WO2014059944A1 - 传输编码指示信息和确定预编码矩阵的方法、系统及设备 - Google Patents

传输编码指示信息和确定预编码矩阵的方法、系统及设备 Download PDF

Info

Publication number
WO2014059944A1
WO2014059944A1 PCT/CN2013/085504 CN2013085504W WO2014059944A1 WO 2014059944 A1 WO2014059944 A1 WO 2014059944A1 CN 2013085504 W CN2013085504 W CN 2013085504W WO 2014059944 A1 WO2014059944 A1 WO 2014059944A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
indication information
matrix
component
precoding matrix
Prior art date
Application number
PCT/CN2013/085504
Other languages
English (en)
French (fr)
Inventor
高秋彬
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US14/434,400 priority Critical patent/US9882615B2/en
Priority to EP13847320.2A priority patent/EP2913950B1/en
Publication of WO2014059944A1 publication Critical patent/WO2014059944A1/zh
Priority to US15/851,682 priority patent/US10516450B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system, and device for transmitting coding indication information and determining a precoding matrix. Background technique
  • LTE Long Term Evolution
  • the Rel-8 (version 8) system introduces closed-loop precoding techniques to improve spectral efficiency. Closed-loop precoding first requires that both the base station and the user equipment maintain a set of the same precoding matrix, called a codebook. After estimating the channel information according to the common pilot of the cell, the user equipment selects a precoding matrix from the codebook according to a certain criterion. The criteria chosen may be to maximize mutual information, maximize output signal to interference and noise ratio, and the like. The user equipment feeds the index of the selected precoding matrix in the codebook to the base station through the uplink channel, and the index is recorded as a PMI (Pre-coding Matrix Indicator). The base station can determine the precoding matrix to be used for the user equipment from the received index value. The precoding matrix reported by the user equipment can be regarded as the quantized value of the channel state information.
  • PMI Pre-coding Matrix Indicator
  • the base station antenna arrays are generally horizontally arranged as shown in Figures 1 and 2.
  • the base station transmitter beam can only be adjusted in the horizontal direction, while the vertical direction is a fixed downtilt angle for each user. Therefore, various beamforming/precoding techniques are performed based on the horizontal channel information.
  • the wireless signal is three-dimensionally propagated in space, the method of fixing the downtilt angle does not optimize the performance of the system.
  • Vertical beam adjustment is important for system performance improvement.
  • active antennas capable of independently controlling each array have appeared in the industry, as shown in Figs. 3A and 3B. With such an antenna array, dynamic adjustment of the beam in the vertical direction is made possible.
  • the three-dimensional beamforming/precoding needs to rely on the channel state information reported by the user equipment.
  • One possible implementation method has been adopted since the LTE Rel-8 system.
  • a codebook based reporting method has been adopted since the LTE Rel-8 system.
  • the current codebook is designed for horizontal beamforming/precoding, and direct application to three-dimensional beamforming/precoding technology results in performance degradation. Summary of the invention
  • Embodiments of the present invention provide a method and system for transmitting coding indication information and determining a precoding matrix, and thus directly applying to a three-dimensional beamforming/precoding technique may cause a problem of performance degradation.
  • the user equipment determines first precoding indication information and second precoding indication information, where the first precoding indication information and the second precoding indication information correspond to a precoding matrix, where the precoding matrix is equal to the first component precoding a matrix of functions of the matrix and the second component precoding matrix, the first component precoding matrix being a block diagonal matrix, the submatrix on the diagonal is equal to the Kronecker product of the two matrices; the second component precoding The matrix is composed of weighted column selection vectors, the weighted column selection vector is zero except for P non-zero elements, and P is a positive integer;
  • the user equipment sends first precoding indication information and second precoding indication information to the network side.
  • the network side device receives first precoding indication information and second precoding indication information from the user equipment;
  • the network side device Determining a precoding matrix
  • the precoding matrix is equal to a function matrix of the first component precoding matrix and the second component precoding matrix, and the first component precoding matrix is a block diagonal matrix, and the submatrix on the diagonal is equal to two matrices.
  • the Kronecker product; the second component precoding matrix is composed of weighted column selection vectors, which are zero except for P non-zero elements, and P is a positive integer.
  • the user equipment for transmitting the coding indication information includes: a first determining module, configured to determine first precoding indication information and second precoding indication information, where the first precoding indication information and The second precoding indication information is corresponding to a precoding matrix, where the precoding matrix is equal to a function matrix of the first component precoding matrix and the second component precoding matrix, and the first component precoding matrix is a block diagonal matrix.
  • the submatrix on the diagonal is equal to the Kronecker product of the two matrices;
  • the second component precoding matrix is composed of weighted column selection vectors, which are zero except for P non-zero elements.
  • P is a positive integer;
  • a sending module configured to send the first precoding indication information and the second precoding indication information to the network side.
  • a network side device for determining a precoding matrix includes: a receiving module, configured to receive first precoding indication information and second precoding indication information from a user equipment;
  • a second determining module configured to determine a precoding matrix according to the first precoding indication information and the second precoding indication information
  • the precoding matrix is equal to a function matrix of the first component precoding matrix and the second component precoding matrix, and the first component precoding matrix is a block diagonal matrix, and the submatrix on the diagonal is equal to two matrices.
  • the Kronecker product; the second component precoding matrix is composed of weighted column selection vectors, which are zero except for P non-zero elements, and P is a positive integer.
  • a user equipment configured to determine first precoding indication information and second precoding indication information, where the first precoding indication information and the second precoding indication information correspond to a precoding matrix, where the precoding matrix is equal to the first a function matrix of a component precoding matrix and a second component precoding matrix,
  • the first component precoding matrix is a block diagonal matrix, and the submatrix on the diagonal is equal to two matrices
  • the second component precoding matrix is composed of weighted column selection vectors, the weighted column selection vector is zero except for p non-zero elements, and P is a positive integer;
  • a network side device configured to receive first precoding indication information and second precoding indication information from the user equipment; and determine a precoding matrix according to the first precoding indication information and the second precoding indication information.
  • the user equipment determines the first precoding indication information and the second precoding indication information, where the first precoding indication information and the second precoding indication information correspond to a precoding matrix, where the precoding matrix a function matrix equal to the first component precoding matrix and the second component precoding matrix, the first component precoding matrix corresponding to the first precoding indication information is a block diagonal matrix, and the submatrix on the diagonal is equal to two a Kronecker product of the matrix; the second component precoding matrix corresponding to the second precoding indication information is composed of weighted column selection vectors, except for P non-zero elements Zero, P is a positive integer, and the performance of the three-dimensional beamforming/precoding technique is improved because the constructed precoding matrix is more closely matched with the spatial channel of the three-dimensional beamforming.
  • FIG. 1 is a schematic diagram of a horizontally arranged dual-polarized antenna in the prior art
  • FIG. 2 is a schematic diagram of a horizontally arranged linear array antenna in the prior art
  • 3A is a schematic diagram of a two-dimensionally arranged dual-polarized antenna in the prior art
  • 3B is a schematic diagram of a linear array antenna arranged vertically in two dimensions in the prior art
  • FIG. 4 is a schematic structural diagram of a system for determining a precoding matrix according to an embodiment of the present invention.
  • 5A and 5B are respectively user settings in a system for determining a precoding matrix according to an embodiment of the present invention. Schematic diagram of the preparation structure;
  • FIG. 6A and FIG. 6B are schematic diagrams showing the structure of a network side device in a system for determining a precoding matrix according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a method for transmitting coding indication information according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for determining a precoding matrix according to an embodiment of the present invention. Detailed ways
  • the user equipment determines the first precoding indication information and the second precoding indication information, where the first precoding indication information and the second precoding indication information correspond to a precoding matrix, where the precoding matrix a function matrix equal to the first component precoding matrix and the second component precoding matrix, the first component precoding matrix corresponding to the first precoding indication information is a block diagonal matrix, and the submatrix on the diagonal is equal to two The Kronecker product of the matrix; the second component precoding matrix corresponding to the second precoding indication information is composed of weighted column selection vectors, and the weighted column selection vector is zero except for P non-zero elements. Since the constructed precoding matrix is more matched with the spatial channel of the three-dimensional beamforming, the performance of the three-dimensional beamforming/precoding technique is improved.
  • the system for determining a precoding matrix in the embodiment of the present invention includes: a user equipment 10 and a network side device 20.
  • the user equipment 10 is configured to determine first precoding indication information and second precoding indication information, and send first precoding indication information and second precoding indication information to the network side, where the first precoding indication information and the second pre
  • the coding indication information is corresponding to a precoding matrix, where the precoding matrix is equal to a function matrix of the first component precoding matrix and the second component precoding matrix, and the first component precoding matrix is A block diagonal matrix whose submatrices on the diagonal are equal to the Kronecker product of the two matrices; the second component precoding matrix is composed of weighted column selection vectors, and the weighted column selection vectors are all except P non-zero elements Zero, P is a positive integer;
  • the network side device 20 is configured to receive first precoding indication information and second precoding indication information from the user equipment, and determine a precoding matrix according to the first precoding indication information and the second precoding indication information.
  • P is 2.
  • the user equipment 10 determines the first precoding indication information and the second precoding indication information, and several are listed below:
  • Manner 1 The user equipment 10 selects a first component precoding matrix from the first component precoding matrix set, and determines first precoding indication information corresponding to the selected first component precoding matrix, and a second component precoding matrix. Selecting a second component precoding matrix in the set, and determining second precoding indication information corresponding to the selected second component precoding matrix.
  • the user equipment 10 estimates a channel of each antenna port to the user equipment 10 according to the pilot signal sent by the network side device 20, where each antenna port corresponds to one or more physical antennas; then, the user equipment 10 estimates according to And selecting a first component precoding matrix from the first component precoding matrix set and selecting a second component precoding matrix from the second component precoding matrix set.
  • the first component precoding matrix may be determined by a method of maximizing the mutual information amount or maximizing the output signal to interference and noise ratio or maximizing the output energy.
  • the method for determining the maximum output energy is:
  • W l arg max II II 2
  • is a set of possible first component precoding matrices, which is part of the channel matrix of the network side device 20 to the user equipment 10, specifically with the first component precoding matrix
  • Corresponding parts such as channels in the same polarization direction in a dual-polarized antenna, or channels of a half-antenna in a co-polarized antenna array.
  • the second component precoding matrix can take maximum mutual information or maximize the output signal to interference and noise ratio Or determine the method of maximizing the output energy.
  • the method for determining the maximum output energy is:
  • VsC 2 wherein C 2 is a set of possible second component precoding matrices, and H is a channel matrix of the network side device 20 to the user equipment 10, which is the first component precoding matrix that has been determined.
  • the first precoding indication information and the second precoding indication information may be at different moments. Reported, reported in different time granularity and frequency domain granularity; can also be on the same time.
  • the first component precoding matrix of the embodiment of the present invention is a block diagonal matrix, and the first component precoding matrix is one of Equation 1 to Formula 4:
  • W i is a first component precoding matrix
  • X is a beamforming matrix whose dimensions are
  • D H x M H, Z is a beamforming matrix, which dimension D v x M v;
  • a [chi] [mu] [eta] [eta] is to [mu] diagonal matrix whose value may be a function of X, or set to a fixed value; as [mu] Beta ⁇ ⁇ ⁇ ⁇ diagonal matrix, the value can be a function of ⁇ , or take a fixed value;
  • D H is a positive integer;
  • M H , D v and M v are positive integers.
  • D H is half the number of horizontal antennas.
  • the first component precoding matrix set is one of the formulas one to four in the above formula Consisting of a component precoding matrix.
  • X is a DFT (Discrete Fourier Transform) matrix or a part of a DFT matrix, such as a front D H row taken from an L-point DFT matrix, a continuous M H column,
  • Z is part of the DFT matrix or DFT matrix, such as the front D v taken from the L-point DFT matrix
  • the first precoding indication information is determined according to formula 5 or formula 6:
  • the user equipment 10 determines the first component precoding according to the correspondence between the preset first component precoding matrix and the first precoding indication information.
  • the first precoding indication information corresponding to the matrix.
  • the correspondence between the first component precoding matrix and the first precoding indication information may be set as needed.
  • the correspondence may be specified in the protocol; it may also be signaled by the higher layer.
  • the second component precoding matrix is a product of a ( 2M H M v) xr dimensional matrix and a power normalization coefficient, and r is a number of columns of the precoding matrix;
  • W 2 is the second component precoding matrix
  • is the column vector of length M H M V
  • the first! ⁇ elements are 1, other elements are 0, are complex scalars with a modulus of 1, iV1 H and 1 Vi v are positive integers
  • M is the power normalization coefficient
  • r is the number of columns of the precoding matrix, also known as rank.
  • the second component precoding matrix W 2 is taken from a set (codebook), and the second precoding indication information corresponds to one element in the set.
  • the set of W 2 is
  • the user equipment 10 determines the second component precoding according to the correspondence between the preset second component precoding matrix and the second precoding indication information.
  • the second precoding indication information corresponding to the matrix.
  • the correspondence between the second component precoding matrix and the second precoding indication information may be set as needed.
  • the correspondence may be specified in the protocol; it may also be signaled by the higher layer.
  • the precoding matrix is: one of the formula VII ⁇ formula ten
  • Equations 7 to 10 can also be transformed.
  • the second component precoding matrix is the product of the matrix and M; M can also be used as part of the first component precoding matrix, that is, the first component is pre-
  • the user equipment 10 determines a precoding matrix in advance, and selects a plurality of first component precoding matrices from the first component precoding matrix set, and selects a second component from the second component precoding matrix set.
  • the precoding matrix may select one of the plurality of first component precoding matrices according to one of Equations 7 to 10, or select a plurality of second component precoding matrices from the second component precoding matrix set, A first component precoding matrix is selected from the first component precoding matrix set, and one of the plurality of second component precoding matrices may be selected according to one of Equations 7 to 10.
  • Manner 2 The user equipment 10 determines at least one precoding matrix, and determines, according to the correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix, the first precoding indication information corresponding to the at least one precoding matrix. And the second precoding indication information; the first precoding indication information and the second precoding indication information of the determined first precoding indication information and the second precoding indication information are first notified to the network side as needed Precoding indication information and second precoding indication information.
  • the user equipment 10 determines a plurality of precoding matrices, the plurality of precodings determined by the user equipment 10
  • the first precoding indication information corresponding to the matrix is the same.
  • the second precoding indication information corresponding to the plurality of precoding matrices determined by the user equipment 10 is different.
  • the at least one precoding matrix determined by the user equipment 10 is equal to the function matrix of the first component precoding matrix and the second component precoding matrix. Specifically, the at least one precoding matrix determined by the user equipment 10 is a product of the first component precoding matrix and the second component precoding matrix.
  • the relationship between the first component precoding matrix and the second component precoding matrix in the foregoing mode 1 and the relationship between the precoding matrix and the first component precoding matrix and the second component precoding matrix are also applicable to the second mode.
  • the network side device 20 After the network side device 20 receives the first precoding indication information and the second precoding indication information from the user equipment, there are multiple manners for determining the precoding matrix according to the first precoding indication information and the second precoding indication information. Here are a few:
  • the network side device 20 determines a first component precoding matrix corresponding to the first precoding indication information, and determines a second component precoding matrix corresponding to the second precoding indication information;
  • the network side device 20 determines the precoding matrix according to one of Equations 7 to 10.
  • the network side device 20 determines the first component precoding matrix corresponding to the first precoding indication information according to one of Equations 1 to 4.
  • the network side device 20 determines the first component precoding matrix corresponding to the received first precoding indication information according to the correspondence between the preset first component precoding matrix and the first precoding indication information.
  • the network side device 20 determines the second component precoding matrix corresponding to the received second precoding indication information according to the correspondence between the preset second component precoding matrix and the second precoding indication information.
  • the user equipment 10 and the network side device 20 both determine the first component precoding matrix according to one of Equations 1 to 4, which formula may be specified in the protocol, may also be notified by the upper layer, or may be The device 10 and the network side device 20 negotiate the determination. Regardless of which method is used, it is necessary to ensure that the user equipment 10 and the network side device 20 adopt the same formula.
  • the network side device 20 determines the received first precoding indication information and the second precoding indication information according to the preset correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix. Corresponding precoding matrix.
  • the correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix may be set as needed.
  • the correspondence may be specified in the protocol; it may also be notified by higher layer signaling.
  • the transmission data of the user equipment 10 is preprocessed with the determined precoding matrix.
  • the horizontal dimension and the vertical dimension of the embodiment of the present invention can be exchanged.
  • the network side device 20 of the embodiment of the present invention may be a base station (such as a macro base station, a home base station, etc.), or may be an RN (relay) device, or may be another network side device.
  • a base station such as a macro base station, a home base station, etc.
  • RN relay
  • the user equipment in the system for determining the precoding matrix in the embodiment of the present invention includes: a first determining module 500 and a sending module 510.
  • the first determining module 500 is configured to determine first precoding indication information and second precoding indication information, where the first precoding indication information and the second precoding indication information correspond to a precoding matrix, where the precoding matrix a function matrix equal to the first component precoding matrix and the second component precoding matrix, the first component precoding matrix is a block diagonal matrix, and the submatrix on the diagonal is equal to the Kronecker product of the two matrices; the second component The precoding matrix is composed of weighted column selection vectors, and the weighted column selection vector is zero except for P non-zero elements, and P is a positive integer;
  • the sending module 510 is configured to send the first precoding indication information and the second precoding indication information to the network side.
  • the first determining module 500 selects a first component precoding matrix from the first component precoding matrix set, and determines first precoding indication information corresponding to the selected first component precoding matrix, and the second component.
  • the second component precoding matrix is selected in the precoding matrix set, and the second precoding indication information corresponding to the selected second component precoding matrix is determined.
  • the first determining module 500 determines at least one precoding matrix, and determines at least one according to the correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix. a first precoding indication information and a second precoding indication information corresponding to the precoding matrix; a first precoding indication information and a second precoding of the determined first precoding indication information and the second precoding indication information
  • the indication information is used as the first precoding indication information and the second precoding indication information that need to be notified to the network side.
  • the determined first precoding indication information corresponding to the plurality of precoding matrices is the same.
  • the determined second precoding indicia corresponding to the plurality of precoding matrices are different.
  • the first component precoding matrix is a block diagonal matrix
  • the first component precoding matrix is:
  • w i is the first component precoding matrix
  • X is a beamforming matrix whose dimensions are
  • D H xM H , Z is a beamforming matrix whose dimension is D v xM v ;
  • A is a ⁇ ⁇ ⁇ ⁇ diagonal matrix;
  • is the M v xM v diagonal matrix; M H , Dh , D v and M v are positive integers.
  • the second component precoding matrix is a product of a ( 2 ⁇ ⁇ ⁇ ⁇ ) ⁇ dimensional matrix and a power normalization coefficient
  • the first determining module 50 determines the second precoding indication information corresponding to the second component precoding matrix according to the correspondence between the preset second component precoding matrix and the second precoding indication information.
  • the user equipment provided by another embodiment of the present invention may include:
  • the processor 520 is configured to determine first precoding indication information and second precoding indication information, where the first precoding indication information and the second precoding indication information correspond to a precoding matrix, where the precoding matrix is equal to a function matrix of a component precoding matrix and a second component precoding matrix, wherein the first component precoding matrix is a block diagonal matrix, and a submatrix on a diagonal thereof is equal to a Kronecker product of two matrices;
  • the two-component precoding matrix is composed of weighted column selection vectors, the weighted column selection vector is zero except for p non-zero elements, and P is a positive integer;
  • the transceiver 530 is configured to send the first precoding indication information and the second precoding indication component precoding matrix to the network side as:
  • W i is a first component precoding matrix
  • X is a beamforming matrix whose dimensions are
  • D H xM H , Z is a beamforming matrix whose dimension is D v xM v ;
  • A is a ⁇ ⁇ ⁇ ⁇ diagonal matrix;
  • is the M v xM v diagonal matrix; M H , Dh , D v and M v are positive integers.
  • the second component precoding matrix is a product of ( 2 ⁇ ⁇ ⁇ ⁇ ) ⁇ dimensional matrix and power normalization coefficient, and r is the number of columns of the precoding matrix;
  • W 2 is a second component precoding matrix
  • is a column vector of length M H M V
  • the second The element is 1 and all other elements are 0. It is a complex scalar with a modulus of 1, and M H and M v are positive integers
  • is the power normalization coefficient.
  • the processor 520 is specifically configured to: select a first component precoding matrix from the first component precoding matrix set, and determine a first precoding indication information corresponding to the selected first component precoding matrix, and The second component precoding matrix is selected in the two component precoding matrix set, and the second precoding indication information corresponding to the selected second component precoding matrix is determined.
  • the processor 520 can determine the first precoding indication information according to the following formula:
  • the processor 520 is specifically configured to: determine, according to a preset correspondence between the second component precoding matrix and the second precoding indication information, the second precoding indication information corresponding to the second component precoding matrix.
  • the processor 520 may use a product of the first component precoding matrix and the second component precoding matrix as a precoding matrix.
  • the processor 520 may determine the at least one precoding matrix, and determine, according to the correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix, the first precoding indication corresponding to the at least one precoding matrix.
  • the information and the second precoding indication information; the first precoding indication information and the second precoding indication information of the determined first precoding indication information and the second precoding indication information are notified to the network side as needed a precoding indication information and a second precoding indication information.
  • the processor determines a plurality of precoding matrices, the determined first precoding indication information corresponding to the plurality of precoding matrices is the same. Alternatively, if the processor determines a plurality of precoding matrices, the second precoding indication information corresponding to the determined plurality of precoding matrices is different.
  • the network side device in the system for determining the precoding matrix in the embodiment of the present invention includes: a receiving module 600 and a second determining module 610.
  • the receiving module 600 is configured to receive first precoding indication information and second precoding indication information from the user equipment;
  • a second determining module 610 configured to determine a precoding matrix according to the first precoding indication information and the second precoding indication information
  • the precoding matrix is equal to the function matrix of the first component precoding matrix and the second component precoding matrix, the first component precoding matrix is a block diagonal matrix, and the submatrix on the diagonal is equal to the two matrix Kronecker
  • the second component precoding matrix is composed of weighted column selection vectors, and the weighted column selection vector is zero except for P non-zero elements, and P is a positive integer.
  • the second determining module 610 determines a first component precoding matrix corresponding to the first precoding indication information, and determines a second component precoding matrix corresponding to the second precoding indication information; The product of the second component precoding matrix is used as a precoding matrix.
  • the second determining module 610 determines a first component precoding matrix corresponding to the first precoding indication information according to the following formula: or or
  • w i is a first component precoding matrix and X is a beamforming matrix whose dimensions are
  • D H xM H , Z is a beamforming matrix with dimensions D v xM v ;
  • A is ⁇ ⁇ ⁇ ⁇ diagonal matrix;
  • is M v xM v diagonal matrix;
  • Mh , Dh , E and M v are positive Integer.
  • ; ⁇ 1110(1 ⁇ ⁇ , is the first precoding indication information.
  • the second determining module 610 determines the second component precoding matrix corresponding to the received second precoding indication information according to the correspondence between the preset second component precoding matrix and the second precoding indication information.
  • the second component precoding matrix is a product of a ( 2M H M v) xr dimensional matrix and a power normalization coefficient, and r is a number of columns of the precoding matrix;
  • the second component precoding matrix is: Where W 2 is the second component precoding matrix; ⁇ is the column vector of length M H M V , the first element is 1, and the other elements are all 0, which is a complex scalar with a modulus of 1, M H and M v is a positive integer; ⁇ is the power normalization coefficient.
  • W 2 is the second component precoding matrix
  • is the column vector of length M H M V
  • the first element is 1
  • the other elements are all 0, which is a complex scalar with a modulus of 1
  • M H and M v is a positive integer
  • is the power normalization coefficient.
  • 1 G ⁇ e j ⁇ :t 0,l,...,3 ⁇ , j is a pure imaginary number.
  • the second determining module 610 determines the first component precoding matrix corresponding to the received first precoding indication information according to the correspondence between the preset first component precoding matrix and the first precoding indication information.
  • the second determining module 610 determines the received first precoding indication information and the second precoding according to the preset correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix. Indicates the precoding matrix corresponding to the information.
  • the network device may include:
  • the transceiver 620 is configured to receive first precoding indication information and second precoding indication information from the user equipment, where the processor 630 is configured to determine, according to the first precoding indication information and the second precoding indication information, Encoding matrix.
  • the precoding matrix is equal to a function matrix of the first component precoding matrix and the second component precoding matrix, and the first component precoding matrix is a block diagonal matrix, and the submatrix on the diagonal is equal to two matrices.
  • the Kronecker product; the second component precoding matrix is composed of weighted column selection vectors which are all zero except for P non-zero elements, P being a positive integer.
  • the processor 630 is specifically configured to: determine a first component precoding matrix corresponding to the first precoding indication information, and determine a second component precoding matrix corresponding to the second precoding indication information; The product of the second component precoding matrix is used as a precoding matrix.
  • the processor 630 may determine, according to the following formula, a first component precoding matrix corresponding to the first precoding indication information: or or
  • w i is a first component precoding matrix and X is a beamforming matrix whose dimensions are
  • D H xM H , Z is a beamforming matrix with dimensions D v xM v ;
  • A is ⁇ ⁇ ⁇ ⁇ diagonal matrix;
  • is M v xM v diagonal matrix;
  • Mh , Dh , E and M v are positive Integer.
  • ; ⁇ 1110(1 ⁇ ⁇ , which is the first precoding indication information.
  • the second component precoding matrix is ( 2M H M v ) the product of the xr dimensional matrix and the power normalization coefficient, and r is the number of columns of the precoding matrix;
  • the second component precoding matrix is: Where W 2 is a second component precoding matrix; 6 13 ⁇ 4 is a column vector of length M H M V , the first element is 1 , all other elements are 0, is a complex scalar with a modulus of 1, M H and M v is a positive integer; ⁇ is the power normalization coefficient.
  • the processor 630 may determine, according to a preset correspondence between the preset first component precoding matrix and the first precoding indication information, a first component precoding matrix corresponding to the received first precoding indication information.
  • the processor 630 may determine, according to a preset correspondence between the second component precoding matrix and the second precoding indication information, a second component precoding matrix corresponding to the received second precoding indication information.
  • the processor 630 may determine, according to the preset correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix, the received first precoding indication information and the second precoding indication information. Corresponding precoding matrix.
  • the embodiment of the present invention further provides a method for transmitting coding indication information.
  • the user equipment in the system for determining the precoding matrix is a device corresponding to the method, and the method solves the problem and determines the precoding.
  • the user equipment in the matrix system is similar, so the implementation of the method can be referred to the implementation of the device, and the repeated description is not repeated. As shown in FIG.
  • Step 701 The user equipment determines first precoding indication information and second precoding indication information, where the first precoding indication information and the second The precoding indication information corresponds to a precoding matrix, and the precoding matrix is equal to a function matrix of the first component precoding matrix and the second component precoding matrix, and the first component precoding matrix is a block diagonal matrix, on a diagonal thereof
  • the submatrix is equal to the Kronecker product of the two matrices;
  • the second component precoding matrix is composed of weighted column selection vectors, and the weighted column selection vector is zero except P non-zero elements, and P is a positive integer;
  • Step 702 The user equipment sends the first precoding indication information and the second precoding indication information to the network side.
  • P is 2.
  • the user equipment determines the first precoding indication information and the second precoding indication information, and the following are listed:
  • Manner 1 The user equipment selects a first component precoding matrix from the first component precoding matrix set, and determines first precoding indication information corresponding to the selected first component precoding matrix, and the second component precoding matrix set from the second component precoding matrix Selecting a second component precoding matrix, and determining second precoding indication information corresponding to the selected second component precoding matrix.
  • the user equipment estimates, according to the pilot signal sent by the network side device, a channel of each antenna port to the user equipment, where each antenna port corresponds to one or more physical antennas;
  • the user equipment selects a first component precoding matrix from the first component precoding matrix set according to the estimated channel, and selects a second component precoding matrix from the second component precoding matrix set.
  • the first precoding indication information and the second precoding indication information may be at different times. ⁇ , with different time granularity and frequency domain granularity on the 4 ⁇ ; can also be 4 ⁇ at the same time.
  • the first precoding indication information and the second precoding indication information when the user equipment transmits the first precoding indication information and the second precoding indication information to the network side device by using the uplink channel, the first precoding indication information and the second precoding indication information
  • the information can be 4 ⁇ at different times, with 4 ⁇ in different time granularity and frequency domain granularity;
  • the first component precoding matrix of the embodiment of the present invention is a block diagonal matrix
  • the first component precoding matrix is one of Equations 1 to 4.
  • the first component precoding matrix set in the first method is composed of a first component precoding matrix in Equations 1 to 4 above; in the second method, each first component precoding matrix according to the determined method conforms to the above formula 1 ⁇ One of the formulas four.
  • the user equipment may determine the first precoding indication information according to Equation 5 or Equation 6.
  • the second component precoding matrix is the product of the ( 2 ⁇ ⁇ ⁇ ⁇ ) ⁇ dimensional matrix and the power normalization coefficient, r is the number of columns of the precoding matrix;
  • W 2 is the second component precoding matrix
  • is the column vector of length M H M V
  • the first element is 1, and the other elements are 0, which is a complex scalar with a modulus of 1, iV1 H and 1 Vi v is a positive integer
  • M is the power normalization coefficient.
  • r is the number of columns of the precoding matrix, also known as rank.
  • the user equipment determines the second component precoding matrix according to the correspondence between the preset second component precoding matrix and the second precoding indication information. Corresponding second precoding indication information.
  • the correspondence between the second component precoding matrix and the second precoding indication information may be set as needed. In the implementation, the correspondence may be specified in the agreement; it may also be notified by the upper layer.
  • the correspondence may be specified in the agreement; it may also be notified by the upper layer.
  • One of the seven to ten formulas selects one of the plurality of first component precoding matrices, or selects a plurality of second component precoding matrices from the second component precoding matrix set, from the first component precoding matrix set
  • a first component precoding matrix is selected, and one of the plurality of second component precoding matrices may be selected according to one of Equations 7 to 10.
  • Manner 2 The user equipment user equipment determines at least one precoding matrix, and determines a first precoding indication corresponding to the at least one precoding matrix according to the correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix.
  • the information and the second precoding indication information; the first precoding indication information and the second precoding indication information of the determined first precoding indication information and the second precoding indication information are notified to the network side as needed a precoding indication information and a second precoding indication information.
  • the first precoding indication information corresponding to the plurality of precoding matrices determined by the user equipment is the same.
  • the second precoding indication information corresponding to the plurality of precoding matrices determined by the user equipment is different.
  • an embodiment of the present invention further provides a method for determining a precoding matrix.
  • the network side device in the system for determining the precoding matrix is a device corresponding to the method, and the method solves the problem and determines the pre
  • the network side devices in the system of the coding matrix are similar. Therefore, the implementation of the method can be referred to the implementation of the device, and the repeated description is not repeated.
  • Step 802 The network side device determines, according to the first precoding indication information and the second precoding indication information, a precoding matrix.
  • the precoding matrix is equal to the function matrix of the first component precoding matrix and the second component precoding matrix, the first component precoding matrix is a block diagonal matrix, and the submatrix on the diagonal is equal to the two matrix Kronecker
  • the second component precoding matrix is composed of weighted column selection vectors, and the weighted column selection vector is zero except for P non-zero elements, and P is a positive integer.
  • the network side device After the network side device receives the first precoding indication information and the second precoding indication information from the user equipment, there are multiple manners for determining the precoding matrix according to the first precoding indication information and the second precoding indication information. , Listed below:
  • the network side device determines a first component precoding matrix corresponding to the first precoding indication information, and determines a second component precoding matrix corresponding to the second precoding indication information;
  • the network side device determines the precoding matrix according to one of Equations 7 to 10.
  • the network side device determines, according to one of Equations 1 to 4, a first component precoding matrix corresponding to the first precoding indication information.
  • the network side device may further determine the first component precoding matrix corresponding to the received first precoding indication information according to the correspondence between the preset first component precoding matrix and the first precoding indication information.
  • the network side device determines the second component precoding matrix corresponding to the received second precoding indication information according to the correspondence between the preset second component precoding matrix and the second precoding indication information.
  • both the user equipment and the network side device determine the first component precoding matrix according to one of Equations 1 to 4, which formula may be specified in the protocol, may also be notified by the upper layer, and may also be performed by the user equipment and The network side device negotiates and determines. Either way, you need to ensure that the user and network side devices use the same formula.
  • Manner 2 The network side device determines, according to the preset correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix, that the received first precoding indication information and the second precoding indication information correspond to Precoding matrix.
  • the correspondence between the first precoding indication information, the second precoding indication information, and the precoding matrix may be set as needed. In the implementation, the correspondence may be specified in the agreement; it may also be notified by the upper layer.
  • the network side device After determining the precoding matrix, the network side device preprocesses the transmit data of the user equipment by using the determined precoding matrix.
  • the horizontal dimension and the vertical dimension of the embodiment of the present invention can be exchanged.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

一种传输编码指示信息和确定预编码矩阵的方法、系统及设备,用以解决现有技术中存在目前的码本是针对水平方向波束赋形/预编码设计,直接应用到三维的波束赋形/预编码技术中会导致性能下降的问题。本发明实施例的方法包括:用户设备确定并向网络侧发送第一预编码指示信息和第二预编码指示信息,其中第一分量预编码矩阵为分块对角矩阵,其对角线上的子矩阵等于两个矩阵的Kronecker积;第二分量预编码矩阵由加权的列选择向量构成,加权列选择向量除了P个非零元素外其余均为零,P为正整数。采用本发明实施例的方案能够提高三维的波束赋形/预编码技术的性能。

Description

传输编码指示信息和确定预编码矩阵的方法、 系统及设备 本申请要求在 2012 年 10 月 19 日提交中国专利局、 申请号为 201210402573.8、 发明名称为 "传输编码指示信息和确定预编码矩阵的方法、 系统及设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域
本发明涉及无线通信技术领域, 特别涉及一种传输编码指示信息和确定 预编码矩阵的方法、 系统及设备。 背景技术
LTE ( Long Term Evolution, 长期演进 ) Rel-8 (版本 8 ) 系统引入了闭环 预编码技术提高频谱效率。 闭环预编码首先要求在基站和用户设备都保存同 一个预编码矩阵的集合, 称为码本。 用户设备根据小区公共导频估计出信道 信息后, 按一定准则从码本中选出一个预编码矩阵。 选取的准则可以是最大 化互信息量、 最大化输出信干噪比等。 用户设备将选出的预编码矩阵在码本 中的索引通过上行信道反馈到基站, 该索引记为 PMI ( Pre-coding Matrix Indicator, 预编码矩阵指示)。 基站由收到的索引值就可以确定对该用户设备 应使用的预编码矩阵。 用户设备上报的预编码矩阵可以看作是信道状态信息 的量化值。
在现有蜂窝系统中, 基站天线阵列一般呈水平排列, 如图 1和图 2所示。 基站发射端波束仅能在水平方向进行调整, 而垂直方向对每个用户都是固定 的下倾角, 因此各种波束赋形 /预编码技术等均是基于水平方向信道信息进行 的。 事实上, 由于无线信号在空间中是三维传播的, 固定下倾角的方法不能 使系统的性能达到最优。 垂直方向的波束调整对于系统性能的提高有着很重 要的意义。 随着天线技术的发展, 业界已出现能够对每个阵子独立控制的有源天线, 如图 3A和图 3B所示。 采用这种天线阵列, 使得波束在垂直方向的动态调整 成为可能。 FDD ( Frequency Division Duplexing, 频分双工) 系统中要实现三 维的波束赋形 /预编码需要依靠用户设备上报的信道状态信息, 一种可能的实 现方式是沿用 LTE Rel-8系统以来一直采用的基于码本的上报方式。 但是, 目 束赋形 /预编码技术中会导致性能的下降。
综上所述, 目前的码本是针对水平方向波束赋形 /预编码设计, 直接应用 到三维的波束赋形 /预编码技术中会导致性能的下降。 发明内容
本发明实施例提供一种传输编码指示信息和确定预编码矩阵的方法、 系 设计,因此直接应用到三维的波束赋形 /预编码技术中会导致性能下降的问题。
本发明实施例提供的一种传输编码指示信息的方法, 包括:
用户设备确定第一预编码指示信息和第二预编码指示信息, 其中所述第 一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所述预编码矩 阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 所述第一分 量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩阵的 Kronecker积; 所述第二分量预编码矩阵由加权的列选择向量构成, 所述加权 列选择向量除了 P个非零元素外其余均为零, P为正整数;
所述用户设备向网络侧发送第一预编码指示信息和第二预编码指示信 息。
本发明实施例提供的一种确定预编码矩阵的方法, 包括:
网络侧设备接收来自用户设备的第一预编码指示信息和第二预编码指示 信息;
所述网络侧设备根据所述第一预编码指示信息和第二预编码指示信息, 确定预编码矩阵;
其中, 所述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵 的函数矩阵, 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等 于两个矩阵的 Kronecker积; 第二分量预编码矩阵由加权的列选择向量构成, 所述加权列选择向量除了 P个非零元素外其余均为零, P为正整数。
本发明实施例提供的一种传输编码指示信息的用户设备, 包括: 第一确定模块, 用于确定第一预编码指示信息和第二预编码指示信息, 其中所述第一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所 述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 所述第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩 阵的 Kronecker积; 所述第二分量预编码矩阵由加权的列选择向量构成, 所述 加权列选择向量除了 P个非零元素外其余均为零, P为正整数;
发送模块, 用于向网络侧发送第一预编码指示信息和第二预编码指示信 息。
本发明实施例提供的一种确定预编码矩阵的网络侧设备, 包括: 接收模块, 用于接收来自用户设备的第一预编码指示信息和第二预编码 指示信息;
第二确定模块, 用于根据所述第一预编码指示信息和第二预编码指示信 息, 确定预编码矩阵;
其中, 所述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵 的函数矩阵, 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等 于两个矩阵的 Kronecker积; 第二分量预编码矩阵由加权的列选择向量构成, 所述加权列选择向量除了 P个非零元素外其余均为零, P为正整数。
本发明实施例提供的一种确定预编码矩阵的系统, 包括:
用户设备, 用于确定第一预编码指示信息和第二预编码指示信息, 其中 所述第一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所述预 编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 所述 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩阵的
Kronecker积; 所述第二分量预编码矩阵由加权的列选择向量构成, 所述加权 列选择向量除了 p个非零元素外其余均为零, P为正整数;
网络侧设备, 用于接收来自用户设备的第一预编码指示信息和第二预编 码指示信息; 根据所述第一预编码指示信息和第二预编码指示信息, 确定预 编码矩阵。
本发明实施例中, 用户设备确定第一预编码指示信息和第二预编码指示 信息, 其中所述第一预编码指示信息和第二预编码指示信息与预编码矩阵对 应, 所述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数 矩阵, 第一预编码指示信息对应的第一分量预编码矩阵为分块对角矩阵, 其 对角线上的子矩阵等于两个矩阵的 Kronecker (克罗尼克)积; 所述第二预编 码指示信息对应的第二分量预编码矩阵由加权的列选择向量构成, 所述加权 列选择向量除了 P个非零元素外其余均为零, P为正整数, 由于构造的预编码 矩阵与三维波束赋形的空间信道更加匹配, 从而提高了三维的波束赋形 /预编 码技术的性能。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作筒要介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域的普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中水平排列双极化天线示意图;
图 2为现有技术中水平排列线阵天线示意图;
图 3 A为现有技术中水平二维排列的双极化天线示意图;
图 3B为现有技术中垂直二维排列的线阵天线示意图;
图 4为本发明实施例中确定预编码矩阵的系统的结构示意图;
图 5A和图 5B分别为本发明实施例中确定预编码矩阵的系统中的用户设 备结构示意图;
图 6A和图 6B分别为本发明实施例中确定预编码矩阵的系统中的网络侧 设备结构示意图;
图 7为本发明实施例中传输编码指示信息的方法流程示意图;
图 8为本发明实施例中确定预编码矩阵的方法流程示意图。 具体实施方式
本发明实施例中, 用户设备确定第一预编码指示信息和第二预编码指示 信息, 其中所述第一预编码指示信息和第二预编码指示信息与预编码矩阵对 应, 所述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数 矩阵, 第一预编码指示信息对应的第一分量预编码矩阵为分块对角矩阵, 其 对角线上的子矩阵等于两个矩阵的 Kronecker积;第二预编码指示信息对应的 第二分量预编码矩阵由加权的列选择向量构成, 加权列选择向量除了 P个非 零元素外其余均为零。 由于构造的预编码矩阵与三维波束赋形的空间信道更 加匹配, 从而提高了三维的波束赋形 /预编码技术的性能。
下面结合说明书附图对本发明实施例作进一步详细描述。
在下面的说明过程中, 先从网络侧和用户设备侧的配合实施进行说明, 最后分别从网络侧与用户设备侧的实施进行说明, 但这并不意味着二者必须 配合实施, 实际上, 当网络侧与用户设备侧分开实施时, 也解决了分别在网 络侧、 用户设备侧所存在的问题, 只是二者结合使用时, 会获得更好的技术 效果。
如图 4所示, 本发明实施例确定预编码矩阵的系统包括: 用户设备 10和 网络侧设备 20。
用户设备 10, 用于确定第一预编码指示信息和第二预编码指示信息, 向 网络侧发送第一预编码指示信息和第二预编码指示信息, 其中第一预编码指 示信息和第二预编码指示信息与预编码矩阵对应, 所述预编码矩阵等于第一 分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 第一分量预编码矩阵为 分块对角矩阵, 其对角线上的子矩阵等于两个矩阵的 Kronecker积; 第二分量 预编码矩阵由加权的列选择向量构成, 加权列选择向量除了 P个非零元素外 其余均为零, P为正整数;
网络侧设备 20, 用于接收来自用户设备的第一预编码指示信息和第二预 编码指示信息; 根据第一预编码指示信息和第二预编码指示信息, 确定预编 码矩阵。
较佳地, P为 2。
在实施中, 用户设备 10确定第一预编码指示信息和第二预编码指示信息 的方式有很多, 下面列举几种:
方式一、 用户设备 10从第一分量预编码矩阵集合中选择第一分量预编码 矩阵, 并确定选择的第一分量预编码矩阵对应的第一预编码指示信息, 以及 从第二分量预编码矩阵集合中选择第二分量预编码矩阵, 并确定选择的第二 分量预编码矩阵对应的第二预编码指示信息。
具体的, 用户设备 10根据网络侧设备 20发送的导频信号估计出每个天 线端口到用户设备 10的信道,其中每个天线端口对应一个或者多个物理天线; 然后, 用户设备 10根据估计出的信道, 从第一分量预编码矩阵集合中选 择第一分量预编码矩阵, 以及从第二分量预编码矩阵集合中选择第二分量预 编码矩阵。
其中, 第一分量预编码矩阵可以采取最大化互信息量或者最大化输出信 干噪比或者最大化输出能量的方法确定。 其中最大化输出能量的确定方法为:
Wl = arg max II II2 其中, <^为可能的第一分量预编码矩阵构成的集合, 为网络侧设备 20 到用户设备 10的信道矩阵的一部分, 具体的为与第一分量预编码矩阵对应的 部分, 例如双极化天线中同一个极化方向上的信道, 或者同极化天线阵列中 的一半天线的信道。
第二分量预编码矩阵可以采取最大化互信息量或者最大化输出信干噪比 或者最大化输出能量的方法确定。 其中最大化输出能量的确定方法为:
W2 = arg max II HW^ II2
VsC2 其中, C2为可能的第二分量预编码矩阵构成的集合, H为网络侧设备 20到用户设备 10的信道矩阵, 为已经确定的第一分量预编码矩阵。
针对方式一, 用户设备 10将第一预编码指示信息和第二预编码指示信息 通过上行信道传输给网络侧设备 20时, 第一预编码指示信息和第二预编码指 示信息可以在不同的时刻上报, 以不同的时间颗粒度和频域颗粒度上报; 也 可以同时上 ·^艮。
在实施中, 本发明实施例的第一分量预编码矩阵为分块对角矩阵, 第一 分量预编码矩阵为公式一 ~公式四中的一种:
.公式一;
.公式二;
.公式三;
.公式四;
Figure imgf000009_0001
其中, Wi是第一分量预编码矩阵; X是波束赋形矩阵, 其维度为
DH x MH , Z是波束赋形矩阵,其维度为 Dv x Mv ; A为 ΜΗ χ ΜΗ对角矩阵, 其取值可以是 X的函数, 或者取固定值; Β为 Μν χ Μν对角矩阵, 其取值可 以是 Ζ的函数, 或者取固定值; DH为正整数; MHDv和 Mv为正整数。 较佳的, DH为水平天线数目的一半。
方式一中, 第一分量预编码矩阵集合是由上面公式一 ~公式四中的一种第 一分量预编码矩阵组成的。 较佳地, X是水平或垂直波束赋形矩阵构成的集合 {Xp: ρ = 0,1,···,ΝΗ -1} 中的一个元素, X = Xk, 0<k≤NH-l; Z是垂直或水平波束赋形矩阵构成 的集合 {Zq: q = 0,1,..., Nv— 1}中的一个元素, Ζ = Ζη , 0≤ η≤ Νν— 1; ΝΗ和 Νν 为正整数。 较佳地, X是 DFT ( Discrete Fourier Transform , 离散傅里叶变换)矩阵 或者 DFT矩阵的一部分,比如取自 L点 DFT矩阵的前 DH行,连续的 MH列,
.2^((t+Sk)modL) .2 ((t + sk)modL)
[Xk]lt = e ' 或者 [Xk]lt=e_j ^ L ^ i = 0,l,...,DH— l;t = 0,l ..MH— 1, 其中, k是入 k的第 o列在 DFT矩阵中的列 号。 具体的, 1^=4, 8, 16, 32, 64等, sk = k , 或者 sk = 2k , 或者 sk = 4k等。 如
2^((i + sk ) modL)DH
果 A为 X的函数, 记 ^与^对应, 贝 'UAJu=e" L 或者
.2^((i + sk ) modL)DH
[4],=e"J
Z是 DFT矩阵或者 DFT矩阵的一部分,比如取自 L点 DFT矩阵的前 Dv
,2^i((t+sn)modL) ,2^i((t + sn)modL) 行, 连续的 Mv列, 即 [ZA =e L 或者 [Zn]lt = e"J , i = 0,1,..., I -l;t = 0,1,...MV— 1 ,其中 S n是 Zn的第 o列在 DFT矩阵中的列号。 具体的, 1^=4, 8, 16, 32, 64等, Sn = n , 或者 sn = , 或者 sn = 4n等。 如果
.2^-((i+sn)modL)Dv J ^ -
B 为 Z 的函数, 记 与 对应, J^ [Bn]ii = e 或者
.2^-((i+sn)modL)Dv
Figure imgf000010_0001
L 。 针对方式一, 较佳地, 用户设备 10在确定了第一分量预编码矩阵后, 可 以根据公式五或公式六确定第一预编码指示信息:
ix =nxNH +k 公式五; ii=kxNv+n 公式六。 其中, ii是第一预编码指示信息。
针对方式一, 较佳地, 用户设备 10在确定了第一分量预编码矩阵后, 根 据预先设定的第一分量预编码矩阵和第一预编码指示信息的对应关系, 确定 第一分量预编码矩阵对应的第一预编码指示信息。
其中, 第一分量预编码矩阵和第一预编码指示信息的对应关系可以根据 需要设定。 在实施中, 可以在协议中规定对应关系; 还可以由高层信令通知。 在实施中,第二分量预编码矩阵为(2MHMv)x r维矩阵与功率归一化 系数的乘积, r是预编码矩阵的列数;
Figure imgf000011_0001
其中, W2是第二分量预编码矩阵; ^^是长度为 MHMV的列向量, 第!^个 元素为 1,其他元素均为 0, 是模值为 1的复数标量, iV1H和1 Viv为正整数; M为功率归一化系数。
Figure imgf000011_0002
较佳地, e{e :t = i,"',3} , j为纯虚数, 比如 j =e 2
其中, r是预编码矩阵的列数, 也称为秩 (rank)。
具体的, 第二分分量预编码矩阵 W2取自一个集合(码本), 第二预编码指 示信息对应该集合中的一个元素。 例如, 对于 r=l 的码本, W2构成的集合为
:i = 0,l,...,MHMv— 1;« = 1,— l,e 2,e 2}
Figure imgf000011_0003
, 其中 是长度为 MHMV的列向量, 除了第 i个元素为 1外, 其他元素均为 0。 例如, 对于 r=2的码本, w2构成的 i = 0,l,...,MHMv -1;α = -1}
Figure imgf000012_0001
, 或者该集合可以是更大的集合 i = 0,l,...,MHMv -l;k = 0,l,...,MHMv -lax =l,-l,e 2,e 22 =1,— l,e 2 ,e 2 中选择出来的一个子集。 一般的, 秩为 r的码本可以是集合 ,t = 0,1,...,T -l;i = 1.
Figure imgf000012_0002
中选 择出来的一个子集, 较优的 T = 4。
针对方式一, 较佳地, 用户设备 10在确定了第二分量预编码矩阵后, 根 据预先设定的第二分量预编码矩阵和第二预编码指示信息的对应关系, 确定 第二分量预编码矩阵对应的第二预编码指示信息。
其中, 第二分量预编码矩阵和第二预编码指示信息的对应关系可以根据 需要设定。 在实施中, 可以在协议中规定对应关系; 还可以由高层信令通知。
在实施中, 预编码矩阵为: 公式七 ~公式十中的一种
.公式七:
M .公式八;
M .公式九;
M .公式十:
Figure imgf000012_0003
其中, W是预编码矩阵; 是第一分量预编码矩阵; w2是第二分量预 编码矩阵; X是波束赋形矩阵, 其维度为 DHxMH; Z是波束赋形矩阵, 其 维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵; Β为 MvxMv对角矩阵; DHiV½、 和 为正整数; ¥1是长度为 MH MV的列向量, 只有 1个元素为
1 , 其他元素均为 0, 其作用是从矩阵 z ® x中选择出一列); 是天线之间 的相位调整系数; r是预编码矩阵的列数; M是功率归一化系数。 较佳地,
Figure imgf000013_0001
在实施中, 公式七 ~公式十还可以进行变换, 上面的公式中第二分量预编 码矩阵为矩阵与 M的乘积; 还可以将 M作为第一分量预编码矩阵的一部分, 即第一分量预编码矩阵为矩阵与 M的乘积, 第二分量预编码矩阵为矩阵; 还 可以将 M独立出来, 即^¥ =^ '^¥2 ' ]\ 。
用户设备 10将第一分量预编码矩阵与第二分量预编码矩阵的乘积作为预 编码矩阵, 即 w =w w2
针对方式一, 若用户设备 10预先确定预编码矩阵, 并且从第一分量预编 码矩阵集合中选择了多个第一分量预编码矩阵, 从第二分量预编码矩阵集合 中选择了一个第二分量预编码矩阵, 则可以根据公式七 ~公式十中的一种从多 个第一分量预编码矩阵中选择一个, 或从第二分量预编码矩阵集合中选择了 多个第二分量预编码矩阵, 从第一分量预编码矩阵集合中选择了一个第一分 量预编码矩阵, 则可以根据公式七 ~公式十中的一种从多个第二分量预编码矩 阵中选择一个。
方式二、 用户设备 10确定至少一个预编码矩阵, 并根据第一预编码指示 信息、 第二预编码指示信息和预编码矩阵的对应关系, 确定至少一个预编码 矩阵对应的第一预编码指示信息和第二预编码指示信息; 将确定的第一预编 码指示信息和第二预编码指示信息中的一个第一预编码指示信息和一个第二 预编码指示信息作为需要通知给网络侧的第一预编码指示信息和第二预编码 指示信息。
若用户设备 10确定多个预编码矩阵, 则用户设备 10确定的多个预编码 矩阵对应的第一预编码指示信息相同。
若用户设备 10确定多个预编码矩阵, 则用户设备 10确定的多个预编码 矩阵对应的第二预编码指示信息不同。
用户设备 10确定的至少一个预编码矩阵等于第一分量预编码矩阵和第二 分量预编码矩阵的函数矩阵。 具体的, 用户设备 10确定的至少一个预编码矩 阵是第一分量预编码矩阵和第二分量预编码矩阵的乘积。
其中, 上述方式一中的第一分量预编码矩阵和第二分量预编码矩阵的表 达公式以及预编码矩阵与第一分量预编码矩阵和第二分量预编码矩阵的关系 也同样适用方式二。
网络侧设备 20接收到来自用户设备的第一预编码指示信息和第二预编码 指示信息后, 有多种根据第一预编码指示信息和第二预编码指示信息, 确定 预编码矩阵的方式, 下面列举几种:
方式一、 网络侧设备 20确定第一预编码指示信息对应的第一分量预编码 矩阵, 以及确定第二预编码指示信息对应的第二分量预编码矩阵;
网络侧设备 20根据公式七 ~公式十中的一种确定预编码矩阵。
其中, 网络侧设备 20根据公式一 ~公式四中的一种确定第一预编码指示 信息对应的第一分量预编码矩阵。 网 络 侧 设 备 20 收 到 h 根 据 n =「i1/NH];k = i1m oN¾ 或 k= 1ι/Νγ ;n = lim0dNv , 确定 n和 k后, 根据!!和!^就可以确定 X, A, B 和 Z, 然后将 X, A, B和 Z带入到公式一 ~公式四中的一种, 就可以确定第 一预编码指示信息对应的第一分量预编码矩阵。
具体的, n =「i1/NH];k = i1m3dNH k =ii/ Nv,;n = i 1 modNv与公 式一 ~公式四结合后, 网络侧设备 20可以根据下列公式确定第一预编码指示 信息对应的第一分量预编码矩阵: w, = f (i modN
或者
W1=f(i1) = 1mod NH
Figure imgf000015_0001
; 或者
Zn (8)X 0
W1= f(i1) = n = [i1/NH ;k = ^ mod N
0 (ZnBn)(8)X- 或者
Zn ® X- 0
W1 = f^) n = [ij/NH];k = ij mod N
0 (ZnBn XA)
或者
或者 或者 N V
; 或者 Nv
Figure imgf000015_0002
或者网络侧设备 20根据预先设定的第一分量预编码矩阵和第一预编码指 示信息的对应关系, 确定收到的第一预编码指示信息对应的第一分量预编码 矩阵。
网络侧设备 20根据预先设定的第二分量预编码矩阵和第二预编码指示信 息的对应关系, 确定收到的第二预编码指示信息对应的第二分量预编码矩阵。
如果用户设备 10和网络侧设备 20都根据公式一 ~公式四中的一种确定第 一分量预编码矩阵, 则具体采用哪种公式可以在协议中规定, 也可以由高层 通知, 还可以由用户设备 10和网络侧设备 20协商确定。 不管采用哪种方式 都需要保证用户设备 10和网络侧设备 20采用相同的公式。 方式二、 网络侧设备 20根据预先设定的第一预编码指示信息、 第二预编 码指示信息和预编码矩阵的对应关系, 确定收到的第一预编码指示信息和第 二预编码指示信息对应的预编码矩阵。
其中, 第一预编码指示信息、 第二预编码指示信息和预编码矩阵的对应 关系可以根据需要设定。 在实施中, 可以在协议中规定对应关系; 还可以由 高层信令通知。
网络侧设备 20确定预编码矩阵后, 用确定的预编码矩阵对用户设备 10 的发射数据进行预处理。
其中, 本发明实施例的水平维和垂直维可以交换。
本发明实施例的网络侧设备 20可以是基站(比如宏基站、 家庭基站等), 也可以是 RN (中继)设备, 还可以是其它网络侧设备。
如图 5A所示, 本发明实施例确定预编码矩阵的系统中的用户设备包括: 第一确定模块 500和发送模块 510。
第一确定模块 500, 用于确定第一预编码指示信息和第二预编码指示信 息, 其中所述第一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩 阵, 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩 阵的 Kronecker积; 第二分量预编码矩阵由加权的列选择向量构成, 加权列选 择向量除了 P个非零元素外其余均为零, P为正整数;
发送模块 510,用于向网络侧发送第一预编码指示信息和第二预编码指示 信息。
较佳地, 第一确定模块 500从第一分量预编码矩阵集合中选择第一分量 预编码矩阵, 并确定选择的第一分量预编码矩阵对应的第一预编码指示信息, 以及从第二分量预编码矩阵集合中选择第二分量预编码矩阵, 并确定选择的 第二分量预编码矩阵对应的第二预编码指示信息。
较佳地, 第一确定模块 500确定至少一个预编码矩阵, 并根据第一预编 码指示信息、 第二预编码指示信息和预编码矩阵的对应关系, 确定至少一个 预编码矩阵对应的第一预编码指示信息和第二预编码指示信息; 将确定的第 一预编码指示信息和第二预编码指示信息中的一个第一预编码指示信息和一 个第二预编码指示信息作为需要通知给网络侧的第一预编码指示信息和第二 预编码指示信息。
较佳地, 若第一确定模块 500确定多个预编码矩阵, 则确定的多个预编 码矩阵对应的第一预编码指示信息相同。
较佳地, 若第一确定模块 500确定多个预编码矩阵, 则确定的多个预编 码矩阵对应的第二预编码指示信息不同。
较佳地, 第一分量预编码矩阵为分块对角矩阵;
第一分量预编码矩阵为: 者 者 者
Figure imgf000017_0001
其中, wi是第一分量预编码矩阵; X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵;
Β为 MvxMv对角矩阵; MHDhDv和 Mv为正整数。 较佳地, X是波束赋形矩阵构成的集合 {Χρ: ρ = 0,1,···,ΝΗ -1}中的一个元 素 , X = Xk , 0<k≤NH-l ; Z 是波束赋形矩阵构成的 集合 {Zq :q = 0,l,...,Nv— 1}中的一个元素, Z = Zn, 0≤n≤Nv— 1; NH和 Nv为 较佳地, 第一确定模块 500根据下列公式确定第一预编码指示信息: i1=nxNH +k或者 =1^x^ +1 ; 其中, ii是第一预编码指示信息。 较佳地,第二分量预编码矩阵为(ΗΜν)ΧΓ维矩阵与功率归一化系 数的乘积, r是预编码矩阵的列数;
第二分量预编码矩阵为:
Figure imgf000018_0001
其中, W2是第二分量预编码矩阵; 61¾是长度为 MHMV的列向量, 第!^个 元素为 1,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ为功率归一化系数。 较佳地, 1 G{ej^ :t = 0,l,...,3}, j为纯虚数。
较佳地, 第一确定模块 50根据预先设定的第二分量预编码矩阵和第二预 编码指示信息的对应关系, 确定第二分量预编码矩阵对应的第二预编码指示 信息。
基于相同的技术构思, 如图 5B所示, 本发明另一实施例提供的用户设备 可包括:
处理器 520, 用于确定第一预编码指示信息和第二预编码指示信息, 其中 所述第一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所述预 编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 所述 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩阵的 Kronecker积; 所述第二分量预编码矩阵由加权的列选择向量构成, 所述加权 列选择向量除了 p个非零元素外其余均为零, P为正整数; 收发器 530,用于向网络侧发送第一预编码指示信息和第二预编码指示信 分量预编码矩阵为: 者 者 者
Figure imgf000019_0001
其中, Wi是第一分量预编码矩阵; X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵;
Β为 MvxMv对角矩阵; MHDhDv和 Mv为正整数。 其中, X是波束赋形矩阵构成的集合 {ΧΡ:Ρ = 0,1,···,ΝΗ_1}中的一个元 素, X = Xk, 0<k≤NH-l; Z是波束赋形矩阵构成的集合
{Zq :q = 0,l,...,Nv— 1}中的一个元素, Z = Zn, 0≤n≤Nv— 1; NH和 Nv为 正整数。 第二分量预编码矩阵为(ΗΜν)ΧΓ维矩阵与功率归一化系数的乘 积, r是预编码矩阵的列数;
Figure imgf000019_0002
其中, W2是第二分量预编码矩阵; ^^是长度为 MHMV的列向量, 第 ^个 元素为 1 ,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ是功率归一化系数。
具体的, 处理器 520可具体用于: 从第一分量预编码矩阵集合中选择第 一分量预编码矩阵, 并确定选择的第一分量预编码矩阵对应的第一预编码指 示信息, 以及从第二分量预编码矩阵集合中选择第二分量预编码矩阵, 并确 定选择的第二分量预编码矩阵对应的第二预编码指示信息。
具体的, 处理器 520可根据下列公式确定第一预编码指示信息:
i1 = n x NH + k或者 = 1^x ^ + 1 ; 其中, ii是第一预编码指示信息。
具体的, 处理器 520可具体用于: 根据预先设定的第二分量预编码矩阵 和第二预编码指示信息的对应关系, 确定第二分量预编码矩阵对应的第二预 编码指示信息。
具体的, 处理器 520可将第一分量预编码矩阵与第二分量预编码矩阵的 乘积作为预编码矩阵。
具体的, 处理器 520可确定至少一个预编码矩阵, 并根据第一预编码指 示信息、 第二预编码指示信息和预编码矩阵的对应关系, 确定至少一个预编 码矩阵对应的第一预编码指示信息和第二预编码指示信息; 将确定的第一预 编码指示信息和第二预编码指示信息中的一个第一预编码指示信息和一个第 二预编码指示信息作为需要通知给网络侧的第一预编码指示信息和第二预编 码指示信息。
进一步的, 若所述处理器确定多个预编码矩阵, 则确定的多个预编码矩 阵对应的第一预编码指示信息相同。 或者, 若所述处理器确定多个预编码矩 阵, 则确定的多个预编码矩阵对应的第二预编码指示信息不同。
如图 6A 所示, 本发明实施例确定预编码矩阵的系统中的网络侧设备包 括: 接收模块 600和第二确定模块 610。 接收模块 600,用于接收来自用户设备的第一预编码指示信息和第二预编 码指示信息;
第二确定模块 610, 用于根据第一预编码指示信息和第二预编码指示信 息, 确定预编码矩阵;
其中, 预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函 数矩阵, 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两 个矩阵的 Kronecker积; 第二分量预编码矩阵由加权的列选择向量构成, 加权 列选择向量除了 P个非零元素外其余均为零, P为正整数。
较佳地, 第二确定模块 610确定第一预编码指示信息对应的第一分量预 编码矩阵, 以及确定第二预编码指示信息对应的第二分量预编码矩阵; 将第 一分量预编码矩阵与第二分量预编码矩阵的乘积作为预编码矩阵。
较佳地, 第二确定模块 610根据下列公式确定第一预编码指示信息对应 的第一分量预编码矩阵: 或者 或者 或者
Figure imgf000021_0001
其中, wi是第一分量预编码矩阵, X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵; Β为 MvxMv对角矩阵; MhDh、 E 和 Mv为正整数。 较佳地, X是波束赋形矩阵构成的集合 {Xp: ρ = 0,1,···,ΝΗ -1}中的一个元 素 , X = Xk , 0<k≤NH-l ; Z 是波束赋形 矩阵构成的 集合 {Zq :q = 0,l,...,Nv— 1}中的一个元素, Z = Zn, 0≤n≤Nv— 1; NH和 Nv为 正整数; η = I ¾ / NH |;k = 1110(1 ΝΗ或 1^ = 1 /Νν |;η = 1110(1 Νν , 是第一 预编码指示信息。
较佳地, 第二确定模块 610根据预先设定的第二分量预编码矩阵和第二 预编码指示信息的对应关系, 确定收到的第二预编码指示信息对应的第二分 量预编码矩阵。 较佳地,第二分量预编码矩阵为(2MHMv)x r维矩阵与功率归一化系 数的乘积, r是预编码矩阵的列数;
第二分量预编码矩阵为:
Figure imgf000022_0001
其中, W2是第二分量预编码矩阵; ^^是长度为 MHMV的列向量, 第 ^个 元素为 1,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ为功率归一化系数。 较佳地, 1 G{ej^:t = 0,l,...,3}, j为纯虚数。
较佳地, 第二确定模块 610根据预先设定的第一分量预编码矩阵和第一 预编码指示信息的对应关系, 确定收到的第一预编码指示信息对应的第一分 量预编码矩阵。
较佳地, 第二确定模块 610根据预先设定的第一预编码指示信息、 第二 预编码指示信息和预编码矩阵的对应关系, 确定收到的第一预编码指示信息 和第二预编码指示信息对应的预编码矩阵。
基于相同的技术构思, 如图 6B所示, 本发明的另一实施例提供的网络设 备可包括: 收发器 620,用于接收来自用户设备的第一预编码指示信息和第二预编码 指示信息; 处理器 630, 用于根据所述第一预编码指示信息和第二预编码指示 信息, 确定预编码矩阵。 其中, 所述预编码矩阵等于第一分量预编码矩阵和 第二分量预编码矩阵的函数矩阵, 第一分量预编码矩阵为分块对角矩阵, 其 对角线上的子矩阵等于两个矩阵的 Kronecker积;第二分量预编码矩阵由加权 的列选择向量构成, 所述加权列选择向量除了 P个非零元素外其余均为零, P 为正整数。
具体的, 处理器 630具体用于: 确定第一预编码指示信息对应的第一分 量预编码矩阵, 以及确定第二预编码指示信息对应的第二分量预编码矩阵; 将第一分量预编码矩阵与第二分量预编码矩阵的乘积作为预编码矩阵。
具体的, 处理器 630可根据下列公式确定第一预编码指示信息对应的第 一分量预编码矩阵: 或者 或者 或者
Figure imgf000023_0001
其中, wi是第一分量预编码矩阵, X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵; Β为 MvxMv对角矩阵; MhDh、 E 和 Mv为正整数。 具体的, X是波束赋形矩阵构成的集合 {Xp: ρ = 0,1,...,ΝΗ -1}中的一个元 素 , X = Xk , 0<k≤NH-l ; Z 是波束赋形矩阵构成的 集合 {Zq : q = 0,l,..., Nv— 1}中的一个元素, Z = Zn , 0≤n≤Nv— 1 ; NH和 Nv为 正整数; η = I ¾ / NH |;k = 1110(1 ΝΗ或 1^ = 1 /Νν |; η = 1110(1 Νν , 是第一 预编码指示信息。 具体的,第二分量预编码矩阵为(2MH Mv ) x r维矩阵与功率归一化系 数的乘积, r是预编码矩阵的列数;
所述第二分量预编码矩阵为:
Figure imgf000024_0001
其中, W2是第二分量预编码矩阵; 61¾是长度为 MH MV的列向量, 第 ^个 元素为 1 ,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ是功率归一化系数。
具体的, 处理器 630可根据预先设定的第一分量预编码矩阵和第一预编 码指示信息的对应关系, 确定收到的第一预编码指示信息对应的第一分量预 编码矩阵。
具体的, 处理器 630可根据预先设定的第二分量预编码矩阵和第二预编 码指示信息的对应关系, 确定收到的第二预编码指示信息对应的第二分量预 编码矩阵。
具体的, 处理器 630可根据预先设定的第一预编码指示信息、 第二预编 码指示信息和预编码矩阵的对应关系, 确定收到的第一预编码指示信息和第 二预编码指示信息对应的预编码矩阵。
基于同一发明构思, 本发明实施例中还提供了一种传输编码指示信息的 方法, 由于确定预编码矩阵的系统中用户设备是该方法对应的设备, 并且该 方法解决问题的原理与确定预编码矩阵的系统中用户设备相似, 因此该方法 的实施可以参见设备的实施, 重复之处不再赘述。 如图 7所示, 本发明实施例传输编码指示信息的方法包括下列步骤: 步骤 701、用户设备确定第一预编码指示信息和第二预编码指示信息, 其 中第一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 预编码矩 阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 第一分量预 编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩阵的 Kronecker 积; 第二分量预编码矩阵由加权的列选择向量构成, 加权列选择向量除了 P 个非零元素外其余均为零, P为正整数;
步骤 702、用户设备向网络侧发送第一预编码指示信息和第二预编码指示 信息。
较佳地, P为 2。
在实施中, 用户设备确定第一预编码指示信息和第二预编码指示信息的 方式有很多, 下面列举几种:
方式一、 用户设备从第一分量预编码矩阵集合中选择第一分量预编码矩 阵, 并确定选择的第一分量预编码矩阵对应的第一预编码指示信息, 以及从 第二分量预编码矩阵集合中选择第二分量预编码矩阵, 并确定选择的第二分 量预编码矩阵对应的第二预编码指示信息。
具体的, 用户设备根据网络侧设备发送的导频信号估计出每个天线端口 到用户设备的信道, 其中每个天线端口对应一个或者多个物理天线;
然后, 用户设备根据估计出的信道, 从第一分量预编码矩阵集合中选择 第一分量预编码矩阵, 以及从第二分量预编码矩阵集合中选择第二分量预编 码矩阵。
针对方式一, 用户设备将第一预编码指示信息和第二预编码指示信息通 过上行信道传输给网络侧设备时, 第一预编码指示信息和第二预编码指示信 息可以在不同的时刻上 4艮, 以不同的时间颗粒度和频域颗粒度上 4艮; 也可以 同时上 4艮。
针对方式一, 用户设备将第一预编码指示信息和第二预编码指示信息通 过上行信道传输给网络侧设备时, 第一预编码指示信息和第二预编码指示信 息可以在不同的时刻上 4艮, 以不同的时间颗粒度和频域颗粒度上 4艮; 也可以 同时上 4艮。
在实施中, 若本发明实施例的第一分量预编码矩阵为分块对角矩阵, 则 第一分量预编码矩阵为公式一~公式四中的一种。
方式一中第一分量预编码矩阵集合是由上面公式一~公式四中的一种第 一分量预编码矩阵组成的; 方式二中根据确定的每个第一分量预编码矩阵都 符合上面公式一~公式四中的一种。
针对方式一, 较佳地, 用户设备在确定了第一分量预编码矩阵后, 可以 根据公式五或公式六确定第一预编码指示信息。 在实施中,若第二分量预编码矩阵为(ΗΜν)ΧΓ维矩阵与功率归一 化系数的乘积, r是预编码矩阵的列数;
Figure imgf000026_0001
其中, W2是第二分量预编码矩阵; ^^是长度为 MHMV的列向量, 第 ^个 元素为 1,其他元素均为 0, 是模值为 1的复数标量, iV1H和1 Viv为正整数; M为功率归一化系数。
.2¾t
-^ 2
较佳地, G{e 4 : t = l'-'3} , j为纯虚数, 比如 j =e
其中, r是预编码矩阵的列数, 也称为秩 (rank)。
针对方式一, 较佳地, 用户设备在确定了第二分量预编码矩阵后, 根据 预先设定的第二分量预编码矩阵和第二预编码指示信息的对应关系, 确定第 二分量预编码矩阵对应的第二预编码指示信息。
其中, 第二分量预编码矩阵和第二预编码指示信息的对应关系可以根据 需要设定。 在实施中, 可以在协议中规定对应关系; 还可以由高层通知。 针对方式一, 若用户设备从第一分量预编码矩阵集合中选择了多个第一 分量预编码矩阵, 从第二分量预编码矩阵集合中选择了一个第二分量预编码 矩阵, 则可以根据公式七 ~公式十中的一种从多个第一分量预编码矩阵中选择 一个, 或从第二分量预编码矩阵集合中选择了多个第二分量预编码矩阵, 从 第一分量预编码矩阵集合中选择了一个第一分量预编码矩阵, 则可以根据公 式七 ~公式十中的一种从多个第二分量预编码矩阵中选择一个。
方式二、 用户设备用户设备确定至少一个预编码矩阵, 并根据第一预编 码指示信息、 第二预编码指示信息和预编码矩阵的对应关系, 确定至少一个 预编码矩阵对应的第一预编码指示信息和第二预编码指示信息; 将确定的第 一预编码指示信息和第二预编码指示信息中的一个第一预编码指示信息和一 个第二预编码指示信息作为需要通知给网络侧的第一预编码指示信息和第二 预编码指示信息。
若用户设备确定多个预编码矩阵, 则用户设备确定的多个预编码矩阵对 应的第一预编码指示信息相同。
若用户设备确定多个预编码矩阵, 则用户设备确定的多个预编码矩阵对 应的第二预编码指示信息不同。
其中, 上述方式一中的第一分量预编码矩阵和第二分量预编码矩阵的表 达公式也同样适用方式二。
基于同一发明构思, 本发明实施例中还提供了一种确定预编码矩阵的方 法, 由于确定预编码矩阵的系统中网络侧设备是该方法对应的设备, 并且该 方法解决问题的原理与确定预编码矩阵的系统中网络侧设备相似, 因此该方 法的实施可以参见设备的实施, 重复之处不再赘述。 步骤 801、网络侧设备接收来自用户设备的第一预编码指示信息和第二预 编码指示信息;
步骤 802、 网络侧设备根据第一预编码指示信息和第二预编码指示信息, 确定预编码矩阵; 其中, 预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函 数矩阵, 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两 个矩阵的 Kronecker积; 第二分量预编码矩阵由加权的列选择向量构成, 加权 列选择向量除了 P个非零元素外其余均为零, P为正整数。
其中, 网络侧设备接收到来自用户设备的第一预编码指示信息和第二预 编码指示信息后, 有多种根据第一预编码指示信息和第二预编码指示信息, 确定预编码矩阵的方式, 下面列举几种:
方式一、 网络侧设备确定第一预编码指示信息对应的第一分量预编码矩 阵, 以及确定第二预编码指示信息对应的第二分量预编码矩阵;
网络侧设备根据公式七 ~公式十中的一种确定预编码矩阵。
其中, 网络侧设备根据公式一~公式四中的一种确定第一预编码指示信息 对应的第一分量预编码矩阵。
网络侧设备还可以根据预先设定的第一分量预编码矩阵和第一预编码指 示信息的对应关系, 确定收到的第一预编码指示信息对应的第一分量预编码 矩阵。
网络侧设备根据预先设定的第二分量预编码矩阵和第二预编码指示信息 的对应关系, 确定收到的第二预编码指示信息对应的第二分量预编码矩阵。
如果用户设备和网络侧设备都根据公式一~公式四中的一种确定第一分 量预编码矩阵, 则具体采用哪种公式可以在协议中规定, 也可以由高层通知, 还可以由用户设备和网络侧设备协商确定。 不管采用哪种方式都需要保证用 户设备和网络侧设备采用相同的公式。
方式二、 网络侧设备根据预先设定的第一预编码指示信息、 第二预编码 指示信息和预编码矩阵的对应关系, 确定收到的第一预编码指示信息和第二 预编码指示信息对应的预编码矩阵。
其中, 第一预编码指示信息、 第二预编码指示信息和预编码矩阵的对应 关系可以根据需要设定。 在实施中, 可以在协议中规定对应关系; 还可以由 高层通知。 网络侧设备确定预编码矩阵后, 用确定的预编码矩阵对用户设备的发射 数据进行预处理。
其中, 本发明实施例的水平维和垂直维可以交换。
为了使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明作进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部份实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的 范围。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种传输编码指示信息的方法, 其特征在于, 该方法包括:
用户设备确定第一预编码指示信息和第二预编码指示信息, 其中所述第 一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所述预编码矩 阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 所述第一分 量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩阵的克罗尼 克 Kronecker积, 所述第二分量预编码矩阵由加权的列选择向量构成, 所述加 权列选择向量除了 P个非零元素外其余均为零, P为正整数;
所述用户设备向网络侧发送第一预编码指示信息和第二预编码指示信 息。
2、 如权利要求 1所述的方法, 其特征在于, 第一分量预编码矩阵为: 者 或者 者
Figure imgf000031_0001
其中, wi是第一分量预编码矩阵; X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵; Β为 MvxMv对角矩阵; MH、 DHDv和 MV为正整数。
3、 如权利要求 2所述的方法, 其特征在于, X是波束赋形矩阵构成的集 合 {Χρ :ρ = 0,1,···,ΝΗ -1}中的一个元素, X = Xk, 0<k≤NH -l; Z是波束赋 形矩阵构成的集合 {Zq: q = 0,1,..., Nv - 1}中的一个元素, Ζ = Ζη ,
0<η≤Νν-1; ΝΗ和 Νν为正整数。
4、 如权利要求 1 所述的方法, 其特征在于, 第二分量预编码矩阵为
(2MHMv)xr维矩阵与功率归一化系数的乘积, r是预编码矩阵的列数;
Figure imgf000032_0001
其中, W2是第二分量预编码矩阵; 61¾是长度为 MHMV的列向量, 第 1^个 元素为 1, 其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ是功率归一化系数。
5、 如权利要求 1所述的方法, 其特征在于, 所述用户设备确定第一预编 码指示信息和第二预编码指示信息, 包括:
所述用户设备从第一分量预编码矩阵集合中选择第一分量预编码矩阵, 并确定选择的第一分量预编码矩阵对应的第一预编码指示信息, 以及从第二 分量预编码矩阵集合中选择第二分量预编码矩阵, 并确定选择的第二分量预 编码矩阵对应的第二预编码指示信息。
6、 如权利要求 3或 5所述的方法, 其特征在于, 所述用户设备根据下列 公式确定第一预编码指示信息: i1=nxNH +k, 或者 =1^x^ +1 ; 其中, 是第一预编码指示信息。
7、 如权利要求 5所述的方法, 其特征在于, 所述用户设备确定第二预编 码指示信息, 包括:
8、 如权利要求 1所述的方法, 其特征在于, 所述用户设备将第一分量预 编码矩阵与第二分量预编码矩阵的乘积作为预编码矩阵。
9、 如权利要求 1~4任一所述的方法, 其特征在于, 所述用户设备确定第 一预编码指示信息和第二预编码指示信息, 包括:
所述用户设备确定至少一个预编码矩阵, 并根据第一预编码指示信息、 第二预编码指示信息和预编码矩阵的对应关系, 确定至少一个预编码矩阵对 应的第一预编码指示信息和第二预编码指示信息;
所述用户设备将确定的第一预编码指示信息和第二预编码指示信息中的 一个第一预编码指示信息和一个第二预编码指示信息作为需要通知给网络侧 的第一预编码指示信息和第二预编码指示信息。
10、 如权利要求 9所述的方法, 其特征在于, 若所述用户设备确定多个 预编码矩阵, 则确定的多个预编码矩阵对应的第一预编码指示信息相同。
11、 如权利要求 9所述的方法, 其特征在于, 若所述用户设备确定多个 预编码矩阵, 则确定的多个预编码矩阵对应的第二预编码指示信息不同。
12、 一种确定预编码矩阵的方法, 其特征在于, 该方法包括:
网络侧设备接收来自用户设备的第一预编码指示信息和第二预编码指示 信息;
所述网络侧设备根据所述第一预编码指示信息和第二预编码指示信息, 确定预编码矩阵;
其中, 所述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵 的函数矩阵, 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等 于两个矩阵的 Kronecker积; 第二分量预编码矩阵由加权的列选择向量构成, 所述加权列选择向量除了 P个非零元素外其余均为零, P为正整数。
13、 如权利要求 12所述的方法, 其特征在于, 所述网络侧设备确定预编 码矩阵, 包括:
所述网络侧设备确定第一预编码指示信息对应的第一分量预编码矩阵, 以及确定第二预编码指示信息对应的第二分量预编码矩阵; 所述网络侧设备将第一分量预编码矩阵与第二分量预编码矩阵的乘积作 为预编码矩阵。
14、 如权利要求 13述的方法, 其特征在于, 所述网络侧设备根据下列公 式确定 一预编码指示信息对应的第一分量预编码矩阵, 包括:
ΖΘΧ 0
0 ΖΘΧ 或者
或者
或者
Figure imgf000034_0001
其中, wi是第一分量预编码矩阵, X是波束赋形矩阵, 其维度为 DH xMH , Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗ χΜΗ对角矩阵; Β为 Mv xMv对角矩阵; MhDh、 E 和 Mv为正整数。
15、 如权利要求 14所述的方法, 其特征在于, X是波束赋形矩阵构成的 集合 {Χρ :ρ = 0,1,···,ΝΗ_1}中的一个元素, X = Xk, 0<k≤NH-l; Z是波束 赋形矩阵构成的集合 {Zq:q = 0,l,...,Nv-l}中的一个元素, Ζ = Ζη , 0≤n≤Nv— 1 ; NH 和 Nv 为正整数; η =「 /NH];k = m ο Η 或 k =「 / Νν ]; η = mod Νν , 是第一预编码指示信息。
16、 如权利要求 13 所述的方法, 其特征在于, 第二分量预编码矩阵为
(2ΜΗΜν)ΧΓ维矩阵与功率归一化系数的乘积, r是预编码矩阵的列数; 所述网络侧设备根据下列公式确定第二预编码指示信息对应的第二分量 预编码矩阵:
Figure imgf000035_0001
其中, W2是第二分量预编码矩阵; 61¾是长度为 MH MV的列向量, 第 ^个 元素为 1 ,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ是功率归一化系数。
17、 如权利要求 13所述的方法, 其特征在于, 所述网络侧设备确定第一 预编码指示信息对应的第一分量预编码矩阵, 包括:
所述网络侧设备根据预先设定的第一分量预编码矩阵和第一预编码指示 信息的对应关系, 确定收到的第一预编码指示信息对应的第一分量预编码矩 阵。
18、 如权利要求 13所述的方法, 其特征在于, 所述网络侧设备确定第二 预编码指示信息对应的第二分量预编码矩阵, 包括:
所述网络侧设备根据预先设定的第二分量预编码矩阵和第二预编码指示 信息的对应关系, 确定收到的第二预编码指示信息对应的第二分量预编码矩 阵。
19、 如权利要求 12所述的方法, 其特征在于, 所述网络侧设备确定预编 码矩阵, 包括:
所述网络侧设备根据预先设定的第一预编码指示信息、 第二预编码指示 信息和预编码矩阵的对应关系, 确定收到的第一预编码指示信息和第二预编 码指示信息对应的预编码矩阵。
20、 一种传输编码指示信息的用户设备, 其特征在于, 该用户设备包括: 第一确定模块, 用于确定第一预编码指示信息和第二预编码指示信息, 其中所述第一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所 述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 所述第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩 阵的 Kronecker积; 所述第二分量预编码矩阵由加权的列选择向量构成, 所述 加权列选择向量除了 P个非零元素外其余均为零, P为正整数;
发送模块, 用于向网络侧发送第一预编码指示信息和第二预编码指示信 分量预编码矩阵
者 者 者
Figure imgf000036_0001
其中, Wi是第一分量预编码矩阵; X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵; Β为 MvxMv对角矩阵; MHDhDv和 Mv为正整数。
22、 如权利要求 21所述的用户设备, 其特征在于, X是波束赋形矩阵构 成的集合 {ΧΡ:Ρ = 0,1,···,ΝΗ- 1}中的一个元素, X = Xk, 0<k≤NH-l; Z是 波束赋形矩阵构成的集合 {Zq: q = 0,1,..., Nv - 1}中的一个元素, Ζ = Ζη ,
0<η≤Νν-1; ΝΗ和 Νν为正整数。
23、 如权利要求 20所述的用户设备, 其特征在于, 第二分量预编码矩阵 为(2MHMV)X 1"维矩阵与功率归一化系数的乘积, r是预编码矩阵的列数;
Figure imgf000037_0001
其中, W2是第二分量预编码矩阵; 61¾是长度为 MHMV的列向量, 第 ^个 元素为 1,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ是功率归一化系数。
24、 如权利要求 20所述的用户设备, 其特征在于, 所述第一确定模块具 体用于:
从第一分量预编码矩阵集合中选择第一分量预编码矩阵, 并确定选择的 第一分量预编码矩阵对应的第一预编码指示信息, 以及从第二分量预编码矩 阵集合中选择第二分量预编码矩阵, 并确定选择的第二分量预编码矩阵对应 的第二预编码指示信息。
25、 如权利要求 22所述的用户设备, 其特征在于, 所述第一确定模块根 据下列公式确定第一预编码指示信息: i1=nxNH +k或者 =1^x^ +1 ; 其中, 是第一预编码指示信息。
26、 如权利要求 24所述的用户设备, 其特征在于, 所述第一确定模块具 体用于:
根据预先设定的第二分量预编码矩阵和第二预编码指示信息的对应关 系, 确定第二分量预编码矩阵对应的第二预编码指示信息。
27、 如权利要求 20所述的用户设备, 其特征在于, 所述第一确定模块还 用于:
将第一分量预编码矩阵与第二分量预编码矩阵的乘积作为预编码矩阵。
28、 如权利要求 20~23任一所述的用户设备, 其特征在于, 所述第一确 定模块具体用于: 确定至少一个预编码矩阵, 并根据第一预编码指示信息、 第二预编码指 示信息和预编码矩阵的对应关系, 确定至少一个预编码矩阵对应的第一预编 码指示信息和第二预编码指示信息; 将确定的第一预编码指示信息和第二预 编码指示信息中的一个第一预编码指示信息和一个第二预编码指示信息作为 需要通知给网络侧的第一预编码指示信息和第二预编码指示信息。
29、 如权利要求 28所述的用户设备, 其特征在于, 若所述第一确定模块 确定多个预编码矩阵, 则确定的多个预编码矩阵对应的第一预编码指示信息 相同。
30、 如权利要求 28所述的用户设备, 其特征在于, 若所述第一确定模块 确定多个预编码矩阵, 则确定的多个预编码矩阵对应的第二预编码指示信息 不同。
31、 一种确定预编码矩阵的网络侧设备, 其特征在于, 该网络侧设备包 括:
接收模块, 用于接收来自用户设备的第一预编码指示信息和第二预编码 指示信息;
第二确定模块, 用于根据所述第一预编码指示信息和第二预编码指示信 息, 确定预编码矩阵;
其中, 所述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵 的函数矩阵, 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等 于两个矩阵的 Kronecker积; 第二分量预编码矩阵由加权的列选择向量构成, 所述加权列选择向量除了 P个非零元素外其余均为零, P为正整数。
32、 如权利要求 31所述的网络侧设备, 其特征在于, 所述第二确定模块 具体用于:
确定第一预编码指示信息对应的第一分量预编码矩阵, 以及确定第二预 编码指示信息对应的第二分量预编码矩阵; 将第一分量预编码矩阵与第二分 量预编码矩阵的乘积作为预编码矩阵。
33、 如权利要求 32所述的网络侧设备, 其特征在于, 所述第二确定模块 根据下列公式确定第一预编码指示信息对应的第一分量预编码矩阵: 或者 或者 或者
Figure imgf000039_0001
其中, wi是第一分量预编码矩阵, X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵; Β为 MvxMv对角矩阵; MhDh、 E 和 Mv为正整数。
34、 如权利要求 33所述的网络侧设备, 其特征在于, X是波束赋形矩阵 构成的集合 {ΧΡ:Ρ = 0,1,···,ΝΗ- 1}中的一个元素, X = Xk, 0<k≤NH-l; Z 是波束赋形矩阵构成的集合 {Zq:q = 0,l,...,Nv-l}中的一个元素, Z = Zn,
0≤n≤Nv— 1 ; NH 和 Nv 为正整数; n =「i1/NH];k = i1mo Η 或 k =「 / Νν ]; η = mod Νν , 是第一预编码指示信息。
35、 如权利要求 32所述的网络侧设备, 其特征在于, 第二分量预编码矩 阵为(2MHMV) X Γ维矩阵与功率归一化系数的乘积, 是预编码矩阵的列 数;
Figure imgf000039_0002
其中, W2是第二分量预编码矩阵; 61¾是长度为 MH MV的列向量, 第!^个 元素为 1 ,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ是功率归一化系数。
36、 如权利要求 32所述的网络侧设备, 其特征在于, 所述第二确定模块 具体用于:
根据预先设定的第一分量预编码矩阵和第一预编码指示信息的对应关 系, 确定收到的第一预编码指示信息对应的第一分量预编码矩阵。
37、 如权利要求 32所述的网络侧设备, 其特征在于, 所述第二确定模块 具体用于:
根据预先设定的第二分量预编码矩阵和第二预编码指示信息的对应关 系, 确定收到的第二预编码指示信息对应的第二分量预编码矩阵。
38、 如权利要求 32所述的网络侧设备, 其特征在于, 所述第二确定模块 具体用于:
根据预先设定的第一预编码指示信息、 第二预编码指示信息和预编码矩 阵的对应关系, 确定收到的第一预编码指示信息和第二预编码指示信息对应 的预编码矩阵。
39、 一种确定预编码矩阵的系统, 其特征在于, 该系统包括:
用户设备, 用于确定第一预编码指示信息和第二预编码指示信息, 其中 所述第一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所述预 编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 所述 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩阵的 Kronecker积; 所述第二分量预编码矩阵由加权的列选择向量构成, 所述加权 列选择向量除了 P个非零元素外其余均为零, P为正整数;
网络侧设备, 用于接收来自用户设备的第一预编码指示信息和第二预编 码指示信息; 根据所述第一预编码指示信息和第二预编码指示信息, 确定预 编码矩阵。
40、 一种用户设备, 其特征在于, 包括:
处理器, 用于确定第一预编码指示信息和第二预编码指示信息, 其中所 述第一预编码指示信息和第二预编码指示信息与预编码矩阵对应, 所述预编 码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵的函数矩阵, 所述第 一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等于两个矩阵的 Kronecker积; 所述第二分量预编码矩阵由加权的列选择向量构成, 所述加权 列选择向量除了 p个非零元素外其余均为零, P为正整数; 收发器, 用于向网络侧发送第一预编码指示信息和第二预编码指示信息。
41、 如权利要求 40所述的用户设备, 其特征在于, 第一分量预编码矩阵 为
ΖΘΧ 0
=
0 ΖΘΧ ; 或者
Figure imgf000041_0001
其中, Wi是第一分量预编码矩阵; X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 DvxMv; A为 ΜΗχΜΗ对角矩阵;
Β为 MvxMv对角矩阵; MHDhDv和 Mv为正整数。
42、 如权利要求 41所述的用户设备, 其特征在于, X是波束赋形矩阵构 成的集合 {ΧΡ:Ρ = 0,1,···,ΝΗ- 1}中的一个元素, X = Xk, 0<k≤NH-l; Z是 ¾波束赋形矩阵构成的集合 {Zq: q = 0,1,..., Nv - 1}中的一个元素, Ζ = Ζη ,
0<η≤Νν-1; ΝΗ和 Νν为正整数。
43、 如权利要求 40所述的用户设备, 其特征在于, 第二分量预编码矩阵 为(2MHMV)X 1"维矩阵与功率归一化系数的乘积, r是预编码矩阵的列数; 所述第二分量预编码矩阵为:
Figure imgf000042_0001
其中, W2是第二分量预编码矩阵; 61¾是长度为 MHMV的列向量, 第!^个 元素为 1,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ是功率归一化系数。
44、如权利要求 40所述的用户设备, 其特征在于,所述处理器具体用于: 从第一分量预编码矩阵集合中选择第一分量预编码矩阵, 并确定选择的 第一分量预编码矩阵对应的第一预编码指示信息, 以及从第二分量预编码矩 阵集合中选择第二分量预编码矩阵, 并确定选择的第二分量预编码矩阵对应 的第二预编码指示信息。
45、 如权利要求 42所述的用户设备, 其特征在于, 所述处理器根据下列 公式确定第一预编码指示信息: i1=nxNH +k或者 =1^x^ +1 ; 其中, 是第一预编码指示信息。
46、如权利要求 44所述的用户设备, 其特征在于,所述处理器具体用于: 根据预先设定的第二分量预编码矩阵和第二预编码指示信息的对应关 系, 确定第二分量预编码矩阵对应的第二预编码指示信息。
47、 如权利要求 40所述的用户设备, 其特征在于, 所述处理器还用于: 将第一分量预编码矩阵与第二分量预编码矩阵的乘积作为预编码矩阵。
48、 如权利要求 40~43任一所述的用户设备, 其特征在于, 所述处理器 具体用于: 确定至少一个预编码矩阵, 并根据第一预编码指示信息、 第二预编码指 示信息和预编码矩阵的对应关系, 确定至少一个预编码矩阵对应的第一预编 码指示信息和第二预编码指示信息; 将确定的第一预编码指示信息和第二预 编码指示信息中的一个第一预编码指示信息和一个第二预编码指示信息作为 需要通知给网络侧的第一预编码指示信息和第二预编码指示信息。
49、 如权利要求 48所述的用户设备, 其特征在于, 若所述处理器确定多 个预编码矩阵, 则确定的多个预编码矩阵对应的第一预编码指示信息相同。
50、 如权利要求 48所述的用户设备, 其特征在于, 若所述处理器确定多 个预编码矩阵, 则确定的多个预编码矩阵对应的第二预编码指示信息不同。
51、 一种网络设备, 其特征在于, 包括:
收发器, 用于接收来自用户设备的第一预编码指示信息和第二预编码指 示信息;
处理器, 用于根据所述第一预编码指示信息和第二预编码指示信息, 确 定预编码矩阵;
其中, 所述预编码矩阵等于第一分量预编码矩阵和第二分量预编码矩阵 的函数矩阵, 第一分量预编码矩阵为分块对角矩阵, 其对角线上的子矩阵等 于两个矩阵的 Kronecker积; 第二分量预编码矩阵由加权的列选择向量构成, 所述加权列选择向量除了 P个非零元素外其余均为零, P为正整数。
52、 如权利要求 51所述的网络侧设备, 其特征在于, 所述处理器具体用 于:
确定第一预编码指示信息对应的第一分量预编码矩阵, 以及确定第二预 编码指示信息对应的第二分量预编码矩阵; 将第一分量预编码矩阵与第二分 量预编码矩阵的乘积作为预编码矩阵。
53、 如权利要求 52所述的网络侧设备, 其特征在于, 所述处理器根据下 列公式确定第一预编码指示信息对应的第一分量预编码矩阵:
Ζ Θ Χ 0
0 Ζ Θ Χ 或者 或者 或者
Figure imgf000044_0001
其中, wi是第一分量预编码矩阵, X是波束赋形矩阵, 其维度为
DHxMH, Z是波束赋形矩阵,其维度为 Dv xMv; A为 ΜΗχΜΗ对角矩阵; Β为 Mv xMv对角矩阵; MhDh、 E 和 Mv为正整数。
54、 如权利要求 53所述的网络侧设备, 其特征在于, X是波束赋形矩阵 构成的集合 {ΧΡ:Ρ = 0,1,···,ΝΗ - 1}中的一个元素, X = Xk, 0<k≤NH -l; Z 是波束赋形矩阵构成的集合 {Zq:q = 0,l,...,Nv-l}中的一个元素, Z = Zn ,
0≤n≤Nv— 1 ; NH 和 Nv 为正整数; n =「i1/NH];k = i1m o Η 或 k =「 / Νν ]; η = mod Νν , 是第一预编码指示信息。
55、 如权利要求 52所述的网络侧设备, 其特征在于, 第二分量预编码矩 阵为(2MHMV) X Γ维矩阵与功率归一化系数的乘积, 是预编码矩阵的列 数;
Figure imgf000044_0002
其中, W2是第二分量预编码矩阵; ^^是长度为 MHMV的列向量, 第!^个 元素为 1,其他元素均为 0, 是模值为 1的复数标量, MH和 Mv为正整数; Μ是功率归一化系数。
56、 如权利要求 52所述的网络侧设备, 其特征在于, 所述处理器具体用 于:
根据预先设定的第一分量预编码矩阵和第一预编码指示信息的对应关 系, 确定收到的第一预编码指示信息对应的第一分量预编码矩阵。
57、 如权利要求 52所述的网络侧设备, 其特征在于, 所述处理器具体用 于:
根据预先设定的第二分量预编码矩阵和第二预编码指示信息的对应关 系, 确定收到的第二预编码指示信息对应的第二分量预编码矩阵。
58、 如权利要求 52所述的网络侧设备, 其特征在于, 所述处理器具体用 于:
根据预先设定的第一预编码指示信息、 第二预编码指示信息和预编码矩 阵的对应关系, 确定收到的第一预编码指示信息和第二预编码指示信息对应 的预编码矩阵。
PCT/CN2013/085504 2012-10-19 2013-10-18 传输编码指示信息和确定预编码矩阵的方法、系统及设备 WO2014059944A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/434,400 US9882615B2 (en) 2012-10-19 2013-10-18 Method, system, and device for transmitting coding instruction information and for determining pre-coding matrix
EP13847320.2A EP2913950B1 (en) 2012-10-19 2013-10-18 Method, system, and device for transmitting coding instruction information and for determining pre-coding matrix
US15/851,682 US10516450B2 (en) 2012-10-19 2017-12-21 Method, system, and device for transmitting coding instruction information and for determining pre-coding matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210402573.8 2012-10-19
CN201210402573.8A CN103780332B (zh) 2012-10-19 2012-10-19 传输编码指示信息和确定预编码矩阵的方法、系统及设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/434,400 A-371-Of-International US9882615B2 (en) 2012-10-19 2013-10-18 Method, system, and device for transmitting coding instruction information and for determining pre-coding matrix
US15/851,682 Continuation US10516450B2 (en) 2012-10-19 2017-12-21 Method, system, and device for transmitting coding instruction information and for determining pre-coding matrix

Publications (1)

Publication Number Publication Date
WO2014059944A1 true WO2014059944A1 (zh) 2014-04-24

Family

ID=50487588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085504 WO2014059944A1 (zh) 2012-10-19 2013-10-18 传输编码指示信息和确定预编码矩阵的方法、系统及设备

Country Status (5)

Country Link
US (2) US9882615B2 (zh)
EP (1) EP2913950B1 (zh)
CN (1) CN103780332B (zh)
TW (1) TWI508479B (zh)
WO (1) WO2014059944A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045535A1 (zh) * 2014-09-28 2016-03-31 电信科学技术研究院 信道状态信息反馈方法、设备及系统
WO2016183880A1 (en) * 2015-05-15 2016-11-24 Qualcomm Incorporated Enhanced csi procedures for fd-mimo

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795489B (zh) * 2012-10-29 2017-05-24 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
US9774430B2 (en) * 2014-05-22 2017-09-26 Lg Electronics Inc. Method and apparatus for channel estimation in wireless communication system
WO2015190866A1 (ko) * 2014-06-12 2015-12-17 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 코드북 구성 방법 및 이를 위한 장치
EP3229553B1 (en) 2014-12-31 2024-03-13 Huawei Technologies Co., Ltd. Precoding matrix indicator (pmi) feedback method
CN106487435B (zh) * 2015-08-24 2020-03-03 电信科学技术研究院 一种传输编码指示信息和确定预编码矩阵的方法和装置
CN107113104B (zh) * 2015-09-25 2020-06-30 江苏星地通通信科技有限公司 一种预编码方法及装置
CN107332600B (zh) * 2016-04-29 2020-03-24 电信科学技术研究院 一种信道状态信息反馈和接收方法、装置
JP6731497B2 (ja) * 2016-05-13 2020-07-29 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル状態情報報告方法、チャネル状態情報読み出し方法、及び関連装置
WO2018058484A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 传输信道信息的方法、终端设备和网络设备
CN108282196B (zh) 2017-01-05 2020-11-03 华为技术有限公司 指示、确定预编码矩阵的方法以及接收、发射端设备
SG11201906629XA (en) * 2017-01-23 2019-08-27 Guangdong Oppo Mobile Telecommunications Corp Ltd Method and device for transmitting uplink signals
CN111435848B (zh) 2019-01-11 2022-05-31 华为技术有限公司 指示和确定预编码向量的方法以及通信装置
WO2024216544A1 (en) * 2023-04-19 2024-10-24 Zte Corporation Methods and systems for channel state information reporting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834708A (zh) * 2010-04-30 2010-09-15 中兴通讯股份有限公司 一种信道信息的获取方法及装置
CN101867461A (zh) * 2010-04-30 2010-10-20 中兴通讯股份有限公司 信道信息获取方法及装置、码本构造方法
CN101969366A (zh) * 2010-09-26 2011-02-09 华中科技大学 用于8发射天线mimo系统的预编码方法
WO2011051914A1 (en) * 2009-10-30 2011-05-05 Nokia Corporation Channel feedback to support efficient rank override

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7764746B2 (en) * 2008-08-19 2010-07-27 Samsung Electronics Co., Ltd. User terminal and base station using adapted codebook according to polarization
KR101276855B1 (ko) * 2010-03-08 2013-06-18 엘지전자 주식회사 프리코딩 행렬 정보 전송방법 및 사용자기기와, 프리코딩 행렬 구성방법 및 기지국
JP5276047B2 (ja) * 2010-04-30 2013-08-28 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置
WO2011150549A1 (en) * 2010-06-01 2011-12-08 Nokia Corporation Apparatus and method for selection of beam groups and subset of beams in communication system
US8494033B2 (en) * 2010-06-15 2013-07-23 Telefonaktiebolaget L M Ericsson (Publ) Methods providing precoder feedback using multiple precoder indices and related communications devices and systems
WO2012008710A2 (ko) * 2010-07-12 2012-01-19 엘지전자 주식회사 무선 통신 시스템에서 코드북을 이용한 신호 송수신 방법 및 장치
US9119209B2 (en) * 2012-03-30 2015-08-25 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
EP2863570B1 (en) * 2012-06-14 2019-09-18 Huawei Technologies Co., Ltd. Method, user equipment, and base station evolved node for determining precoding matrix indicator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051914A1 (en) * 2009-10-30 2011-05-05 Nokia Corporation Channel feedback to support efficient rank override
CN101834708A (zh) * 2010-04-30 2010-09-15 中兴通讯股份有限公司 一种信道信息的获取方法及装置
CN101867461A (zh) * 2010-04-30 2010-10-20 中兴通讯股份有限公司 信道信息获取方法及装置、码本构造方法
CN101969366A (zh) * 2010-09-26 2011-02-09 华中科技大学 用于8发射天线mimo系统的预编码方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045535A1 (zh) * 2014-09-28 2016-03-31 电信科学技术研究院 信道状态信息反馈方法、设备及系统
US10291308B2 (en) 2014-09-28 2019-05-14 China Academy Of Telecommunications Technology Channel state information feedback method, device and system
WO2016183880A1 (en) * 2015-05-15 2016-11-24 Qualcomm Incorporated Enhanced csi procedures for fd-mimo
US10404338B2 (en) 2015-05-15 2019-09-03 Qualcomm Incorporated Enhanced CSI procedures for FD-MIMO

Also Published As

Publication number Publication date
US20180123661A1 (en) 2018-05-03
EP2913950B1 (en) 2021-05-05
US9882615B2 (en) 2018-01-30
US20150270881A1 (en) 2015-09-24
CN103780332B (zh) 2017-03-29
TWI508479B (zh) 2015-11-11
EP2913950A1 (en) 2015-09-02
EP2913950A4 (en) 2015-12-09
CN103780332A (zh) 2014-05-07
US10516450B2 (en) 2019-12-24
TW201417531A (zh) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2014059944A1 (zh) 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN109983712B (zh) 在高级无线通信系统中实现多分辨率csi报告的方法和装置
EP3427405B1 (en) Method and apparatus for explicit csi reporting in advanced wireless communication systems
JP7003111B2 (ja) 高度csiフィードバックオーバヘッド低減のための構成可能コードブック
WO2014059831A1 (zh) 传输编码指示信息和确定预编码矩阵的方法、系统及设备
US20190131008A1 (en) Methods and Systems for CSI-RS Port Selection for CSI-Reporting
JP6118423B2 (ja) チャネル状態情報をフィードバックする方法、ユーザ装置及び基地局
CN112075031A (zh) 启用基于非均匀空频压缩的csi报告的方法和装置
US20160248562A1 (en) Channel-state-information reference signals for advanced wireless systems
CN110574304A (zh) 用于高级无线通信系统中的高级别csi报告的方法和装置
EP3497809A2 (en) Progressive advanced csi feedback
WO2015131378A1 (zh) 报告信道状态信息的方法、用户设备和基站
WO2014067460A1 (zh) 传输预编码指示信息和确定预编码矩阵的方法、系统及设备
EP3637713B1 (en) Nr uplink codebook configuration method and related device
CN102823153A (zh) 用于mimo预编码的预编码器结构
WO2014146595A1 (zh) 一种确定预编码矩阵的方法、系统和设备
WO2012142912A1 (zh) 一种码本的生成、信息的发送、反馈方法及设备
WO2014067461A1 (zh) 传输预编码指示信息和确定预编码矩阵的方法、系统及设备
CN117356039A (zh) 基于线性组合端口选择码本的csi省略方法和装置
WO2014169873A1 (zh) 一种预编码矩阵反馈方法和终端
WO2014166448A1 (zh) 反馈信道状态信息的方法、终端及获取预编码的基站
WO2011123977A1 (zh) 针对天线阵列的相关矩阵反馈方法和系统
WO2017133688A1 (zh) 信息的传输、接收方法及装置
WO2017076208A1 (zh) 一种信道状态信息反馈、数据传输方法及装置
WO2014063653A1 (zh) 利用三维波束码本进行通信的方法、装置及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847320

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14434400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013847320

Country of ref document: EP