WO2014067216A1 - 增程式电动汽车的增程控制系统 - Google Patents

增程式电动汽车的增程控制系统 Download PDF

Info

Publication number
WO2014067216A1
WO2014067216A1 PCT/CN2012/087813 CN2012087813W WO2014067216A1 WO 2014067216 A1 WO2014067216 A1 WO 2014067216A1 CN 2012087813 W CN2012087813 W CN 2012087813W WO 2014067216 A1 WO2014067216 A1 WO 2014067216A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
controller
speed
torque
extended
Prior art date
Application number
PCT/CN2012/087813
Other languages
English (en)
French (fr)
Inventor
田良云
汪斌
卢万成
徐鹏磊
Original Assignee
联合汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合汽车电子有限公司 filed Critical 联合汽车电子有限公司
Publication of WO2014067216A1 publication Critical patent/WO2014067216A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to electric vehicle technology, and more particularly to an extended range control system for an extended-range electric vehicle.
  • the drive motor is the only power unit for pure electric vehicles. Due to the limitations of battery technology, the cruising range of pure electric vehicles is limited, and the hybrid electric power technology can make up for this deficiency.
  • the ignited engine charges the battery when the power is insufficient, but it does not serve as a direct power output, but only satisfies the function of 'extended range'.
  • This extended-range electric vehicle has a simple structure, low development cost, and good economy, and will surely be obtained. More and more widely used.
  • the current extended range control system for the extended-range electric vehicle uses a high-end engine controller and an electronic throttle body to control the intake air amount of the engine, thereby controlling the engine speed to achieve the purpose of extended range control.
  • Chinese Patent Application No. 201210119605.3 discloses an extended-range electric vehicle control system including a conventional throttle-controlled engine, a generator and power generation integrated generator integrally connected with the engine crankshaft, a vehicle power battery, and a vehicle control system.
  • range controller battery management system, battery DC current sensor, engine controller, generator controller, generator terminal DC current sensor, permanent magnet synchronous drive motor, motor controller, motor DC current sensor, electronic control
  • the throttle valve and the crank position sensor, the flywheel of the engine and the rotor of the generator are rigidly connected by mechanical means, the inverter power component is integrated in the generator controller, the generator is connected to the high voltage bus through the generator controller, and the power can be connected by DC/DC.
  • the battery is charged, and the drive motor is powered by the motor controller.
  • the drive motor is directly connected to the wheel through a mechanical gearbox, wherein the engine and the generator are collectively referred to as a range extender, and the range extender controller communicates with the engine controller and the generator controller. And sending a control command, the vehicle controller determines the working mode of the range extender, and the range controller controls the engine and the generator according to the mode command of the vehicle controller.
  • the main control unit of the range extender control system includes a range extender controller, an engine controller, and a generator controller.
  • the engine controller receives the accelerator pedal analog signal from the range controller to perform throttle control to achieve different engine load control.
  • the extended range control system of the extended-range electric vehicle adopts the automobile multi-cylinder engine, which is large in volume and high in cost; it is necessary to use an electronically controlled throttle to control the engine intake amount to control the engine speed to achieve the purpose of extended range control.
  • the gas throttling loss is large, the engine combustion efficiency is low, and the cost is high; and since the automobile multi-cylinder engine and the electronically controlled throttle valve require a high-end engine controller, the control function is complicated and the control component cost is relatively high.
  • the technical problem to be solved by the present invention is to provide a control system for an extended-range electric vehicle, which has no loss of intake throttle, high engine combustion efficiency, and low cost.
  • the present invention provides The technical solution adopted by the extended range control system of the extended-range electric vehicle is that the extended-range control system includes an engine, a generator/motor, an extended range controller, and an engine controller;
  • crankshaft output end is directly connected to the generator/motor
  • the generator/motor can be used for electric driving and can be used for power generation;
  • the range controller is configured to send an engine operation demand signal to the engine controller, and to control the generator/motor to output a corresponding torque to the engine after receiving an external torque demand sent by the engine controller Crankshaft
  • the engine controller controls the injection ignition when the engine operation demand signal sent by the range controller is true, and calculates an external torque demand according to the control engine speed, and sends the external torque demand to the increase Controller.
  • the add-on controller if receiving an engine start demand command of the vehicle controller, first controls the engine controller to be powered on. , And controlling an oil pump assembly of the engine to pump oil to establish a fuel injection pressure; then transmitting a true or false engine operation demand signal to the engine controller according to a state of the fault status signal sent by the engine controller, and controlling the The generator/motor is turned on or off with the power battery; if the state of the fault state signal meets the operation requirement, a true engine operation demand signal is sent to the engine controller, and the generator/motor is powered by the power battery Turn on to make the generator/motor run Drag the said Engine starting; if the state of the fault state signal does not meet the operational requirement, transmitting a false engine operation demand signal to the engine controller, and controlling the generator/motor to be disconnected from the power battery to cause the generator/ The motor stops running;
  • the engine controller first performs fault detection on the relevant sensor and the actuator after power-on, and sends a fault state to the range controller.
  • the related sensor and the actuator include one or more of an intake pressure temperature sensor, an injector, an ignition coil, an oxygen sensor, an engine temperature sensor, an engine speed sensor, and an oil pump assembly.
  • the adjustment torque r1 is a torque calculated according to a difference between an actual engine speed and a target speed
  • the reverse drag torque r2 is a resistance torque generated internally when the engine is running, and is calculated according to an engine running related sensor and a related actuator state;
  • the combustion torque r3 is a torque caused by engine fuel combustion
  • the engine crankshaft target torque r4 is a set engine crankshaft output torque.
  • the engine crankshaft target torque is greater than 0 during the engine starting speed increase; the engine stop speed is less than 0 during the engine speed decrease; and is equal to 0 when the engine speed is stabilized at the rated speed.
  • the target speed of the engine is changed from 0 to the rated speed at the start of the engine, and the rated speed is gradually changed to 0 when the engine is stopped, and is fixed to the rated speed when the engine is running stably;
  • the engine controller When the engine is started, when the actual engine speed is higher than the first set speed, the engine controller sends a true fuel injection ignition signal to allow the fuel injection to ignite; when the engine is stopped, when the actual engine speed is lower than the second setting When the rotational speed is fixed, the engine controller sends a false fuel injection ignition signal to stop the fuel injection ignition;
  • the first set speed and the second set speed are greater than zero and less than the rated speed.
  • the engine controller controls the ignition angle efficiency from a minimum to a maximum during a rising speed of the engine from the start of the fuel injection to the rated speed; during the engine speed reduction from the rated speed to the stop of the fuel injection, the control The ignition angle efficiency is gradually changed from the highest to the lowest; during the engine stable operation output rated speed, the ignition angle efficiency is controlled to be the highest ignition angle efficiency.
  • the engine controller controls the exhaust gas recirculation rate to be changed from a highest exhaust gas recirculation rate to a rated exhaust gas recirculation rate during an increase in the engine speed from the start of the fuel injection ignition to the rated speed.
  • the engine controller sends a reduce external torque demand signal to the extended range controller within a time after the start of the true fuel injection ignition signal;
  • the range controller controls the generator/motor no-load operation after receiving the signal for reducing the external torque demand, so that the torque output by the generator/motor to the crankshaft of the engine is 0;
  • the time is less than or equal to three ignition cycles and greater than zero.
  • the engine controller determines that the generator/motor operation fault is when the difference between the actual engine speed minus the target speed is greater than a set positive value; and when the difference between the actual engine speed minus the target speed is less than a set negative The value is judged to be an engine combustion failure.
  • the extended range control system of the extended-range electric vehicle of the present invention is controlled by an engine controller
  • the operation of the injector and the ignition coil is dynamically controlled.
  • the engine controller calculates the external torque demand in advance based on the current adjusted torque, the reverse torque, the combustion torque and the engine crankshaft target torque, and sends it to the extended range controller.
  • generator/motor respond to external torque demand, achieve engine speed control through balance control of crankshaft torque, and make extended range control system The actual speed of the output is the same as the target speed.
  • the extended range control system of the extended-range electric vehicle of the invention can realize the extended-range control system without electronically controlling the throttle
  • the output speed control the engine can adopt the unthrottled intake mode
  • the engine controller control logic is simple, and the single-cylinder or two-cylinder motorcycle engine and the economical engine controller can be used to maximize the performance cost.
  • FIG. 1 is a schematic view showing an embodiment of an extended range control system of an extended-range electric vehicle according to the present invention
  • FIG. 2 is a schematic diagram showing the calculation logic of an external torque demand in an embodiment of the extended range control system of the extended-range electric vehicle of the present invention
  • FIG. 3 is a schematic diagram of balance control of crankshaft torque in an embodiment of an extended range control system of an extended-range electric vehicle according to the present invention
  • FIG. 4 is a schematic diagram of an engine target speed in an embodiment of an extended range control system of an extended-range electric vehicle according to the present invention
  • Figure 5 is a schematic view showing the ignition angle efficiency of an embodiment of the extended range control system of the extended-range electric vehicle of the present invention.
  • FIG. 6 is a torque control curve diagram of an engine start-up control system according to an embodiment of the extended range electric vehicle of the present invention.
  • Figure 7 is a diagram showing the difference between the actual engine speed and the engine target speed of an extended range control system of an extended-range electric vehicle according to the present invention. Judging the fault diagram.
  • the extended range control system of the extended-range electric vehicle Including engine, generator/motor, extended range controller, engine controller;
  • crankshaft output of the engine is directly coupled to the generator/motor;
  • the generator/motor can be used for electric driving, and can be used for power generation, integrating electric drive and power generation functions;
  • the range controller is configured to send an engine operation demand signal B_enfirext to the engine controller, and to control the generator/motor to output a corresponding torque after receiving an external torque demand sent by the engine controller a crankshaft of the engine;
  • the extended range control system of the extended-range electric vehicle of the first embodiment is provided by the whole vehicle controller when the power battery of the electric vehicle is insufficient
  • the control of the extended range control system starts to work, and the generator/motor is electrically driven to start the engine to charge the power battery.
  • the vehicle controller controls the extended range control system to stop working.
  • the extended range control system of the extended-range electric vehicle of the first embodiment is controlled by the engine controller
  • the operation of the injector and the ignition coil is dynamically controlled.
  • the engine controller calculates the external torque demand in advance based on the current adjusted torque, the reverse torque, the combustion torque and the engine crankshaft target torque, and sends it to the extended range controller.
  • the generator/motor respond to external torque demand, and achieve engine speed control through balance control of crankshaft torque.
  • the actual speed output by the extended range control system is consistent with the target speed.
  • the extended range control system of the extended-range electric vehicle of the first embodiment can realize the extended-range control system without using the electronically controlled throttle
  • the output speed control the engine can adopt the unthrottled intake mode
  • the engine controller control logic is simple, and the single-cylinder or two-cylinder motorcycle engine and the economical engine controller can be used to maximize the performance cost.
  • the extended program controller first controls the engine controller to be powered on if receiving the engine start demand command of the vehicle controller. , And controlling the oil pump assembly of the engine to pump oil, establishing a fuel injection pressure; and then transmitting a true or false engine operation demand signal B_enfirext to the engine controller according to the state of the fault status signal sent by the engine controller, and controlling the The generator/motor is connected to or disconnected from the power battery;
  • the engine controller after powering up, firstly one of a related sensor and an actuator (such as an intake pressure temperature sensor, an injector, an ignition coil, an oxygen sensor, an engine temperature sensor, an engine speed sensor, and an oil pump assembly)
  • a related sensor and an actuator such as an intake pressure temperature sensor, an injector, an ignition coil, an oxygen sensor, an engine temperature sensor, an engine speed sensor, and an oil pump assembly
  • the calculation logic of the external torque demand is as shown in FIG. 2.
  • the engine controller calculates the engine speed according to the current adjustment torque r1, the reverse torque r2, the combustion torque r3 and the engine crank target torque r4.
  • External torque demand on the crankshaft r5; r1 + r2 + r3 + r5 r4;
  • the adjustment torque r1 is a torque calculated according to a difference between an actual engine speed and a target speed (the adjustment torque can be calculated by a proportional integral regulator);
  • the reverse drag torque r2 is a resistance torque generated internally when the engine is running, and represents a negative torque, which can be calculated according to an engine running related sensor (such as an engine speed sensor, an engine temperature sensor) and a related actuator state;
  • the combustion torque r3 is a torque caused by engine fuel combustion
  • the engine crankshaft target torque r4 is a set engine crankshaft output torque.
  • the balance control of the crankshaft torque is as shown in FIG. 3, and the engine crankshaft target torque actually acting on the engine crankshaft is controlled during the engine cranking speed increase (extended range control system)
  • the net torque) is slightly greater than 0, keeping the actual engine speed continuously rising; during the engine stop speed drop, the engine crankshaft target torque actually controlled on the engine crankshaft is slightly less than 0, keeping the engine speed continuously decreasing; the engine speed is stable at the rated speed.
  • the engine crankshaft target torque that actually acts on the engine crankshaft fluctuates around 0, keeping the engine speed stable.
  • An extended range control system for an extended-range electric vehicle based on the second embodiment,
  • the engine controller sets the target speed of the engine. As shown in Figure 4, it changes from 0 to the rated speed when the engine starts. It is changed to 0 by the rated speed when the engine is stopped, and is fixed to the rated speed when the engine is running stably.
  • the target speed is a fixed value rated speed. The first set speed and the second set speed are greater than zero and less than the rated speed.
  • the engine controller performs progressive control on the target speed of the engine during the process from the start to the steady operation of the engine, and from the steady operation to the stop, and the actual engine speed follows the target speed.
  • the extended range control system performs balance control of the crankshaft torque according to the difference between the target speed and the actual speed, so that the actual speed follows the target speed.
  • Extended range control system for extended-range electric vehicles based on the third embodiment
  • the engine controller controls the ignition angle efficiency from the lowest to the highest during the engine starting from the start of the fuel injection ignition to the rated speed.
  • the engine is stopped.
  • the control ignition angle efficiency is gradually changed from the highest to the lowest; during the engine stable operation output rated speed, the ignition angle efficiency is controlled to be the highest ignition angle efficiency.
  • the minimum firing angle efficiency is a minimum value of the ignition angle efficiency for ensuring stable combustion of the engine
  • the maximum value of the maximum ignition angle efficiency is a maximum value of the ignition angle efficiency allowed for the engine operation
  • the ignition angle efficiency is calibrated according to the combustion limit of the engine or Automatic calculation, the ignition angle efficiency is finally converted to the actual ignition angle output of the engine, controlling the output of the actual engine torque.
  • the extended range control system of the extended-range electric vehicle of the fourth embodiment The gradual change of the engine combustion torque is achieved by implementing a gradual control method that combines the rate of change of the ignition angle efficiency with the target speed of the engine.
  • a smooth transition between the actual engine crankshaft torque from engine start to normal operation and to stop work is achieved, avoiding large torque abrupt changes.
  • An extended range control system for an extended-range electric vehicle based on the fourth embodiment,
  • the engine controller when the engine is started, controls the exhaust gas recirculation rate from the highest exhaust gas recirculation rate to the rated exhaust gas recirculation rate during the engine speed increase from the start of the fuel injection ignition to the rated speed (by controlling the exhaust gas
  • the circulation control valve is implemented).
  • the engine controller controls the exhaust gas recirculation rate EGR from large to small at the initial stage of the engine fuel injection ignition, and the auxiliary ignition angle efficiency suppresses the increase rate of the engine combustion torque to ensure the engine speed rises steadily.
  • the original emissions of the engine before the catalytic converter work are reduced, the exhaust gas temperature and the catalyst temperature are rapidly increased, and the discharge after startup is optimized. A smooth transition of torque during engine starting and catalyst heating control is achieved.
  • the range controller controls the generator/motor no-load operation after receiving the signal for reducing the external torque demand, so that the torque output from the generator/motor to the engine crankshaft is zero, and then the engine controller transmits the external torque demand.
  • the extended range controller gradually restores the crankshaft torque control according to the external demand torque of the engine, re-calculates the crankshaft torque balance, and controls the engine speed.
  • An extended range control system for an extended-range electric vehicle based on the sixth embodiment,
  • the engine controller when the difference between the actual engine speed minus the engine target speed is greater than a set positive value, the engine speed is over-speed, the generator/motor is faulty, and the engine controller issues a false

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种增程式电动汽车的增程控制系统,由发动机控制器对喷油器、点火线圈的工作进行动态控制,发动机控制器根据发动机当前调节扭矩(r1)、倒拖扭矩(r2)、燃烧扭矩(r3)及发动机曲轴目标扭矩(r4),提前计算外部扭矩需求(r5)并发送到增程控制器,增程控制器及发电机/电动机响应外部扭矩需求(r5),通过曲轴扭矩的平衡控制实现发动机转速控制,使增程控制系统输出的实际转速与目标转速一致。该增程式电动汽车的增程控制系统不需要通过电控节气门即可实现对增程控制系统输出转速的控制,发动机可以采用非节流进气模式,发动机控制器控制逻辑简洁,可以使用单缸或双缸摩托车发动机及经济型发动机控制器,实现效能成本最大化。

Description

增程式电动汽车的增程控制系统 技术领域
本发明涉及电动汽车技术,特别涉及一种用于增程式电动汽车的增程控制系统 。
背景技术
驱动电机是纯电动汽车行驶的唯一动力装置, 由于电池技术的局限,纯电动汽车的续航里程受到限制,而油电混合动力技术则能很好的弥补这一不足。
使用点燃式发动机在电能不足的时候对电池进行充电,但不作为直接动力输出,仅满足'增程'的功能,这种增程式电动汽车结构简单,开发成本低,经济性好,必将得到越来越广泛的应用。
目前的增程式电动汽车的增程控制系统,是使用高端的发动机控制器及电子节气门体对发动机的进气量进行控制,从而控制发动机转速,达到增程控制的目的。
例如,中国专利申请201210119605.3公开了一种增程式电动汽车控制系统,其包括一台传统节气门控制的发动机、与发动机曲轴一体连接的驱动和发电功能一体的发电机、车载动力电池、整车控制器、增程器控制器、电池管理系统、电池直流电流传感器、发动机控制器、发电机控制器、发电机端直流电流传感器、永磁同步驱动电机、电机控制器、电机直流电流传感器、电控 节气门、曲轴位置传感器,发动机的飞轮和发电机转子通过机械装置刚性连接,发电机控制器中集成逆变功率元件,发电机通过发电机控制器连接到高压母线,通过DC/DC可以对动力电池充电,通过电机控制器给驱动电机供电,驱动电机直接通过机械变速箱与车轮连接,其中发动机和发电机统称为增程器,增程器控制器与发动机控制器和发电机控制器进行通讯和发送控制指令,整车控制器判断出增程器应该的工作模式,增程器控制器根据整车控制器的模式指令进行发动机和发电机的协调控制。
增程器控制系统的主要控制单元包括增程器控制器、发动机控制器和发电机控制器。发动机控制器接收来自增程器控制器的加速踏板模拟信号进行节气门控制,进而实现发动机不同负荷控制。
目前的增程式电动汽车的增程控制系统,发动机均采用汽车多缸发动机,体积大,成本高;需要使用电控节气门控制发动机进气量来控制发动机转速,达到增程控制的目的,进气节流损失大,发动机燃烧效率低,成本高;而且由于汽车多缸发动机、电控节气门需要高端发动机控制器,控制功能复杂,控制部件成本也比较高。
技术问题
本发明要解决的技术问题是提供一种增程式电动汽车的控制系统,进气节流无损失,发动机燃烧效率高,成本低。
技术解决方案
为解决上述技术问题,本发明提供的 增程式电动汽车的增程控制系统采用的技术方案是,增程控制系统包括发动机、发电机/电动机、增程控制器、发动机控制器;
所述发动机,曲轴输出端直接与所述发电机/电动机连接;
所述发电机/电动机,能够用于电动 驱动,并能用于发电;
所述增程控制器,用于发送发动机运转需求信号到所述发动机控制器,并用于在接收到所述发动机控制器发送的外部扭矩需求后,控制所述发电机/电动机输出相应扭矩到发动机曲轴;
所述发动机控制器,在所述增程控制器发送的发动机运转需求信号为真时,控制进行喷油点火,并根据控制发动机转速需要计算外部扭矩需求,将该外部扭矩需求发送至所述增程控制器。
较佳的 , 所述增程式控制器,如果接收到整车控制器的发动机起动需求指令,则首先控制发动机控制器上电 , 并控制发动机的油泵总成进行泵油,建立燃油喷射压力;然后根据所述发动机控制器发送来故障状态信号的状态,发送真或假发动机运转需求信号到所述发动机控制器,并控制所述发电机/电动机同动力电池接通或断开;如果所述故障状态信号的状态符合运转要求,则发送真发动机运转需求信号到所述发动机控制器,并控制所述发电机/电动机同动力电池接通,使所述发电机/电动机运行 拖动所述 发动机起动;如果所述故障状态信号的状态不符合运转要求,则发送假发动机运转需求信号到所述发动机控制器,并控制所述发电机/电动机同动力电池断开,使所述发电机/电动机停止运行;
所述发动机控制器,在上电后,首先对相关传感器及执行机构进行故障检测,发送故障状态到所述增程控制器。
较佳的 , 所述相关传感器及执行机构,包括进气压力温度传感器、喷油器、点火线圈、氧传感器、发动机温度传感器、发动机转速传感器、油泵总成中的一种或多种。
较佳的 , 所述发动机控制器,根据发动机当前调节扭矩r1、倒拖扭矩r2、燃烧扭矩r3及发动机曲轴目标扭矩r4,计算控制发动机转速需要作用在曲轴上的外部扭矩需求r5;r1+r2+r3+r5=r4;
所述调节扭矩r1,为根据发动机实际转速同目标转速的差值计算得到的扭矩;
所述倒拖扭矩r2,为发动机运行时内部产生的阻力矩,根据发动机运行相关传感器及相关执行机构状态计算得到;
所述燃烧扭矩r3,为发动机燃油燃烧引起的扭矩;
所述发动机曲轴目标扭矩r4,为设定的发动机曲轴输出扭矩。
较佳的 , 所述发动机曲轴目标扭矩,在发动机起动的转速上升过程中,大于0;发动机停机的转速下降过程中,小于0;在发动机转速稳定在额定转速时,等于0。
较佳的 , 发动机的目标转速,在发动机起动时由0渐变为额定转速,在发动机停机时由额定转速渐变为0,在发动机稳定运转时固定为额定转速;
在发动机起动时,当发动机实际转速高于第一设定转速时,所述发动机控制器发出真的喷油点火信号,允许喷油点火;在发动机停机时,当发动机实际转速低于第二设定转速时,所述发动机控制器发出假的喷油点火信号,停止喷油点火;
第一设定转速及第二设定转速大于0并且小于额定转速。
较佳的 , 所述发动机控制器,在发动机从开始喷油点火至达到额定转速的转速上升过程中,控制点火角效率由最低渐变至最高;在发动机从额定转速到停止喷油点火的转速下降过程中,控制点火角效率由最高渐变至最低;在发动机稳定运转输出额定转速期间,控制点火角效率为最高点火角效率。
较佳的 , 所述发动机控制器,在发动机从开始喷油点火至达到额定转速的转速上升过程中,控制废气再循环率由最高废气再循环率渐变至额定废气再循环率。
较佳的 , 在发动机起动时,所述发动机控制器,在开始发出真的喷油点火信号后的一时间内,发送减小外部扭矩需求信号给增程控制器;
所述增程控制器,在接收到减小外部扭矩需求信号后,控制发电机/电动机空载运转,使发电机/电动机输出到发动机曲轴上的扭矩为0;
所述时间,小于等于三个点火周期并且大于0。
较佳的 , 所述发动机控制器,当发动机实际转速减去目标转速的差值大于一设定正值,则判断为发电机/电动机运行故障;当发动机实际转速减去目标转速的差值小于一设定负值,则判断为发动机燃烧故障。
有益效果
本发明的 增程式电动汽车的增程控制系统,由 发动机控制器 对 喷油器、点火线圈的工作进行动态控制,发动机控制器并根据发动机当前调节扭矩、倒拖扭矩、燃烧扭矩及发动机曲轴目标扭矩,提前计算外部扭矩需求并发送到增程控制器,增程控制器及发电机/电动机响应外部扭矩需求,通过曲轴扭矩的平衡控制实现发动机转速控制,使增程控制系统 输出的实际转速与目标转速一致。本发明的 增程式电动汽车的增程控制系统,不需要通过电控节气门即可实现对增程控制系统 输出转速的控制,发动机可以采用非节流进气模式,发动机控制器控制逻辑简洁,可以使用单缸或双缸摩托车发动机及经济型发动机控制器,实现效能成本最大化。
附图说明
为了更清楚地说明本发明的技术方案,下面对本发明所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的增程式电动汽车的增程控制系统一实施例示意图;
图2是本发明的增程式电动汽车的增程控制系统一实施例 外部扭矩需求的计算逻辑 示意图;
图3是本发明的增程式电动汽车的增程控制系统一实施例 曲轴扭矩的平衡控制 示意图;
图4是本发明的增程式电动汽车的增程控制系统一实施例 发动机目标转速 示意图;
图5是本发明的增程式电动汽车的增程控制系统一实施例 点火角效率 示意图;
图6是本发明的增程式电动汽车的增程控制系统一实施例 发动机起动时扭矩控制曲线 图;
图7是本发明的增程式电动汽车的增程控制系统一实施例根据 发动机实际转速与发动机目标转速的差值 判断故障示意图 。
本发明的最佳实施方式
下面将结合附图,对本发明中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一
如图1所示, 增程式电动汽车的增程控制系统, 包括发动机、发电机/电动机、增程控制器、发动机控制器;
所述发动机的曲轴输出端直接与所述发电机/电动机连接;
所述发电机/电动机,能够用于电动 驱动,并能用于发电, 集电动 驱动和发电功能于一体;
所述增程控制器,用于发送发动机运转需求信号B_enfirext到所述发动机控制器,并用于在接收到所述发动机控制器发送的外部扭矩需求后,控制所述发电机/电动机输出相应扭矩到所述发动机的曲轴;
所述发动机控制器,在所述增程控制器发送的发动机运转需求信号为真B_enfirext=TRUE时,发出喷油点火信号B_enfire到喷油器、点火线圈控制进行喷油点火,并根据控制发动机转速需要计算外部扭矩需求,将该外部扭矩需求发送至所述增程控制器。
实施例一的 增程式电动汽车的增程控制系统,在电动汽车的动力电池电量不足时,由 整车控制器 控制增程控制系统开始工作,由发电机/电动机电动驱动使发动机起动,对动力电池进行充电。当动力电池电量满足要求,由 整车控制器 控制增程控制系统停止工作。
实施例一的 增程式电动汽车的增程控制系统,由 发动机控制器 对 喷油器、点火线圈的工作进行动态控制,发动机控制器并根据发动机当前调节扭矩、倒拖扭矩、燃烧扭矩及发动机曲轴目标扭矩,提前计算外部扭矩需求并发送到增程控制器,增程控制器及发电机/电动机响应外部扭矩需求,通过曲轴扭矩的平衡控制实现发动机转速控制,使 增程控制系统 输出的实际转速与目标转速一致。实施例一的 增程式电动汽车的增程控制系统,不需要通过电控节气门即可实现对增程控制系统 输出转速的控制,发动机可以采用非节流进气模式,发动机控制器控制逻辑简洁,可以使用单缸或双缸摩托车发动机及经济型发动机控制器,实现效能成本最大化。
实施例二
基于实施例一,所述增程式控制器,如果接收到整车控制器的发动机起动需求指令,则首先控制发动机控制器上电 , 并控制发动机的油泵总成进行泵油,建立燃油喷射压力;然后根据所述发动机控制器发送来故障状态信号的状态,发送真或假发动机运转需求信号B_enfirext到所述发动机控制器,并控制所述发电机/电动机同动力电池接通或断开;
如果所述故障状态信号的状态符合运转要求,则发送真发动机运转需求信号B_enfirext=TRUE到所述发动机控制器,并控制所述发电机/电动机同动力电池接通,使所述发电机/电动机运行 拖动所述 发动机起动;如果所述故障状态信号的状态不符合运转要求,则发送假发动机运转需求信号B_enfirext=FALSE到所述发动机控制器,并控制所述发电机/电动机同动力电池断开,使所述发电机/电动机停止运行;
所述发动机控制器,在加电后,首先对相关传感器及执行机构(如进气压力温度传感器、喷油器、点火线圈、氧传感器、发动机温度传感器、发动机转速传感器、油泵总成中的一种或多种)进行故障检测,发送故障状态到所述增程控制器;
较佳的,外部扭矩需求的计算逻辑如图2所示,所述发动机控制器,根据发动机当前调节扭矩r1、倒拖扭矩r2、燃烧扭矩r3及发动机曲轴目标扭矩r4,计算控制发动机转速需要作用在曲轴上的外部扭矩需求r5;r1+r2+r3+r5=r4;
所述调节扭矩r1,为根据发动机实际转速同目标转速的差值计算得到的扭矩(调节扭矩可以通过比例积分调节器计算);
所述倒拖扭矩r2,为发动机运行时内部产生的阻力矩,表现为负扭矩,可以根据发动机运行相关传感器(如发动机转速传感器、发动机温度传感器)及相关执行机构状态计算得到;
所述燃烧扭矩r3,为发动机燃油燃烧引起的扭矩;
所述发动机曲轴目标扭矩r4,为设定的发动机曲轴输出扭矩。
较佳的,曲轴扭矩的平衡控制如图3所示,在发动机起动的转速上升过程中,控制实际作用在发动机曲轴上的发动机曲轴目标扭矩( 增程控制系统 净扭矩)稍大于0,保持发动机实际转速持续上升;发动机停机转速下降过程中,控制实际作用在发动机曲轴上的发动机曲轴目标扭矩稍小于0,保持发动机转速持续下降;发动机转速稳定在额定转速正常稳定工作时,控制实际作用在发动机曲轴上的发动机曲轴目标扭矩在0左右波动,保持发动机转速稳定。
如图3所示,发动机开始喷油点火及停止喷油和点火的瞬间,发动机燃烧扭矩会出现一个落差,该落差的大小为发动机最小燃烧扭矩。由于发动机控制器总是提前计算下一步的外部扭矩需求发送到增程控制器,此时发电机/电动机实际输出到曲轴上扭矩相应增加一个反向落差,保证 增程控制系统实际输出的 净扭矩不会出现扭矩突变,实现发动机转速平稳上升和安静停机。
实施例三
基于实施例二的 增程式电动汽车的增程控制系统, 发动机控制器设定发动机的目标转速,如图4所示,在发动机起动时由0渐变为额定转速,在发动机停机时由额定转速渐变为0,发动机稳定运转时固定为额定转速,在发动机起动时当发动机转速高于第一设定转速时,发动机控制器才发出允许喷油点火信号B_enfire=TRUE允许喷油点火,在发动机停机时当发动机转速低于第二设定转速时,发动机控制器才发出停止喷油点火信号B_enfire=FALSE停止喷油点火。当发动机稳定运转时,目标转速为固定值额定转速。第一设定转速及第二设定转速大于0并且小于额定转速。
实施例三中,发动机控制器在发动机从起动到稳定运转的过程,以及从稳定运转直至停机的过程中,对发动机的目标转速进行渐进控制,发动机实际转速跟随该目标转速运行, 增程控制系统 根据目标转速与实际转速的差值进行曲轴扭矩的平衡控制,使得实际转速跟随目标转速运行。
实施例四
基于实施例三的 增程式电动汽车的增程控制系统 ,所述发动机控制器,如图5所示,发动机起动时,在发动机从开始喷油点火至达到额定转速的转速上升过程中,控制点火角效率由最低渐变至最高;发动机停机时,在发动机从额定转速至停止开始喷油点火的转速下降过程中,控制点火角效率由最高渐变至最低;在发动机稳定运转输出额定转速期间,控制点火角效率为最高点火角效率。所述最小点火角效率是保证发动机稳定燃烧的点火角效率的最小值,所述最高点火角效率终值是发动机运转允许的点火角效率的最大值,点火角效率根据发动机的燃烧极限进行标定或自动计算,点火角效率最终转换为发动机的实际点火角输出,控制发动机实际扭矩的输出。
实施例四的 增程式电动汽车的增程控制系统, 通过实施对点火角效率的变化速率与发动机目标转速相结合的渐变控制方式,实现发动机燃烧扭矩的渐变。通过与发电机扭矩相配合,实现实际发动机曲轴扭矩从发动机起动到正常工作以及到停止工作之间的平稳过渡,避免较大的扭矩突变。
实施例五
基于实施例四的 增程式电动汽车的增程控制系统, 所述发动机控制器,发动机起动时,在发动机从开始喷油点火至达到额定转速的转速上升过程中,控制废气再循环率由最高废气再循环率渐变至额定废气再循环率(通过控制废气再循环控制阀实现)。
实施例五中,发动机起动过程中,在发动机喷油点火初期,发动机控制器控制废气再循环率EGR的由大变小,辅助点火角效率抑制发动机燃烧扭矩的增大速率,保证发动机转速平稳上升,使得发动机在催化器工作前原始排放减少,迅速提升排气温度及催化器温度,优化起动后排放。实现发动机起动过程中的扭矩的平稳过渡以及催化器加热控制。
实施例六
基于实施例五的 增程式电动汽车的增程控制系统, 在发动机起动时,所述发动机控制器,在开始发出真的喷油点火信号B_enfirext=TRUE后的一时间内,发送减小外部扭矩需求信号给增程控制器;
所述增程控制器,在接收到减小外部扭矩需求信号后,控制发电机/电动机空载运转,使发电机/电动机输出到发动机曲轴上的扭矩为0,随后发动机控制器发送外部扭矩需求到增程控制器,增程控制器根据发动机的外部需求扭矩逐渐恢复曲轴扭矩控制,重新实现曲轴扭矩平衡,控制发动机转速。
实施例五中,如图6所示,在发动机喷油点火开始,由于发电机/电动机输出到发动机曲轴上的扭矩为0,因此发动机曲轴在发动机燃烧扭矩的作用下自由旋转,避免了发动机点火喷油瞬间扭矩突变导致的扭矩冲击。
较佳的,所述开始发出真的喷油点火信号B_enfirext=TRUE后的一时间内,小于等于三个点火周期并且大于0。
实施例七
基于实施例六的 增程式电动汽车的增程控制系统, 所述发动机控制器,如图7所示,当发动机实际转速减去发动机目标转速的差值大于一设定正值,则说明发动机转速超速,发电机/电动机运行故障,发动机控制器发出假的喷油点火信号B_enfire=FALSE,停止喷油点火,并发送减小外部扭矩需求信号给增程控制器,进行系统保护;反之,当发动机实际转速与发动机目标转速的差值小于一设定负值,说明发动机扭矩不足,发动机存在燃烧故障,发动机控制器发出停止喷油点火信号B_enfire=FALSE停止喷油点火,并发送减小外部扭矩需求信号给增程控制器,进行系统保护。
以上所述仅为本 发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (10)

  1. 一种 增程式电动汽车的增程控制系统,其特征在于,增程控制系统 包括发动机、发电机/电动机、增程控制器、发动机控制器;
    所述发动机,曲轴输出端直接与所述发电机/电动机连接;
    所述发电机/电动机,能够用于电动 驱动,并能用于发电;
    所述增程控制器,用于发送发动机运转需求信号到所述发动机控制器,并用于在接收到所述发动机控制器发送的外部扭矩需求后,控制所述发电机/电动机输出相应扭矩到发动机曲轴;
    所述发动机控制器,在所述增程控制器发送的发动机运转需求信号为真时,控制进行喷油点火,并根据控制发动机转速需要计算外部扭矩需求,将该外部扭矩需求发送至所述增程控制器。
  2. 根据权利要求1所述的 增程式电动汽车的增程控制系统,其特征在于,
    所述增程式控制器,如果接收到整车控制器的发动机起动需求指令,则首先控制发动机控制器上电 , 并控制发动机的油泵总成进行泵油,建立燃油喷射压力;然后根据所述发动机控制器发送来故障状态信号的状态,发送真或假发动机运转需求信号到所述发动机控制器,并控制所述发电机/电动机同动力电池接通或断开;如果所述故障状态信号的状态符合运转要求,则发送真发动机运转需求信号到所述发动机控制器,并控制所述发电机/电动机同动力电池接通,使所述发电机/电动机运行 拖动所述 发动机起动;如果所述故障状态信号的状态不符合运转要求,则发送假发动机运转需求信号到所述发动机控制器,并控制所述发电机/电动机同动力电池断开,使所述发电机/电动机停止运行;
    所述发动机控制器,在上电后,首先对相关传感器及执行机构进行故障检测,发送故障状态到所述增程控制器。
  3. 根据权利要求2所述的 增程式电动汽车的增程控制系统,其特征在于,
    所述相关传感器及执行机构,包括进气压力温度传感器、喷油器、点火线圈、氧传感器、发动机温度传感器、发动机转速传感器、油泵总成中的一种或多种。
  4. 根据权利要求3所述的 增程式电动汽车的增程控制系统,其特征在于,
    所述发动机控制器,根据发动机当前调节扭矩r1、倒拖扭矩r2、燃烧扭矩r3及发动机曲轴目标扭矩r4,计算控制发动机转速需要作用在曲轴上的外部扭矩需求r5;r1+r2+r3+r5=r4;
    所述调节扭矩r1,为根据发动机实际转速同目标转速的差值计算得到的扭矩;
    所述倒拖扭矩r2,为发动机运行时内部产生的阻力矩;
    所述燃烧扭矩r3,为发动机燃油燃烧引起的扭矩;
    所述发动机曲轴目标扭矩r4,为设定的发动机曲轴输出扭矩。
  5. 根据权利要求4所述的 增程式电动汽车的增程控制系统,其特征在于,
    所述发动机曲轴目标扭矩,在发动机起动的转速上升过程中,大于0;发动机停机的转速下降过程中,小于0;在发动机转速稳定在额定转速时,等于0。
  6. 根据权利要求5所述的 增程式电动汽车的增程控制系统,其特征在于,
    发动机的目标转速,在发动机起动时由0渐变为额定转速,在发动机停机时由额定转速渐变为0,在发动机稳定运转时固定为额定转速;
    在发动机起动时,当发动机实际转速高于第一设定转速时,所述发动机控制器发出真的喷油点火信号,允许喷油点火;在发动机停机时,当发动机实际转速低于第二设定转速时,所述发动机控制器发出假的喷油点火信号,停止喷油点火;
    第一设定转速及第二设定转速大于0并且小于额定转速。
  7. 根据权利要求6所述的 增程式电动汽车的增程控制系统,其特征在于,
    所述发动机控制器,在发动机从开始喷油点火至达到额定转速的转速上升过程中,控制点火角效率由最低渐变至最高;在发动机从额定转速到停止喷油点火的转速下降过程中,控制点火角效率由最高渐变至最低;在发动机稳定运转输出额定转速期间,控制点火角效率为最高点火角效率。
  8. 根据权利要求7所述的 增程式电动汽车的增程控制系统,其特征在于,
    所述发动机控制器,在发动机从开始喷油点火至达到额定转速的转速上升过程中,控制废气再循环率由最高废气再循环率渐变至额定废气再循环率。
  9. 根据权利要求8所述的 增程式电动汽车的增程控制系统,其特征在于,
    在发动机起动时,所述发动机控制器,在开始发出真的喷油点火信号后的一时间内,发送减小外部扭矩需求信号给增程控制器;
    所述增程控制器,在接收到减小外部扭矩需求信号后,控制发电机/电动机空载运转,使发电机/电动机输出到发动机曲轴上的扭矩为0;
    所述时间,小于等于三个点火周期并且大于0。
  10. 根据权利要求9所述的 增程式电动汽车的增程控制系统,其特征在于,
    所述发动机控制器,当发动机实际转速减去目标转速的差值大于一设定正值,则判断为发电机/电动机运行故障;当发动机实际转速减去目标转速的差值小于一设定负值,则判断为发动机燃烧故障。
PCT/CN2012/087813 2012-11-01 2012-12-28 增程式电动汽车的增程控制系统 WO2014067216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210431433.3A CN102975624B (zh) 2012-11-01 2012-11-01 增程式电动汽车的增程控制系统
CN201210431433.3 2012-11-01

Publications (1)

Publication Number Publication Date
WO2014067216A1 true WO2014067216A1 (zh) 2014-05-08

Family

ID=47850089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087813 WO2014067216A1 (zh) 2012-11-01 2012-12-28 增程式电动汽车的增程控制系统

Country Status (2)

Country Link
CN (1) CN102975624B (zh)
WO (1) WO2014067216A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106864277A (zh) * 2017-03-20 2017-06-20 重庆力华自动化技术有限责任公司 一种增程控制器控制电路
CN107884199A (zh) * 2017-12-01 2018-04-06 西华大学 一种自带倒拖功能的单缸发动机台架实验系统及其控制方法
CN111912623A (zh) * 2020-07-15 2020-11-10 中国人民解放军63966部队 基于循环升速度的柴油机起动性能检测方法
CN112660104A (zh) * 2021-01-05 2021-04-16 吉林大学 一种增程式电动汽车辅助动力单元起动控制方法
CN112824193A (zh) * 2019-11-21 2021-05-21 广州汽车集团股份有限公司 混合动力汽车燃油耗尽诊断、处理方法及装置
CN112977399A (zh) * 2021-03-15 2021-06-18 奇瑞新能源汽车股份有限公司 动力控制方法、装置、整车控制器及增程式电动汽车
CN113390652A (zh) * 2021-06-21 2021-09-14 哈尔滨东安汽车动力股份有限公司 一种增程器功率点选取及其油电转化效率测量方法
CN113916524A (zh) * 2021-10-12 2022-01-11 江西昌河汽车有限责任公司 增程式电动汽车用增程器总成临界转速耐久试验方法
CN115431861A (zh) * 2022-09-30 2022-12-06 东风汽车股份有限公司 一种增程式冷藏车
CN116220903A (zh) * 2023-02-02 2023-06-06 重庆赛力斯新能源汽车设计院有限公司 一种发动机失火故障诊断方法、装置、服务端及存储介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103523006B (zh) * 2013-11-01 2016-03-30 北京北内创意电控发动机有限责任公司 增程式电动车的发动机控制方法及装置
CN103742278B (zh) * 2013-12-20 2017-01-18 联合汽车电子有限公司 挡位切换时的发动机转速控制系统以及方法
CN103935226B (zh) * 2014-04-22 2016-09-28 联合汽车电子有限公司 增程式混合动力汽车的动力系统及其控制方法
CN104118436B (zh) * 2014-07-10 2017-01-11 奇瑞新能源汽车技术有限公司 一种电动车增程系统的安全监控方法
CN105620299B (zh) * 2015-12-21 2018-09-11 北京新能源汽车股份有限公司 增程式电动汽车増程器起动控制方法和装置
CN105774571B (zh) * 2015-12-30 2018-04-03 北京新能源汽车股份有限公司 增程式电动汽车及其发动机起动控制方法、系统
CN105971745B (zh) * 2016-06-15 2019-06-04 北京新能源汽车股份有限公司 增程式电动汽车及其发动机暖机控制方法和装置
CN106515489B (zh) * 2016-11-28 2023-09-12 清华大学苏州汽车研究院(吴江) 一种给电池充电的方法及装置
CN109459083B (zh) * 2018-09-14 2021-01-15 武汉科技大学 一种增程式电动汽车故障诊断实验平台
CN110217115A (zh) * 2019-06-25 2019-09-10 芜湖宏宇汽车电子有限责任公司 一种汽车增程器以及控制方法
CN110806317B (zh) * 2019-08-01 2021-09-17 中国第一汽车股份有限公司 基于扭矩模型的数据处理方法、装置、台架及存储介质
CN110987442B (zh) * 2019-12-30 2021-09-28 宁波洁程汽车科技有限公司 增程式电动汽车用发动机台架性能的标定方法
CN111660834A (zh) * 2020-06-03 2020-09-15 上海电气集团股份有限公司 一种增程式电动汽车的增程器控制方法及控制系统
CN111762149A (zh) * 2020-06-29 2020-10-13 广西玉柴机器股份有限公司 一种增程式混合动力燃气车启动控制方法
CN112519755B (zh) * 2020-12-09 2022-05-03 奇瑞汽车股份有限公司 泊车扭矩的确定方法和装置
CN113532731B (zh) * 2021-06-24 2023-06-20 哈尔滨东安汽车动力股份有限公司 一种增程器系统输出扭矩校验方法
CN113525343A (zh) * 2021-08-31 2021-10-22 湘潭大学 一种增程式电动汽车能量流优化控制方法
CN113864073B (zh) * 2021-09-28 2023-05-23 重庆长安新能源汽车科技有限公司 增程式混合动力汽车的氧传感器诊断的控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555990A (zh) * 2003-12-30 2004-12-22 联合汽车电子有限公司 混合动力汽车控制系统及其控制方法
CN1660622A (zh) * 2004-02-25 2005-08-31 日产自动车株式会社 混合电动车辆的驱动控制
US20060021807A1 (en) * 2004-07-29 2006-02-02 Ford Global Technologies, Llc Vehicle and method for operating an engine in a vehicle
US20090058100A1 (en) * 2007-08-27 2009-03-05 Denso Corporation Engine flare management system and method
CN102616148A (zh) * 2012-04-20 2012-08-01 北京汽车新能源汽车有限公司 一种增程式电动汽车控制系统及其控制方法
CN102666234A (zh) * 2009-12-22 2012-09-12 本田技研工业株式会社 混合动力车辆的控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555990A (zh) * 2003-12-30 2004-12-22 联合汽车电子有限公司 混合动力汽车控制系统及其控制方法
CN1660622A (zh) * 2004-02-25 2005-08-31 日产自动车株式会社 混合电动车辆的驱动控制
US20060021807A1 (en) * 2004-07-29 2006-02-02 Ford Global Technologies, Llc Vehicle and method for operating an engine in a vehicle
US20090058100A1 (en) * 2007-08-27 2009-03-05 Denso Corporation Engine flare management system and method
CN102666234A (zh) * 2009-12-22 2012-09-12 本田技研工业株式会社 混合动力车辆的控制装置
CN102616148A (zh) * 2012-04-20 2012-08-01 北京汽车新能源汽车有限公司 一种增程式电动汽车控制系统及其控制方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106864277A (zh) * 2017-03-20 2017-06-20 重庆力华自动化技术有限责任公司 一种增程控制器控制电路
CN107884199A (zh) * 2017-12-01 2018-04-06 西华大学 一种自带倒拖功能的单缸发动机台架实验系统及其控制方法
CN107884199B (zh) * 2017-12-01 2023-08-29 西华大学 一种自带倒拖功能的单缸发动机台架实验系统及其控制方法
CN112824193A (zh) * 2019-11-21 2021-05-21 广州汽车集团股份有限公司 混合动力汽车燃油耗尽诊断、处理方法及装置
CN111912623A (zh) * 2020-07-15 2020-11-10 中国人民解放军63966部队 基于循环升速度的柴油机起动性能检测方法
CN111912623B (zh) * 2020-07-15 2022-08-19 中国人民解放军63966部队 基于循环升速度的柴油机起动性能检测方法
CN112660104B (zh) * 2021-01-05 2022-07-05 吉林大学 一种增程式电动汽车辅助动力单元起动控制方法
CN112660104A (zh) * 2021-01-05 2021-04-16 吉林大学 一种增程式电动汽车辅助动力单元起动控制方法
CN112977399A (zh) * 2021-03-15 2021-06-18 奇瑞新能源汽车股份有限公司 动力控制方法、装置、整车控制器及增程式电动汽车
CN112977399B (zh) * 2021-03-15 2022-12-27 奇瑞新能源汽车股份有限公司 动力控制方法、装置、整车控制器及增程式电动汽车
CN113390652A (zh) * 2021-06-21 2021-09-14 哈尔滨东安汽车动力股份有限公司 一种增程器功率点选取及其油电转化效率测量方法
CN113390652B (zh) * 2021-06-21 2022-09-02 哈尔滨东安汽车动力股份有限公司 一种增程器功率点选取及其油电转化效率测量方法
CN113916524A (zh) * 2021-10-12 2022-01-11 江西昌河汽车有限责任公司 增程式电动汽车用增程器总成临界转速耐久试验方法
CN115431861A (zh) * 2022-09-30 2022-12-06 东风汽车股份有限公司 一种增程式冷藏车
CN115431861B (zh) * 2022-09-30 2024-02-27 东风汽车股份有限公司 一种增程式冷藏车
CN116220903A (zh) * 2023-02-02 2023-06-06 重庆赛力斯新能源汽车设计院有限公司 一种发动机失火故障诊断方法、装置、服务端及存储介质
CN116220903B (zh) * 2023-02-02 2024-04-19 重庆赛力斯新能源汽车设计院有限公司 一种发动机失火故障诊断方法、装置、服务端及存储介质

Also Published As

Publication number Publication date
CN102975624B (zh) 2016-06-08
CN102975624A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2014067216A1 (zh) 增程式电动汽车的增程控制系统
KR100289291B1 (ko) 하이브리드 차량의 제어장치
KR100289290B1 (ko) 하이브리드 차량의 제어장치
JP4135727B2 (ja) 動力出力装置、これを搭載する自動車及び動力出力装置の制御方法
US6593713B2 (en) Control apparatus for hybrid vehicle
EP0323203A2 (en) Control system for internal combustion engine with turbocharger
CN108501942B (zh) 车辆的控制装置
CN101734138A (zh) 混合动力系及用于控制混合动力系的方法
JP2000261908A (ja) 車両推進装置の制御装置
WO2011089723A1 (ja) 電力制御ユニットおよび電力制御ユニットの制御方法
JP4178912B2 (ja) 電動機付ターボチャージャを備える内燃機関の制御装置
US20160363109A1 (en) System for controlling engine
JP5280392B2 (ja) 内燃機関制御装置
CN101335462A (zh) 车辆电池充电器及其操作方法
KR20100010544A (ko) 하이브리드 차량용 외장형 오일펌프 제어장치
US11465607B2 (en) Hybrid vehicle
JPH05240058A (ja) ターボチャージャ付き内燃機関
JP2004044433A (ja) ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両
CN112152526A (zh) 一种智能汽车发电机预激磁电流转速响应节能控制方法
JP7477049B2 (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
JP2004027943A (ja) ハイブリッド型の動力出力装置及びその制御方法、並びにハイブリッド車両
JP3721987B2 (ja) 内燃機関の始動制御装置
WO2023007531A1 (ja) 車両の制御方法及び車両の制御装置
JP2004144007A (ja) 動力出力装置及びその制御方法並びにハイブリッド車両
JP2006046297A (ja) ハイブリッド車の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887670

Country of ref document: EP

Kind code of ref document: A1