライン(3)の各後端同士を曲線(4)で繋いで成る翼後縁(5)と、を有するプロファイルのタービン翼(1)において、プロファイルにおける翼後縁(5)を形成する曲線(4)は、翼腹側ライン(3)の後端からプロファイルのキャンバライン(CL)に向かう曲率半径一定の円弧を成す腹側曲線部(4a)と、翼背側ライン(2)の後端からキャンバライン(CL)を間にして腹側曲線部(4)と線対称を成す対称曲線部よりもキャンバライン(CL)に近い領域を通過してキャンバライン(CL)に向かう腹側曲線部(4a)と、を接続して成っている。強度を確保しつつ、翼重量が増加したり構造設計へ影響が及んだりする懸念を生じさせずに、速度分布欠損を少なく抑えて、性能をより一層向上させることが可能であると共に、仕事を増加させることができる。

Description

タービン翼
 本発明は、例えば、航空機用ジェットエンジンに用いられるタービン翼に関するものである。
 上記したようなタービン翼の性能向上を図るうえで、プロファイル損失が注目される。このプロファイル損失は、タービン翼の翼後縁からの後流に基づく速度分布欠損による損失が主要なものである。このプロファイル損失を低減させるための重要なポイントは、如何にして速度分布欠損を少なく抑えるかである。
 ここで、タービン翼の翼後縁の厚みが薄ければ薄いほど速度分布欠損が少なくなることが知られている。タービン翼のプロファイルにおいて、翼背側ラインと翼腹側ラインとが真円の略半円分の円弧で結ばれた形状や、キャンバラインに対して垂直な直線で結ばれた形状が翼後縁に多く採用される。
 このように、タービン翼のプロファイルにおいて、翼後縁が半円形状を成している場合には、この翼後縁の厚みを半円の直径以下にすることはできない。したがって、翼後縁の厚みが比較的大きくなり、タービン翼の翼後縁からの後流も大きくなって速度分布欠損が比較的大きくなってしまう。
 従来において、上記速度分布欠損を小さくするべく形成されたタービン翼としては、例えば、特許文献1に開示されたものがある。
 特許文献1に記載されたタービン翼は、翼背側ライン又は翼腹側ラインのいずれか一方から流体の流れ方向の最も下流側に位置する後端部に向かって漸次曲率半径が減少して後端部で曲率半径が最も小さくなり、その後、後端部から翼背側ライン又は翼腹側ラインのいずれか他方に向かって漸次曲率半径が増加して翼背側ライン又は翼腹側ラインのいずれか他方に至る後縁部の曲面を有する構成を成している。
特開2011-017290号公報
 上記した特許文献1に開示されているタービン翼において、翼後縁を半円形状としているタービン翼と比べて、十分な強度を有したまま翼後縁の厚みを薄くすることができるものの、翼弦長が伸びる。したがって、翼弦長が伸びる分だけ翼重量の増加や、翼間の軸方向クリアランスが変わることによる構造設計への影響が懸念されており、これを解決することが従来の課題となっている。
 本発明は、上記した従来の課題に着目してなされたもので、強度を確保すると共に翼重量が増加したり構造設計へ影響が及んだりする懸念を払拭したうえで、速度分布欠損による損失を少なく抑えて、性能をより一層向上させることが可能であると共に、仕事を増加させることができるタービン翼を提供することを目的としている。
 上記した目的を達成するべく、本発明は、翼背側ラインと、翼腹側ラインと、前記翼背側ライン及び翼腹側ラインの各後端同士を曲線で繋いで成る翼後縁を有するプロファイルのタービン翼において、前記プロファイルにおける翼後縁を形成する曲線は、前記翼腹側ラインの後端から前記プロファイルのキャンバラインに向かう曲率半径一定の円弧状を成す腹側曲線部と、前記キャンバラインを間にして前記腹側曲線部と線対称を成す対称曲線部よりも該キャンバラインに近い領域を通過して前記翼背側ラインの後端から前記キャンバラインに向かう背側曲線部とを接続して成っている構成とする。
 なお、キャンバの付いたタービン翼の場合、翼形中心線であるキャンバラインは曲線になるが、翼後縁ではほぼ直線となることから、本発明に係るタービン翼においても、翼後縁におけるキャンバラインを直線として扱っている。
 好ましくは、前記背側曲線部は、楕円の長径方向に沿う曲線部分の中央から短径方向に沿う曲線部分の中央にかけての楕円構成線で表される構成とする。
 また、好ましくは、前記翼背側ラインの後端と前記背側曲線部との接続点は、前記プロファイルにおける翼後縁の最後端から前記腹側曲線部の半径の長さ寸法以上で且つ翼弦長の10%以下の範囲内に位置している構成とする。
 さらに、好ましくは、前記翼背側ラインの後端と前記背側曲線部との接続点は、前記プロファイルにおける翼後縁の最後端から前記腹側曲線部における半径の三倍の長さ寸法以上で且つ翼弦長の10%以下の範囲内に位置している構成とする。
 ここで、図2に示すように、翼背側ライン2の後端と背側曲線部4bとの接続点Pになり得る最も翼後縁5の最後端5aに近い位置(近地点)Sは、円弧状を成す腹側曲線部4aの半径Rに基づいて設定される。翼弦長をCとした場合においてこの円の半径Rは翼弦長Cの0.5%~2%に設定されることが多い。
 一方、翼背側ライン2の後端と背側曲線部4bとの接続点Pになり得る最も翼後縁5の最後端5aから遠い位置(遠地点)は、翼後縁5の薄肉化を図りつつ固有振動数の変化を少なく抑えるうえで、プロファイルにおける翼後縁5の最後端5aから翼弦長の10%以下に設定した。図2では、翼背側ライン2の後端と背側曲線部4bとの接続点Pを翼後縁5の最後端5aから翼弦長Cの5%の位置とした場合を示している。
 さらにまた、好ましくは、前記腹側曲線部と前記背側曲線部との接続点は、前記キャンバライン上に位置する前記腹側曲線部の中心周りで且つ該キャンバラインの背腹側各30°の範囲内に位置している構成とする。
 この場合には、腹側曲線部と背側曲線部との接続点をキャンバラインの背側及び腹側の双方にシフトさせ得るので、腹側曲線部と背側曲線部との接続のさせ方における自由度が広がることとなって、製造の容易化が図られることとなる。
 本発明に係るタービン翼において、翼後縁を形成する曲線の背側曲線部は、キャンバラインを間にして腹側曲線部と線対称を成す対称曲線部よりも該キャンバラインに近い領域を通過して翼背側ラインの後端からキャンバライン付近に至っているので、背側曲線部での主流(空気流れ)が加速されて境界層が小さくなり、加えて、主流がコアンダ効果によって背側曲線部から腹側曲線部へと回り込むような形になって、主流の翼後縁からの流出角度が増加することとなる。
 つまり、プロファイルにおける翼前縁から翼後縁に至る部分での翼厚を維持しつつ、翼後縁のみの厚さを薄くすることで、強度を低下させることなく、また、翼重量が増加したり構造設計へ影響が及んだりする懸念を生じさせることなく、速度分布欠損による損失を少なく抑え得ると共に、タービン翼の仕事を増加させ得ることとなる。
 本発明に係るタービン翼では、強度を確保し、そして、翼重量が増加する危惧や構造設計に影響が波及する懸念を抱かせることなく、速度分布欠損による損失を少なく抑えて、性能をより一層向上させることが可能であると共に、主流の翼後縁からの流出角度を増加させて、仕事を増やすことができるという非常に優れた効果がもたらされる。
本発明の一実施例によるタービン翼のプロファイル説明図である。 図1のタービン翼の翼背側ラインの後端と翼後縁の背側曲線部との接続点の設定要領を示すプロファイル説明図である。 図1のタービン翼の背側曲線部から腹側曲線部へと主流がコアンダ効果によって回り込む状況を示すプロファイル説明図である。 従来のタービン翼の背側曲線部を主流が流れる状況を示すプロファイル説明図である。 図1のタービン翼による全圧損失係数の低減度合いを示すグラフである。 本発明の他の実施例によるタービン翼の翼後縁の最後端部分を拡大して示すプロファイル説明図である。
 以下、本発明を図面に基づいて説明する。
 図1及び図2は本発明の一実施例に係るタービン翼のプロファイルを示している。
 図1に示すように、このタービン翼1は、翼背側ライン2と、翼腹側ライン3と、翼後縁5と翼前縁6を具備したプロファイルを有しており、翼後縁5は、図1の拡大部分に示すように、プロファイルにおいて、翼背側ライン2及び翼腹側ライン3の各後端同士を曲線4で繋いで成っている。
 プロファイルにおける翼後縁5を形成する曲線4は、腹側曲線部4aと、背側曲線部4bとから成っている。腹側曲線部4aは、翼腹側ライン3の後端からプロファイルのキャンバラインCLに向かう曲率半径一定の円弧状を成している。背側曲線部4bは、翼背側ライン2の後端からキャンバラインCLを間にして腹側曲線部4と線対称を成す対称曲線部(図1の拡大部分に二点鎖線で示す曲線部、すなわち、従来の背側曲線部)よりもキャンバラインCLに近い領域を通過してキャンバラインCLに向かっている。腹側曲線部4aと背側曲線部4bとは、キャンバラインCL付近で互いに接続されている。背側曲線部4bは、図2に示すように、楕円Aの長径a方向に沿う曲線部分の中央から短径b方向に沿う曲線部分の中央にかけての楕円構成線で表されるものとなっている。
 この場合、翼背側ライン2の後端と曲線4の背側曲線部4bとの接続点Pは、翼後縁5の薄肉化を図りつつ固有振動数の変化を少なく抑えるうえで、プロファイルにおける翼後縁5の最後端5aから5%C(Cは翼弦長)の位置に設定している。
 上記したように、この実施例に係るタービン翼1では、翼後縁5を形成する曲線4の背側曲線部4bに、翼背側ライン2の後端から上記対称曲線部よりもキャンバラインCLに近い領域を通過する楕円構成線を採用しているので、図3に示すように、背側曲線部4bでの主流FPが加速されて、コアンダ効果によって背側曲線部4bから腹側曲線部4aへと回り込むような形になり、図4に示す従来の翼後縁55からまっすぐ流出する従来主流FBと比べて、主流FPの翼後縁5からの流出角度が増加することとなる。
 つまり、プロファイルにおける翼前縁6から翼後縁5に至る部分での翼厚を維持しつつ、図1の拡大部分に二点鎖線で示す従来のタービン翼における翼後縁(翼背側ラインと翼腹側ラインとを真円の略半円分の円弧で結んだ翼後縁)と比べて、翼後縁5のみの厚さを薄くすることで、強度を低下させることなく、また、翼重量が増加したり構造設計へ影響が及んだりする懸念を生じさせることなく、速度分布欠損による損失を少なく抑え得ると共に、タービン翼1の仕事を増加させ得ることとなる。
 そこで、本実施例によるタービン翼1及び上記従来のタービン翼において、レイノルズ数を大きくして流れ場を次第に乱流に近づける場合の各々の全圧損失係数の低減度合いを比較したところ、図5のグラフに示す結果が得られた。
 図5に示すように、レイノルズ数が小さい場合において、本実施例によるタービン翼1と従来のタービン翼との間には、全圧損失係数の低減度合いに大きな違いは見られないが、レイノルズ数が大きい場合には、本実施例によるタービン翼1の方が従来のタービン翼よりも全圧損失係数が8%も低減していることが判る。これにより、本実施例のタービン翼1では、翼後縁5からの後流に基づく速度分布欠損による損失を少なく抑え得ることが実証できた。
 上記した実施例では、本発明に係るタービン翼1における翼後縁5を形成する曲線4の腹側曲線部4aと背側曲線部4bとの接続点が、キャンバラインCL上の翼後縁5の最後端5aに位置している場合を説明したが、これに限定されるものではなく、図6に示すように、曲線4の腹側曲線部4aと背側曲線部4bとの接続点Qが、キャンバラインCL上に位置する腹側曲線部4aの中心O周りで且つキャンバラインCLの背側30°の部位に位置している構成としてもよい。
 また、曲線4の腹側曲線部4aと背側曲線部4bとの接続点Qを腹側曲線部4aの中心O周りで且つキャンバラインCLの腹側30°の範囲に位置させる構成としてもよい。
 この場合には、腹側曲線部4aと背側曲線部4bとの接続点QをキャンバラインCLの背腹側にシフトさせ得ることから、腹側曲線部4a及び背側曲線部4bの接続のさせ方における自由度が広がることとなり、製造の容易化が図られることとなる。
 本発明に係るタービン翼の構成は、上記した実施例に限定されるものではない。
1 タービン翼
2 翼背側ライン
3 翼腹側ライン
4 曲線
4a 腹側曲線部
4b 背側曲線部
5 翼後縁
5a 翼後縁の最後端
A 楕円
a 楕円の長径
b 楕円の短径
C 翼弦長
CL キャンバライン
FP 主流
O 腹側曲線部の中心
P 翼背側ラインと背側曲線部との接続点
Q 腹側曲線部と背側曲線部との接続点
R 腹側曲線部の半径
S 近地点

Claims (5)

  1.  翼背側ラインと、
     翼腹側ラインと、
     前記翼背側ライン及び翼腹側ラインの各後端同士を曲線で繋いで成る翼後縁を有するプロファイルのタービン翼において、
     前記プロファイルにおける翼後縁を形成する曲線は、
     前記翼腹側ラインの後端から前記プロファイルのキャンバラインに向かう曲率半径一定の円弧状を成す腹側曲線部と、
     前記キャンバラインを間にして前記腹側曲線部と線対称を成す対称曲線部よりも該キャンバラインに近い領域を通過して前記翼背側ラインの後端から前記キャンバラインに向かう背側曲線部とを接続して成っている
     ことを特徴とするタービン翼。
  2.  前記背側曲線部は、楕円の長径方向に沿う曲線部分の中央から短径方向に沿う曲線部分の中央にかけての楕円構成線で表される
     ことを特徴とする請求項1に記載のタービン翼。
  3.  前記翼背側ラインの後端と前記背側曲線部との接続点は、前記プロファイルにおける翼後縁の最後端から前記腹側曲線部の半径の長さ寸法以上で且つ翼弦長の10%以下の範囲内に位置している
     ことを特徴とする請求項1又は2に記載のタービン翼。
  4.  前記翼背側ラインの後端と前記背側曲線部との接続点は、前記プロファイルにおける翼後縁の最後端から前記腹側曲線部における半径の三倍の長さ寸法以上で且つ翼弦長の10%以下の範囲内に位置している
     ことを特徴とする請求項1又は2に記載のタービン翼。
  5.  前記腹側曲線部と前記背側曲線部との接続点は、前記キャンバライン上に位置する前記腹側曲線部の中心周りで且つ該キャンバラインの背腹側各30°の範囲内に位置している
     ことを特徴とする請求項1~4のいずれか一つの項に記載のタービン翼。
PCT/JP2012/061422 2011-04-28 2012-04-27 タービン翼 WO2012147938A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013512478A JP5549825B2 (ja) 2011-04-28 2012-04-27 タービン翼
EP12776447.0A EP2703600B1 (en) 2011-04-28 2012-04-27 Turbine blade
CA2833859A CA2833859C (en) 2011-04-28 2012-04-27 Turbine blade with loss-suppressing trailing edge
US14/113,265 US9371734B2 (en) 2011-04-28 2013-10-22 Turbine blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011101266 2011-04-28
JP2011-101266 2011-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/113,265 Continuation US9371734B2 (en) 2011-04-28 2013-10-22 Turbine blade

Publications (1)

Publication Number Publication Date
WO2012147938A1 true WO2012147938A1 (ja) 2012-11-01

Family

ID=47072450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061422 WO2012147938A1 (ja) 2011-04-28 2012-04-27 タービン翼

Country Status (5)

Country Link
US (1) US9371734B2 (ja)
EP (1) EP2703600B1 (ja)
JP (1) JP5549825B2 (ja)
CA (1) CA2833859C (ja)
WO (1) WO2012147938A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069216A1 (ja) * 2012-10-31 2014-05-08 株式会社Ihi タービン翼
EP2927427A1 (de) 2014-04-04 2015-10-07 MTU Aero Engines GmbH Gasturbinenschaufel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443607B2 (en) * 2016-04-11 2019-10-15 Rolls-Royce Plc Blade for an axial flow machine
WO2020055387A1 (en) * 2018-09-12 2020-03-19 General Electric Company Hybrid elliptical-circular trailing edge for a turbine airfoil
GB2581351A (en) 2019-02-13 2020-08-19 Rolls Royce Plc Blade for a gas turbine engine
US11840939B1 (en) * 2022-06-08 2023-12-12 General Electric Company Gas turbine engine with an airfoil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039642A1 (de) * 2000-08-14 2002-03-07 Honda Motor Co Ltd Turbinenblattluftflügel und Turbinenblatt für eine Axialstromturbine
JP2003254002A (ja) * 2002-03-01 2003-09-10 Honda Motor Co Ltd 軸流型タービンのタービン翼型およびタービン翼
JP2005076533A (ja) * 2003-08-29 2005-03-24 Toshiba Corp タービン翼
JP2011017290A (ja) 2009-07-09 2011-01-27 Mitsubishi Heavy Ind Ltd 翼体および回転機械

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461110B1 (en) * 2001-07-11 2002-10-08 General Electric Company First-stage high pressure turbine bucket airfoil
US6769879B1 (en) * 2003-07-11 2004-08-03 General Electric Company Airfoil shape for a turbine bucket
DE102005025213B4 (de) * 2005-06-01 2014-05-15 Honda Motor Co., Ltd. Schaufel einer Axialströmungsmaschine
EP2299124A1 (de) * 2009-09-04 2011-03-23 Siemens Aktiengesellschaft Verdichterlaufschaufel für einen Axialverdichter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039642A1 (de) * 2000-08-14 2002-03-07 Honda Motor Co Ltd Turbinenblattluftflügel und Turbinenblatt für eine Axialstromturbine
JP2003254002A (ja) * 2002-03-01 2003-09-10 Honda Motor Co Ltd 軸流型タービンのタービン翼型およびタービン翼
JP2005076533A (ja) * 2003-08-29 2005-03-24 Toshiba Corp タービン翼
JP2011017290A (ja) 2009-07-09 2011-01-27 Mitsubishi Heavy Ind Ltd 翼体および回転機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2703600A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069216A1 (ja) * 2012-10-31 2014-05-08 株式会社Ihi タービン翼
US10024167B2 (en) 2012-10-31 2018-07-17 Ihi Corporation Turbine blade
EP2927427A1 (de) 2014-04-04 2015-10-07 MTU Aero Engines GmbH Gasturbinenschaufel
US9869184B2 (en) 2014-04-04 2018-01-16 MTU Aero Engines AG Gas turbine blade

Also Published As

Publication number Publication date
JPWO2012147938A1 (ja) 2014-07-28
US20140112795A1 (en) 2014-04-24
CA2833859A1 (en) 2012-11-01
EP2703600A1 (en) 2014-03-05
US9371734B2 (en) 2016-06-21
EP2703600B1 (en) 2024-01-17
JP5549825B2 (ja) 2014-07-16
EP2703600A4 (en) 2014-10-15
CA2833859C (en) 2016-12-13

Similar Documents

Publication Publication Date Title
JP5549825B2 (ja) タービン翼
US9932960B2 (en) Rotor blade of a wind turbine
WO2014069216A1 (ja) タービン翼
JP5530453B2 (ja) 翼の形状および対応する翼を最適化する方法
JP5558095B2 (ja) タービン動翼翼列および蒸気タービン
JP2018519452A (ja) タービンロータ翼の断面形状を決定するための方法
WO2015134005A8 (en) Turbine airfoil cooling system for bow vane
JP2017019490A (ja) プロペラ伴流の空気力学的な影響を打ち消す航空機および方法
JP2009293425A (ja) 送風機
JP5351637B2 (ja) 翼体および回転機械
JP2014528552A (ja) 湾曲部を含むターボ機械センターブレード
JP2012047085A (ja) タービンインペラ
JP2004293335A (ja) 高転向・高遷音速翼
CN115176070A (zh) 涡轮机部件或部件的组合件
JP7210324B2 (ja) 翼及びこれを備えた機械
JP4944979B2 (ja) 高転向・高遷音速翼
JP2010203259A (ja) 翼構造及び軸流ターボ機械
KR20180022773A (ko) 터보 기계류 회전자 블레이드
JP2019027751A5 (ja)
JP2014118970A (ja) 軸流型圧縮機用翼の翼形
CN107027317A (zh) 风机叶轮
CN111699323B (zh) 旋转叶片以及具备该旋转叶片的离心压缩机
CN109944830B (zh) 带有改进的交错角翼展方向分布的压缩机叶片
WO2019097757A1 (ja) タービンノズル及びこのタービンノズルを備える軸流タービン
WO2012090269A1 (ja) 翼体および回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512478

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2833859

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012776447

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE