WO2014065125A1 - 真空成膜装置用防着板、真空成膜装置用防着板の製造方法、真空成膜装置、および、真空成膜方法 - Google Patents

真空成膜装置用防着板、真空成膜装置用防着板の製造方法、真空成膜装置、および、真空成膜方法 Download PDF

Info

Publication number
WO2014065125A1
WO2014065125A1 PCT/JP2013/077526 JP2013077526W WO2014065125A1 WO 2014065125 A1 WO2014065125 A1 WO 2014065125A1 JP 2013077526 W JP2013077526 W JP 2013077526W WO 2014065125 A1 WO2014065125 A1 WO 2014065125A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum film
plate
vacuum
deposition
film forming
Prior art date
Application number
PCT/JP2013/077526
Other languages
English (en)
French (fr)
Inventor
俊次 黒岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014065125A1 publication Critical patent/WO2014065125A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof

Definitions

  • the present invention relates to an adhesion-preventing plate used in a vacuum film-forming apparatus such as a vacuum vapor deposition apparatus or a sputtering apparatus, and more particularly to an adhesion-preventing plate for a vacuum film-forming apparatus that can prevent peeling of the deposited film-forming material.
  • Vacuum deposition equipment such as sputtering equipment is equipped with a deposition plate (a deposition sheet) around the substrate to be deposited in order to prevent contamination due to deposition of deposition materials on the inner wall of the vacuum chamber and various components. ing. It is known to form irregularities on the surface of such a deposition preventing plate from the viewpoint of preventing the peeling of the deposited film forming material and suppressing the generation of particles due to the peeling of the film forming material.
  • Patent Document 1 states that “a metal sheet base material that has a first surface and can be bent into an arbitrary shape, and is formed on the first surface and has an island shape in the first surface.
  • a film forming apparatus sheet comprising a plurality of protrusions distributed on the surface, and uneven portions formed on the first surface and the surface of the protrusions ([Claim 1]). Further, it is described that the protruding portion is formed by embossing and the uneven portion is formed by blasting ([Claim 2] [Claim 3]).
  • the present invention provides an adhesion preventing plate for a vacuum film forming apparatus that is excellent in the effect of preventing the film forming material from peeling off, a method for manufacturing the same, and a vacuum film forming apparatus and a vacuum film forming method using the adhesion preventing plate. Objective.
  • the inventor has a surface on which an uneven structure including a recess having a specific average opening diameter is formed, and a plurality of protrusions having a specific average height are formed on the surface. It has been found that the effect of preventing the film-forming material from peeling off by arranging at a predetermined ratio, and the present invention has been completed. That is, it has been found that the above object can be achieved by the following configuration.
  • a deposition plate for a vacuum film forming apparatus for preventing adhesion of a film forming material to an unnecessary position, Made of aluminum, Having a surface on which a concavo-convex structure including recesses having an average opening diameter of 0.01 to 9 ⁇ m is formed; A plurality of protrusions having an average height of 30 to 1000 ⁇ m are arranged on the surface, The average density of the protrusions is 10 pieces / 10 mm square or more, An adhesion-preventing plate for a vacuum film-forming apparatus, wherein the ratio of the bottom area of the protruding portion is 10 to 90% in a 10 mm square region.
  • the deposition plate for a vacuum film-forming apparatus wherein the outer shape of the protrusion when viewed from above in the vertical direction is a rhombus or a rectangle.
  • the concavo-convex structure is a concavo-convex structure including recesses having an average opening diameter of 0.5 to 9 ⁇ m, or a concavo-convex structure including recesses having an average opening diameter of 0.01 to 0.3 ⁇ m.
  • An adhesion-preventing plate for a vacuum film forming apparatus 1.
  • the concavo-convex structure is a concavo-convex structure in which a concavo-convex structure including concave portions having an average opening diameter of 0.01 to 0.3 ⁇ m is superimposed on a concavo-convex structure including concave portions having an average opening diameter of 0.5 to 9 ⁇ m.
  • a deposition preventing plate for a vacuum film-forming apparatus To (3), a deposition preventing plate for a vacuum film-forming apparatus.
  • a manufacturing method for manufacturing a deposition plate for a vacuum film forming apparatus for preventing adhesion of a film forming material to an unnecessary position An uneven surface forming step of performing an electrochemical surface roughening treatment on the surface of the aluminum plate to form an uneven structure including recesses having an average opening diameter of 0.01 to 9 ⁇ m on the surface; And a protrusion forming step of embossing the surface of the aluminum plate and forming a plurality of protrusions having an average height of 30 to 1000 ⁇ m on a part of the surface.
  • a vacuum film forming apparatus having an adhesion preventing plate for a vacuum film forming apparatus according to any one of (1) to (6).
  • the vacuum deposition apparatus for vacuum film-forming apparatuses excellent in the peeling prevention effect of film-forming material, its manufacturing method, and the vacuum film-forming apparatus and vacuum film-forming method using this deposition board are provided. it can.
  • FIG. 2 It is a figure which shows notionally an example of the vacuum film-forming apparatus of this invention. It is a perspective view which shows an example of the deposition preventing plate for vacuum film-forming apparatuses of this invention. It is a schematic diagram which shows the external shape when the protrusion part arranged on the surface of the adhesion-preventing plate for vacuum film-forming apparatuses shown in FIG. 2 is seen from the perpendicular direction upper direction. It is typical sectional drawing which shows an example of the uneven structure and protrusion part in the surface of the adhesion-preventing board for vacuum film-forming apparatuses of this invention. It is typical sectional drawing which shows an example of the uneven structure in the surface of the adhesion prevention board for vacuum film-forming apparatuses of this invention.
  • FIG. 3 is an electron micrograph of the surface of the adhesion-preventing plate produced in Example 1-1 taken with a high-resolution scanning electron microscope (SEM) (magnification 50 times).
  • FIG. 3 is an electron micrograph of the surface (uneven structure) of the adhesion-preventing plate produced in Example 1-1 taken with a high-resolution scanning electron microscope (SEM) (magnification 350 times).
  • SEM high-resolution scanning electron microscope
  • 10A and 10B are electron microscopes obtained by photographing the apex and slope of the protruding portion of the deposition preventive plate produced in Example 1-1 with a high-resolution scanning electron microscope (SEM) (magnification 2000 times), respectively. It is a photograph.
  • SEM scanning electron microscope
  • one of the features of the present invention has a surface on which a concavo-convex structure including a concave portion having a specific average opening diameter is formed, and a plurality of protrusions having a specific average height are predetermined on the surface. It is the point which is arranged in the ratio of.
  • the inventor presumes the reason why the effect of the present invention is obtained as follows. Note that the scope of the present invention is not limitedly interpreted by this estimation.
  • the concave portion with an average opening diameter of 0.01 to 9 ⁇ m included in the concavo-convex structure holds the film-forming material adhering to the adhesion-preventing plate very strongly. It is considered that the generation of particles due to the can be suppressed.
  • the protruding portion having an average height of 30 to 1000 ⁇ m can relieve the residual stress of the film forming material adhering to the deposition preventing plate, even if the adhering material is thick, the particles caused by the separation are removed. It is thought that generation
  • the presence of this protrusion enables isotropic expansion and contraction (isotropic), and as a result, film formation caused by residual stress (internal stress) of the film formation material attached to the deposition preventing plate. It is considered that deformation and peeling due to the warp of the material can be prevented.
  • the present invention having such characteristics, it is possible to stably produce a high-quality product that is free from product defects and quality degradation caused by particles peeled off from the deposition preventing plate adhering to the substrate. Therefore, according to the present invention, in the manufacture of semiconductor devices and electronic component materials using the vacuum film formation method, the product yield is prevented by preventing the occurrence of product defects due to the particles peeled off from the deposition preventive plate. Improvement of productivity, improvement of productivity, reduction of production cost, etc. can be aimed at.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • an adhesion preventing plate for the vacuum deposition apparatus of the present invention
  • FIG. 1 conceptually shows an example of a vacuum film forming apparatus of the present invention, which implements an example of the vacuum film forming method of the present invention.
  • a vacuum film forming apparatus 10 of the present invention shown in FIG. 1 is an apparatus for forming a film on the surface of a substrate Z as a film forming member by vacuum vapor deposition, and has a deposition plate 12 of the present invention to be described later. .
  • the vacuum film-forming method of the present invention uses the vacuum film-forming apparatus 10 of the present invention having the adhesion-preventing plate 12 of the present invention to form Ti, Zr, Nb, Ta, Cr, Mo, Film formation for forming one element selected from W, Pt, Au, Ag, Fe, Ni, Mn, Sn, Zn, Co, Al, Cu and Si, or an alloy, nitride or oxide thereof. Is the method.
  • the vacuum film forming method and the vacuum film forming apparatus of the present invention are not limited to those that form a film on the surface of the substrate Z by vacuum vapor deposition as shown in the illustrated example. That is, the vacuum film forming method and the vacuum film forming apparatus of the present invention include various known CVD (chemical vapor deposition) and PVD (physical vapor) methods such as sputtering, CVD, plasma CVD, and ion plating. Deposition can be applied to vacuum deposition by physical vapor deposition.
  • CVD chemical vapor deposition
  • PVD physical vapor
  • the film forming conditions are not particularly limited, depending on the film forming method, the film to be formed, the film forming rate, the film thickness of the film to be formed, and the like. And may be set as appropriate.
  • a vacuum film forming apparatus 10 includes a vacuum chamber 14, a vapor deposition source 16 and a substrate holder 18 disposed in the vacuum chamber 14, and a vacuum pump, as in a known vacuum vapor deposition apparatus. 20. And the vacuum film-forming apparatus 10 of this invention covers the inner wall face of the vacuum chamber 14, and the adhesion prevention board 12 of this invention is provided.
  • the vacuum film forming apparatus 10 of the present invention is basically the same as a known vacuum deposition apparatus except that the deposition preventing plate 12 of the present invention is used. This is the same even when applied to other vacuum film forming apparatuses (methods) such as a sputtering apparatus and a plasma CVD apparatus. Therefore, in the vacuum film forming apparatus 10 of the present invention, the vapor deposition source 16 is a known vapor deposition source (evaporation source) that is filled with a film forming material and melts and evaporates.
  • the substrate holder 18 is also a known substrate holder that holds the substrate Z by a known means.
  • the vacuum pump 20 is also a known vacuum pump for evacuating the vacuum chamber 14 and maintaining a predetermined film forming pressure.
  • the vacuum film-forming apparatus 10 of this invention may have a rotation means which rotates the substrate holder 18 (substrate
  • the vacuum film forming apparatus 10 of the present invention covers the inner wall surface of the vacuum chamber 14 and is provided with the deposition preventing plate 12 of the present invention.
  • the adhesion preventing plate 12 an upper surface adhesion preventing plate 12a covering the upper surface (ceiling surface) in the vacuum chamber 14, a side adhesion preventing plate 12b covering the same side surface, and a lower surface covering the same lower surface (floor surface).
  • a protection plate 12c is provided.
  • the vacuum film forming apparatus 10 in the illustrated example covers almost the entire inner wall surface of the vacuum chamber 14 with the deposition preventing plate 12 of the present invention, except for the region corresponding to the substrate holder 18 and the vapor deposition source 16. .
  • the present invention is not limited to this.
  • only the side surface protection plate 12b may be provided, or only the top surface protection plate 12a may be provided.
  • the deposition preventive plate 12 of the present invention is made of aluminum, when a metal film such as Au or Pt or an alloy film is formed on the substrate Z, the deposition material attached to the deposition preventive plate 12 is separated. And can be recovered. For this reason, it is advantageous to cover the inner wall surface of the vacuum chamber 14 with an anti-adhesion plate as much as possible in terms of the recovery rate of the film forming material that has not been formed on the substrate Z.
  • the vacuum film-forming method and the vacuum film-forming apparatus of the present invention there is a possibility that film-forming materials other than the inner wall surface of the vacuum chamber 14 such as the back surface of the substrate holder 18 adhere and deposit as necessary.
  • the part may be covered with the deposition preventing plate 12 of the present invention.
  • the method of attaching the deposition plate 12 there is no particular limitation on the method of attaching the deposition plate 12, and a known plate-like object or sheet shape that is used as a method of attaching the deposition plate in the vacuum deposition apparatus.
  • Various attachment methods can be used.
  • a method of adhering the deposition preventing plate 12 in the vacuum chamber 14 using an adhesive tape having sufficient heat resistance such as Kapton (registered trademark) tape is exemplified.
  • a known mechanical plate-like or sheet-like attachment method such as a method using a screw or an attachment jig or a method using a hook or the like can be used.
  • the deposition preventing plate 12 is a cylindrical object having sufficient rigidity, the deposition preventing plate 12 is attached in the vacuum chamber 14 by surrounding the evaporation source and placing it on the lower surface of the vacuum chamber 14. Also good.
  • the adhesion-preventing plate of the present invention is an adhesion-preventing plate for a vacuum film forming apparatus for preventing adhesion of a film forming material to an unnecessary position in the vacuum film forming apparatus, and is made of aluminum and has an average opening diameter of 0.
  • the deposition preventing plate 12 of the present invention has a surface on which a concavo-convex structure 30 including recesses having an average opening diameter of 0.01 to 9 ⁇ m is formed, and an average height on this surface.
  • a plurality of protrusions 40 of 30 to 1000 ⁇ m are arranged at a predetermined ratio.
  • the adhesion-preventing plate 12 of the present invention is not particularly limited as long as it is made of aluminum made of pure aluminum or an aluminum alloy, and the shape thereof is preferably plate-shaped or sheet-shaped as shown in FIG.
  • an aluminum base material various aluminum plate-like materials and sheet-like materials such as an aluminum foil commercially available as a deposition preventing plate for a vacuum film forming apparatus can be used.
  • the aluminum constituting the base material has a purity of 97% or more in order to prevent impurities in the aluminum from being mixed into the recovered material and reducing the purity of the recovered material when recovering the deposit. Is preferable, 98% or more is more preferable, 99% or more is further preferable, and 99.5% or more is particularly preferable.
  • the thickness of the deposition preventing plate 12 of the present invention is not particularly limited, and the configuration of the vacuum film forming apparatus to be mounted, the method of using the deposition preventing plate (disposable type or the type to be reused after washing), the deposition preventing plate. According to the size, film forming method, film forming conditions, etc., sufficient mechanical strength and thermal strength can be secured, and a thickness that is easy to handle when mounting in the vacuum chamber 14 is appropriately set. You only have to set it. Considering the ease of handling and workability, the ease of film forming material recovery, and the like, the thickness of the deposition preventing plate 12 of the present invention is preferably about 30 to 300 ⁇ m.
  • the concavo-convex structure 30 including concave portions having an average opening diameter of 0.01 to 9 ⁇ m constitutes the surface of the deposition preventing plate 12 of the present invention. It is.
  • the opening diameter of the recessed part 30a is the diameter of the recessed part 30a (circumferential continuous circumference forming the recessed part 30a), and the average opening diameter is an average thereof.
  • reference numeral 30b represents a convex portion. Specifically, using an electron microscope, the surface of the deposition preventing plate 12 is photographed from directly above at a magnification of 2000 to 30000 times.
  • the concavo-convex structure including the concave portion may be a corrugated structure as shown in FIG. 5 (A), and the convex portion is constituted by a flat portion on the surface as shown in FIG. 5 (B).
  • the concave structure may be a repeated structure.
  • the anti-adhesion plate 12 of the present invention has a film-forming material attached to the anti-adhesion plate as described above by having the uneven structure 30 including the concave portions 30a having an average opening diameter of 0.01 to 9 ⁇ m on the surface. It is considered that the generation of particles due to peeling can be suppressed even when a thin layer material adheres.
  • the concavo-convex structure 30 including the recesses 30a having an average opening diameter of 0.01 to 9 ⁇ m A structure (hereinafter also referred to as “medium wave structure”), a concavo-convex structure including recesses having an average opening diameter of 0.01 to 0.3 ⁇ m (hereinafter also referred to as “small wave structure”), or a combination thereof. It is preferable that it is a structure. Of these, the medium wave structure and the small wave structure are preferably overlapped. Specifically, as shown in FIG. 6, the medium wave structure 32 including the recesses 32a having an average opening diameter of 0.5 to 9 ⁇ m.
  • the small wave structure 34 including the concave portion 34a having an average opening diameter of 0.01 to 0.3 ⁇ m is further preferably mentioned.
  • reference numerals 32b and 34b each represent a convex portion.
  • the average opening diameter of the recesses 32a in the medium wave structure 32 is obtained by photographing the surface of the deposition preventing plate from directly above at a magnification of 2000 using an electron microscope. In the obtained electron micrograph, the periphery is circular. At least 50 consecutive recesses 32a (excluding the recesses 34a in the overlapping small wave structure 34) are extracted, and the diameter (or the diameter of a circle inscribed in the recess 32a) is read as an opening diameter to calculate an average opening diameter.
  • the average opening diameter of the recesses 34a in the small wave structure 34 is obtained by photographing the surface of the deposition preventing plate from directly above at a magnification of 10,000 to 30,000 times using an electron microscope. At least 50 recesses 34a (excluding the recesses 32a in the overlapping medium wave structure 32) are extracted, and the diameter (or the diameter of a circle inscribed in the recess 34a) is read as the opening diameter, and the average opening diameter Is calculated.
  • the average opening diameter of the recesses 32a constituting the medium wave structure 32 is preferably 0.5 to 5 ⁇ m, more preferably 1 to 5 ⁇ m, for the purpose of further improving the effect of preventing the film forming material from peeling off. More preferably, the thickness is 5 to 3 ⁇ m. Further, the depth of the concave portion 32a constituting the medium wave structure 32 is not particularly limited. In addition, since the deposition preventing plate of the present invention forms an uneven structure by subjecting the aluminum plate to an electrochemical roughening treatment, as shown in a manufacturing method of the deposition preventing plate described later, the depth of the recess 32a is reduced. This is considered to be substantially equal to the opening diameter of the recess 32a.
  • the average opening diameter of the recesses 34a constituting the small wave structure 34 is preferably 0.1 to 0.2 ⁇ m because the effect of preventing the film forming material from peeling off is further improved.
  • the average ratio of the depth to the opening diameter of the recesses 34a constituting the small wave structure 34 is preferably 0.2 to 0.5.
  • the average of the ratio of the depth to the opening diameter in the recess 34a is obtained by photographing the fractured surface of the adhesion-preventing plate at a magnification of 50000 times using a high-resolution scanning electron microscope (SEM). At least 20 recesses are extracted, the aperture diameter and depth are read, the ratio is obtained, and the average value is calculated.
  • the arithmetic average roughness Ra of the surface (uneven structure 30) of the deposition preventing plate 12 of the present invention is not particularly limited, and is preferably 0.25 to 0.60 ⁇ m, and preferably 0.30 to 0.60 ⁇ m. More preferably, it is 0.30 to 0.55 ⁇ m.
  • the surface roughness Ra is an arithmetic average based on JIS B0601: 2001, measured using a stylus type surface roughness meter (for example, a surface roughness measuring machine SJ-401 manufactured by Mitutoyo Corporation). It is roughness.
  • the plurality of protrusions 40 having an average height of 30 to 1000 ⁇ m are arranged at a predetermined ratio on the surface of the deposition preventing plate 12 of the present invention. Note that the uneven structure described above is formed on the surface of the protrusion 40.
  • the height of the protrusion 40 is a distance from the bottom surface 40a of the protrusion 40 to the top side (vertex 40b), and the average height is an average thereof.
  • the protrusion 40 may have an inclined structure, that is, a mountain structure having a ridge line (reference numeral 40 c in FIGS. 4 and 7).
  • the height refers to the distance from the bottom surface to the apex.
  • SEM scanning electron microscope
  • the cross section of the deposition preventing plate 12 was photographed at a magnification of 50 to 100 times, and at least 20 protrusions 40 were extracted from the obtained electron micrograph. And the average value of the height is calculated.
  • the average height of the protrusions 40 is preferably 100 to 500 ⁇ m because the effect of preventing the film-forming material from peeling off is further improved.
  • the outer shape of the protrusion 40 when viewed from above in the vertical direction is preferably not a non-uniform shape but a rhombus (see FIG. 3) or a rectangle because the effect of preventing the peeling of the film forming material is further improved.
  • the outer shape of the protruding portion is a fixed shape, the effect of reducing the residual stress of the film forming material adhering to the deposition preventing plate becomes uniform, and the effect of preventing the film forming material from peeling off tends to be improved.
  • the average density of the protrusions 40 is 10 pieces / 10 mm square or more, and it is preferably 10-100 pieces / 10 mm square for the reason that the effect of preventing the peeling of the film forming material is further improved, and 30-80 pieces. More preferably, it is / 10 mm square.
  • the average density of the protrusions 40 may be calculated as an average value obtained by measuring the number of protrusions in a 10 mm square (10 mm ⁇ 10 mm) region at any five locations and dividing the total value by five. it can.
  • the ratio of the bottom area of the protrusion 40 is 10 to 90% in a 10 mm square region, and is preferably 30 to 80% because the effect of preventing the film-forming material from peeling off is further improved.
  • the bottom area of the protrusion 40 refers to the area of the bottom of the protrusion 40 shown in FIG. 2, that is, the area indicated by the wavy line in FIG. 4, and the ratio is a 10 mm square area, that is, 100 mm 2 . It refers to the proportion of the bottom area of the protrusion 40 in the area, and in the present invention, it refers to the average value at any five locations.
  • the adhesion preventing plate 12 of the present invention adheres to the adhesion preventing plate as described above by uniformly arranging the plurality of protrusions 40 having an average height of 30 to 1000 ⁇ m at the ratio of the predetermined average density and the bottom area described above. Since the residual stress of the deposited material can be relaxed, it is considered that generation of particles due to peeling can be suppressed even when a thick layer material is attached.
  • the surface of the deposition preventing plate 12 of the present invention is preferably composed of an anodic oxide film of aluminum.
  • anodic oxide film By being composed of an anodic oxide film, a large number of micropores called micropores can be retained on the surface. As a result, a higher anchor effect is obtained, and the adhesion strength is increased, so that the film-forming material attached to the deposition preventing plate 12 can be more suitably prevented from peeling.
  • the thickness of the anodic oxide film is not limited, but is preferably 0.05 to 30 ⁇ m, and particularly preferably 0.25 to 5 ⁇ m.
  • the thickness of the anodic oxide film within the above range, the effect of having the anodic oxide film on the surface of the deposition preventing plate can be obtained more suitably, and the film forming material is peeled off from the deposition preventing plate. Thus, the generation of particles can be more suitably prevented.
  • the deposition preventing plate 12 of the present invention preferably has a crack on the surface thereof.
  • the film forming material attached to the deposition preventing plate 12 enters the crack, and the adhesion strength is increased, so that peeling of the film forming material adhered to the deposition preventing plate 12 can be more suitably prevented.
  • the crack 42 is preferably provided in the protrusion 40 described above. It is more preferable to have in the vicinity of the apex 40b and the inclined surface 40d.
  • the crack is preferably a linear crack having a width of 0.05 to 20 ⁇ m, and its length is 0.5 ⁇ m or more and not more than the circumferential diameter of the protrusion (for example, about 4 mm). Is preferred. Moreover, it is preferable to have one or more such cracks, and more preferably ten or more.
  • the manufacturing method of the deposition preventing plate of the present invention is a manufacturing method for manufacturing the deposition preventing plate of the present invention described above, and includes a concavo-convex forming step for forming the concavo-convex structure and a protruding portion forming step for forming the protruding portion. It is a manufacturing method.
  • this invention although the unevenness
  • the concavo-convex forming step is a step in which the surface of the aluminum plate is subjected to an electrochemical roughening treatment to form the concavo-convex structure including the concave portions having the average opening diameter of 0.01 to 9 ⁇ m on the surface.
  • the electrochemical surface roughening treatment include a method of performing an electrolytic treatment with an alternating current using an electrolytic solution containing hydrochloric acid or nitric acid.
  • the total amount of electricity involved in the anodic reaction of the aluminum substrate at the end of the electrolytic reaction is 1 to 1000 C / dm 2 . Is more preferable, and 50 to 300 C / dm 2 is more preferable.
  • the current density is preferably 20 to 100 A / dm 2 .
  • the treatment is preferably performed in an electrolytic solution containing 0.1 to 50% by mass of hydrochloric acid or nitric acid at a temperature of 20 to 80 ° C. for a time of 1 second to 10 minutes.
  • the treatment is preferably performed in an electrolytic solution containing 0.1 to 10% by mass of hydrochloric acid at a temperature of 20 to 80 ° C. for a time of 1 second to 10 minutes. Note that it is also possible to form a small wave structure superimposed on a medium wave structure in the same process with an electrolyte containing hydrochloric acid.
  • an uneven surface structure in which a small wave structure is superimposed on the above-described medium wave structure is obtained by performing an electrochemical surface roughening process in which an aluminum base material is electrolytically treated using a mixed solution of hydrochloric acid and sulfuric acid. Can be formed.
  • the protruding portion forming step is a step of embossing the surface of the aluminum plate to form the plurality of protruding portions having an average height of 30 to 1000 ⁇ m on a part of the surface.
  • the embossing may be, for example, press working, but in the present invention, an embossing roll described in paragraphs [0012] to [0033] of JP-A-2005-205444 is used. Roll forming is preferred.
  • the anodizing process is an arbitrary process in which an anodizing process is performed after the above-described unevenness forming process to form an anodized aluminum film over the entire surface.
  • the anodizing process may be a pre-process or a post-process of the protrusion forming process described above, but is a pre-process of the protrusion forming process for the reason of forming the crack described above on the surface. Is preferred.
  • an anodic oxide film which is an arbitrary structure of the deposition preventing plate of the present invention can be formed.
  • a method of energizing an aluminum plate as an anode in a solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less is preferably exemplified.
  • the solution used for the anodizing treatment not only sulfuric acid but also phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, etc. may be used alone or in combination of two or more. it can.
  • the preferable conditions for the anodizing treatment vary depending on the electrolyte used, but in general, the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., the current density is 0.5 to 60 A / dm 2 , and the voltage is 1 to
  • the electrolysis time is about 100 V and about 15 seconds to 50 minutes, and it may be appropriately adjusted so that a desired amount of anodic oxide film can be formed.
  • An annealing treatment process is an arbitrary process which performs an annealing treatment (annealing treatment) in a vacuum atmosphere or air after the above-mentioned projection formation process. This process improves the workability of the deposition plate and facilitates deformation and drilling along the inner wall surface of the vacuum chamber. As a result, abnormal vacuum generated from the deposition source is suppressed in the vacuum film forming apparatus that is produced. In addition, the effect of shortening the evacuation time can be expected.
  • the heating conditions for the annealing treatment are not particularly limited, and are preferably 200 to 500 ° C, more preferably 300 to 400 ° C.
  • a heating furnace used for an annealing process general furnaces, such as a heater type and radiation heating, can be used.
  • the treatment time for the annealing treatment is not particularly limited, but is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
  • a mechanical surface roughening treatment such as brush grain may be performed on the surface of the aluminum plate before the electrolytic surface roughening treatment described above.
  • a sealing treatment for sealing the micropores present in the anodized film may be performed after the anodizing treatment.
  • the sealing treatment can be performed according to a known method such as boiling water treatment, hot water treatment, steam treatment, sodium silicate treatment, nitrite treatment, ammonium acetate treatment and the like.
  • Hydrophilization that attaches an acid such as silicate or polyvinylphosphonic acid, organic carboxylic acid compound, organic sulfonic acid compound to the surface that has been anodized or the surface that has been sealed. Processing may be performed.
  • the deposition preventing plate for a vacuum film forming apparatus and the method for manufacturing the same, and the vacuum film forming apparatus and the vacuum film forming method using the same have been described in detail.
  • the present invention is not limited to the above examples. Needless to say, various improvements and modifications may be made without departing from the scope of the present invention.
  • Examples 1-1 to 1-17 and Comparative Examples 1-1 to 1-13 ⁇ Roughness forming step (roughening treatment)> A slurry liquid having a specific gravity of 1.12 using pumiston with an average particle diameter of 30 ⁇ m as an abrasive is supplied to the surface of an aluminum plate (JIS 1050 material) having a thickness of 150 ⁇ m, and two rotating roller nylon brushes are used. The aluminum plate was moved to perform surface treatment. The diameter of the nylon brush used was 0.5 mm, the hair density was 450 / cm 2 , and the brush rotation speed was 150 rpm.
  • a trapezoidal wave having a frequency of 60 Hz was used as the AC power source wave.
  • Current density was 50A / dm 2.
  • the surface of the adhesion-preventing plate after the roughening treatment that is, the arithmetic average roughness Ra of the concavo-convex structure was 0.53 ⁇ m.
  • Example 1-10 and 1-15 since the roughening treatment using a nylon brush was not performed, only the electrolytic treatment using nitric acid and the electrolytic treatment using hydrochloric acid were performed. Ra of the surface of the landing plate was 0.35 ⁇ m.
  • Example 1-11 the surface roughening treatment using a nylon brush and the electrolytic treatment using nitric acid were not performed, but only the electrolytic treatment using hydrochloric acid was performed.
  • Comparative Examples 1-9 and 1-10 the unevenness forming step was not performed, and for Comparative Example 1-11, the roughening treatment using a nylon brush and the electrolytic treatment using nitric acid were not performed. Only electrolytic treatment with hydrochloric acid was applied.
  • Comparative Example 1-12 instead of the unevenness forming step, blasting was performed at a pressure of 0.4 MPa using 100 mesh alumina as blast particles on the substrate surface.
  • Ra of the surface of the roughened adhesion-preventing plate was 2.5 ⁇ m, and the average opening diameter of the recesses existing on the surface was 15 ⁇ m or more.
  • Comparative Example 1-13 only the roughening treatment with a nylon brush was performed, and the electrolytic treatment was not performed. Ra of the roughened surface was 0.75 ⁇ m.
  • ⁇ Anodizing treatment> A solution having a sulfuric acid concentration of 250 g / L and an aluminum concentration of 5% or less was used for the produced deposition preventing plate, and an aluminum plate was used as an anode, and a DC voltage was applied for 45 minutes to form an anodic oxide film having a thickness of 1.0 ⁇ m on the surface. Formed. Current density was 50A / dm 2.
  • the surface of the adhesion-preventing plate after the anodic oxidation treatment that is, the arithmetic average roughness Ra of the concavo-convex structure was the same as the value after the concavo-convex formation step (roughening treatment) described above.
  • an anodizing treatment was performed after a protrusion forming step (embossing) described later. Further, Example 1-17 and Comparative Example 1-12 were not subjected to anodic oxidation treatment.
  • the surface and cross-section of the prepared protective plate were observed with an electron microscope at a magnification of 2000 times and a magnification of 30000 times. The average density and the bottom area ratio were measured. These results are shown in Table 1 below together with the presence or absence of an anodized film and the presence or absence of cracks. In Table 1 below, an item represented by “-” indicates that the item does not exist. Moreover, it was found by observation with an electron microscope that the surface of the deposition preventive plate produced in the example had a concavo-convex structure and a plurality of protrusions arranged.
  • FIGS. 10A and 10B show photographs of magnifications of 2000 times at the apex and slope of the part.
  • the produced adhesion prevention board was affixed on the inner wall surface of the vacuum evaporation apparatus (Showa Vacuum Co., Ltd. SGC-22SA) as shown in FIG. 1 using the Kapton (trademark) tape.
  • the film forming apparatus to which an adhesion-preventing plate was attached, gold was deposited on the surface of the substrate Z by vacuum vapor deposition to a thickness of 100 ⁇ m, 50 ⁇ m, or 0.2 ⁇ m.
  • the film forming pressure was 1 ⁇ 10 ⁇ 3 Pa.
  • Examples 2-1 to 2-7 and Comparative Examples 2-1 to 2-3 ⁇ Roughness forming step (electrolytic roughening treatment)> A slurry liquid having a specific gravity of 1.12 using pumiston with an average particle diameter of 30 ⁇ m as an abrasive is supplied to the surface of an aluminum plate (JIS 1050 material) having a thickness of 150 ⁇ m, and two rotating roller nylon brushes are used. The aluminum plate was moved to perform surface treatment. The diameter of the nylon brush used was 0.5 mm, the hair density was 450 / cm 2 , and the brush rotation speed was 150 rpm.
  • ⁇ Anodizing treatment and hydrophilization treatment> A solution having a sulfuric acid concentration of 250 g / L and an aluminum concentration of 5% or less was used for the produced deposition preventing plate, and an aluminum plate was used as an anode, and a DC voltage was applied for 45 minutes to form an anodic oxide film having a thickness of 1.0 ⁇ m on the surface. Formed. Current density was 50A / dm 2. Then, the adhesion prevention board was produced by performing a hydrophilic treatment for 10 second at 70 degreeC using 2.5 mass% 3 sodium silicate aqueous solution. The adhesion amount of Si was 10 mg / m 2 .
  • the surface of the adhesion-preventing plate after the anodic oxidation treatment and the hydrophilic treatment that is, the arithmetic average roughness Ra of the concavo-convex structure was the same as the value after the concavo-convex formation step (roughening treatment) described above.
  • an anodizing treatment was performed after a protrusion forming step (embossing) described later.
  • embossing rolls are produced by the method described in paragraphs [0012] to [0033] of JP-A-2005-205444, and the following are used for the aluminum plate after the unevenness forming step using the roll.
  • the adhesion prevention board was produced by forming the protrusion part of the shape shown in Table 2, height, and a density.
  • the nip was performed by correcting the clearance so that the molds had a plate thickness to a plate thickness + 0.02 mm.
  • the anti-peeling property of the produced adhesion-preventing plate was evaluated by the same method as in Example 1-1. The results are shown in Table 2 below.
  • the surface has a concavo-convex structure including a recess having a specific average opening diameter, and a plurality of protrusions having a specific average height are formed on the surface. It was found that the protective plates arranged in proportion were excellent in the anti-peeling effect regardless of the thickness of the deposited Au (Examples 1-1 to 17 and Examples 2-1 to 2-7). . In particular, when the average density of the protrusions is in a preferable range of 30 to 80 pieces / 10 mm square, no peeling is observed even when the thickness of the deposited Au is thick, and the peeling prevention effect is extremely excellent. I understood.
  • Example 1-2 and Examples 1-12 to 1-14 it was found from the comparison between Example 1-2 and Examples 1-12 to 1-14 that the workability of the deposition preventing plate was improved by performing the annealing treatment. Further, from the comparison between Example 1-2 and Example 1-15, the comparison between Example 1-10 and Example 1-16, and the comparison between Example 2-2 and Example 2-7, It was found that the anti-adhesion plate having cracks has a better peeling prevention effect when the thickness of the deposited Au film is 100 ⁇ m. Further, in comparison with Example 1-1 and Example 1-17, the surface is composed of an anodic oxide film made of aluminum, so that the peeling prevention effect is better when the thickness of the deposited Au is 50 ⁇ m.
  • the deposition plate that does not have a concavo-convex structure or protrusions, or the deposition plate that does not satisfy a specific average height or density both prevent peeling depending on the film thickness of the adhered Au. It was found that the effect may be inferior (Comparative Examples 1-1 to 1-13 and Comparative Examples 2-1 to 2-3).
  • vacuum film forming methods such as vacuum deposition, sputtering, and plasma CVD, such as manufacturing semiconductor devices and electronic component materials.
  • Vacuum film-forming apparatus Adhesion board 12a Upper surface adhesion board 12b Side surface adhesion board 12c Lower surface adhesion board 14 Vacuum chamber 16 Deposition source 18 Substrate holder 20 Vacuum pump 30 Uneven structure 30a, 32a, 34a, recessed part 30b, 32b, 34b Convex part 32 Medium wave structure 34 Small wave structure 40 Projection part 40a Bottom face 40b Vertex 40c Ridge line 40d Slope 42 Crack

Abstract

 本発明は、成膜材料の剥離防止効果に優れる真空成膜装置用防着板およびその製造方法、ならびに、この防着板を用いる真空成膜装置および真空成膜方法を提供することを目的とする。本発明の真空成膜装置用防着板は、真空成膜装置において、不要な位置への成膜材料の付着を防止するための真空成膜装置用防着板であって、アルミニウム製であり、平均開口径0.01~9μmの凹部を含む凹凸構造が形成された表面を有し、表面に、平均高さ30~1000μmの複数の突出部が配列されており、突出部の平均密度が10個/10mm角以上であり、突出部の底部面積の比率が10mm角の領域において10~90%である真空成膜装置用防着板である。

Description

真空成膜装置用防着板、真空成膜装置用防着板の製造方法、真空成膜装置、および、真空成膜方法
 本発明は、真空蒸着装置やスパッタリング装置等の真空成膜装置に用いられる防着板に関し、詳しくは、付着した成膜材料の剥離を防止することができる真空成膜装置用防着板に関する。
 スパッタリング装置等の真空成膜装置は、真空チャンバの内壁や各種構成部品への成膜材料の付着による汚染を防止するため、被成膜基材の周囲に防着板(防着シート)を備えている。
 このような防着板の表面には、付着した成膜材料の剥離を防ぎ、成膜材料の剥離に起因するパーティクルの発生を抑える観点から、凹凸を形成することが知られている。
 例えば、特許文献1には、「第1の面を有し、任意の形状に折り曲げ可能な金属製のシート基材と、前記第1の面に形成され、前記第1の面内に島状に分布する複数の突出部と、前記第1の面及び前記突出部の表面に形成された凹凸部とを具備する成膜装置用シート。」が記載されており([請求項1])、また、突出部がエンボス加工により形成され、凹凸部がブラスト加工により形成されることが記載されている([請求項2][請求項3])。
特開2012-153942号公報
 しかしながら、特許文献1に記載の成膜装置用シート(防着板)では、突出部の高さや凹凸部の形状(特に凹凸部を構成する凹部の平均開口径)、更には成膜材料の種類や成膜状態(特に薄層)によっては、成膜材料の剥離防止効果が十分ではない場合があることが明らかとなった。
 そこで、本発明は、成膜材料の剥離防止効果に優れる真空成膜装置用防着板およびその製造方法、ならびに、この防着板を用いる真空成膜装置および真空成膜方法を提供することを目的とする。
 本発明者は、上記目的を達成すべく鋭意研究した結果、特定の平均開口径の凹部を含む凹凸構造が形成された表面を有し、この表面に特定の平均高さの複数の突出部を所定の割合で配列させることにより、成膜材料の剥離防止効果が高くなることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 (1) 真空成膜装置において、不要な位置への成膜材料の付着を防止するための真空成膜装置用防着板であって、
 アルミニウム製であり、
 平均開口径0.01~9μmの凹部を含む凹凸構造が形成された表面を有し、
 表面に、平均高さ30~1000μmの複数の突出部が配列されており、
 突出部の平均密度が、10個/10mm角以上であり、
 突出部の底部面積の比率が、10mm角の領域において10~90%である真空成膜装置用防着板。
 (2) 突出部の垂直方向上方から見た時の外形が、菱形または矩形である(1)に記載の真空成膜装置用防着板。
 (3) 凹凸構造が、平均開口径0.5~9μmの凹部を含む凹凸構造、または、平均開口径0.01~0.3μmの凹部を含む凹凸構造である、(1)または(2)に記載の真空成膜装置用防着板。
 (4) 凹凸構造が、平均開口径0.5~9μmの凹部を含む凹凸構造に、平均開口径0.01~0.3μmの凹部を含む凹凸構造が重畳された凹凸構造である、(1)~(3)のいずれかに記載の真空成膜装置用防着板。
 (5) 表面が、アルミニウムの陽極酸化膜で構成される(1)~(4)のいずれかに記載の真空成膜装置用防着板。
 (6) 表面に、クラックを有する(1)~(5)のいずれかに記載の真空成膜装置用防着板。
 (7) 真空成膜装置において、不要な位置への成膜材料の付着を防止するための真空成膜装置用防着板を製造する製造方法であって、
 アルミニウム板の表面に電気化学的粗面化処理を施し、表面に平均開口径0.01~9μmの凹部を含む凹凸構造を形成する凹凸形成工程と、
 アルミニウム板の表面にエンボス加工を施し、表面の一部に平均高さ30~1000μmの複数の突出部を形成する突出部形成工程とを有する製造方法。
 (8) 凹凸形成工程の後に、陽極酸化処理を施し、表面にアルミニウムの陽極酸化膜を形成する陽極酸化処理工程を有する(7)に記載の真空成膜装置用防着板の製造方法。
 (9) 突出部形成工程の後に、焼鈍処理を施す焼鈍処理工程を有する(7)または(8)に記載の真空成膜装置用防着板の製造方法。
 (10) (1)~(6)のいずれかの真空成膜装置用防着板を有する真空成膜装置。
 (11) (1)~(6)のいずれかの真空成膜装置用防着板を有する真空成膜装置を用いて、被成膜基板の表面に、Ti、Zr、Nb、Ta、Cr、Mo、W、Pt、Au、Ag、Fe、Ni、Mn、Sn、Zn、Co、Al、CuおよびSiから選択された1種の元素、または、その合金、窒化物もしくは酸化物を成膜する真空成膜方法。
 本発明によれば、成膜材料の剥離防止効果に優れる真空成膜装置用防着板およびその製造方法、ならびに、この防着板を用いる真空成膜装置および真空成膜方法を提供することができる。
本発明の真空成膜装置の一例を概念的に示す図である。 本発明の真空成膜装置用防着板の一例を示す斜視図である。 図2に示す真空成膜装置用防着板の表面に配列された突出部を垂直方向上方から見た時の外形を示す模式図である。 本発明の真空成膜装置用防着板の表面における凹凸構造および突出部の一例を示す模式的な断面図である。 本発明の真空成膜装置用防着板の表面における凹凸構造の一例を示す模式的な断面図である。 本発明の真空成膜装置用防着板の表面における凹凸構造の他の一例を示す模式的な断面図である。 突出部に形成されたクラックを説明する模式的な斜視図である。 実施例1-1で作製した防着板の表面を高分解能走査型電子顕微鏡(SEM)で撮影(倍率50倍)した電子顕微鏡写真である。 実施例1-1で作製した防着板の表面(凹凸構造)を高分解能走査型電子顕微鏡(SEM)で撮影(倍率350倍)した電子顕微鏡写真である。 図10(A)および(B)は、それぞれ実施例1-1で作製した防着板の突出部における頂点および斜面を高分解能走査型電子顕微鏡(SEM)で撮影(倍率2000倍)した電子顕微鏡写真である。
 以下に、本発明の真空成膜装置用防着板およびその製造方法、ならびに、この防着板を用いる真空成膜装置および真空成膜方法の好適態様について詳述する。
 まず、本発明の従来技術と比較した特徴点について詳述する。
 上述したように、本発明の特徴点の1つは、特定の平均開口径の凹部を含む凹凸構造が形成された表面を有し、この表面に特定の平均高さの複数の突出部が所定の割合で配列している点である。本発明者は、本発明の効果が得られる理由を以下のように推測する。なお、この推測によって本発明の範囲が限定的に解釈されるものではない。
 すなわち、凹凸構造に含まれる平均開口径が0.01~9μmの凹部が、防着板に付着した成膜材料を非常に強く保持するため、特に付着した材料が薄い場合であっても、剥離によるパーティクルの発生を抑制することができると考えられる。
 また、平均高さが30~1000μmの突出部が、防着板に付着した成膜材料の残留応力を緩和することができるため、特に付着した材料が厚い場合であっても、剥離によるパーティクルの発生を抑制することができると考えられる。具体的には、この突出部の存在により、等方位的な伸縮(等方性)を可能とし、その結果、防着板に付着した成膜材料の残留応力(内部応力)に起因する成膜材料の反りなどによる変形や剥離を防止することができると考えられる。
 このような特徴を有する本発明によれば、防着板から剥離したパーティクルが基板に付着することに起因する製品不良や品質低下が無い、高品質な製品を安定して作製することができる。
 そのため、本発明によれば、真空成膜法を利用する半導体装置の製造や電子部品材料の製造において、防着板から剥離したパーティクルに起因する製品の不良等の発生を防止して、製品歩留りの向上、生産性の向上、生産コストの低減等を図ることができる。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 以下では、まず、本発明の真空成膜方法および真空成膜装置について説明し、その後、本発明の真空成膜装置用防着板(以下、本発明の「防着板」と略す。)およびその製造方法について詳述する。
 〔真空成膜方法および真空成膜装置〕
 図1に、本発明の真空成膜方法の一例を実施する、本発明の真空成膜装置の一例を概念的に示す。
 図1に示す本発明の真空成膜装置10は、真空蒸着によって被成膜部材である基板Zの表面に成膜を行う装置であり、後述する本発明の防着板12を有するものである。
 また、本発明の真空成膜方法は、本発明の防着板12を有する本発明の真空成膜装置10を用いて、基板Zの表面に、Ti、Zr、Nb、Ta、Cr、Mo、W、Pt、Au、Ag、Fe、Ni、Mn、Sn、Zn、Co、Al、CuおよびSiから選択される1種の元素、または、その合金、窒化物もしくは酸化物を成膜する成膜方法である。
 ここで、本発明の真空成膜方法および真空成膜装置は、図示例のような真空蒸着によって基板Zの表面に成膜を行うものに限定されない。
 すなわち、本発明の真空成膜方法および真空成膜装置は、スパッタリング、CVD、プラズマCVD、イオンプレーティングなど、公知の各種のCVD(chemical vapor deposition 化学的気相成膜法)およびPVD(physical vapor deposition 物理的気相成膜法)による真空成膜に適用することができる。
 同様に、本発明の真空成膜方法および真空成膜装置においては、成膜条件も特に限定されず、成膜方法、成膜する膜、成膜レート、成膜する膜の膜厚等に応じて、適宜、設定すればよい。
 図1に示すように、本発明の真空成膜装置10は、公知の真空蒸着装置と同様、真空チャンバ14と、真空チャンバ14の内に配置される蒸着源16および基板ホルダ18と、真空ポンプ20とを有する。
 そして、本発明の真空成膜装置10は、真空チャンバ14の内壁面を覆って、本発明の防着板12が設けられる。
 ここで、本発明の真空成膜装置10は、本発明の防着板12を用いる以外は、基本的に、公知の真空蒸着装置と同様である。この点に関しては、スパッタリング装置やプラズマCVD装置等の他の真空成膜装置(方法)に適用した場合でも、同様である。
 そのため、本発明の真空成膜装置10においては、蒸着源16は、成膜材料が充填され、溶融、蒸発する公知の蒸着源(蒸発源)である。また、基板ホルダ18も、公知の手段で基板Zを保持する公知の基板ホルダである。さらに、真空ポンプ20も、真空チャンバ14内を排気して、所定の成膜圧力に保つための、公知の真空ポンプである。
 また、本発明の真空成膜装置10は、必要に応じて、基板ホルダ18(基板Z)を回転(自転、公転、自公転)する回転手段を有してもよい。
 上述したように、本発明の真空成膜装置10は、真空チャンバ14の内壁面を覆って、本発明の防着板12が設けられる。
 図示例においては、防着板12として、真空チャンバ14内の上面(天井面)を覆う上面防着板12a、同側面を覆う側面防着板12b、および、同下面(床面)を覆う下面防着板12cが、設けられている。
 図示例の真空成膜装置10は、好ましい態様として、基板ホルダ18および蒸着源16に対応する領域以外において、真空チャンバ14の内壁面のほぼ全面を、本発明の防着板12で覆っている。
 本発明は、これに限定はされず、例えば、側面防着板12bのみを設けてもよく、あるいは、上面防着板12aのみを設けてもよい。
 しかしながら、成膜材料の付着および堆積を、より好適に防止するためには、少なくとも真空チャンバ14内の蒸着源16(成膜材料が存在する空間)と対向する面、すなわち、上面防着板12aを設けるのが好ましく、真空チャンバ14の内壁面を可能な限り本発明の防着板12で覆うのがより好ましい。
 また、本発明の防着板12は、アルミニウム製であるので、基板ZにAuやPt等の金属膜や合金膜を成膜した際には、防着板12に付着した成膜材料を分離して回収できる。そのため、基板Zに成膜されなかった成膜材料の回収率の点でも、真空チャンバ14の内壁面を可能な限り防着板で覆った方が、有利である。
 また、本発明の真空成膜方法および真空成膜装置においては、必要に応じて、基板ホルダ18の裏面など、真空チャンバ14の内壁面以外の成膜材料が付着して堆積する可能性を有する部位を、本発明の防着板12で覆ってもよい。
 本発明の真空成膜装置10において、防着板12の取付方法には、特に限定はなく、真空成膜装置において防着板の取付方法として利用されている、公知の板状物やシート状物の取付方法が、各種、利用可能である。
 一例として、カプトン(登録商標)テープ等の十分な耐熱性を有する接着テープを用いて、真空チャンバ14内に防着板12を貼着する方法が例示される。また、ビスや取付治具を用いる方法、フック等を用いて吊り下げる方法等の公知の機械的な板状物やシート状物の取付方法も利用可能である。さらに、防着板12が十分な剛性を有する筒状物である場合には、蒸発源を囲んで真空チャンバ14の下面に載置することで、真空チャンバ14内に防着板12を取り付けてもよい。
 〔防着板〕
 本発明の防着板は、真空成膜装置において不要な位置への成膜材料の付着を防止するための真空成膜装置用の防着板であって、アルミニウム製であり、平均開口径0.01~9μmの凹部を含む凹凸構造が形成された表面を有し、かつ、この表面に平均高さ30~1000μmの複数の突出部が配列された防着板である。
 次に、本発明の防着板について図2~図7を用いて説明する。
 <全体構成>
 図2~図4に示す通り、本発明の防着板12は、平均開口径0.01~9μmの凹部を含む凹凸構造30が形成された表面を有し、かつ、この表面に平均高さ30~1000μmの複数の突出部40が所定の割合で配列されている。
 <基材>
 本発明の防着板12は、純アルミニウムやアルミニウム合金からなるアルミニウム製であれば特に限定されず、その形状は、図2に示す通り、板状ないしシート状であるのが好ましい。
 ここで、アルミニウム製の基材としては、真空成膜装置用の防着板として市販されているアルミニウム箔など、各種のアルミニウム製の板状物やシート状物が利用可能である。
 また、基材を構成するアルミニウムは、付着物を回収する際にアルミニウム中の不純物が回収物に混入し、回収物の純度が低下するのを抑止するため、その純度が97%以上であるのが好ましく、98%以上がより好ましく、99%以上が更に好ましく、99.5%以上が特に好ましい。
 本発明の防着板12の厚さは特に限定されず、装着される真空成膜装置の構成、防着板の利用方法(使い捨てタイプか、洗浄して再利用するタイプか)、防着板12のサイズ、成膜方法、成膜条件等に応じて、十分な機械的強度および熱的強度を確保でき、また、真空チャンバ14内への取付などの際に扱い易い厚さを、適宜、設定すればよい。
 このような取り扱いの容易性や作業性や、成膜材料の回収処理のし易さなどを考慮すると、本発明の防着板12の厚さは、30~300μm程度とするのが好ましい。
 <凹凸構造>
 平均開口径0.01~9μmの凹部(後述する陽極酸化膜に形成されるマイクロポアに起因する凹部を除く。)を含む凹凸構造30は、本発明の防着板12の表面を構成するものである。
 ここで、図5に示す通り、凹部30aの開口径は、凹部30a(凹部30aを形成する環状に連なる周囲)の直径であり、平均開口径とは、その平均である。なお、図5中、符号30bは凸部を表す。
 具体的には、電子顕微鏡を用いて、防着板12の表面を真上から倍率2000~30000倍で撮影し、得られた電子顕微鏡写真において、周囲が環状に連なっている凹部30aを少なくとも50個抽出し、その直径(あるいは、凹部30aを内接する円の直径)を読み取って開口径とし、平均開口径を算出する。
 また、凹部を含む凹凸構造とは、図5(A)に示すように波型の構造のものであってもよく、図5(B)に示すように凸部が表面の平坦部分で構成される凹部の繰り返し構造であってもよい。
 本発明の防着板12は、平均開口径0.01~9μmの凹部30aを含む凹凸構造30が形成された表面に有することにより、上述した通り、防着板に付着した成膜材料を非常に強く保持するため、特に薄層材料が付着した場合であっても、剥離によるパーティクルの発生を抑制することができると考えられる。
 本発明においては、成膜材料の剥離防止効果がより向上する理由から、平均開口径0.01~9μmの凹部30aを含む凹凸構造30は、平均開口径0.5~9μmの凹部を含む凹凸構造(以下、「中波構造」ともいう。)、もしくは、平均開口径0.01~0.3μmの凹部を含む凹凸構造(以下、「小波構造」ともいう。)、または、これらが重畳している構造であるのが好ましい。
 これらのうち、中波構造および小波構造が重畳している構造であるのが好ましく、具体的には、図6に示す通り、平均開口径0.5~9μmの凹部32aを含む中波構造32に、さらに、平均開口径0.01~0.3μmの凹部34aを含む小波構造34が重畳している態様が好適に挙げられる。なお、図6中、符号32bおよび符号34bはそれぞれ凸部を表す。
 ここで、中波構造32における凹部32aの平均開口径は、電子顕微鏡を用いて、防着板の表面を真上から倍率2000倍で撮影し、得られた電子顕微鏡写真において、周囲が環状に連なっている凹部32a(重畳する小波構造34における凹部34aは除く)を少なくとも50個抽出し、その直径(あるいは、凹部32aを内接する円の直径)を読み取って開口径とし、平均開口径を算出する。
 同様に、小波構造34における凹部34aの平均開口径は、電子顕微鏡を用いて、防着板の表面を真上から倍率10000~30000倍で撮影し、得られた電子顕微鏡写真において、周囲が環状に連なっている凹部34a(重畳する中波構造32における凹部32aは除く)を少なくとも50個抽出し、その直径(あるいは、凹部34aを内接する円の直径)を読み取って開口径とし、平均開口径を算出する。
 (中波構造)
 本発明においては、中波構造32を構成する凹部32aの平均開口径は、成膜材料の剥離防止効果が更に向上する理由から、0.5~5μmが好ましく、1~5μmがより好ましく、1.5~3μmが更に好ましい。
 また、中波構造32を構成する凹部32aの深さは特に限定されない。なお、本発明の防着板は、後述する防着板の製造方法に示すように、アルミニウム板に電気化学的粗面化処理を施すことで凹凸構造を形成しているため、凹部32aの深さは、ほぼ、凹部32aの開口径に等しいと考えられる。
 (小波構造)
 本発明においては、小波構造34を構成する凹部34aの平均開口径は、成膜材料の剥離防止効果が更に向上する理由から、0.1~0.2μmが好ましい。
 また、同様の理由から、小波構造34を構成する凹部34aの開口径に対する深さの比の平均は、0.2~0.5であるのが好ましい。
 ここで、凹部34aにおける開口径に対する深さの比の平均は、高分解能走査型電子顕微鏡(SEM)を用いて防着板の破断面を倍率50000倍で撮影し、得られたSEM写真において微細凹部を少なくとも20個抽出し、開口径と深さとを読み取って比を求めて平均値を算出する。
 本発明の防着板12の表面(凹凸構造30)の算術平均粗さRaは特に限定されず、0.25~0.60μmであるのが好ましく、0.30~0.60μmであるのがより好ましく、0.30~0.55μmであるのが更に好ましい。
 ここで、表面粗さRaは、触針式の表面粗さ計(例えば、株式会社ミツトヨ製の表面粗さ測定機SJ-401など)を用いて測定した、JIS B0601:2001に準拠する算術平均粗さである。
 <突出部>
 平均高さ30~1000μmの複数の突出部40は、本発明の防着板12の表面に所定の割合で配列されるものである。なお、突出部40の表面には、上述した凹凸構造が形成されている。
 ここで、図4に示す通り、突出部40の高さは、突出部40の底面40aから頂辺(頂点40b)までの距離であり、平均高さとは、その平均である。なお、突出部40は、図2、図4、図7および図8に示す通り、傾斜構造、すなわち、稜線(図4および図7においては符号40c)を有する山状の構造であってもよく、その場合の高さは、底面から頂点までの距離をいう。
 具体的には、高分解能走査型電子顕微鏡(SEM)を用いて、防着板12の断面を倍率50~100倍で撮影し、得られた電子顕微鏡写真において、突出部40を少なくとも20個抽出し、その高さの平均値を算出する。
 本発明においては、成膜材料の剥離防止効果がより向上する理由から、突出部40の平均高さは、100~500μmであるのが好ましい。
 突出部40の垂直方向上方から見た時の外形は、成膜材料の剥離防止効果がより向上する理由から、不定形ではなく、菱形(図3参照)または矩形であるのが好ましい。
 ここで、突出部の外形が定形であると、防着板に付着する成膜材料の残留応力の緩和効果が均一となり、成膜材料の剥離防止効果が良化する傾向がある。
 また、突出部40の平均密度は、10個/10mm角以上であり、成膜材料の剥離防止効果がより向上する理由から、10~100個/10mm角であるのが好ましく、30~80個/10mm角であるのがより好ましい。
 ここで、突出部40の平均密度は、任意の5箇所における10mm角(10mm×10mm)の領域における突出部の数を測定し、これらの合計値を5で除した平均値として算出することができる。
 また、突出部40の底部面積の比率は、10mm角の領域において10~90%であり、成膜材料の剥離防止効果がより向上する理由から、30~80%であるのが好ましい。
 ここで、突出部40の底部面積とは、図2に示す突出部40の底部、すなわち、図4の波線で示す部分の面積をいい、その比率とは、10mm角の領域、すなわち100mm2の面積における突出部40の底部面積の占める割合をいい、本発明においては、任意の5箇所における平均値をいう。
 本発明の防着板12は、平均高さ30~1000μmの複数の突出部40を上述した所定の平均密度および底部面積の比率で均一に配列することにより、上述した通り、防着板に付着した成膜材料の残留応力を緩和することができるため、特に厚層材料が付着した場合であっても、剥離によるパーティクルの発生を抑制することができると考えられる。
 <陽極酸化膜>
 本発明の防着板12は、その表面がアルミニウムの陽極酸化膜で構成されているのが好ましい。
 陽極酸化膜で構成されることで、表面に、マイクロポアと呼ばれる細孔を、多数、保有させることができる。その結果、より高いアンカー効果を得て、密着強度が高くなることで、防着板12に付着した成膜材料の剥離をより好適に防止できる。
 陽極酸化膜の厚さには、限定は無いが、0.05~30μmが好ましく、特に0.25~5μmが好ましい。陽極酸化膜の厚さを、上記範囲とすることにより、防着板の表面に陽極酸化膜を有することの効果を、更に好適に得ることができ、成膜材料が防着板から剥離してことによりパーティクルの発生を、更に好適に防止することができる。
 <クラック>
 本発明の防着板12は、その表面にクラックを有しているのが好ましい。
 表面にクラックを有することにより、防着板12に付着した成膜材料がクラックに入り込み、密着強度が高くなることで、防着板12に付着した成膜材料の剥離をより好適に防止できる。
 本発明においては、成膜材料の剥離を更に好適に防止することができる理由から、図7に示すように、クラック42は、上述した突出部40に有しているのが好ましく、突出部40の頂点40b付近や、斜面40dに有しているのがより好ましい。
 ここで、クラックは、幅0.05~20μmの線状の亀裂であることが好ましく、その長さは、0.5μm以上であって突出部の周径(例えば、4mm程度)以下であるのが好ましい。
 また、このようなクラックを1本以上有しているのが好ましく、10本以上有しているのがより好ましい。
 [防着板の製造方法]
 本発明の防着板の製造方法は、上述した本発明の防着板を製造する製造方法であって、上記凹凸構造を形成する凹凸形成工程および上記突出部を形成する突出部形成工程を有する製造方法である。
 なお、本発明においては、凹凸形成工程および突出部形成工程は、その順序を問わないが、凹凸形成工程の後に突出部形成工程を施す態様であるのが好ましい。
 <凹凸形成工程>
 凹凸形成工程は、アルミニウム板の表面に電気化学的粗面化処理を施し、表面に上述した平均開口径0.01~9μmの凹部を含む凹凸構造を形成する工程である。
 上記電気化学的粗面化処理としては、例えば、塩酸や硝酸を含む電解液を用いて、交流で電解処理する方法が挙げられる。
 具体的には、上述した中波構造の凹凸構造を得るためには、電解反応が終了した時点でのアルミニウム基材のアノード反応にあずかる電気量の総和が、1~1000C/dm2であるのが好ましく、50~300C/dm2であるのがより好ましい。また、電流密度は20~100A/dm2であるのが好ましい。
 より具体的には、例えば、0.1~50質量%の塩酸または硝酸を含む電解液中で、20~80℃の温度、時間1秒~10分の範囲で処理するのが好ましい。
 また、上述した小波構造の凹凸構造を得るためには、塩酸を含む電解液を用いて処理するのが好ましく、具体的には、電解反応が終了した時点でのアルミニウム基材のアノード反応にあずかる電気量の総和が、1~100C/dm2であるのが好ましく、20~70C/dm2であるのがより好ましい。この際の電流密度は20~50A/dm2であるのが好ましい。
 より具体的には、例えば、0.1~10質量%の塩酸を含む電解液中で、20~80℃の温度、時間1秒~10分の範囲で処理するのが好ましい。なお、塩酸を含む電解液で、中波構造に重畳された小波構造を、同一工程中で形成することも可能である。
 また、塩酸と硫酸との混合液を用いて、アルミニウム製の基材を電解処理する電気化学的粗面化処理を行うことにより、上述した中波構造に小波構造を重畳してなる凹凸構造を形成することができる。
 <突出部形成工程>
 突出部形成工程は、アルミニウム板の表面にエンボス加工を施し、表面の一部に上述した平均高さ30~1000μmの複数の突出部を形成する工程である。
 ここで、エンボス加工としては、例えば、プレス加工であってもよいが、本発明においては、特開2005-205444号公報の[0012]~[0033]段落に記載するエンボス加工用ロールを用いたロールフォーミングであるのが好ましい。
 <陽極酸化処理工程>
 陽極酸化処理工程は、上述した凹凸形成工程の後に、陽極酸化処理を施し、表面の全域にアルミニウムの陽極酸化膜を形成する任意の工程である。なお、陽極酸化処理工程は、上述した突出部形成工程の前工程であっても後工程であってもよいが、表面に上述したクラックを形成させる理由から、突出部形成工程の前工程であるのが好ましい。
 この工程により、本発明の防着板の任意の構成である陽極酸化膜を形成することができる。
 防着板表面の陽極酸化は、公知の方法で行えばよい。
 具体的には、硫酸濃度50~300g/Lで、アルミニウム濃度5質量%以下の溶液中で、アルミニウム板を陽極として通電する方法が、好適に例示される。
 また、陽極酸化処理に用いられる溶液としては、硫酸のみならず、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等を単独でまたは2種以上を組み合わせて用いることができる。
 陽極酸化処理の好ましい条件は、使用する電解液によって異なるが、一般的には電解液濃度1~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間15秒~50分程度であり、所望の陽極酸化膜量が形成できるように、適宜、調整すればよい。
 <焼鈍処理工程>
 焼鈍処理工程は、上述した突出部形成工程の後に、真空雰囲気中または大気中において、焼鈍処理(アニーリング処理)を施す任意の工程である。
 この工程により、防着板の加工性が向上し、真空チャンバの内壁面に沿った変形や穴開け等が容易となり、その結果、作製される真空成膜装置において蒸着源から生じる異常放電が抑制され、また、真空排気時間が短縮されるという効果も期待することができる。
 焼鈍処理の加熱条件は特に限定されず、200~500℃であるのが好ましく、300℃~400℃であるのがより好ましい。なお、焼鈍処理に用いる加熱炉としては、ヒーター式や輻射加熱等の一般的な炉を用いることができる。
 また、焼鈍処理の処理時間は特に限定されず、10~120分が好ましく、15~60分がより好ましい。
 <他の任意の処理工程>
 (機械的粗面化処理)
 本発明においては、上述した電解粗面化処理の前に、アルミニウム板の表面にブラシグレイン等の機械的粗面化処理を施してもよい。
 (封孔処理など)
 本発明においては、陽極酸化処理の後に、陽極酸化膜に存在するマイクロポアを封じる封孔処理を行ってもよい。封孔処理は、沸騰水処理、熱水処理、蒸気処理、ケイ酸ソーダ処理、亜硝酸塩処理、酢酸アンモニウム処理等の公知の方法に従って行うことができる。
 また、陽極酸化処理を施した表面や、この表面に封孔処理を施した表面に対して、シリケート、または、ポリビニルホスホン酸、有機カルボン酸化合物、有機スルホン酸化合物などの酸を付着させる親水化処理を施してもよい。
 以上、本発明の真空成膜装置用防着板およびその製造方法、ならびに、それを用いた真空成膜装置および真空成膜方法に関して詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げ、本発明について、より詳細に説明する。
 〔実施例1-1~1-17および比較例1-1~1-13〕
 <凹凸形成工程(粗面化処理)>
 厚さ150μmのアルミニウム板(JIS 1050材)の表面に、平均粒径30μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを2本にて、アルミニウム板を移動させて、表面処理を行った。使用したナイロンブラシの直径は0.5mm、毛密度は450本/cm2でブラシ回転数は150rpmとした。
 次いで、40℃に保温した硝酸濃度10g/Lの電解槽に入れて、電気量総和が300C/dm2の条件下で電解処理を行った。なお、交流電源波は、60Hz周波数の台形波を使用した。電流密度は100A/dm2とした。
 次いで、このアルミニウム板を、45℃に保温した塩酸濃度10g/Lの電解槽に入れて、電気量総和が70C/dm2の条件下で電解処理を行って、図6に示すような防着板を作製した。なお、交流電源波は、60Hz周波数の台形波を使用した。電流密度は50A/dm2とした。
 ここで、粗面化処理後の防着板の表面、すなわち、凹凸構造の算術平均粗さRaは0.53μmであった。
 なお、実施例1-10および実施例1-15については、ナイロンブラシを用いた粗面化処理を施さず、硝酸を用いた電解処理と塩酸を用いた電解処理のみを施したため、作製した防着板の表面のRaは0.35μmであった。
 また、実施例1-11については、ナイロンブラシを用いた粗面化処理および硝酸を用いた電解処理を施さず、塩酸を用いた電解処理のみを施した。
 同様に、比較例1-9および1-10については、凹凸形成工程を施さず、比較例1-11については、ナイロンブラシを用いた粗面化処理および硝酸を用いた電解処理を施さず、塩酸を用いた電解処理のみを施した。
 一方、比較例1-12については、凹凸形成工程に代えて、基材表面に100メッシュのアルミナをブラスト粒子として、0.4MPaの圧力でブラスト処理を行った。粗面化された防着板の表面のRaは2.5μmであり、表面に存在する凹部の平均開口径は15μm以上であった。
 また、比較例1-13については、ナイロンブラシによる粗面化処理のみを施し、電解処理を施さなかった。粗面化された表面のRaは0.75μmであった。
 <陽極酸化処理>
 作製した防着板に硫酸濃度250g/Lで、アルミニウム濃度5%以下の溶液を用い、アルミニウム板を陽極として、直流電圧を45分間印加して、表面に厚さ1.0μmの陽極酸化膜を形成した。電流密度は50A/dm2とした。
 ここで、陽極酸化処理後の防着板の表面、すなわち、凹凸構造の算術平均粗さRaは、上述した凹凸形成工程(粗面化処理)後の値と同じであった。
 なお、実施例1-15および1-16については、後述する突出部形成工程(エンボス加工)の後に、陽極酸化処理を施した。
 また、実施例1-17および比較例1-12については、陽極酸化処理を施さなかった。
 <突出部形成工程(エンボス加工)>
 特開2005-205444号公報の[0012]~[0033]段落に記載された方法により各種のエンボス加工用ロールを作製し、これを用いて上記凹凸形成工程後のアルミニウム板に対して、下記第1表に示す外形、高さおよび密度の突出部を形成させることにより、防着板を作製した。
 ここで、ニップは、型同士が板厚~板厚+0.02mmとなるように、クリアランスを矯正して行った。
 なお、比較例1-10および1-11については、突出部形成工程は施さなかった。
 <焼鈍処理工程>
 実施例1-12~1-14で作製した防着板については、突出部形成工程の後に、更に下記第1表に示す条件で焼鈍処理を施した。なお、焼鈍処理の昇温速度はいずれも15℃/分で行った。
 作製した防着板の表面および断面を電子顕微鏡によって倍率2000倍および倍率30000倍で観察し、凹凸構造(中波構造および小波構造)における凹部の平均開口径、ならびに、突出部の外形、平均高さ、平均密度および底部面積比率を測定した。これらの結果を陽極酸化膜の有無およびクラックの有無とともに下記第1表に示す。なお、下記第1表中、「-」で表される項目は、当該項目が存在していないことを示す。
 また、電子顕微鏡による観察により、実施例において作製した防着板の表面は、凹凸構造が形成され、複数の突出部が配列されていることが分かった。なお、実施例1-1で作製した防着板の表面の倍率50倍および倍率350倍の写真をそれぞれ図8および図9に示し、また、実施例1-1で作製した防着板の突出部における頂点および斜面の倍率2000倍の写真をそれぞれ図10(A)および(B)に示す。
 <剥離防止性>
 作製した防着板を、真空蒸着装置(株式会社昭和真空製 SGC-22SA)の内壁面に、カプトン(登録商標)テープを用いて図1に示すように貼着した。
 防着板を貼着した成膜装置を用いて、基板Zの表面に、真空蒸着によって金を100μm、50μmまたは0.2μm成膜した。成膜圧力は1×10-3Paとした。
 (1)100μm成膜
 100μmの成膜が終了した後、剥離の有無を調べた。
 その結果、目視による剥離が無く、かつ、JIS Z 1522:2009に規定されたテープによる剥離試験で剥離が生じなかったものを剥離防止効果に極めて優れるものとして「A1」と評価し、目視による剥離は無いが、JIS Z 1522:2009に規定されたテープによる剥離試験で一部に剥離が生じたものを剥離防止効果に優れるものとして「A2」と評価し、目視により一部に剥離が認められたものを剥離防止効果が不十分であるものとして「B」と評価し、目視によりすべての剥離が確認できたものを剥離防止効果が劣るものとして「C」と評価した。結果を第1表に示す。
 (2)50μm成膜
 50μmの成膜が終了した後、100μm成膜と同様の基準で剥離の有無を調べた。結果を第1表に示す。
 (3)0.2μm成膜
 0.2μmの成膜が終了した後、防着板12の一部をサンプリングして、JIS Z 1522:2009に規定されたテープを用いて、剥離試験を行った。
 その結果、テープに、防着板から剥離したAuの貼着が無かったものを剥離防止効果に優れるものとして「A」と評価し、テープの一部に、防着板から剥離したAuの貼着が認められたものを剥離防止効果が不十分であるものとして「B」と評価し、テープの全面に、防着板から剥離したAuの貼着が認められたものを剥離防止効果が劣るものとして「C」と評価した。結果を第1表に示す。
 <加工性>
 実施例1-2および実施例1-12~1-14で作製した防着板については、以下に示す方法により加工性を評価した。
 すなわち、カプトン(登録商標)テープを用いて、防着板を真空蒸着装置(株式会社昭和真空製 SGC-22SA)の内壁面に貼着する際に、真空チャンバの内壁面から浮き上がらず、容易に貼着することができたものを加工性に大変優れるものとして「A」と評価し、真空チャンバの内壁面からわずかに浮きあがりが生じたものの、容易に貼着することができたものを加工性に優れるものとして「B」と評価し、真空チャンバの内壁面から浮きあがりが生じ、貼着に時間を要したものを加工性に劣るものとして「C」と評価した。この結果を下記第1表に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
 〔実施例2-1~2-7および比較例2-1~2-3〕
 <凹凸形成工程(電解粗面化処理)>
 厚さ150μmのアルミニウム板(JIS 1050材)の表面に、平均粒径30μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを2本にて、アルミニウム板を移動させて、表面処理を行った。使用したナイロンブラシの直径は0.5mm、毛密度は450本/cm2でブラシ回転数は150rpmとした。
 次いで、40℃に保温した硝酸濃度10g/Lの電解槽に入れて、電気量総和が300C/dm2の条件下で電解処理を行い、図5(A)に示すような防着板を作製した。なお、電解処理は、60Hz周波数で台形波の交流電源波で行った。電流密度は、100A/dm2とした。
 ここで、粗面化処理後の防着板の表面、すなわち、凹凸構造の算術平均粗さRaは0.55μmであった。
 なお、実施例2-6については、ナイロンブラシを用いた粗面化処理を施さず、硝酸を用いた電解処理のみを施したため、作製した防着板の表面のRaは0.35μmであった。
 <陽極酸化処理および親水化処理>
 作製した防着板に硫酸濃度250g/Lで、アルミニウム濃度5%以下の溶液を用い、アルミニウム板を陽極として、直流電圧を45分間印加して、表面に厚さ1.0μmの陽極酸化膜を形成した。電流密度は50A/dm2とした。
 その後、2.5質量%3号ケイ酸ソーダ水溶液を用いて、70℃で10秒間、親水化処理を施すことにより、防着板を作製した。なお、Siの付着量は10mg/m2であった。
 ここで、陽極酸化処理および親水化処理後の防着板の表面、すなわち、凹凸構造の算術平均粗さRaは、上述した凹凸形成工程(粗面化処理)後の値と同じであった。
 なお、実施例2-7については、後述する突出部形成工程(エンボス加工)の後に、陽極酸化処理を施した。
 <突出部形成工程(エンボス加工)>
 特開2005-205444号公報の[0012]~[0033]段落に記載された方法により各種のエンボス加工用ロールを作製し、これを用いて上記凹凸形成工程後のアルミニウム板に対して、下記第2表に示す形状、高さおよび密度の突出部を形成させることにより、防着板を作製した。
 ここで、ニップは、型同士が板厚~板厚+0.02mmとなるように、クリアランスを矯正して行った。
 作製した防着板の表面および断面を電子顕微鏡によって倍率2000倍で観察し、凹凸構造(中波構造)における凹部の平均開口径、ならびに、突出部の外形、平均高さ、平均密度および底部面積比率を測定した。これらの結果を陽極酸化膜の有無およびクラックの有無とともに下記第2表に示す。なお、下記第2表中、「-」で表される項目は、当該項目が存在していないことを示す。
 また、電子顕微鏡による観察により、実施例において作製した防着板の表面は、凹凸構造が形成され、複数の突出部が配列されていることが分かった。
 作製した防着板の剥離防止性については、実施例1-1と同様の方法により評価した。その結果を下記第2表に示す。
Figure JPOXMLDOC01-appb-T000003
 
 上記第1表および第2表に示す通り、特定の平均開口径の凹部を含む凹凸構造が形成された表面を有し、かつ、この表面に特定の平均高さの複数の突出部が所定の割合で配列された防着板は、付着したAuの膜厚によらず、剥離防止効果に優れることが分かった(実施例1-1~1~17および実施例2-1~2-7)。特に、突出部の平均密度が30~80個/10mm角の好適範囲にあることにより、付着したAuの膜厚が厚い場合であっても剥離が見られず、剥離防止効果に極めて優れることが分かった。また、実施例1-2と実施例1-12~1-14との対比から、焼鈍処理を施すことにより、防着板の加工性が良好となることが分かった。更に、実施例1-2と実施例1-15との対比、実施例1-10と実施例1-16との対比、実施例2-2と実施例2-7との対比から、表面にクラックを有する防着板は、付着したAuの膜厚が100μmである場合の剥離防止効果がより良好となることが分かった。更に、実施例1-1と実施例1-17との対比から、表面がアルミニウムの陽極酸化膜で構成されることにより、付着したAuの膜厚が50μmである場合の剥離防止効果がより良好となることが分かった。
 これに対し、凹凸構造または突出部を有さない防着板や、特定の平均高さや密度を満たさない突出部を有する防着板は、いずれも、付着したAuの膜厚によっては、剥離防止効果が劣る場合があることが分かった(比較例1-1~1~13および比較例2-1~2-3)。
 半導体装置や電子部品材料の製造等、真空蒸着、スパッタリング、プラズマCVDなどの真空成膜法を利用する各種の製品の製造に、好適に利用可能である。
 10 真空成膜装置
 12 防着板
 12a 上面防着板
 12b 側面防着板
 12c 下面防着板
 14 真空チャンバ
 16 蒸着源
 18 基板ホルダ
 20 真空ポンプ
 30 凹凸構造
 30a、32a、34a、 凹部
 30b、32b、34b 凸部
 32 中波構造
 34 小波構造
 40 突出部
 40a 底面
 40b 頂点
 40c 稜線
 40d 斜面
 42 クラック

Claims (11)

  1.  真空成膜装置において、不要な位置への成膜材料の付着を防止するための真空成膜装置用防着板であって、
     アルミニウム製であり、
     平均開口径0.01~9μmの凹部を含む凹凸構造が形成された表面を有し、
     前記表面に、平均高さ30~1000μmの複数の突出部が配列されており、
     前記突出部の平均密度が、10個/10mm角以上であり、
     前記突出部の底部面積の比率が、10mm角の領域において10~90%である真空成膜装置用防着板。
  2.  前記突出部の垂直方向上方から見た時の外形が、菱形または矩形である請求項1に記載の真空成膜装置用防着板。
  3.  前記凹凸構造が、平均開口径0.5~9μmの凹部を含む凹凸構造、または、平均開口径0.01~0.3μmの凹部を含む凹凸構造である、請求項1または2に記載の真空成膜装置用防着板。
  4.  前記凹凸構造が、平均開口径0.5~9μmの凹部を含む凹凸構造に、平均開口径0.01~0.3μmの凹部を含む凹凸構造が重畳された凹凸構造である、請求項1~3のいずれか1項に記載の真空成膜装置用防着板。
  5.  前記表面が、アルミニウムの陽極酸化膜で構成される請求項1~4のいずれか1項に記載の真空成膜装置用防着板。
  6.  前記表面に、クラックを有する請求項1~5のいずれか1項に記載の真空成膜装置用防着板。
  7.  真空成膜装置において、不要な位置への成膜材料の付着を防止するための真空成膜装置用防着板を製造する製造方法であって、
     アルミニウム板の表面に電気化学的粗面化処理を施し、表面に平均開口径0.01~9μmの凹部を含む凹凸構造を形成する凹凸形成工程と、
     アルミニウム板の表面にエンボス加工を施し、表面の一部に平均高さ30~1000μmの複数の突出部を形成する突出部形成工程とを有する製造方法。
  8.  前記凹凸形成工程の後に、陽極酸化処理を施し、表面にアルミニウムの陽極酸化膜を形成する陽極酸化処理工程を有する請求項7に記載の真空成膜装置用防着板の製造方法。
  9.  前記突出部形成工程の後に、焼鈍処理を施す焼鈍処理工程を有する請求項7または8に記載の真空成膜装置用防着板の製造方法。
  10.  請求項1~6のいずれか1項に記載の真空成膜装置用防着板を有する真空成膜装置。
  11.  請求項1~6のいずれか1項に記載の真空成膜装置用防着板を有する真空成膜装置を用いて、被成膜基板の表面に、Ti、Zr、Nb、Ta、Cr、Mo、W、Pt、Au、Ag、Fe、Ni、Mn、Sn、Zn、Co、Al、CuおよびSiから選択された1種の元素、または、その合金、窒化物もしくは酸化物を成膜する真空成膜方法。
PCT/JP2013/077526 2012-10-26 2013-10-09 真空成膜装置用防着板、真空成膜装置用防着板の製造方法、真空成膜装置、および、真空成膜方法 WO2014065125A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-236268 2012-10-26
JP2012236268 2012-10-26
JP2012-255834 2012-11-22
JP2012255834 2012-11-22
JP2013-044976 2013-03-07
JP2013044976 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014065125A1 true WO2014065125A1 (ja) 2014-05-01

Family

ID=50544505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077526 WO2014065125A1 (ja) 2012-10-26 2013-10-09 真空成膜装置用防着板、真空成膜装置用防着板の製造方法、真空成膜装置、および、真空成膜方法

Country Status (1)

Country Link
WO (1) WO2014065125A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900210A (zh) * 2014-12-15 2016-08-24 应用材料公司 用于纹理化腔室部件的方法和具有纹理化表面的腔室部件
CN109097739A (zh) * 2018-08-02 2018-12-28 京东方科技集团股份有限公司 一种防着板及蒸镀设备
CN109652773A (zh) * 2019-02-25 2019-04-19 京东方科技集团股份有限公司 一种防着组件以及蒸镀设备
WO2020171958A1 (en) 2019-02-21 2020-08-27 Lam Research Corporation Macroscopic texturing for anodized and coated surfaces
CN113373421A (zh) * 2021-06-08 2021-09-10 京东方科技集团股份有限公司 防着板及其制备方法、蒸镀设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387357A (ja) * 1989-06-13 1991-04-12 Nippon Mining Co Ltd 薄膜形成装置
JPH04289159A (ja) * 1991-03-19 1992-10-14 Fujitsu Ltd 成膜装置における防着装置
JPH08325737A (ja) * 1995-05-30 1996-12-10 Anelva Corp 真空処理装置
JPH10321559A (ja) * 1997-05-19 1998-12-04 Hitachi Ltd 半導体装置の製造方法
JPH10330971A (ja) * 1997-06-02 1998-12-15 Japan Energy Corp 薄膜形成装置用部材の製造方法および該装置用部材
JPH116049A (ja) * 1997-06-12 1999-01-12 Nippon Sheet Glass Co Ltd 真空成膜装置
JPH11340143A (ja) * 1998-05-22 1999-12-10 Hitachi Ltd 半導体装置の製造方法
JP2001049419A (ja) * 1999-08-11 2001-02-20 Vacuum Metallurgical Co Ltd 成膜装置用部品およびその製造方法
JP2002038253A (ja) * 2000-07-25 2002-02-06 Futaba Corp 防着板及びこれを用いた真空成膜装置
JP2005350715A (ja) * 2004-06-09 2005-12-22 Nec Yamaguchi Ltd 薄膜形成装置用部品およびその製造方法
JP2012153942A (ja) * 2011-01-26 2012-08-16 Ulvac Techno Ltd 成膜装置用シート及びその製造方法
WO2013146137A1 (ja) * 2012-03-28 2013-10-03 富士フイルム株式会社 真空成膜装置用防着板、真空成膜装置、および、真空成膜方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387357A (ja) * 1989-06-13 1991-04-12 Nippon Mining Co Ltd 薄膜形成装置
JPH04289159A (ja) * 1991-03-19 1992-10-14 Fujitsu Ltd 成膜装置における防着装置
JPH08325737A (ja) * 1995-05-30 1996-12-10 Anelva Corp 真空処理装置
JPH10321559A (ja) * 1997-05-19 1998-12-04 Hitachi Ltd 半導体装置の製造方法
JPH10330971A (ja) * 1997-06-02 1998-12-15 Japan Energy Corp 薄膜形成装置用部材の製造方法および該装置用部材
JPH116049A (ja) * 1997-06-12 1999-01-12 Nippon Sheet Glass Co Ltd 真空成膜装置
JPH11340143A (ja) * 1998-05-22 1999-12-10 Hitachi Ltd 半導体装置の製造方法
JP2001049419A (ja) * 1999-08-11 2001-02-20 Vacuum Metallurgical Co Ltd 成膜装置用部品およびその製造方法
JP2002038253A (ja) * 2000-07-25 2002-02-06 Futaba Corp 防着板及びこれを用いた真空成膜装置
JP2005350715A (ja) * 2004-06-09 2005-12-22 Nec Yamaguchi Ltd 薄膜形成装置用部品およびその製造方法
JP2012153942A (ja) * 2011-01-26 2012-08-16 Ulvac Techno Ltd 成膜装置用シート及びその製造方法
WO2013146137A1 (ja) * 2012-03-28 2013-10-03 富士フイルム株式会社 真空成膜装置用防着板、真空成膜装置、および、真空成膜方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900210A (zh) * 2014-12-15 2016-08-24 应用材料公司 用于纹理化腔室部件的方法和具有纹理化表面的腔室部件
CN105900210B (zh) * 2014-12-15 2021-06-01 应用材料公司 用于纹理化腔室部件的方法和具有纹理化表面的腔室部件
CN109097739A (zh) * 2018-08-02 2018-12-28 京东方科技集团股份有限公司 一种防着板及蒸镀设备
WO2020171958A1 (en) 2019-02-21 2020-08-27 Lam Research Corporation Macroscopic texturing for anodized and coated surfaces
EP3928347A4 (en) * 2019-02-21 2022-10-26 LAM Research Corporation MACROSCOPIC TEXTURING FOR ANODISED AND COATED SURFACES
CN109652773A (zh) * 2019-02-25 2019-04-19 京东方科技集团股份有限公司 一种防着组件以及蒸镀设备
CN113373421A (zh) * 2021-06-08 2021-09-10 京东方科技集团股份有限公司 防着板及其制备方法、蒸镀设备

Similar Documents

Publication Publication Date Title
JP2014173106A (ja) 真空成膜装置用防着板、真空成膜装置、および、真空成膜方法
JP6545300B2 (ja) しわが実質的にない電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法
WO2014065125A1 (ja) 真空成膜装置用防着板、真空成膜装置用防着板の製造方法、真空成膜装置、および、真空成膜方法
US10260160B2 (en) High purity metallic top coat for semiconductor manufacturing components
TWI639732B (zh) 用於電鍍黏附之陽極氧化架構
US20200078765A1 (en) Aluminum composite material
TWI421373B (zh) 一種金屬母材之鎢塗層方法
JP5869507B2 (ja) 真空成膜装置用防着板、真空成膜装置、および、真空成膜方法
Wang et al. Interface adhesion properties of functional coatings on titanium alloy formed by microarc oxidation method
JP5909082B2 (ja) グラフェン製造用銅箔及びグラフェンの製造方法
JP2010215945A (ja) 酸化被膜及びその製造方法
Wang et al. Nitrogen inducing effect on preparation of AlON–Al2O3 coatings on Al6061 alloy by electrolytic plasma processing
CN110607510A (zh) 一种磁控溅射制备非晶金属钒薄膜的方法
JP4068742B2 (ja) 耐熱割れ性及び耐食性に優れた半導体製造装置用陽極酸化皮膜被覆部材の製造方法
JP5912575B2 (ja) 加工性に優れる表面処理アルミニウム板の製造方法
KR101798306B1 (ko) 그래핀 제조용 동박 및 그래핀의 제조 방법
JP6308848B2 (ja) 陽極酸化皮膜付アルミニウム基板の製造方法
Bara et al. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers
JP6936955B2 (ja) 金属箔製造用陰極ドラムおよび金属箔の製造方法
KR101313014B1 (ko) Led 조명기기용 히트싱크의 표면 처리 방법
KR20120103251A (ko) 전주 마스터 및 이의 제조방법
EP1923487B1 (en) Method of reactivating electrode for electrolysis
CN114981483B (zh) 粗糙化镀镍板
KR101269606B1 (ko) 단일 방위의 면을 가지는 면심입방격자 금속촉매상에서 그래핀을 제조하는 방법
JP2017179429A (ja) 連続製膜装置および連続製膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP