WO2014065191A1 - 感染評価系モデル - Google Patents

感染評価系モデル Download PDF

Info

Publication number
WO2014065191A1
WO2014065191A1 PCT/JP2013/078200 JP2013078200W WO2014065191A1 WO 2014065191 A1 WO2014065191 A1 WO 2014065191A1 JP 2013078200 W JP2013078200 W JP 2013078200W WO 2014065191 A1 WO2014065191 A1 WO 2014065191A1
Authority
WO
WIPO (PCT)
Prior art keywords
infection
gel
medium
catheter
model
Prior art date
Application number
PCT/JP2013/078200
Other languages
English (en)
French (fr)
Inventor
勇壮 原賀
和夫 比嘉
慶一 仁田原
Original Assignee
学校法人 福岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 福岡大学 filed Critical 学校法人 福岡大学
Priority to JP2014543258A priority Critical patent/JP5954640B2/ja
Publication of WO2014065191A1 publication Critical patent/WO2014065191A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/02Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by impregnation, e.g. using swabs or loops
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/04Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles

Definitions

  • the present invention relates to an in vitro infection evaluation system model.
  • Staphylococcus is one of the typical bacteria that cause such infection.
  • staphylococci An example of infection by staphylococci is an infection associated with the epidural catheter surface. In this infection, staphylococci are most often detected from the epidural catheter surface of patients with epidural abscesses. Thus, although it is known that staphylococci are transmitted from the skin surface to the deep part of the body, staphylococci themselves do not have the ability to move. Therefore, the mechanism of staphylococcal infection from the skin surface to the deep body has not been clarified.
  • an object of the present invention is to develop an in vitro infection evaluation model and an infection evaluation method that are useful for elucidating bacterial infection mechanisms.
  • the inventors have found that infection in the deep part of the body caused by bacteria that do not have mobility such as staphylococci is caused by the size and movement of in-vivo indwelling objects such as needles and catheters inserted into the body surface. I guessed that. From this inference, the inventors completed the present invention by preparing an infection evaluation model and confirming the usefulness of the infection evaluation model.
  • the bacteria spread not only in a planar manner on the application surface to which the bacteria are applied, but also in a three-dimensional manner along an indwelling object such as an inserted catheter.
  • the inventors confirmed the surprising fact that the change of the position due to the reciprocating movement of the inserted in-vivo indwelling object can affect the three-dimensional spread of bacteria.
  • the present invention has the following configuration.
  • the first configuration of the present invention is an insertion step of inserting an in vivo indwelling object such as a needle or a catheter into a gel-like medium, and applying bacteria near the insertion site or the exit site of the inserted in vivo indwelling material
  • It is an infection evaluation method characterized by including an application
  • the second configuration of the present invention is the infection evaluation method according to the first configuration, further including a position changing step of changing the insertion position of the inserted in-vivo indwelling object.
  • a third configuration of the present invention is an infection evaluation model for performing the infection evaluation method according to the first or second configuration, wherein the infection evaluation model includes a gel medium, and the gel medium includes a needle. It is possible to evaluate the spread of bacterial infection by evaluating the appearance change of the gel-like medium due to the spread of bacterial infection. It is an infection evaluation model characterized by being possible.
  • a fourth configuration of the present invention is the infection evaluation model according to the third configuration, wherein the shape of the gel medium is any one of a polygonal shape, a spherical shape, and an ellipsoidal shape.
  • the gel-like medium contains a color reagent, and the color of the color reagent changes due to a pH change caused by a reaction between the bacteria and the substrate, and an appearance change can be evaluated.
  • the infection evaluation model according to any one of the third to fourth features.
  • the appearance change means that the appearance change can be confirmed by UV irradiation or microscopic observation even if the appearance change cannot be confirmed visually, in addition to the appearance change that can be visually confirmed by colony formation, color change, etc.
  • the in-vivo indwelling is defined as an instrument that is currently indwelled or used for the purpose of indwelling in the future. .
  • the present invention has made it possible to provide an in vitro infection evaluation model useful for elucidating bacterial infection mechanisms. As a result, it is possible to objectively evaluate infections in the deep part of the body. Therefore, development of drugs for preventing deep body infections and development of in-vivo indwellers that are difficult to spread can be expected.
  • a gel medium is an essential component.
  • the type of gel medium is not particularly limited as long as it has solidity, and various gel mediums such as an agar medium and a gelatin medium can be used depending on the bacterial species to be examined.
  • gel-like media include mannitol salt agar, DNase agar, bead-Parker agar basic, bile exrin agar, cetrimide agar, Vogel Johnson agar, Brain-Heart Infusion agar, Heart Infusion Examples include an agar medium, chocolate medium, blood medium, and salted egg agar medium.
  • it may be preferable to make fine adjustments to the composition such as changing the hardness of the culture medium using the in-vivo inspected, or adding a color reagent.
  • the composition an agar medium is preferably used. Thereby, sterilization by an autoclave can be performed, and since it becomes easy to make it into solid form, it has the effect of improving the handleability of a gel-like culture medium.
  • the substrate can be selected from various viewpoints, and examples thereof include compounds that are fermented by bacteria, compounds that are decomposed by proteins produced by bacteria, compounds that serve as nutrients for bacteria, and the like.
  • various compounds such as a color reagent that cause an appearance change can be added to the composition of the gel medium.
  • the gelatinous culture medium normally used should just be selected with respect to the bacteria to examine.
  • Staphylococcus aureus is used as bacteria, and Mannit salt agar is used as the gel-like medium.
  • mannitol is included as a substrate
  • phenol red is included as a color reagent.
  • Staphylococcus aureus ferments using mannitol as a substrate to produce acidic by-products. By this by-product, the coloration of phenol red changes from red to yellow (or yellowish white) and can be visually confirmed, so that the spread of Staphylococcus aureus in the gel medium can be confirmed.
  • pathogenic staphylococci are used as bacteria, and DNase agar is used as a gel medium.
  • deoxyribonucleic acid is contained as a substrate, and toluidine blue or methyl green is used as a color reagent.
  • toluidine blue and methyl green form a complex with deoxyribonucleic acid
  • deoxyribonucleic acid is hydrolyzed by DNase produced from pathogenic staphylococci, and the structure of the complex is changed.
  • the color of methyl green can be confirmed by visual observation, so that the spread of pathogenic staphylococci in the gel medium can be confirmed.
  • the change in appearance due to bacterial colonization can be directly evaluated. These evaluation methods have an effect that the spread of bacteria can be more easily evaluated because the appearance change can be caught with the naked eye.
  • Other appearance changes include, for example, changes in color due to UV irradiation and changes in appearance due to microscopic observation.
  • the shape of the gel medium can be selected from various viewpoints such as the in-vivo indwelling to be evaluated and the purpose of the experiment. That is, the shape of the gel medium is not particularly limited as long as the insertion portion can be secured and the spread of bacteria on the insertion direction axis into which the in-vivo indwelling material is inserted can be evaluated. Examples of the shape of such a gel-like medium include a polygonal shape, a spherical shape, and an ellipsoidal shape, and it is only necessary to have an insertion portion in these shapes.
  • the insertion portion is not particularly limited as long as the in-vivo indwelling object can be inserted, but may be configured as a point for insertion (insertion point) or a surface (insertion surface). Similarly, the hardness of the gel medium can be changed from various viewpoints such as the purpose of the experiment.
  • the in-vivo indwelling is defined as an instrument that is currently indwelled or used for the purpose of indwelling in the future.
  • examples of such in vivo indwelling materials include needles, catheters, metal pins, implants, sutures, and drains.
  • FIG. 1 shows an example of a method for preparing an infection evaluation model
  • Figs. 2 and 3 show examples of using a needle as an in-vivo indwelling (infection evaluation model A)
  • Fig. 4 shows a case of using a catheter as an in-vivo indwelling.
  • infection evaluation model B As the gel medium, a mannitol salt agar medium is used, and the shape thereof is a rectangular parallelepiped.
  • S. aureus is assumed.
  • an indwelling object such as a needle or a catheter is inserted into the insertion surface (insertion process).
  • a bacterial solution containing bacteria is applied in the vicinity of the insertion site (FIG. 1-a) or the exit site (FIG. 1-g) of the in-vivo indwelling (application process).
  • coating process although an order may be reversed, it is preferable to perform an insertion process previously.
  • the infection evaluation model is cultured (culture process).
  • the culture is not particularly limited, and various culture conditions according to the purpose of evaluation such as bacterial species and the environment of the in-vivo indwelling can be employed.
  • the position of the in-vivo indwelling object can be changed after completion of the coating process or during the culture process (position changing process). This makes it possible to evaluate the effect of changes in the position of in-vivo indwelling on the degree of bacterial invasion, thus elucidating the mechanism of bacterial invasion and the development of drugs to prevent deep body infection, and the spread of infection It has the effect that development of difficult in vivo indwelling can be expected.
  • the position change need not be particularly limited, such as the number and degree of change, and in order to more appropriately evaluate the invasion of bacteria into the living body, an appropriate position change assumed in the in-vivo indwelling object may be performed.
  • a needle is used as an in-vivo indwelling object, and a needle placed in a blood vessel or the like is assumed.
  • the indwelling needle is fixed with a seal or the like, so the position of the needle does not change greatly, and even if it changes, it is about several mm, but this position change may be repeated.
  • the epidural catheter is assumed for the infection evaluation model B, but the position change is about several mm, and the position change may be repeated. From these facts, it is possible to evaluate the degree of bacterial invasion caused by the change of the position of the in-vivo indwelling by changing the position of the needle or catheter by several millimeters or by repeating the change of position.
  • Fu10 strain Used bacterial strain, Fu10 strain >> 1. A methicillin-resistant Staphylococcus aureus strain Fu10 was used (Haraga et al. N Engl J Med 1999; 23: 2028). 2. Fu10 strain was a bacterial strain isolated at Fukuoka University Hospital, and Fu10 strain was used in all the following experiments. In the following experiment, “bacteria” or “MRSA” refers to this Fu10 strain.
  • ⁇ Method> 1 Autoclaving of mannitol salt agar was performed. Thereafter, a 58 ° C. mannitol salt agar medium was placed in a sterile rectangular petri dish and allowed to stand to solidify. A material obtained by excising half of the solidified mannitol salt agar medium (hereinafter abbreviated as “Agar medium model A”) was used for the examination. 2. MRSA was cultured to prepare MRSA solutions adjusted to concentrations of 10 4 , 10 5 , 10 7 , and 10 9 cfu / mL, respectively. 3. As shown in FIG.
  • each adjusted MRSA solution was applied to the insertion surface of the agar medium model A using a sterile cotton swab and dried for 1 hour. The same operation was performed using physiological saline as a control solution. 4).
  • the agar medium model A was placed horizontally, and an 18G needle (length 37 mm, diameter 1.41 mm) was inserted vertically into the insertion surface (FIG. 1-a). When inserting the needle, it was carefully inserted so that the tip of the needle did not touch the bottom of the Petri dish so that the insertion surface of the agar medium did not collapse. The inserted needle was left as it was without being removed. 5.
  • the agar medium model A was cultured at 37 ° C.
  • Agar medium model A contains mannitol and phenol red. MRSA eroded by agar medium model A produces acidic substances by fermenting mannitol. This produced acidic substance changes the color of phenol red in the agar medium model A from red to yellow. This range of yellow discoloration makes it easier to evaluate the spread of MRSA colonies in agar medium model A.
  • FIG. 5 shows the result of photography. 2. As the MRSA concentration increased, the range of yellow discoloration deepened and widened along the needle direction. 3. In addition, the depth in the vertical direction (bacterial growth depth) from the insertion surface was measured for the degree of discoloration to yellow, and 0 mm, 10 4 cfu / mL for physiological saline. MRSA solution 0mm, 10 5 cfu / mL MRSA solution 0mm, 10 7 cfu / mL MRSA solution 9mm, 10 9 cfu / mL The MRSA solution was 35 mm. 4).
  • FIG. 6 shows the plotted results of the measurement results of the bacterial growth depth as a ratio with the needle length.
  • ⁇ Method> 1 The same procedure as in Experiment 1 was performed. That is, the MRSA solution to be applied is 10 7 cfu / mL, and the needles to be inserted are 27G (length 19 mm, diameter 0.94 mm), 25 G (length 24 mm, diameter 1.02 mm), 23 G (length 24 mm, diameter), respectively. 1.10mm), 22G (length 31mm, diameter 1.16mm), 18G (length 37mm, diameter 1.41mm). 2. The number of samples was 7 at each concentration, and the bacterial growth depth was measured and photographed in agar medium model A.
  • ⁇ Method> 1 The method will be described with reference to FIG. 2. An autoclave of 50 mL of mannitol salt agar was performed. Thereafter, a 58 ° C. mannitol salt agar medium was placed in a sterile rectangular petri dish and allowed to stand to solidify (FIG. 1-b). 3. An epidural catheter (length 100 mm, diameter 1.0 mm, manufactured by Hakko) was placed on the solidified mannitol salt agar medium (FIG. 1-c). This catheter is marked every 10 mm and is sterilized. 4). Sterilized glass slides were placed on both sides of the catheter and fixed gently to prevent the catheter from moving. In this state, a 58 ° C.
  • mannitol salt agar medium was placed and allowed to stand to solidify (FIG. 1-d). 5. Both ends of the solidified material were excised with the mannitol salt agar medium and the slide glass so that the vertical length along the catheter was about 50 mm (FIG. 1-e). At this time, mannitol salt agar and slide glass were excised so as not to excise the catheter. In addition, in the excised section, fine irregularities were smoothed by applying and solidifying mannitol salt agar medium autoclaved from above (FIG. 1-f). Hereinafter, the agar medium model B is prepared by a series of these operations. 6).
  • the catheter was moved by pulling from above so that the agar medium model B would not be cracked due to the bending of the catheter. 8).
  • the agar medium model B was cultured at 37 ° C. for 72 hours, and evaluated by the same method as in Experiment 1.
  • ⁇ Method> 1 In the vicinity of the catheter insertion outlet of Agar Medium Model B, 500 ⁇ L of MRSA solution adjusted to 10 9 cfu / mL was pipetted and placed diagonally so that the coated surface was on the lower side (FIG. 1-g). 2. The MRSA solution was applied and slanted, and then the agar medium model B was cultured at 37 ° C. for 24 hours. At this time, the culture was performed without moving the catheter. After the culture operation was completed, the bacterial growth depth was measured and photographs were taken. In addition, the following examination was further performed with the time point of the 24-hour culture operation as T0 (0 hour). After 3.2, the culture operation was continued, and the following series of movement operations were performed every 12 hours.
  • ⁇ Method> 1 In the vicinity of the catheter insertion opening of Agar Medium Model B, 500 ⁇ L of MRSA solution adjusted to 10 9 cfu / mL was pipetted and placed diagonally so that the coated surface was on the lower side (FIG. 1-g). 2. The MRSA solution was applied and slanted, and then the agar medium model B was cultured at 37 ° C. for 24 hours. At this time, the culture was performed without moving the catheter. After the culture operation was completed, the bacterial growth depth was measured and photographs were taken. In addition, the following examination was further performed with the time point of the 24-hour culture operation as T0 (0 hour). After the culturing operation of 3.2, the following series of moving operations was performed for 5 seconds.

Abstract

【課題】 細菌の感染メカニズムの解明に有用なインビトロ感染評価モデルの開発 【解決手段】 (1) ゲル状培地に,針やカテーテルなどの生体内留置物を挿入する挿入工程と, 挿入された生体内留置物の挿入個所近傍もしくは出口個所近傍に細菌を塗布する塗布工程と, 塗布工程後にゲル状培地モデルを培養する培養工程と, 培養工程後のゲル状培地の外観変化を評価する評価工程と, を含むことを特徴とする感染評価方法 (2) (1)に記載の感染評価方法を行うための感染評価モデルであって, 感染評価モデルはゲル状培地を備え, 前記ゲル状培地は,針やカテーテルなどの生体内留置物を挿入し得る挿入部を備え, 細菌感染の広がりにより前記ゲル状培地の外観変化が起こり,この外観変化を評価することにより,細菌感染の広がりを評価することが可能なこと, を特徴とする感染評価モデル

Description

感染評価系モデル
 本発明は,インビトロ感染評価系モデルに関する。
 細菌感染は,時として,医療上,大きな問題を引き起こす。このような感染を引き起こす菌の中で代表的な菌の一つとして挙げられるのが,ブドウ球菌である。
 ブドウ球菌による感染の例として,硬膜外カテーテル表面に関連した感染症が挙げられる。この感染症において,ブドウ球菌は,硬膜外膿瘍の患者の硬膜外カテーテル表面から最も頻回に検出される。このように,皮膚表層から体深部にブドウ球菌が感染することは知られているものの,ブドウ球菌は,それ自体,動く能力を持たない。よって,皮膚表層から体深部にブドウ球菌が感染するメカニズムは,明らかになっていないのが現状である。
 ブドウ球菌をはじめとした移動能をもたない細菌が,体表のみならず体深部まで侵入し感染を引き起こすかについて,種々の説があるものの,実験的な確証は得られていない。
 
Ruppen W, Derry S, McQuayHJ, Moore RA: Infection rates associated with epidural indwelling cathetersurfaces for seven days or longer: systematic review and meta-analysis. BMC Palliat Care 2007; 4: 6: 3 Sethna NF,Clendenin D, Athiraman U, SolodiukJ, Rodriquez DP, Zurakowski D: Incidence of epiduralcatheter surface-associated infections after continuous epidural analgesia inchildren. Anesthesiology 2010; 113: 224-32 van de Wetering MD, van Woensel JB: Prophylactic antibiotics for preventing earlycentral venous catheter surface gram positive infections in oncology patients.Cochrane Database Syst Rev 2007; 24: CD003295 Reynolds F: Neurological infections after neuraxialanesthesia. Anesthesiol Clin2008; 26: 23-52 Hebl JR: Theimportance and implications of aseptic techniques during regional anesthesia. Reg Anesth Pain Med 2006; 31:311-23 Haraga I, NomuraS, Nagayama A: The effects of vancomycinand beta-lactam antibiotics on vancomycin-resistantStaphylococcus aureus. N EnglJ Med 1999; 23: 2028 Sato S, Sakuragi T, Dan K: Human skinflora as a potential source of epidural abscess. Anesthesiology 1996; 85:1276-82 Centers for Disease Control and Prevention. Guideline for theprevention of surgical site infection 1999. Ho KM, Litton E. Use of chlorhexidine-impregnateddressing to prevent vascular and epidural catheter surface colonization andinfection : a meta-analysis. J Antimicrob Chemother 2006; 58: 281-287 Morin AM, Kerwat KM, Klotz M, Niestolik R, Ruf VE, Wulf H, Zimmermann S, EberhartLH: Risk factors for bacterial catheter surface colonization in regional anaesthesia. BMC Anesthesiol2005; 17: 1
 上記のとおり,ブドウ球菌をはじめとした移動能をもたない細菌が,なぜ体表のみならず体深部まで侵入し感染を引き起こすかについて,種々の説があるものの,実験的な確証は得られていない。このことから発明者らは,細菌の感染メカニズムを解明できる実験系の確立が必要であると考えた。
 このような事情を背景として本発明では,細菌の感染メカニズムの解明に有用なインビトロ感染評価モデルおよび感染評価方法の開発を課題とする。
 発明者らは,ブドウ球菌等の移動能を持たない細菌が引き起こす体深部への感染は,体表に挿入する針やカテーテル等の生体内留置物の大きさや移動などが影響して,引き起こされるのではないかと推察した。この推察から発明者らは,感染評価モデルの作製を行うとともに,その感染評価モデルの有用性を確認することにより,本発明を完成させた。
 すなわち,本発明の感染評価モデルによると,細菌は,細菌を塗布した塗布面での平面的な広がりのみならず,挿入されたカテーテル等の生体内留置物にそって三次元的に広がっており,この際,挿入された生体内留置物の往復移動などによる位置の変更が,細菌の三次元的な広がりに影響を及ぼしうるという驚くべき事実を発明者らは確認した。
 本発明は,以下の構成からなる。
 本発明の第一の構成は,ゲル状培地に,針やカテーテルなどの生体内留置物を挿入する挿入工程と,挿入された生体内留置物の挿入個所近傍もしくは出口個所近傍に細菌を塗布する塗布工程と,塗布工程後にゲル状培地モデルを培養する培養工程と,培養工程後のゲル状培地の外観変化を評価する評価工程とを含むことを特徴とする感染評価方法である。
 本発明の第二の構成は,さらに,挿入された生体内留置物の挿入位置を変更する位置変更工程を含むことを特徴とする第一の構成に記載の感染評価方法である。
 本発明の第三の構成は,第一ないし第二の構成に記載の感染評価方法を行うための感染評価モデルであって,感染評価モデルはゲル状培地を備え,前記ゲル状培地は,針やカテーテルなどの生体内留置物を挿入し得る挿入部を備え,細菌感染の広がりにより前記ゲル状培地の外観変化が起こり,この外観変化を評価することにより,細菌感染の広がりを評価することが可能なことを特徴とする感染評価モデルである。
 本発明の第四の構成は,前記ゲル状培地の形状が,多角体状,球状,楕円体状のいずれかであることを特徴とする第三の構成に記載の感染評価モデルである。
 本発明の第五の構成は,前記ゲル状培地が呈色試薬を含み,細菌と基質との反応によるpH変化により,呈色試薬の色が変化し,外観変化の評価が可能となることを特徴とする第三ないし第四の構成に記載の感染評価モデルである。
 本発明において外観変化とは,コロニー形成や色調の変化などにより目視で確認可能な外観変化に加え,肉眼的には外観変化が確認できなくてもUV照射や顕微鏡観察などにより外観変化が確認できることを含む概念として定義される。
 また,本発明において生体内留置物とは,現在,生体内に留置して用いられている器具,もしくは将来的に生体内に留置することを目的として設計・開発等された器具として定義される。
 
 本発明により,細菌の感染メカニズムの解明に有用なインビトロ感染評価モデルの提供が可能になった。これにより,体深部への感染の客観的評価が可能となることから,体深部感染を防ぐための薬剤の開発や,感染が広がりにくい生体内留置物の開発の促進が期待できる。
 
感染評価モデルの作製方法ならびに実験方法を示した図 感染評価モデルの使用状態の例を示した図 感染評価モデルの使用状態の例を示した図 感染評価モデルの使用状態の例を示した図 細菌濃度の違いによる細菌発育深度の比較を示した図 細菌濃度と細菌発育深度の相関を示した図 針の大きさと細菌発育深度の相関を示した図 細菌濃度と細菌発育深度の相関を示した図 往復移動回数と細菌発育深度を比較した図 往復移動回数と細菌発育深度の相関を示した図 往復移動回数と細菌発育深度の相関を示した図
 本発明の感染評価モデルおよび感染評価方法について,説明を行う。
 本発明の感染評価モデルでは,ゲル状培地を必須の構成とする。
 ゲル状培地の種類としては,固形性を有する限り特に限定する必要はなく,検討を行う細菌種に応じて,寒天培地やゼラチン培地など種々のゲル状培地を用いることができる。このようなゲル状培地として例えば,マンニット食塩寒天培地,DNase寒天培地,ベアド-パーカー寒天基礎培地,胆汁エクスリン寒天培地,セトリミド寒天培地,フォーゲル・ジョンソン寒天培地,Brain-Heart Infusion寒天培地,Heart Infusion寒天培地,チョコレート培地,血液培地,食塩卵寒天培地などが挙げられる。これらのゲル状培地については,検討を行う生体内留置物等により培地の固さを変更したり,呈色試薬を添加するなど,組成の微調整を行う方が好ましい場合があるため,検討目的に応じて,組成に種々の変更を加えることができる。
 ゲル状培地としては,寒天培地を用いることが好ましい。これにより,オートクレーブによる滅菌処理を行うことができ,かつ,固形状にすることが容易になるため,ゲル状培地の取扱い性を向上させるという効果を有する。
 ゲル状培地の組成については,用いる細菌種に応じて基質を選択する必要がある。基質については種々の観点から選択することができ,例えば,細菌により発酵される化合物,細菌の産生するタンパク等により分解等される化合物,細菌の栄養素となる化合物などが挙げられる。また,細菌と基質の組み合わせに応じて,呈色試薬など外観変化を生じさせるような種々の化合物をゲル状培地の組成に加えることができる。
 これらの組み合わせについては,検討を行う細菌に対し,通常用いられるゲル状培地を選択すればよい。
 組み合わせの一例を挙げると,細菌として黄色ブドウ球菌を用い,ゲル状培地としてマンニット食塩寒天培地を用いる。この場合,基質としてマンニトールが含まれており,呈色試薬としてフェノールレッドが含まれている。黄色ブドウ球菌はマンニトールを基質として発酵し,酸性の副生成物を生ずる。この副生成物により,フェノールレッドの呈色が赤から黄色(もしくは黄白色)に変化し目視で確認できることから,ゲル状培地中の黄色ブドウ球菌の広がりが確認できる。
 別の例として,細菌として病原性ブドウ球菌を用い,ゲル状培地としてDNase寒天培地を用いる。この場合,基質としてデオキシリボ核酸が含まれており,呈色試薬としてトルイジンブルーやメチルグリーンなどを用いる。この場合,トルイジンブルーやメチルグリーンはデオキシリボ核酸と複合物を形成しており,病原性ブドウ球菌から産生されたDNaseにより,デオキシリボ核酸が加水分解され,複合物の構造が変化することにより,トルイジンブルーやメチルグリーンの色調が変化し目視で確認できることから,ゲル状培地中の病原性ブドウ球菌の広がりが確認できる。
 また,例に挙げたような,呈色試薬による外観変化だけでなく,当然のことではあるが,細菌のコロニー形成による外観変化を直接評価することもできる。これらの評価方法では,肉眼で外観変化をとらえることが可能となるため,細菌の広がりの評価をより簡便に行うことができるという効果を有する。この他の外観変化として,例えば,UV照射による色彩の変化や顕微鏡観察による外観変化などが挙げられる。
 ゲル状培地の形状については,評価を行う生体内留置物や実験目的など種々の観点から選択することができる。すなわち,ゲル状培地の形状は,挿入部を確保でき,かつ,生体内留置物を挿入した挿入方向軸の細菌の広がりを評価し得る限り,特に限定する必要はない。このようなゲル状培地の形状として,例えば,多角体状,球状,楕円体状などが挙げられ,これらの形状に挿入部を有していればよい。挿入部は,生体内留置物を挿入し得る限り特に限定する必要はないが,挿入を行う点(挿入点)として構成してもよいし,面(挿入面)として構成してもよい。また,同様に,実験目的など種々の観点から,ゲル状培地の硬さを変更することができる。
 なお,本発明において生体内留置物とは,現在,生体内に留置して用いられている器具,もしくは将来的に生体内に留置することを目的として設計・開発等された器具として定義される。このような生体内留置物として,例えば,針,カテーテル,金属ピン,インプラント,縫合糸,ドレーンなどが挙げられる。
 続いて,本発明の感染評価モデルの使用方法について図面を例にとり,説明を行う。図1は感染評価モデルの作製方法の例,図2および図3は生体内留置物として針を用いた場合の例(感染評価モデルA),図4は生体内留置物としてカテーテルを用いた場合の例(感染評価モデルB)である。ゲル状培地としては,マンニット食塩寒天培地を用いており,その形状は,いずれも直方体状である。また,細菌としては,黄色ブドウ球菌を想定した例である。
 感染評価モデルでは,挿入面に針ないしカテーテル等の生体内留置物を挿入する(挿入工程)。挿入工程後,生体内留置物の挿入個所近傍(図1-a)もしくは出口個所近傍(図1-g)に細菌を含む細菌溶液を塗布する(塗布工程)。これら挿入工程と塗布工程については,順序を逆にしても構わないが,挿入工程を先に行うことが好ましい。これにより,挿入作業による細菌の侵入を排除することができるため,生体内留置物の移動等による細菌侵入のより適切な評価が可能になるという効果を有する。
 塗布工程が終了した後,感染評価モデルの培養を行う(培養工程)。培養については,特に限定する必要はなく,細菌種や想定される生体内留置物の環境など,評価目的に応じた種々の培養条件を採用することができる。
 塗布工程の終了後,もしくは培養工程の途中などに,生体内留置物の位置の変更を行うことができる(位置変更工程)。これにより,生体内留置物の位置の変更が細菌侵入の程度に及ぼす影響を評価することが可能となるため,細菌侵入のメカニズムの解明や体深部感染を防ぐための薬剤の開発,感染が広がりにくい生体内留置物の開発等が期待できるという効果を有する。
 位置の変更について,変更の回数や程度など特に限定する必要はなく,細菌の生体内侵入をより適切に評価するため,生体内留置物で想定される適切な位置の変更を行えばよい。
 例えば,感染評価モデルAについては,生体内留置物として針を用いており,血管等に留置した針を想定している。通常,留置された針はシール等で固定されているため,大きく針の位置が変わることは無く,変わっても数mm程度であるが,この位置変更が繰り返される可能性がある。同様に,感染評価モデルBについても,硬膜外カテーテルを想定しているが,位置の変更は数mm程度であり,位置変更が繰り返される可能性がある。これらのことから,針ないしカテーテルの位置を数mm程度変更する,もしくはその位置変更を往復して繰り返すことにより,生体内留置物の位置の変更が及ぼす細菌侵入の程度を評価することができる。
 培養工程後に,細菌増殖によりゲル状培地の外観が変化することから,この外観変化を評価することができる(評価工程)。細菌が増殖すると,通常,コロニーを形成する(図2,図4)。細菌溶液を塗布した塗布面付近には通常の細菌増殖が観察される。これとは別に,生体内留置物方向に沿った細菌の増殖が観察される場合がある。この生体内留置物方向に沿った細菌の増殖を,挿入面ないし挿入個所からの距離(発育深度)として評価するなどすればよい。また,呈色試薬等を用いた場合,図3に示すように,ゲル状培地の色の変化をとらえることができ,発育深度評価の簡便性が向上するという効果を有する。なお,図3では,説明のため変色部分を平面的に表現しているが,実際は細菌増殖に則した形で立体的に変色部分は広がっている(図5,図10)。
 
 以下,本発明について,実施例を用いて詳細に説明するが,当然のことながら,本発明はこの内容に限定されるものではない。
<<使用細菌株,Fu10株>>
1.メチシリン耐性黄色ブドウ球菌,Fu10株を用いた(Haraga et al. N Engl J Med 1999; 23: 2028)。
2.Fu10株は,福岡大学病院にて分離された細菌株であり,以下の全ての実験でFu10株を用いた。なお,以下の実験で,「細菌」もしくは「MRSA」というときは,このFu10株を指す。
<<実験1,細菌付着針の挿入による細菌発育深度の比較>>
 細菌濃度が異なる溶液を付着させた針を,寒天培地に挿入することにより,細菌濃度の違いが寒天培地の細菌発育深度に及ぼす影響を調べることを目的として,下記の検討を行った。
<方法>
1.マンニット食塩寒天培地のオートクレーブを行った。その後,無菌で長方形のペトリシャーレ中に58℃のマンニット食塩寒天培地を入れて静置し,固形化させた。固形化したマンニット食塩寒天培地の半分を切除したもの(以下,「寒天培地モデルA」と略する)を,検討に用いた。
2.MRSAの培養を行い,それぞれ104,105,107,109cfu/mLの濃度に調整したMRSA溶液を作製した。
3.調整したそれぞれのMRSA溶液を,図1-aに示すように,無菌綿棒を用いて寒天培地モデルAの挿入面に塗布を行い,1時間乾燥させた。なお,対照溶液として生理食塩液を用いて,同様の操作を行った。
4.乾燥後,寒天培地モデルAを水平に置き,挿入面に垂直に18Gの針(長さ37mm,直径1.41mm)を挿入した(図1-a)。針の挿入の際は,ペトリシャーレの底に針の先が接触しないように慎重に挿入を行い,寒天培地の挿入面が崩れないようにした。また,挿入した針は,抜き去らず,そのままの状態にした。
5.針を挿入後,37℃で72時間の条件で,寒天培地モデルAの培養を行った。サンプル数は,各濃度,7で行い,寒天培地モデルAにおける細菌の発育深度の測定および写真撮影を行った。
6.なお,寒天培地モデルAには,マンニトールとフェノールレッドが含まれている。寒天培地モデルAに浸食したMRSAはマンニトールを発酵することにより酸性物質を産生する。この産生された酸性物質により,寒天培地モデルA中のフェノールレッドが,赤から黄色へ変色する。この黄色への変色範囲は,寒天培地モデルAにおけるMRSAのコロニーの広がりの評価を行いやすくする。
<結果>
1.図5に写真撮影の結果を示す。
2.MRSAの濃度が上昇するにつれ,黄色への変色範囲が針の方向に沿って深く,そして広くなっていた。
3.また,黄色への変色度合いについて,挿入面からの鉛直方向への深度(細菌発育深度)を測定したところ,生理食塩液では0mm,104cfu/mL
MRSA溶液では0mm,105cfu/mL MRSA溶液では0mm,107cfu/mL MRSA溶液では9mm,109cfu/mL
MRSA溶液では35mmであった。
4.細菌発育深度の測定結果を,針の長さとの比率として,プロットした結果を図6に示す。このプロットした結果から回帰直線(Y=-22.5+9.18X,相関係数0.76,寄与率0.57)が得られ,強い正の相関があることが分かった(p<0.001)。
5.これらの結果から,MRSAの細菌濃度が濃くなれば濃くなるほど,針に沿ってMRSAが本件培地モデルに,より深く浸透していくことが分かった。
<<実験2,大きさの異なる針の挿入が及ぼす細菌発育深度への影響>>
 細菌濃度を同一濃度に揃え,異なる直径の針を,寒天培地に挿入することにより,針の直径の違いが寒天培地の細菌発育深度に及ぼす影響を調べることを目的として,下記の検討を行った。
<方法>
1.実験1と同様の手技で行った。すなわち,塗布するMRSA溶液を,107cfu/mLとし,挿入する針をそれぞれ,27G(長さ19mm,直径0.94mm),25G(長さ24mm,直径1.02mm),23G(長さ24mm,直径1.10mm),22G(長さ31mm,直径1.16mm),18G(長さ37mm,直径1.41mm)とした。
2.サンプル数は,各濃度,7で行い,寒天培地モデルAにおける細菌の発育深度の測定および写真撮影を行った。
<結果>
 結果を図7に示す。このプロット結果から,回帰直線(Y=-79.7+99.4X,相関係数0.38,寄与率0.14)が得られた。また,針の直径が大きくなるほど,MRSAの発育深度が深くなっているように思われたが,統計学的に有意な相関ではなかった(P=0.0062)。
<<実験3,カテーテルの移動が及ぼす細菌発育深度への影響>>
 実験1と類似の実験条件において,針の移動(位置変更)が寒天培地の細菌発育深度に及ぼす影響を調べることを目的として,下記の検討を行った。
<方法>
1.図1を用いながら,方法について説明を行う。
2.マンニット食塩寒天培地50mLのオートクレーブを行った。その後,無菌で長方形のペトリシャーレ中に58℃のマンニット食塩寒天培地を入れて静置し,固形化させた(図1-b)。
3.固形化したマンニット食塩寒天培地上に,硬膜外麻酔用カテーテル(長さ100mm,直径1.0mm,Hakko社製)を置いた(図1-c)。このカテーテルには,10mm毎にマークが施してあり,滅菌済みのものである。
4.カテーテルが動かないよう,滅菌済みのスライドガラスをカテーテルの両側に置き,緩やかに固定した。この状態のものに,58℃のマンニット食塩寒天培地を入れて静置し,固形化させた(図1-d)。
5.カテーテルに沿った鉛直方向の長さがおよそ50mmとなるよう,固形化したものの両端を,マンニット食塩寒天培地およびスライドガラスごと切除した(図1-e)。この際,カテーテルについては切除しないよう,マンニット食塩寒天培地およびスライドガラスの切除を行った。加えて,切除した断面において,細かなでこぼこが生じたところについては,その上からオートクレーブしたマンニット食塩寒天培地を,ピペットで塗りつけ固形化することにより,平滑化した(図1-f)。以下,これら一連の操作により作製したものを,寒天培地モデルBとする。
6.寒天培地モデルBの,カテーテル挿入口付近に,各濃度(104,105,107,109cfu/mL)に調整したMRSA溶液500μLをピペットで塗布し,塗布面が下側に来るよう斜めに置いた(図1-g)。これにより,MRSAが,重力により,カテーテル表面を通じて寒天培地モデルB内に侵入することを避けることが可能となる。また,MRSA溶液の塗布操作の際,カテーテル表面にMRSA溶液が付着しないよう,無菌綿棒にて拭取りを行った。
7.塗布操作を行い斜めに1時間静置した後,カテーテルを上側(寒天培地モデルB内部側)に3cm移動させた(図1-h,1-i)。なお,この際,カテーテルが屈折することにより寒天培地モデルBにヒビ等が生じないよう,上側から引っ張ることにより,カテーテルを移動させた。
8.移動操作の後,37℃で72時間の条件で,寒天培地モデルBの培養を行い,実験1と同様の手法により,評価を行った。
<結果>
1.細菌発育深度の測定結果を,針の長さとの比率として,プロットした結果を図8に示す。このプロットした結果から回帰直線(Y=-19.9+11.3X,相関係数0.87,寄与率0.75)が得られ,強い正の相関があることが分かった(p<0.001)。
2.MRSAの細菌濃度が濃くなれば濃くなるほど,カテーテルに沿ってMRSAが寒天培地モデルBにより深く浸透していくことが分かった。
<<実験例4,カテーテルの頻回移動が及ぼす細菌発育深度への影響>>
 実験例3と同様の手技で,カテーテルを頻回に移動させることが,細菌発育深度にどのような影響を及ぼすかを調べるために行った。
<方法>
1.寒天培地モデルBの,カテーテル挿入出口付近に,109cfu/mLに調整したMRSA溶液500μLをピペットで塗布し,塗布面が下側に来るよう斜めに置いた(図1-g)。
2.MRSA溶液の塗布を行い斜めにした後,37℃で24時間,寒天培地モデルBの培養を行った。この際,カテーテルの移動操作は行わず,培養を行った。培養操作が終了した後,細菌発育深度の測定と写真撮影を行った。また,この24時間培養操作の時点をT0(0時間)として,以下の検討をさらに行った。
3.2の後,継続して培養操作を行い,12時間毎に下記の一連の移動操作を行った。
(1) カテーテルを上側に引いて,5mm移動させる(図1-j→1-k)。
(2) 移動させたカテーテルを5mm押して,元の位置に戻す(図1-k→1-l)。
(3) さらに,カテーテルを5mm押す(図1-l→1-m)。
(4) 移動させたカテーテルを5mm引いて,元の位置に戻す(図1-m→1-j)。
4.上記移動操作を,84時間後まで7回行い,各時点において細菌発育深度の測定と写真撮影を行った。
<結果>
1.鉛直方向への深度の測定結果を,針の長さとの比率として,プロットした結果を図9に示す。このプロットした結果から回帰直線(Y=-5.88+6.68X,相関係数0.95,寄与率0.91)が得られ,強い正の相関があることが分かった(p<0.001)。
2.また,カテーテルの移動有無を同一サンプルで比較した結果を,図10に示す。カテーテルの往復移動回数が増えれば増えるほど,黄色変色部分が,カテーテル軸方向に深く広がっていることが分かった。加えて,カテーテルの往復移動が無いサンプルでは,時間が経過しても,その黄色変色部位はMRSA塗布面近傍に留まり,カテーテル軸方向への黄色部分の広がりはほとんど見られなかった。
3.これらの結果より,移動回数が増えるにつれ,カテーテルに沿ってMRSAが寒天培地モデルBにより深く浸透していくことが分かった。
<<実験例5,カテーテルの頻回移動が及ぼす細菌発育深度への影響>>
 実験例4と同様の手技で,カテーテルを頻回に移動させることが,細菌発育深度にどのような影響を及ぼすかを調べるために行った。
<方法>
1.寒天培地モデルBの,カテーテル挿入口付近に,109cfu/mLに調整したMRSA溶液500μLをピペットで塗布し,塗布面が下側に来るよう斜めに置いた(図1-g)。
2.MRSA溶液の塗布を行い斜めにした後,37℃で24時間,寒天培地モデルBの培養を行った。この際,カテーテルの移動操作は行わず,培養を行った。培養操作が終了した後,細菌発育深度の測定と写真撮影を行った。また,この24時間培養操作の時点をT0(0時間)として,以下の検討をさらに行った。
3.2の培養操作の後,下記の一連の移動操作を5秒間の間に行った。
(1) カテーテルを上側に引いて,5mm移動させる(図1-j→1-k)。
(2) 移動させたカテーテルを5mm押して,元の位置に戻す(図1-k→1-l)。
(3) さらに,カテーテルを5mm押す(図1-l→1-m)。
(4) 移動させたカテーテルを5mm引いて,元の位置に戻す(図1-m→1-j)。
4.上記移動操作を,行わなかったサンプル,3回行ったサンプル,6回行ったサンプルを作製し,72時間後の細菌発育深度の測定と写真撮影を行った。
<結果>
1.鉛直方向への深度の測定結果を,針の長さとの比率として,プロットした結果を図11に示す。このプロットした結果から回帰直線(Y=-1.61+1.5X,相関係数0.86,寄与率0.75)が得られ,強い正の相関があることが分かった(p<0.001)。
2.このことから,移動回数が増えるにつれ,カテーテルに沿ってMRSAが寒天培地モデルBにより深く浸透していくことが分かった。
 

 

Claims (5)

  1. ゲル状培地に,針やカテーテルなどの生体内留置物を挿入する挿入工程と,
    挿入された生体内留置物の挿入個所近傍もしくは出口個所近傍に細菌を塗布する塗布工程と,
    塗布工程後にゲル状培地モデルを培養する培養工程と,
    培養工程後のゲル状培地の外観変化を評価する評価工程と,
    を含むことを特徴とする感染評価方法
     
  2. さらに,挿入された生体内留置物の挿入位置を変更する位置変更工程を含むことを特徴とする請求項1に記載の感染評価方法
     
  3. 請求項1ないし2に記載の感染評価方法を行うための感染評価モデルであって,
     感染評価モデルはゲル状培地を備え,
     前記ゲル状培地は,針やカテーテルなどの生体内留置物を挿入し得る挿入部を備え,
     細菌感染の広がりにより前記ゲル状培地の外観変化が起こり,この外観変化を評価することにより,細菌感染の広がりを評価することが可能なこと,
    を特徴とする感染評価モデル
     
  4. 前記ゲル状培地の形状が,多角体状,球状,楕円体状のいずれかであることを特徴とする請求項3に記載の感染評価モデル
     
  5. 前記ゲル状培地が呈色試薬を含み,細菌と基質との反応によるpH変化により,呈色試薬の色が変化し,外観変化の評価が可能となることを特徴とする請求項3ないし4に記載の感染評価モデル
     
     
PCT/JP2013/078200 2012-10-25 2013-10-17 感染評価系モデル WO2014065191A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014543258A JP5954640B2 (ja) 2012-10-25 2013-10-17 感染評価系モデル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-235888 2012-10-25
JP2012235888 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014065191A1 true WO2014065191A1 (ja) 2014-05-01

Family

ID=50544571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078200 WO2014065191A1 (ja) 2012-10-25 2013-10-17 感染評価系モデル

Country Status (2)

Country Link
JP (1) JP5954640B2 (ja)
WO (1) WO2014065191A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171964A (ja) * 2000-12-11 2002-06-18 Chisso Corp 黄色ブドウ球菌検出用培地積層物およびシート状培地
JP2005127759A (ja) * 2003-10-22 2005-05-19 Yokohama Kokusai Bio Kenkyusho:Kk pH指示薬を利用した糖質の検出方法
JP2007236331A (ja) * 2006-03-10 2007-09-20 National Institute For Materials Science 医療機器の生物学的評価方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231949B2 (ja) * 1980-01-23 1990-07-17 Konbiron Inc Pekuchinganjubaichinoseizoho
US6867015B1 (en) * 1995-02-01 2005-03-15 Gist-Brocades B.V. Rapid microbiological test for the detection of antibacterial compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171964A (ja) * 2000-12-11 2002-06-18 Chisso Corp 黄色ブドウ球菌検出用培地積層物およびシート状培地
JP2005127759A (ja) * 2003-10-22 2005-05-19 Yokohama Kokusai Bio Kenkyusho:Kk pH指示薬を利用した糖質の検出方法
JP2007236331A (ja) * 2006-03-10 2007-09-20 National Institute For Materials Science 医療機器の生物学的評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAAD ET AL.: "The Broad-Spectrum Activity and Efficacy of Catheters Coated with Minocycline and Rifampin", THE JOURNAL OF INFECTIOUS DISEASES, vol. 173, no. 2, 1996, pages 418 - 424 *
TCHOLAKIAN ET AL., DURABILITY OF ANTI-INFECTIVE EFFECT OF LONG-TERM SILICONE SHEATH CATHETERS IMPREGNATED WITH ANTIMICROBIAL AGENTS, ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 45, no. 7, 2001, pages 1990 - 1993 *

Also Published As

Publication number Publication date
JP5954640B2 (ja) 2016-07-20
JPWO2014065191A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
Dhom et al. Bacterial adhesion to suture material in a contaminated wound model: Comparison of monofilament, braided, and barbed sutures
Ryder Catheter-related infections: it’s all about biofilm
Taj et al. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus
JP5042624B2 (ja) 殺菌組成物、方法及びシステム
Revdiwala et al. Characterization of bacterial etiologic agents of biofilm formation in medical devices in critical care setup
Chauhan et al. Study of in vivo catheter biofilm infections using pediatric central venous catheter implanted in rat
Lungren et al. Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter–related infection: a leporine model efficacy analysis
CN102933212B (zh) 组合及应用
Hayles et al. Spiked titanium nanostructures that inhibit anaerobic dental pathogens
Osungunna et al. Antibiotic resistance profiles of biofilm-forming bacteria associated with urine and urinary catheters in a tertiary hospital in Ile-Ife, Nigeria
Chandra et al. A rabbit model for evaluation of catheter-associated fungal biofilms
JP5954640B2 (ja) 感染評価系モデル
Haraga et al. Increased biofilm formation ability and accelerated transport of Staphylococcus aureus along a catheter during reciprocal movements
Furtuna et al. Antimicrobial susceptibility and the pattern of a biofilm-forming pair of organisms from patients treated in intensive care units in Dr. Soetomo General Hospital, Indonesia
Ibraheem et al. Antibacterial Activity of Silver nanoparticles against Pathogenic Bacterial Isolates from Diabetic Foot Patients
Hegerova et al. Selenium nanoparticles and evaluation of their antimicrobial activity on bacterial isolates obtained from clinical specimens
Leibovitz et al. Biodynamics of biofilm formation on nasogastric tubes in elderly patients
TW202108187A (zh) 塗覆抗微生物肽於生物材料之方法及藉此塗覆之生物材料
Blum-Menezes et al. Hospital strain colonization by Staphylococcus epidermidis
RU2415944C2 (ru) Способ выявления микобактерий туберкулеза из резецированной ткани легкого
Pencheva et al. Possibilities for application of hybrid materials with silver nanoparticles for prevention and treatment of animals
Harvery et al. Comparison of 3% Mepivacaine and 2% Procaine in Local Anesthetics as Antibacterial Activity on the Growth of Porphyromonas Gingivalis
Safain Screening of silver resistance gene in clinical isolates and determination of Minimum Inhibitory Concentration (MIC) for silver nitrate
Grønseth Antimicrobial treatment options for Staphylococcus aureus biofilm
Ronin et al. Prevention of biofilms in catheter-associated urinary tract Infections (CAUTIs): A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849465

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014543258

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849465

Country of ref document: EP

Kind code of ref document: A1