WO2016045535A1 - 信道状态信息反馈方法、设备及系统 - Google Patents

信道状态信息反馈方法、设备及系统 Download PDF

Info

Publication number
WO2016045535A1
WO2016045535A1 PCT/CN2015/089871 CN2015089871W WO2016045535A1 WO 2016045535 A1 WO2016045535 A1 WO 2016045535A1 CN 2015089871 W CN2015089871 W CN 2015089871W WO 2016045535 A1 WO2016045535 A1 WO 2016045535A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
precoding matrix
user equipment
matrix indication
network side
Prior art date
Application number
PCT/CN2015/089871
Other languages
English (en)
French (fr)
Inventor
陈润华
高秋彬
塔玛拉卡⋅拉盖施
李辉
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/514,817 priority Critical patent/US10291308B2/en
Priority to EP15844823.3A priority patent/EP3200356A4/en
Publication of WO2016045535A1 publication Critical patent/WO2016045535A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0687Full feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a channel state information feedback method, device, and system.
  • the network side device antenna arrays are generally arranged horizontally.
  • the transmitting side beam of the network side device can only be adjusted in the horizontal direction, and the vertical direction is a fixed downtilt angle for each user. Therefore, various beamforming/precoding techniques and the like are performed based on the horizontal channel information.
  • the wireless signal is three-dimensionally propagated in space, the method of fixing the downtilt angle cannot optimize the performance of the system, and the beam adjustment in the vertical direction is very important for improving the performance of the system.
  • FIGS. 1A and 1B are 4-port schematic diagram, and the vertical dimension of the base station in FIG. 1B is divided into three sectors, namely, sector 1, sector 2, and sector 3, each serving a terminal in a corresponding sector, and each sector is allocated.
  • a set of CSI-RS (Channel State Information-Reference Singal) resources including several CSI-RS ports, such as a 4-port CSI-RS.
  • CSI-RS Channel State Information-Reference Singal
  • the network side device In the current CSI feedback mode, the network side device usually configures one CSI-RS resource in each of the horizontal dimension and the vertical dimension, and sends each CSI-RS resource from a group of antennas to the UE; the UE measures the vertical dimension of the CSI-RS resource. And feedback CSI corresponding to the vertical dimension of the CRI-RS resource, and measurement The CSI-RS resource of the horizontal dimension and the CSI corresponding to the CRI-RS resource of the horizontal dimension are fed back; the network side device obtains the downlink 3D-MIMO (3Dimension MIMO, 3D multiple input multiple output) according to the vertical dimension CSI and the horizontal dimension CSI fed back by the UE. Beamforming information.
  • 3D-MIMO 3Dimension MIMO, 3D multiple input multiple output
  • the UE needs to feed back two CSIs including a complete RI (Rank Indicator), a PMI (Precoding Matrix Indicator), and a CQI (Channel Quality Indicator) information. Therefore, there is a problem that the uplink feedback overhead is large.
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • the embodiments of the present disclosure provide a channel state information feedback method, device, and system, which are used to solve the problem of large uplink feedback overhead in the CSI feedback mode of the prior art.
  • the embodiment of the present disclosure provides a channel state information feedback method, device, and system as follows:
  • a first aspect is a channel state information feedback method, the method comprising:
  • the network side device configures a first downlink channel measurement pilot for the user equipment UE
  • the network side device receives the first precoding matrix indicating PMI information fed back by the UE, where the first PMI information is obtained by the UE according to the measurement of the first downlink channel measurement pilot and the second PMI information;
  • the first PMI information and the second PMI information represent different dimensions.
  • the network side device can perform beamforming according to the first PMI information, and thus, compared with the prior art. In other words, the uplink feedback overhead is greatly reduced.
  • the method further includes:
  • the network side device performs beamforming on a signal to be sent to the UE according to the first PMI information and the second PMI information.
  • the method further includes:
  • the network side device receives channel quality indication CQI information fed back by the UE, where the CQI information is determined by the UE according to the first PMI information and the second PMI information.
  • the method further includes:
  • the network side device performs link adjustment on a signal to be sent to the UE according to the CQI information.
  • the network side device configures second PMI information for the UE, so that the UE is configured according to the UE
  • the second PMI information and the first downlink channel measurement pilot determine the first PMI information and determine the CQI information according to the first PMI information and the second PMI information configured to the UE.
  • the network side device determines the second PMI information according to the following steps:
  • the network side device measures an uplink signal sent by the UE, and determines the second PMI information.
  • the network side device before the network side device receives the second PMI information that is reported by the UE, the network side device further includes:
  • the network side device configures a second downlink channel measurement pilot for the UE, so that the UE determines the second PMI information according to the second downlink channel measurement pilot;
  • the network side device configures a two-dimensional joint antenna array downlink channel measurement pilot for the UE, so that the UE determines the second PMI information according to the two-dimensional joint antenna array downlink channel measurement pilot.
  • the network side device configured the second PMI information for the UE, including:
  • the network side device sends the second PMI information to the UE, so that when the network side device configures the second downlink channel measurement pilot for the UE, the UE according to the configured second PMI information, the first The downlink channel measurement pilot and the second downlink channel measurement pilot determine the first PMI information, and when the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, the UE is configured according to the second PMI information and a two-dimensional joint antenna array downlink channel measurement pilot determine the first PMI information; or
  • the network side device notifies the UE to use the second PMI information determined by the UE, so that when the network side device configures the second downlink channel measurement pilot for the UE, the second PMI information determined by the UE according to the UE And determining, by the first downlink channel measurement pilot and the second downlink channel measurement pilot PMI information, when the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, the UE determines, according to the second PMI information determined by the UE and the two-dimensional joint antenna array downlink channel measurement pilot. First PMI information.
  • the second aspect is a channel state information feedback method, where the method includes:
  • the user equipment UE determines the first PMI information according to the second precoding matrix indication PMI information and the first downlink channel measurement pilot configured by the network side device;
  • the UE feeds back the first PMI information to the network side device
  • the first PMI information and the second PMI information represent different dimensions.
  • the network side device can perform beamforming according to the first PMI information, and thus, compared with the prior art. In other words, the uplink feedback overhead is greatly reduced.
  • the method further includes:
  • the UE feeds back the CQI information to the network side device.
  • the UE determines the second PMI information according to the following manner;
  • the UE measures a downlink pilot signal, and determines the second PMI information
  • the UE determines the second PMI information according to the second PMI information configured by the network side device.
  • the determining, by the UE, the downlink pilot signal, and determining the second PMI information includes:
  • the UE measures a second downlink channel measurement pilot or a two-dimensional joint antenna array downlink channel measurement pilot configured by the network side device, and determines the second PMI information;
  • Determining, by the UE, the first PMI information according to the second PMI information and the first downlink channel measurement pilot configured by the network side device including:
  • the UE determines the first PMI information according to the second PMI information and the two-dimensional joint antenna array downlink channel measurement pilot configured by the network side device to measure the downlink pilot signal.
  • the method further includes:
  • the UE reports the determined second PMI information to the network side device.
  • the method further includes:
  • the UE After receiving the second PMI information sent by the network side device, the UE uses the received second PMI information as a second PMI message used to determine the first PMI information and the CQI information.
  • the UE After receiving the acknowledgement message sent by the network side device, the UE uses the reported second PMI information as a second PMI message used to determine the first PMI information and the CQI information.
  • a third aspect a network side device, where the network side device includes:
  • a configuration module configured to configure a first downlink channel measurement pilot for the user equipment UE
  • a receiving module configured to receive, by the UE, a first precoding matrix indicating PMI information, where the first PMI information is obtained by the UE according to the measurement of the first downlink channel measurement pilot and the second PMI information,
  • the first PMI information and the second PMI information represent different dimensions.
  • the network side device can perform beamforming according to the first PMI information, and thus, compared with the prior art. In other words, the uplink feedback overhead is greatly reduced.
  • the network side device further includes:
  • a processing module configured to perform beamforming on the signal to be sent to the UE according to the first PMI information and the second PMI.
  • the receiving module is further configured to receive channel quality indication CQI information that is fed back by the UE, where the CQI information is The UE is determined according to the first PMI information and the second PMI information.
  • the processing module is further configured to perform link adjustment on a signal to be sent to the UE according to the CQI information.
  • the configuration module is further configured to configure the second PMI information for the UE, so that the The UE determines the first PMI information according to the second PMI information configured to the UE and the first downlink channel measurement pilot, and determines the CQI information according to the first PMI information and the second PMI information configured to the UE.
  • the network side device further includes: a determining module, configured to receive second PMI information reported by the UE; or The uplink signal sent by the UE determines the second PMI information.
  • the configuration module is further configured to: before the determining module receives the second PMI information reported by the UE, Configuring a second downlink channel measurement pilot, so that the UE determines the second PMI information according to the second downlink channel measurement pilot; or configuring a two-dimensional joint antenna array downlink channel measurement pilot for the UE, so that the UE The UE determines the second PMI information according to the two-dimensional joint antenna array downlink channel measurement pilot.
  • the configuration module is configured to send the second PMI information to the UE, so that when the network side device is When the UE configures the second downlink channel measurement pilot, the UE determines the first PMI information according to the configured second PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement pilot, when the network side When the device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, the UE determines the first PMI information according to the configured second PMI information and the two-dimensional joint antenna array downlink channel measurement pilot; or notifies the UE to use The second PMI information determined by the UE, so that when the network side device configures the second downlink channel measurement pilot for the UE, the second PMI information and the first downlink channel measurement guide determined by the UE according to the UE And the second downlink channel measurement pilot determines the first PMI information, and when the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the
  • a fourth aspect is a user equipment, where the user equipment includes:
  • a first determining module configured to determine, according to the second PMI information and the first downlink channel measurement pilot configured by the network side device, the first PMI information, where the first PMI information and the second PMI information represent different dimensions;
  • a sending module configured to feed back the first PMI information to the network side device.
  • the network side device can perform beamforming according to the first PMI information, and thus, compared with the prior art. In other words, the uplink feedback overhead is greatly reduced.
  • the first determining module is further configured to determine channel quality indicator CQI information according to the first PMI information and the second PMI information;
  • the sending module is further configured to feed back the CQI information to the network side device.
  • the user equipment further includes: a second determining module, configured to measure a downlink pilot signal, and determine The second PMI information is determined; or the second PMI information is determined according to the received second PMI information sent by the network side device.
  • the second determining module is specifically configured to measure pilot or second according to the second downlink channel configured by the network side device
  • the joint antenna array downlink channel measurement pilot measures the downlink pilot signal, and determines the second PMI information
  • the first determining module is specifically configured to determine, according to the second PMI information, the first downlink channel measurement pilot and the second downlink channel measurement pilot configured by the network side device, the first PMI information; or the UE Determining the first PMI information according to the second PMI information, the two-dimensional joint antenna array downlink channel measurement pilot configured by the network side device, and the downlink pilot signal.
  • the sending module is further configured to: after the second determining module measures the downlink pilot signal, after determining the second PMI information And reporting the determined second PMI information to the network side device.
  • the user equipment further includes:
  • a third determining module configured to: after the sending, by the sending module, the determined second PMI information to the network side device, after receiving the second PMI information sent by the network side device, The PMI information is used as the second PMI message for determining the first PMI information and the CQI information; or after receiving the acknowledgement message sent by the network side device, using the reported second PMI information as the first PMI information and the CQI.
  • the second PMI message used by the message.
  • a channel state information feedback system includes: a network side device and a user equipment;
  • the network side device is configured to configure a first downlink channel measurement pilot for the UE, and receive the first PMI information that is fed back by the UE, where the first PMI information and the second PMI information represent different dimensions;
  • the user equipment is configured to determine first PMI information according to the second PMI information and the first downlink channel measurement pilot configured by the network side device, and feed back the first PMI information to the network side device.
  • the network side device can perform beamforming according to the first PMI information, and thus, compared with the prior art. In other words, the uplink feedback overhead is greatly reduced.
  • a network side device includes:
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • transceiver coupled to the processor and the memory via the bus interface and for receiving and transmitting data under control of the processor
  • the processor invokes and executes the program and data stored in the memory; and receiving a first precoding matrix indication fed back by the user equipment Information, the first precoding matrix indication information is obtained by the user equipment according to the measurement of the first downlink channel measurement pilot and the second precoding matrix indication information, where the first precoding matrix
  • the indication information and the second precoding matrix indication information represent different dimensions.
  • the network side device can perform beamforming according to the first PMI information, and thus, compared with the prior art. In other words, the uplink feedback overhead is greatly reduced.
  • a user equipment includes:
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • transceiver coupled to the processor and the memory via the bus interface and for receiving and transmitting data under control of the processor
  • the network side device can perform beamforming according to the first PMI information, and thus, compared with the prior art. In other words, the uplink feedback overhead is greatly reduced.
  • 1A is a schematic structural diagram of a 4-port antenna in the background art
  • 1B is a schematic diagram showing the sectorization of a vertical dimension divided into three sectors in the background art
  • FIG. 2 is a flowchart of a channel state information feedback method provided by a network side device according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for feeding back channel state information provided by a user equipment side according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a channel state information feedback system in an implementation of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another network side device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • the network side device configures a first downlink channel measurement pilot for the UE, and receives the first PMI information that is fed back by the UE, where the first PMI information is that the UE is based on the first downlink information.
  • the measurement of the pilot measurement and the second PMI information are obtained, and the first PMI information and the second PMI information represent different dimensions.
  • the network side device only needs to receive the first PMI information that is fed back by the user side device, where the first PMI information is obtained by the UE according to the measurement of the first downlink channel measurement pilot and the second PMI information, and the network side
  • the device may process the signal to be sent to the UE according to the first PMI information, and therefore, the signal is reduced to a greater extent than the feedback of two or more CSIs including the complete RI, PMI, and CQI in the prior art. Uplink feedback overhead.
  • the first PMI is the PMI corresponding to the beamforming vector that is selected by the UE from the codebook of the first dimension to the optimal beamforming performance, according to the second PMI and the first downlink channel measurement pilot measurement information.
  • the PMI1 in the prior art is only measured according to the CSI-RS resource of the horizontal dimension or the vertical dimension, and is independent of the CSI-RS resource of another dimension, and the eNB (evolved Node Base) uses it and another The PMI of the dimension performs beamforming, and the probability of achieving the best beamforming effect is low. Therefore, the first PMI in the present disclosure is more accurate than the PMI1 in the prior art.
  • the network side device performs beamforming on the signal to be sent to the UE according to the received first PMI information and the second PMI information, and the network side device receives the CQI information fed back by the UE, because the CQI is The UE obtains the link according to the first PMI information and the second PMI information, so that the network side device can directly use the CQI to perform link adjustment on the signal to be sent to the UE, which greatly reduces the complexity of the network side device.
  • the CSI includes RI, PMI, and CQI.
  • the RI reflects the number of code streams that the UE can support in the downlink.
  • the PMI reflects the index number of the precoding matrix in a codebook fed back by the UE.
  • the CQI reflects that if the RI/PMI is applied to the MIMO (Multiple-Input Multiple-Output, multiple input) Multi-output) The signal strength that the UE can receive after encoding.
  • the CQI must be determined based on RI/PMI, which can be a representation of the strength of a signal, such as SINR (Signal to Interference plus Noise Ratio), acceptable MCS (Modulation and Coding Scheme), modulation and coding. Strategy) or other features.
  • a channel state information feedback method provided by a network side device includes the following steps:
  • Step 201 The network side device configures a first downlink channel measurement pilot for the user equipment UE.
  • the first downlink channel measurement pilot includes a CSI-RS resource or a cell-specific reference symbol (CRS), and other downlink channel measurement pilots that can obtain channel state information through channel measurement, which is not true here. It is limited;
  • the network side device may configure the first downlink channel measurement pilot for the UE according to the number of the antenna ports of each dimension, where the first downlink channel measurement pilot may be A single-dimensional CSI-RS resource (for example, a vertical dimension CSI-RS resource and a horizontal dimension CSI-RS resource) may also be a two-dimensional joint antenna array CSI-RS resource;
  • the network side device antenna is a 4x8 antenna array, that is, 4 antennas in a vertical dimension, and 8 antennas in a horizontal dimension, and a total of 32 antennas are taken as an example.
  • the network side device is configured as the first one of the UE.
  • the channel channel measurement pilot can be a 4-port vertical-dimension CSI-RS resource, an 8-port CSI-RS resource, or a 32-port CSI-RS resource.
  • the 32-port CSI-RS resource is Two-dimensional joint antenna array downlink channel measurement pilot.
  • each CSI-RS resource has a set of configuration parameters when it is configured at a high level, including periodicity (for example, one subframe is transmitted once), offset (for example, the location of the starting subframe), and CSI-RS. Index (for example: configured for the first few CSI-RS resources to choose from) and so on.
  • the periods of CSI-RS resources of different dimensions configured may be different or the same. Generally, the UE moves faster in the horizontal direction and slower in the vertical direction. Therefore, the period of the horizontal dimension CSI-RS resource can be configured to be shorter, and the period of the vertical dimension CSI-RS resource can be configured longer.
  • the measurement/feedback of vertical dimension resources can be used at lower frequencies.
  • Step 202 The network side device receives the first PMI information fed back by the UE.
  • the first PMI information is obtained by the UE according to the measurement of the first downlink channel measurement pilot and the second PMI information; the first PMI information and the second PMI information represent different dimensions;
  • the UE feeds back the first PMI information, and may also feed back the self-supported code stream measured according to the first downlink channel measurement pilot, that is, the first RI;
  • the second PMI information is the PMI information of the vertical dimension
  • the first PMI information is the PMI information of the vertical dimension
  • the second PMI information is the PMI information of the horizontal dimension
  • Step 203 The network side device performs beamforming on a signal to be sent to the UE according to the first PMI information and the second PMI information.
  • the network side device performs beamforming on a signal to be sent to the UE according to a precoding matrix obtained by the first PMI information and the second PMI information.
  • the network side device When the UE feeds back the first RI, the network side device performs beamforming on a signal to be sent to the UE according to a precoding matrix obtained by the first PMI information, the first RI, and the second PMI information.
  • this step 203 is a preferred step of the embodiment of the present disclosure.
  • Step 204 The network side device receives CQI information fed back by the UE.
  • the CQI information is determined by the UE according to the first PMI information and the second PMI information.
  • step 204 is a preferred step of the embodiment of the present disclosure, and has no necessary timing relationship with the foregoing step 202 to step 203.
  • Step 204 may be performed after step 202, before or simultaneously with step 202, or may be performed at step After 203, before or at the same time as step 203.
  • the network side device may process the signal to be sent to the UE according to the CQI message.
  • Step 205 The network side device performs link adjustment on a signal to be sent to the UE according to the CQI information.
  • the network side device performs downlink adjustment according to the CQI message to be sent to the UE.
  • this step 204 is a preferred step of the embodiment of the present disclosure.
  • the network side device may directly perform downlink adjustment on the signal to be sent to the UE by using the CQI message. Compared with the prior art, it is not necessary to determine a CQI for performing link adjustment on the UE according to the PMI in each CSI fed back by each UE, and therefore, a large range The complexity of the network side device is reduced.
  • the network side device configures the second PMI information for the UE, so that the UE determines the first PMI information according to the second PMI information configured to the UE and the first downlink channel measurement pilot, and according to the The first PMI information and the second PMI information configured to the UE determine CQI information.
  • the network side device determines, according to any one or a combination of the following two manners, the second PMI information in the foregoing step 203 and/or configured to the UE:
  • the network side device may also receive the UE to feed back the second RI, where the first RI and the second RI have different dimensions.
  • the network side device measures an uplink signal sent by the UE, and determines the second PMI information
  • the uplink signal may be an uplink pilot signal, for example, a SRS (Sounding Reference Signal), and a DRS (Demodulation Reference Symbol) transmitted along with a PUSCH (Physical Uplink Shared Channel). and many more.
  • a SRS Sounding Reference Signal
  • DRS Demodulation Reference Symbol
  • the second manner of determining the second PMI information may be implemented by using the following steps:
  • the first step the network side device performs measurement according to the uplink signal sent by the UE, and obtains overall (complete) channel information;
  • the second step is: determining a second-dimensional channel correlation matrix R according to the channel information of the whole, performing eigenvalue decomposition on the second-dimensional channel correlation matrix R, and using the feature vector obtained by performing eigenvalue decomposition as the second PMI.
  • the manner of determining the second PMI information by using the first step and the second step is a possible implementation manner of the embodiment of the disclosure, and the network side device may use other manners to measure the sending by the UE.
  • the uplink signal determines the second PMI information, which is not limited herein.
  • the second PMI information obtained by the first mode and the second mode may be processed based on a preset algorithm (for example, leveling) After obtaining the most value (maximum or minimum), etc., a final second PMI information is obtained, and the final second PMI information is used as the second PMI information in step 203 and/or configured to the UE;
  • a preset algorithm for example, leveling
  • the network side device determines that the second PMI information in the foregoing step 203 and/or is configured to the UE is not limited to the foregoing first manner and the second manner, and may be determined by other manners.
  • the second PMI information in the foregoing step 203 and/or configured to the UE is not limited herein.
  • the second mode is used in the uplink and downlink channel reciprocity system. Because the uplink and downlink channel characteristics are consistent in the uplink and downlink channel reciprocity system, the second PMI obtained by the network side device by measuring the uplink signal is The information is equivalent to the second PMI information measured by the UE for the downlink pilot signal, that is, the second PMI information may be determined by using the second manner;
  • the uplink and downlink channel reciprocity system in this embodiment includes a TDD system, or the difference between the upper and lower frequencies in the FDD system is relatively small relative to the carrier frequency (the uplink and downlink channels also have certain equivalence at this time, That is to say, the uplink and downlink channel characteristics are consistent).
  • the UE may directly use the joint antenna array CSI-RS resource to determine and The second PMI information is reported.
  • the network side device may receive the second PMI information reported by the UE.
  • the resource is configured for the UE by using one of the following two resource configuration modes, and is not limited to the resource configuration, so that the UE determines the second PMI information for reporting according to the configured resource:
  • Mode (1) configuring a second downlink channel measurement pilot for the UE, so that the UE determines the second PMI information according to the second downlink channel measurement pilot;
  • Mode (2) configuring a two-dimensional joint antenna array downlink channel measurement pilot for the UE, so that the UE determines the second PMI information according to the two-dimensional joint antenna array downlink channel measurement pilot.
  • the UE may determine the second PMI information according to the joint antenna array downlink channel measurement pilot.
  • the two-dimensional joint antenna array downlink channel measurement pilot may be configured for the UE by the above manners (1) and (2).
  • the antenna of the network side device is still a 4x8 antenna array, and a total of 32 antennas are taken as an example to allocate resources to the foregoing modes (1) and (2).
  • the antenna of the network side device is still a 4x8 antenna array, and a total of 32 antennas are taken as an example to allocate resources to the foregoing modes (1) and (2).
  • the configuration is performed by using the mode (1), when the first downlink channel measurement pilot configured for the UE in the step 201 is a 4-port CSI-RS resource, and the second downlink channel measurement configured for the UE at this time.
  • the pilot is an 8-port CSI-RS resource; when the first downlink channel measurement pilot configured for the user equipment in the step 201 is a CSI-RS resource of the 8-port, the user equipment is configured at this time.
  • the second downlink channel measurement pilot is a 4-port CSI-RS resource;
  • the configuration is performed by using the mode (2), whether the first downlink channel measurement pilot configured for the user equipment in the step 201 is the CSI-RS resource of the 4-port or the CSI-RS resource of the 8-port.
  • a 32-port CSI-RS resource can be configured for the UE, and the 32-port CSI-RS resource is a two-dimensional joint antenna array downlink channel measurement pilot.
  • the second RI may be configured for the UE, or the second RI may not be configured for the UE, because In the LTE (Long Term Evolution) standard, the RI is set to 1; if the LTE standard is not used for interaction, the RI needs to be configured when the network side device and the UE do not have an agreement.
  • LTE Long Term Evolution
  • the network side device ensures that the UE and the UE use the same second PMI information to process the related information (the network side device performs the determination of the precoding matrix, and the UE performs the determination of the first PMI information and the CQI information), thereby ensuring the UE.
  • the accuracy of the channel state information that is fed back and the accuracy of the subsequent beamforming and signal adjustment needs to be confirmed by the UE with the second PMI information. Therefore, the network side device may be in the following two manners. One configures the second PMI information for the UE:
  • the network side device sends the second PMI information to the UE, so that when the network side device configures the second downlink channel measurement pilot for the UE, the UE is configured according to the second The PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement pilot determine the first PMI information.
  • the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, the UE is configured according to the configuration.
  • the second PMI information and the two-dimensional joint antenna array downlink channel measurement guide Frequency determining the first PMI information, and determining, by the UE, the CQI information according to the first PMI information and the configured second PMI information;
  • Mode (2) The network side device notifies the UE to use the second PMI information determined by the UE, so that when the network side device configures the second downlink channel measurement pilot for the UE, the UE determines according to the UE. Determining, by the second PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement pilot, the first PMI information, when the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, Determining, by the UE, the first PMI information according to the second PMI information determined by the UE and the two-dimensional joint antenna array downlink channel measurement pilot, and determining, by the UE, the UE according to the first PMI information and the UE The second PMI information determines CQI information.
  • the network measurement device and the UE may perform the confirmation of the foregoing second PMI information by using other methods, or the network side device and the UE according to a predetermined agreement (for example, the UE uses the newly reported second PMI information, The network side device uses the second PMI information recently reported by the UE, and does not perform the confirmation of the second PMI information by using the interaction.
  • the network side device in the embodiment of the present disclosure may be a base station (such as a macro base station, a home base station, etc.), an RN (relay) device, or other network side devices.
  • a base station such as a macro base station, a home base station, etc.
  • RN relay
  • a method for feeding back channel state information provided by a user equipment side includes the following steps:
  • Step 301 The UE determines, according to the second PMI information and the first downlink channel measurement pilot configured by the network side device, the first PMI information.
  • the first PMI information and the second PMI information represent different dimensions
  • this step 301 includes steps A1 to A4:
  • Step A1 The UE determines the first channel information according to the first downlink channel measurement pilot configured by the network side device.
  • Step A2 The UE determines second channel information and determines, according to the second PMI information, a beamforming vector corresponding to the second PMI information in a local beamforming vector codebook;
  • the dimension of the second channel information is different from the dimension of the first channel information
  • Step A3 The UE determines, according to the determined second channel information, the beamforming vector corresponding to the second PMI information, and the number of code streams RI supported by the UE, to determine the optimal beam in the local beamforming vector codebook. Beamforming vector of forming performance;
  • the optimal beamforming performance refers to maximizing overall throughput, maximizing signal to noise ratio, or minimizing block error rate after shaping a signal beam to be transmitted to the UE.
  • the codebook is a set of each beamforming vector element, and the same set of codebooks is stored on the user equipment side and the network side, and the codebook includes the correspondence between the RI, the PMI information and the beamforming vector, and an RI sum.
  • One PMI information corresponds to one beamforming vector.
  • the first PMI information may be determined using Equation (1), Formula (2), or Equation (3).
  • PMI1 represents the first PMI information
  • codebook_1 is the codebook corresponding to the first PMI information
  • arg opt refers to a set of selectable variables.
  • An optimal variable to achieve optimization of a function f() represents the beamforming performance function on the network side
  • a is a proportional coefficient
  • H1 represents the first channel information
  • H2 represents the second channel information
  • V1 represents the first An shaping vector corresponding to the first PMI information
  • V2 representing the second shaping vector, corresponding to the second PMI information
  • G representing the first shaping gain determined by PMI1 and H1
  • H indicating the overall channel information, which may be H1
  • Step A4 The UE uses the PMI corresponding to the determined beamforming vector that achieves the optimal beamforming performance as the first PMI information.
  • the step 301 includes the following steps B1 to B3:
  • Step B1 The UE determines the total channel information by using the first downlink channel pilot measurement.
  • Step B2 The UE determines, according to the second PMI information, a beamforming vector corresponding to the second PMI information in a local beamforming vector codebook;
  • Step B3 The UE determines, according to the determined overall channel information, the beamforming vector corresponding to the second PMI information, and the number of code streams RI supported by the UE, to determine the optimal beam assignment in the local beamforming vector codebook. Beamforming vector of shape performance;
  • this step B3 can be implemented by using the above formula (3).
  • Step 302 The UE feeds back the first PMI information to the network side device.
  • Step 303 The UE determines channel quality indication CQI information according to the first PMI information and the second PMI information.
  • Step 304 The UE feeds back the CQI information to the network side device.
  • steps 303 and 304 are the preferred steps of the embodiment, and the step 303 may be performed after the step 301. If the step 303 is performed after the step 301 and before the step 302, the step 304 may be performed simultaneously with the step 302. , may also be performed after step 302, and its execution order is not limited herein;
  • the CQI information determined in step 303 is that the network side device uses the first PMI information (and the first RI) and the second PMI (and the second RI) information reported by the UE to perform beamforming and
  • the CQI (for example, the highest MCS (Modulation Coding Scheme) or SNR) that the UE can measure is transmitted by using the PDSCH (Physical Downlink Shared Channel).
  • the traditional CQI is not the same.
  • the traditional CQI refers to the CMI that the network side device uses the single PMI/RI reported by the UE to transmit downlink data, and the UE can measure the CQI.
  • the single PMI is directly from the UE to the horizontal dimension CSI-
  • the RS resource is measured or obtained by measuring the vertical dimension CSI-RS resource.
  • determining, according to the first PMI information and the second PMI information includes:
  • Step C1 The UE determines, according to the first PMI information, a beamforming vector corresponding to the first PMI information in the local beamforming vector codebook; and in the local beamforming vector codebook according to the second PMI information. Determining a beamforming vector corresponding to the second PMI information;
  • Step C2 The UE determines the first channel information and the second channel information, where the dimension of the second channel information is different from the dimension of the first channel information, or the UE determines the overall channel information;
  • the UE may determine the overall channel information according to the two-dimensional joint antenna array; and the first downlink channel measurement pilot is not two. The UE may determine the first channel information according to the first downlink channel measurement pilot according to the downlink antenna channel measurement pilot.
  • Step C3 The UE determines CQI information according to the determined first channel information, the second channel information, the beamforming vector corresponding to the first PMI information, and the beamforming vector corresponding to the second PMI information; or The CQI information is determined according to the determined overall channel information, the beamforming vector corresponding to the first PMI information, and the beamforming vector corresponding to the second PMI information.
  • the CQI information may be determined according to the following formula (4), (5), (6) or (7).
  • SNR represents the signal-to-noise ratio
  • parameters G, H, a, V1, V2, H1, and H2 are all related to the above formula (1) and formula ( 2)
  • the physical meanings of the corresponding parameters in the formula (3) are the same and will not be described here.
  • the UE determines the second PMI information according to any one of two manners:
  • Manner 1 The UE measures a downlink pilot signal, and determines the second PMI information
  • Manner 2 The UE determines the second PMI information according to the received second PMI information sent by the network side device.
  • the downlink pilot signal in mode 1 includes a CSI-RS resource or a cell-specific reference symbol (CRS);
  • the foregoing method 1 includes: the UE measuring a second downlink channel measurement pilot or a two-dimensional joint antenna array downlink channel measurement pilot configured by the network side device, and determining the second PMI information;
  • the above step 301 includes:
  • the UE determines the first PMI information according to the second PMI information and the two-dimensional joint antenna array downlink channel measurement pilot configured by the network side device to measure the downlink pilot signal.
  • the UE may determine the second channel information according to the second downlink channel measurement pilot or the two-dimensional joint antenna array downlink channel measurement pilot configured downlink pilot signal configured by the network side device.
  • the UE measures a downlink pilot signal, and after determining the second PMI information, The method also includes:
  • the UE reports the determined second PMI information to the network side device.
  • the method further includes:
  • the UE After receiving the second PMI information configured by the network side device, the UE uses the received second PMI information as a second PMI message used to determine the first PMI information and the CQI information.
  • the UE After receiving the acknowledgement message sent by the network side device, the UE uses the reported second PMI information as a second PMI message used to determine the first PMI information and the CQI information.
  • the channel information (CSI) measured by the UE in each CSI-RS resource reflects only the channel condition on the CSI-RS resource, so only the channel in one dimension is reflected; the CSI-RS resources in different dimensions The measured CSI is completely independent. Therefore, after receiving the CSI feedback in different dimensions, the network side device cannot directly use the 3D-MIMO downlink transmission, but must perform a series of settlement according to different dimensions of CSI to obtain the downlink 3D-
  • the MIMO shaping information and the information CQI used for downlink adjustment not only improve the complexity of the eNB, but also reduce the accuracy of the downlink transmission;
  • the UE determines the first PMI information according to the first downlink channel measurement pilot and the second PMI information, and after the first PMI information is fed back, the network side device can use the first PMI.
  • the information is beamformed. Since the UE only needs to feed back the first PMI information, the solution of the embodiment of the present disclosure is relatively large compared to the prior art feedback of two sets of independent CSIs including RI, PMI, and CQI information. The uplink feedback overhead is reduced.
  • the first PMI information determined by the UE is a PMI corresponding to a beamforming vector selected from a codebook of a first dimension to achieve an optimal beamforming performance
  • the PMI information is the PMI corresponding to the beamforming vector of the best beamforming performance.
  • the accuracy of the first PMI information fed back by the UE is high, and when the first PMI information is used for beamforming, The accuracy of the downlink transmission is improved to a greater extent; further, the UE determines and feeds back CQI information according to the first PMI information and the second PMI information, and the CQI information is determined according to the first PMI information and the second PMI information, Yes Various dimensions reflect the overall channel quality, therefore, the network side device directly using the UE Determining and feeding back the CQI information, performing downlink adjustment on the signal to be sent to the UE, and determining the CQI according to the different dimension PMI information in the prior art network side device, thereby greatly reducing the complexity of the network side device. degree.
  • FIG. 4 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • the network side device includes: a configuration module 41 and a receiving module 42;
  • the configuration module 41 is configured to configure a first downlink channel measurement pilot for the user equipment UE;
  • the receiving module 42 is configured to receive, by the UE, the first precoding matrix indicating PMI information, where the first PMI information is obtained by the UE according to the measurement of the first downlink channel measurement pilot and the second PMI information. Wherein the first PMI information and the second PMI information represent different dimensions.
  • the network side device further includes:
  • the processing module 43 is configured to perform beamforming on the signal to be sent to the UE according to the first PMI information and the second PMI information.
  • the receiving module 42 is further configured to receive channel quality indication CQI information that is fed back by the UE, where the CQI information is determined by the UE according to the first PMI information and the second PMI information.
  • the processing module 43 is further configured to perform link adjustment on a signal to be sent to the UE according to the CQI information.
  • the configuration module 41 is further configured to configure the second PMI information for the UE, so that the UE determines the first PMI according to the second PMI information configured to the UE and the first downlink channel measurement pilot. And determining CQI information according to the first PMI information and the second PMI information configured to the UE.
  • the network side device further includes: a determining module 44, configured to receive second PMI information reported by the UE; or measure an uplink signal sent by the UE, to determine the second PMI information.
  • a determining module 44 configured to receive second PMI information reported by the UE; or measure an uplink signal sent by the UE, to determine the second PMI information.
  • the configuration module 41 is further configured to configure a second downlink channel measurement pilot for the UE, before the determining module receives the second PMI information reported by the UE, so that the UE is configured according to the second Determining, by the downlink channel measurement pilot, the second PMI information; or configuring a two-dimensional joint antenna array downlink channel measurement pilot for the UE, so that the UE determines the first according to the two-dimensional joint antenna array downlink channel measurement pilot Two PMI information.
  • the configuration module 41 is specifically configured to send the second PMI information to the UE.
  • the UE determines, according to the configured second PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement pilot, when the network side device configures the second downlink channel measurement pilot for the UE.
  • a PMI information when the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, the UE determines the first according to the configured second PMI information and the two-dimensional joint antenna array downlink channel measurement pilot.
  • the UE determines the first PMI information according to the second PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement pilot determined by the UE.
  • the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, the UE determines the first according to the second PMI information determined by the UE and the two-dimensional joint antenna array downlink channel measurement pilot.
  • PMI information So that the UE and determine CQI information based on the first PMI information and the second PMI information determined by the UE.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • the user equipment includes: a first determining module 51 and a sending module 52.
  • the first determining module 51 is configured to determine, according to the second precoding matrix indication PMI information and the first downlink channel measurement pilot configured by the network side device, the first PMI information, the first PMI information, and the second PMI information.
  • the dimensions represented are different;
  • the sending module 52 is configured to feed back the first PMI information to the network side device.
  • the first determining module 51 is further configured to determine channel quality indication CQI information according to the first PMI information and the second PMI information;
  • the sending module 52 is further configured to feed back the CQI information to the network side device.
  • the user equipment further includes:
  • the second determining module 53 is configured to measure the downlink pilot signal, determine the second PMI information, or determine the second PMI information according to the received second PMI information sent by the network side device.
  • the second determining module 53 is specifically configured to measure a second downlink channel measurement pilot or a two-dimensional joint antenna array downlink channel measurement pilot configured by the network side device, and determine the second PMI information;
  • the first determining module 51 is specifically configured to be configured according to the second PMI information and the network side device. Determining, by the first downlink information measurement pilot and the second downlink channel measurement pilot, the first PMI information; or the UE, according to the second PMI information, the two-dimensional joint antenna array downlink channel measurement pilot configured by the network side device The downlink pilot signal is measured to determine the first PMI information.
  • the sending module 52 is further configured to: after the second determining module measures the downlink pilot signal, and determines the second PMI information, report the determined second PMI information to the network side device.
  • the user equipment further includes:
  • a channel state information feedback system includes: a network side device 61 and a user equipment 62;
  • the network side device 61 is configured to configure a first downlink channel measurement pilot for the user equipment, and receive, by the UE, a first precoding matrix indicating PMI information, where the first PMI information and the second PMI information are Different dimensions;
  • the user equipment 62 is configured to determine first PMI information according to the second PMI information and the first downlink channel measurement pilot configured by the network side device, and feed back the first PMI information to the network side device.
  • the network side device 61 is further configured to perform beamforming on a signal to be sent to the UE according to the first PMI information and the second PMI information.
  • the network side device 61 is further configured to receive channel quality indication CQI information fed back by the UE;
  • the user equipment 62 is further configured to determine channel quality indication CQI information according to the first PMI information and the second PMI information, and feed back the CQI information to the network side device.
  • the network side device 61 is further configured to perform link adjustment on a signal to be sent to the UE according to the CQI information.
  • the network side device 61 is further configured to configure the second PMI information for the UE, so that the UE determines, according to the second PMI information and the first downlink channel measurement pilot configured to the UE. Determining CQI information according to the PMI information and according to the first PMI information and the second PMI information configured to the UE;
  • the user equipment 62 is further configured to measure a downlink pilot signal, and determine the second PMI information; or the UE determines the second PMI information according to the second PMI information configured by the network side device.
  • the network side device 61 is further configured to receive the second PMI information reported by the UE; or the network side device measures an uplink signal sent by the UE, and determines the second PMI information;
  • the user equipment 62 is further configured to: report, by the UE, a downlink pilot signal, and after determining the second PMI information, report the determined second PMI information to the network side device.
  • the network side device 61 is further configured to: the network side device receives the second PMI information reported by the UE; or the network side device measures an uplink signal sent by the UE, and determines the second PMI information. .
  • the user equipment 62 is further configured to report the determined second PMI information to the network side device.
  • the network side device 61 is further configured to: configure, by the UE, a second downlink channel measurement pilot, before the second PMI information reported by the UE, to enable the UE to perform the second downlink according to the The channel measurement pilot determines the second PMI information; or configures a two-dimensional joint antenna array downlink channel measurement pilot for the UE, so that the UE determines the second according to the two-dimensional joint antenna array downlink channel measurement pilot PMI information;
  • the user equipment 62 is specifically configured to: the UE measures a second downlink channel measurement pilot or a two-dimensional joint antenna array downlink channel measurement pilot configured by the network side device, and determines the second PMI information; The PMI information, the first downlink channel measurement pilot and the second downlink channel measurement pilot configured by the network side device, determine the first PMI information; or the two-dimensional joint antenna array configured according to the second PMI information and the network side device.
  • the downlink channel measurement pilot measures the downlink pilot signal to determine the first PMI information.
  • the network side device 61 is specifically configured to send the second PMI information to the UE, so that when the network side device configures the second downlink channel measurement pilot for the UE, the UE is configured according to the configuration.
  • the second PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement pilot determine the first PMI information, and when the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, The second PMI information and the two-dimensional joint antenna array downlink information of the UE according to the configuration
  • the channel measurement pilot determines the first PMI information, and causes the UE to determine CQI information according to the first PMI information and the configured second PMI information; or notifies the UE to use the second PMI information determined by itself, so that
  • the UE when the network side device configures the second downlink channel measurement pilot for the UE, the second PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement determined by the UE according to the UE
  • the pilot determines the first
  • the user equipment 62 is further configured to: after the determined second PMI information is reported to the network side device, after receiving the second PMI information sent by the network side device, the second The PMI information is used as the second PMI message for determining the first PMI information and the CQI information; or the UE receives the acknowledgement message sent by the network side device, and uses the reported second PMI information as the first PMI.
  • FIG. 7 is a schematic structural diagram of another network side device according to an embodiment of the present disclosure, including a processor 700, a transceiver 710, and a memory 720; and the processor 700, the transceiver 710, and the memory 720 communicate through a bus interface. among them:
  • the processor 700 is configured to read a program in the memory 720 and perform the following process:
  • the transceiver 710 is configured to receive and transmit data under the control of the processor 700.
  • the processor 700 is configured to read a program in the memory 720, and further perform the following process:
  • the processor 700 is configured to read a program in the memory 720, and further perform the following process:
  • the channel quality indication CQI information fed back by the UE is received by the transceiver 710, where the CQI information is determined by the UE according to the first PMI information and the second PMI information.
  • the processor 700 is configured to read a program in the memory 720, and further perform the following process:
  • Link adjustment is performed on a signal to be transmitted to the UE according to the CQI information.
  • the processor 700 is configured to read a program in the memory 720, and further perform the following process:
  • the second PMI information determines CQI information.
  • the processor 700 is configured to read a program in the memory 720, and further perform the following process:
  • the processor 700 is configured to read a program in the memory 720, and further perform the following process:
  • the transceiver 710 Before receiving the second PMI information reported by the UE by the transceiver 710, configuring a second downlink channel measurement pilot for the UE, so that the UE determines the second PMI according to the second downlink channel measurement pilot Or configuring a two-dimensional joint antenna array downlink channel measurement pilot for the UE, so that the UE determines the second PMI information according to the two-dimensional joint antenna array downlink channel measurement pilot.
  • the processor 700 is configured to read a program in the memory 720, and specifically perform the following process: sending, by the transceiver 710, the second PMI information to the UE, so that when the network side device is configured for the UE, When the second downlink channel is used to measure the pilot, the UE determines the first PMI information according to the configured second PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement pilot, where the network side device is the UE. When the two-dimensional joint antenna array downlink channel measurement pilot is configured, the UE determines, according to the configured second PMI information and the two-dimensional joint antenna array downlink channel measurement pilot.
  • the UE determines the first PMI according to the second PMI information, the first downlink channel measurement pilot, and the second downlink channel measurement pilot determined by the UE.
  • the information when the network side device configures the two-dimensional joint antenna array downlink channel measurement pilot for the UE, the UE determines, according to the second PMI information determined by the UE and the two-dimensional joint antenna array downlink channel measurement pilot. a PMI information, and determining CQI information by the UE according to the first PMI information and the second PMI information determined by the UE.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 700 and various circuits of memory represented by memory 720.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 710 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
  • FIG. 8 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure, including a processor 800, a transceiver 801, a memory 802, and a user interface 803;
  • the processor 800 is configured to read a program in the memory 802 and perform the following process:
  • the transceiver 801 is configured to receive and transmit data under the control of the processor 800.
  • the processor 800 is configured to read a program in the memory 802, and further perform the following process: determining channel quality indication CQI information according to the first PMI information and the second PMI information; and using the transceiver 801 to the network side device The CQI information is fed back.
  • the processor 800 is configured to read a program in the memory 802, and further performs the following processes:
  • the second PMI information is determined by measuring the downlink pilot signal, determining the second PMI information, or determining the second PMI information that is sent by the network side device received by the transceiver 801.
  • the processor 800 is configured to read a program in the memory 802, and specifically perform the following processes:
  • the processor 800 is configured to read a program in the memory 802, and further performs the following processes:
  • the determined second PMI information is reported to the network side device by the transceiver 801.
  • the processor 800 is configured to read a program in the memory 802, and further performs the following processes:
  • the second PMI After the determined second PMI information is reported to the network side device by the transceiver 801, after receiving the second PMI information sent by the network side device by the transceiver 801, the second PMI will be received.
  • the information is used as the second PMI message for determining the first PMI information and the CQI information; or after the acknowledgment message sent by the network side device is received by the transceiver 801, the reported second PMI information is used as the first PMI.
  • the second PMI message used by the information and CQI information.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 800 and various circuits of memory represented by memory 802.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 801 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 803 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 802 can store data used by the processor 800 in performing operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信道状态信息反馈方法、设备及系统,该方法包括:网络侧设备为用户设备配置第一下行信道测量导频;所述网络侧设备接收用户设备反馈的第一预编码矩阵指示信息,所述第一预编码矩阵指示信息是所述用户设备根据对所述第一下行信道测量导频的测量和第二预编码矩阵指示信息得到的;其中,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同。

Description

信道状态信息反馈方法、设备及系统
相关申请的交叉引用
本申请主张在2014年9月28日在中国提交的中国专利申请号No.201410509463.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信道状态信息反馈方法、设备及系统。
背景技术
在现有蜂窝系统中,网络侧设备天线阵列一般呈水平排列。网络侧设备发射端波束仅能在水平方向进行调整,而垂直方向对每个用户都是固定的下倾角,因此各种波束赋形/预编码技术等均是基于水平方向信道信息进行的。事实上,由于无线信号在空间中是三维传播的,固定下倾角的方法不能使系统的性能达到最优,垂直方向的波束调整对于系统性能的提高有着很重要的意义。
随着天线技术的发展,业界已出现能够对每个阵子独立控制的有源天线,如图1A和1B所示。其中,图1A为4端口示意图,图1B中基站的垂直维分成3个扇区,分别是扇区1、扇区2和扇区3,各自服务相应扇区内的终端,每个扇区分配一套CSI-RS(Channel State Information-Reference Singal,信道状态信息-参考信号)资源,包括若干个CSI-RS端口,比如4端口CSI-RS。采用这种天线阵列,使得波束在垂直方向的动态调整成为可能。FDD(Frequency Division Duplexing,频分双工)系统中或者是TDD(Time Division Duplexing,频分双工)要实现三维的波束赋形/预编码需要依靠UE(User Equipment,用户设备)用户设备反馈的CSI。
当前CSI反馈方式中,通常网络侧设备在水平维度和垂直维度各配置一个CSI-RS资源,并将每个CSI-RS资源从一组天线上发送至UE;UE测量垂直维度的CSI-RS资源并反馈垂直维度的CRI-RS资源对应的CSI,以及测量 水平维度的CSI-RS资源并反馈水平维度的CRI-RS资源对应的CSI;网络侧设备根据UE反馈的垂直维度CSI和水平维度CSI,得到下行3D-MIMO(3Dimension MIMO,三维多输入多输出)波束赋形的信息。
在上述反馈方式中,由于UE需要反馈两个包括完整的RI(Rank Indicator,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)和CQI(channel quality indicator,信道质量指示)信息的CSI,因此,存在上行的反馈开销较大的问题。
发明内容
有鉴于此,本公开实施例提供一种信道状态信息反馈方法、设备及系统,用以解决现有技术的CSI反馈方式中存在的上行反馈开销较大的问题。
本公开实施例提供一种信道状态信息反馈方法、设备及系统具体如下:
第一方面,一种信道状态信息反馈方法,所述方法包括:
网络侧设备为用户设备UE配置第一下行信道测量导频;
所述网络侧设备接收UE反馈的第一预编码矩阵指示PMI信息,所述第一PMI信息是所述UE根据对所述第一下行信道测量导频的测量和第二PMI信息得到的;
其中,所述第一PMI信息和所述第二PMI信息表示的维度不同。
通过这种可能的实现方式,由于所述UE只需向网络侧设备反馈所述第一PMI信息,网络侧设备即可根据该第一PMI信息进行波束赋形,因此,相对于现有技术而言,较大幅度上降低了上行反馈开销。
结合第一方面,在第一种可能的实现方式中,所述方法还包括:
所述网络侧设备根据所述第一PMI信息和第二PMI信息对待发送至所述UE的信号进行波束赋形。
结合第一方面,或者第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述方法还包括:
所述网络侧设备接收UE反馈的信道质量指示CQI信息,所述CQI信息是所述UE根据所述第一PMI信息和所述第二PMI信息确定的。
结合第一方面的第二种可能的实现方式中,在第三种可能的实现方式中, 所述方法还包括:
所述网络侧设备根据所述CQI信息对待发送至UE的信号进行链路调整。
结合第一方面,或者第一方面的第一种可能的实现方式,在第四种可能的实现方式中,所述网络侧设备为UE配置第二PMI信息,以使所述UE根据配置给UE的所述第二PMI信息和第一下行信道测量导频确定第一PMI信息以及根据所述第一PMI信息和配置给UE的所述第二PMI信息确定CQI信息。
结合第一方面的第四种可能的实现方式中,在第五种可能的实现方式中,所述网络侧设备根据下列步骤确定所述第二PMI信息:
所述网络侧设备接收所述UE上报的第二PMI信息;或
所述网络侧设备测量所述UE发送的上行信号,确定所述第二PMI信息。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述网络侧设备接收所述UE上报的所述第二PMI信息之前,还包括:
所述网络侧设备为UE配置第二下行信道测量导频,以使所述UE根据所述第二下行信道测量导频确定所述第二PMI信息;或
所述网络侧设备为UE配置二维联合天线阵列下行信道测量导频,以使所述UE根据所述二维联合天线阵列下行信道测量导频确定所述第二PMI信息。
结合第一方面的第六种可能的实现方式,在第七种可能的实现方式中,所述网络侧设备为UE配置第二PMI信息,包括:
所述网络侧设备将所述第二PMI信息发送给UE,以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据配置的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据配置的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息;或
所述网络侧设备通知UE使用自身确定的第二PMI信息,以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一 PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息。
第二方面,一种信道状态信息反馈方法,所述方法包括:
用户设备UE根据第二预编码矩阵指示PMI信息和网络侧设备配置的第一下行信道测量导频确定第一PMI信息;
所述UE向网络侧设备反馈所述第一PMI信息;
其中,所述第一PMI信息和所述第二PMI信息表示的维度不同。
通过这种可能的实现方式,由于所述UE只需向网络侧设备反馈所述第一PMI信息,网络侧设备即可根据该第一PMI信息进行波束赋形,因此,相对于现有技术而言,较大幅度上降低了上行反馈开销。
结合第二方面,在第一种可能的实现方式中,所述方法还包括:
所述UE根据所述第一PMI信息和第二PMI信息确定信道质量指示CQI信息;
所述UE向网络侧设备反馈所述CQI信息。
结合第二方面,或者第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述UE根据下列方式确定所述第二PMI信息;
所述UE测量下行导频信号,确定所述第二PMI信息;或
所述UE根据网络侧设备配置的第二PMI信息,确定所述第二PMI信息。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述UE测量下行导频信号,确定所述第二PMI信息,包括:
所述UE测量所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频,确定所述第二PMI信息;
所述UE根据第二PMI信息和网络侧设备配置的第一下行信道测量导频确定第一PMI信息,包括:
所述UE根据第二PMI信息、网络侧设备配置的第一下行信道测量导频和第二下行信道测量导频,确定所述第一PMI信息;或
所述UE根据第二PMI信息、网络侧设备配置的二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第一PMI信息。
结合第二方面的第二种可能的实现方式,在第四种可能的实现方式中,所述UE测量下行导频信号,确定所述第二PMI信息之后,所述方法还包括:
所述UE将确定的所述第二PMI信息上报给所述网络侧设备。
结合第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述UE将确定的所述第二PMI信息上报给网络侧设备之后,还包括:
所述UE在接收到所述网络侧设备发送的第二PMI信息后,将接收到的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息;
所述UE在接收到所述网络侧设备发送的确认消息后,将上报的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息。
第三方面,一种网络侧设备,所述网络侧设备包括:
配置模块,用于为用户设备UE配置第一下行信道测量导频;
接收模块,用于接收UE反馈的第一预编码矩阵指示PMI信息,所述第一PMI信息是所述UE根据对所述第一下行信道测量导频的测量和第二PMI信息得到的,其中,所述第一PMI信息和所述第二PMI信息表示的维度不同。
通过这种可能的实现方式,由于所述UE只需向网络侧设备反馈所述第一PMI信息,网络侧设备即可根据该第一PMI信息进行波束赋形,因此,相对于现有技术而言,较大幅度上降低了上行反馈开销。
结合第三方面,在第一种可能的实现方式中,所述网络侧设备还包括:
处理模块,用于根据所述第一PMI信息和第二PMI对待发送至所述UE的信号进行波束赋形。
结合第三方面,或者第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述接收模块,还用于接收UE反馈的信道质量指示CQI信息,所述CQI信息是所述UE根据第一PMI信息和第二PMI信息确定的。
结合第三方面的第二种可能的实现方式中,在第三种可能的实现方式中,所述处理模块,还用于根据所述CQI信息对待发送至UE的信号进行链路调整。
结合第三方面,或者第三方面的第一种可能的实现方式,在第四种可能的实现方式中,所述配置模块,还用于为UE配置第二PMI信息,以使所述 UE根据配置给UE的所述第二PMI信息和第一下行信道测量导频确定第一PMI信息以及根据所述第一PMI信息和配置给UE的所述第二PMI信息确定CQI信息。
结合第三方面的第四种可能的实现方式中,在第五种可能的实现方式中,所述网络侧设备还包括:确定模块,用于接收所述UE上报的第二PMI信息;或测量所述UE发送的上行信号,确定所述第二PMI信息。
结合第三方面的第四种可能的实现方式中,在第六种可能的实现方式中,所述配置模块,还用于在确定模块接收所述UE上报的所述第二PMI信息之前为UE配置第二下行信道测量导频,以使所述UE根据所述第二下行信道测量导频确定所述第二PMI信息;或者为UE配置二维联合天线阵列下行信道测量导频,以使所述UE根据所述二维联合天线阵列下行信道测量导频确定所述第二PMI信息。
结合第三方面的第六种可能的实现方式中,在第七种可能的实现方式中,所述配置模块,具体用于将所述第二PMI信息发送给UE,以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据配置的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据配置的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息;或通知UE使用自身确定的第二PMI信息,以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息。
第四方面,一种用户设备,所述用户设备包括:
第一确定模块,用于根据第二PMI信息和网络侧设备配置的第一下行信道测量导频确定第一PMI信息,所述第一PMI信息和所述第二PMI信息表示的维度不同;
发送模块,用于向网络侧设备反馈所述第一PMI信息。
通过这种可能的实现方式,由于所述UE只需向网络侧设备反馈所述第一PMI信息,网络侧设备即可根据该第一PMI信息进行波束赋形,因此,相对于现有技术而言,较大幅度上降低了上行反馈开销。
结合第四方面,在第一种可能的实现方式中,所述第一确定模块,还用于根据所述第一PMI信息和第二PMI信息确定信道质量指示CQI信息;
所述发送模块,还用于向网络侧设备反馈所述CQI信息。
结合第四方面,或者第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述用户设备,还包括:第二确定模块,用于测量下行导频信号,确定所述第二PMI信息;或根据接收的网络侧设备下发的第二PMI信息,确定所述第二PMI信息。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第二确定模块,具体用于根据所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第二PMI信息;
所述第一确定模块,具体用于根据第二PMI信息、网络侧设备配置的第一下行信道测量导频和第二下行信道测量导频,确定所述第一PMI信息;或所述UE根据第二PMI信息、网络侧设备配置的二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第一PMI信息。
结合第四方面的第二种可能的实现方式,在第四种可能的实现方式中,所述发送模块,还用于在第二确定模块测量下行导频信号,确定所述第二PMI信息之后,将确定的所述第二PMI信息上报给所述网络侧设备。
结合第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述用户设备还包括:
第三确定模块,用于在发送模块将确定的所述第二PMI信息上报给网络侧设备之后,在接收到所述网络侧设备发送的第二PMI信息后,将收到的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息;或在接收到所述网络侧设备发送的确认消息后,将上报的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息。
第五方面,一种信道状态信息反馈系统,包括:网络侧设备和用户设备;
所述网络侧设备,用于为UE配置第一下行信道测量导频;接收UE反馈的第一PMI信息,所述第一PMI信息和所述第二PMI信息表示的维度不同;
所述用户设备,用于根据第二PMI信息和网络侧设备配置的第一下行信道测量导频确定第一PMI信息;向网络侧设备反馈所述第一PMI信息。
通过这种可能的实现方式,由于所述UE只需向网络侧设备反馈所述第一PMI信息,网络侧设备即可根据该第一PMI信息进行波束赋形,因此,相对于现有技术而言,较大幅度上降低了上行反馈开销。
第六方面,一种网络侧设备,包括:
处理器;
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;以及
收发机,通过所述总线接口与所述处理器和所述存储器相连接,并且用于在所述处理器的控制下接收和发送数据,
当所述处理器调用并执行所述存储器中所存储的程序和数据时,用于为用户设备配置第一下行信道测量导频;并用于接收所述用户设备反馈的第一预编码矩阵指示信息,所述第一预编码矩阵指示信息是所述用户设备根据对所述第一下行信道测量导频的测量和第二预编码矩阵指示信息得到的,其中,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同。
通过这种可能的实现方式,由于所述UE只需向网络侧设备反馈所述第一PMI信息,网络侧设备即可根据该第一PMI信息进行波束赋形,因此,相对于现有技术而言,较大幅度上降低了上行反馈开销。
第七方面,一种用户设备,包括:
处理器;
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;以及
收发机,通过所述总线接口与所述处理器和所述存储器相连接,并且用于在所述处理器的控制下接收和发送数据,
当所述处理器调用并执行所述存储器中所存储的程序和数据时,用于根 据第二预编码矩阵指示信息和网络侧设备配置的第一下行信道测量导频确定第一预编码矩阵指示信息,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同;并用于向网络侧设备反馈所述第一预编码矩阵指示信息。
通过这种可能的实现方式,由于所述UE只需向网络侧设备反馈所述第一PMI信息,网络侧设备即可根据该第一PMI信息进行波束赋形,因此,相对于现有技术而言,较大幅度上降低了上行反馈开销。
附图说明
图1A为背景技术中的4端口天线的结构示意图;
图1B为背景技术中的垂直维分成3个扇区的扇区化示意图;
图2为本公开实施例中的针对网络侧设备提供的信道状态信息反馈方法的流程图;
图3为本公开实施例中的针对用户设备侧提供的信道状态信息反馈方法的流程图;
图4为本公开实施例提供的一种网络侧设备的结构示意图;
图5为本公开实施例提供的一种用户设备的结构示意图;
图6为本公开实施中的信道状态信息反馈系统的结构示意图;
图7本公开实施例提供的另一种网络侧设备的结构示意图;
图8为本公开实施例提供的另一种用户设备的结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
本公开实施例中网络侧设备为UE配置第一下行信道测量导频,接收UE反馈的第一PMI信息,所述第一PMI信息是所述UE根据对所述第一下行信 道测量导频的测量和第二PMI信息得到的,所述第一PMI信息和所述第二PMI信息表示的维度不同。由于网络侧设备只需接收用户侧设备反馈的第一PMI信息,该第一PMI信息是所述UE根据对所述第一下行信道测量导频的测量和第二PMI信息得到的,网络侧设备可根据该第一PMI信息对待发送至UE的信号进行处理,因此,与现有技术中的反馈两个或两个以上包括完整的RI、PMI和CQI的CSI相比,较大程度上降低了上行反馈开销。此外,由于第一PMI是UE根据第二PMI和第一下行信道测量导频测量信息,从第一维度的码本中选择的达到最佳波束赋形性能的波束赋形向量对应的PMI,而现有技术中的PMI1仅根据对水平维度或垂直维度的CSI-RS资源测量得到的,与另一个维度的CSI-RS资源无关,eNB(evolved Node Base,演进型基站)使用它和另一维度的PMI进行波束赋形,能达到最佳波束赋形效果的概率较低,因此,本公开中的第一PMI比现有技术中的PMI1精度高。进一步的,网络侧设备根据接收的该第一PMI信息和第二PMI信息对待发送至所述UE的信号进行波束赋形,以及网络侧设备接收所述UE反馈的CQI信息,由于所述CQI是UE根据第一PMI信息和第二PMI信息获得的,因此,使得网络侧设备可直接使用所述CQI对待发送至UE的信号进行链路调整,较大上降低了网络侧设备的复杂度。
为了清楚地说明本公开实施例的方案,首先对CSI进行说明:
CSI包括RI、PMI和CQI。RI反映UE在下行中可以支持的码流数,PMI反映UE反馈的一个码本中的预编码矩阵的索引号,CQI反映如果RI/PMI被应于MIMO(Multiple-Input Multiple-Output,多输入多输出)编码后UE可以接收到的信号强度。CQI的确定必须基于RI/PMI,可以是某种信号强弱的表示,比如SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)、可以接受的MCS(Modulation and Coding Scheme,调制与编码策略)或者别的特性。CQI反馈的数量根据RI来调整,比如RI=1,代表UE可以接收一个码流,则有一个CQI反馈。如果RI>1,代表UE可以接收多个码流,则有多个CQI反馈。在现有LTE标准中,当RI>1的时候,有两个CQI反馈。
下面结合说明书附图对本公开实施例作进一步详细描述。
在下面的说明过程中,先从网络侧设备的实施进行说明,再对用户侧设 备的实施进行说明。
参见图2,为本公开实施例针对网络侧设备提供的信道状态信息反馈方法,包括以下步骤:
步骤201:网络侧设备为用户设备UE配置第一下行信道测量导频;
所述第一下行信道测量导频包括CSI-RS资源或者小区特定参考符号(Cell-specific Reference Symbol,CRS),以及其他可以通过信道测量获得信道状态信息的下行信道测量导频,这里并不对其进行限定;
在第一下行信道测量导频为CSI-RS资源时,网络侧设备可根据各维度天线端口的数量为UE配置第一下行信道测量导频,该第一下行信道测量导频可以为单一维度CSI-RS资源(例如:垂直维度CSI-RS资源、水平维度CSI-RS资源),也可以为二维联合天线阵列CSI-RS资源;
以网络侧设备天线为4x8的天线阵列,也即垂直维度有4根天线,水平维度有8根天线,一共32根天线为例,在本步骤201中,网络侧设备为UE配置的第一下行信道测量导频可以为4端口的垂直维度CSI-RS资源,也可以为8端口的CSI-RS资源,还可以为一个32端口的CSI-RS资源,此32端口的CSI-RS资源即为二维联合天线阵列下行信道测量导频。
进一步的,基于每个CSI-RS资源在高层配置的时候都有一套配置参数,包括周期性(例如几个子帧发射一次)、偏移量(例如:开始的子帧的位置)以及CSI-RS索引(例如:配置的是第几个可供选择的CSI-RS资源)等等。配置的不同维度的CSI-RS资源的周期可以不同也可以相同。通常,UE在水平方向的移动比较快,在垂直方向移动比较慢,所以水平维度CSI-RS资源的周期可以配置的较短,而垂直维度CSI-RS资源的周期可以配置的较长,UE对垂直维度资源的测量/反馈可以用较低的频率。
步骤202:网络侧设备接收UE反馈的第一PMI信息;
所述第一PMI信息是所述UE根据对所述第一下行信道测量导频的测量和第二PMI信息得到的;所述第一PMI信息和所述第二PMI信息表示的维度不同;
此时,所述UE反馈第一PMI信息的同时,也可反馈根据所述第一下行信道测量导频测量到的自身支持的码流,也即第一RI;
此外,当第一PMI信息为水平维度的PMI信息时,第二PMI信息为垂直维度的PMI信息,当第一PMI信息为垂直维度的PMI信息时,第二PMI信息为水平维度的PMI信息。
步骤203:所述网络侧设备根据所述第一PMI信息和第二PMI信息对待发送至所述UE的信号进行波束赋形。
具体的,所述网络侧设备根据由所述第一PMI信息和第二PMI信息获得的预编码矩阵,对待发送至所述UE的信号进行波束赋形。
在UE反馈上述第一RI时,所述网络侧设备根据由所述第一PMI信息、第一RI和第二PMI信息获得的预编码矩阵,对待发送至所述UE的信号进行波束赋形。
需要说明的是,本步骤203是本公开实施例的优选步骤。
步骤204:所述网络侧设备接收UE反馈的CQI信息;
所述CQI信息是所述UE根据所述第一PMI信息和所述第二PMI信息确定的。
需要说明的是,本步骤204是本公开实施例的优选步骤,与上述步骤202至步骤203没有必然的时序关系,步骤204可以在步骤202之后,之前或者与步骤202同时执行,也可以在步骤203之后,之前或者与步骤203同时执行。
网络侧设备在接收到CQI消息之后,可以根据该CQI消息对待发送至UE的信号进行处理。
步骤205:所述网络侧设备根据所述CQI信息对待发送至UE的信号进行链路调整。
具体的,在本步骤205中,所述网络侧设备根据所述CQI消息对待发送至UE的信号进行下行链路调整。
需要说明的是,本步骤204是本公开实施例的优选步骤。
由于所述CQI消息是UE根据第一PMI信息和第二PMI信息确定的,因此,网络侧设备在接收到该CQI消息后,可直接利用该CQI消息对待发送至UE的信号进行下行链路调整,相对于现有技术而言,不需要根据每一UE反馈的各CSI中的PMI确定用于对该UE进行链路调整的CQI,因此,较大程 度上降低了网络侧设备的复杂度。
可选地,所述网络侧设备为UE配置第二PMI信息,以使所述UE根据配置给UE的所述第二PMI信息和第一下行信道测量导频确定第一PMI信息以及根据所述第一PMI信息和配置给UE的所述第二PMI信息确定CQI信息。
可选地,所述网络侧设备根据以下两种方式中的任一种或两种的结合来确定上述步骤203中的和/或配置给UE的所述第二PMI信息:
第一种方式:
所述网络侧设备接收所述UE上报的第二PMI信息,进而利用该上报的第二PMI信息确定步骤203中的和/或配置给UE的所述第二PMI信息;
此时,所述网络侧设备也可接收UE反馈第二RI,上述第一RI和这里的第二RI的维度不同。
第二种方式:
所述网络侧设备测量所述UE发送的上行信号,确定所述第二PMI信息;
所述上行信号可以为上行导频信号,例如:SRS(Sounding Reference Signal,探测参考信号)、随同PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输的DRS(Demodulation Reference Symbol,解调参考信号)等等。
进一步的,上述第二种方式确定所述第二PMI信息,具体可以利用以下步骤实现:
第一步:网络侧设备根据对所述UE发送的上行信号进行测量,获得总体(完整)的信道信息;
第二步:根据该总体的信道信息确定第二维度信道相关矩阵R,对第二维度信道相关矩阵R进行特征值分解,将进行特征值分解后得到的特征向量作为第二PMI。
需要说明的是,上述利用第一步和第二步确定所述第二PMI信息的方式,是本公开实施例的一种可能实现方式,网络侧设备可以利用其它方式来测量所述UE发送的上行信号,确定所述第二PMI信息,这里并不对此进行限定。
在利用第一种方式和第二种方式的结合时,可以将通过第一种方式和第二种方式获得的第二PMI信息进行基于预先设定的算法进行处理(例如求平 均,取最值(最大或最小)等等)后,得到一个最终的第二PMI信息,将该最终第二PMI信息作为步骤203中的和/或配置给UE的所述第二PMI信息;
需要说明的是,网络侧设备确定上述步骤203中的和/或配置给UE的所述第二PMI信息并不局限于上述第一种方式和第二种方式,还可以是通过其它方式来确定上述步骤203中的和/或配置给UE的所述第二PMI信息,这里并不对其进行限定。
可选地,上述第二种方式用于上下行信道互易系统,由于在上下行信道互易系统,上下行信道特性一致,因此,网络侧设备通过对上行信号的测量得出的第二PMI信息等效于所述UE对下行导频信号测量出来的第二PMI信息,也即可以使用第二种方式确定所述第二PMI信息;
需要说明的是,本实施例中的上下行信道互易系统包括TDD系统,或者FDD系统中上下频率的差别相对于载波频率比较小的情况(此时上下行信道也具有一定的等效性,即认为上下行信道特性一致)。
此外,网络侧设备若在步骤201中为所述UE配置的第一下行信道测量导频为联合天线阵列CSI-RS资源时,所述UE可以直接利用该联合天线阵列CSI-RS资源确定并上报该第二PMI信息。
可选地,网络侧设备利用上述第一种方式确定第二PMI信息时,为了方便所述UE上报第二PMI信息,网络侧设备在接收所述UE上报的所述第二PMI信息之前,可以采用下列两种资源配置方式中的一种为UE配置资源,当然也不限于使用其他方式进行资源配置,以使UE根据配置的资源来确定用于上报的所述第二PMI信息:
方式(1):为UE配置第二下行信道测量导频,以使所述UE根据所述第二下行信道测量导频确定所述第二PMI信息;
方式(2):为UE配置二维联合天线阵列下行信道测量导频,以使所述UE根据所述二维联合天线阵列下行信道测量导频确定所述第二PMI信息。
需要说明的是,若在步骤201中网络侧设备为用户设备配置的为二维联合天线阵列下行信道测量导频,由于UE可以根据联合天线阵列下行信道测量导频来确定第二PMI信息,因此这里可以不再通过上述方式(1)和方式(2)为UE配置二维联合天线阵列下行信道测量导频。
下面对下行信道测量导频为CSI-RS资源时,仍以上述网络侧设备的天线为4x8的天线阵列,一共32根天线为例,对上述方式(1)和方式(2)的资源配置分别进行说明。
利用方式(1)进行配置,在网络侧设备在步骤201中为UE配置的第一下行信道测量导频为4端口的CSI-RS资源时,此时,为UE配置的第二下行信道测量导频为8端口的CSI-RS资源;在网络侧设备在步骤201中为用户设备配置的第一下行信道测量导频为8端口的CSI-RS资源时,此时,为用户设备配置的第二下行信道测量导频为4端口的CSI-RS资源;
利用方式(2)进行配置,不论在网络侧设备在步骤201中为用户设备配置的第一下行信道测量导频为4端口的CSI-RS资源,还是为8端口的CSI-RS资源,还是为32端口的CSI-RS资源,这里均可为UE配置一个32端口的CSI-RS资源,此32端口的CSI-RS资源即为二维联合天线阵列下行信道测量导频。
此外,在网络侧设备为UE配置第二下行信道测量导频或二维联合天线阵列下行信道测量导频时,可以为UE配置第二RI,也可以不为UE配置第二RI,这是因为在LTE(Long Term Evolution,长期演进)标准中,规定RI为1;若不按照LTE标准进行交互,则在网络侧设备和UE没有约定时,需要配置RI。
网络侧设备为确保自身和所述UE使用同一第二PMI信息进行相关信息的处理(网络侧设备进行预编码矩阵的确定,所述UE进行第一PMI信息和CQI信息的确定),进而确保UE反馈的信道状态信息的准确性以及后续进行波束赋形和信号调整的准确性,需要与UE进行第二PMI信息的确认,故,可选地,所述网络侧设备可以通过以下两种方式之一为UE配置第二PMI信息:
方式(一):所述网络侧设备将所述第二PMI信息发送给UE,以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据配置的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据配置的所述第二PMI信息和二维联合天线阵列下行信道测量导 频确定第一PMI信息,以及以使所述UE根据所述第一PMI信息和配置的所述第二PMI信息确定CQI信息;
方式(二):所述网络侧设备通知UE使用自身确定的第二PMI信息,以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息,以及以使所述UE根据所述第一PMI信息和所述UE确定的所述第二PMI信息确定CQI信息。
此外,网络测设备和所述UE也可以通过其它方式进行上述第二PMI信息的确认,或者网络侧设备和所述UE根据预先的约定(例如:所述UE使用最新上报的第二PMI信息,所述网络侧设备使用所述UE最新上报的第二PMI信息),不通过交互进行第二PMI信息的确认。
需要说明的是,本公开实施例的网络侧设备可以是基站(比如宏基站、家庭基站等),也可以是RN(中继)设备,还可以是其它网络侧设备。
参见图3,为本公开实施例针对用户设备侧提供的信道状态信息反馈方法,包括以下步骤:
步骤301:UE根据第二PMI信息和网络侧设备配置的第一下行信道测量导频确定第一PMI信息;
所述第一PMI信息和所述第二PMI信息表示的维度不同;
具体的,本步骤301包括步骤A1至步骤A4:
步骤A1:UE根据网络侧设备配置的第一下行信道测量导频确定第一信道信息;
步骤A2:所述UE确定第二信道信息以及根据第二PMI信息,在本地的波束赋形向量码本中确定该第二PMI信息对应的波束赋形向量;
所述第二信道信息的维度与第一信道信息的维度不同;
步骤A3:所述UE根据确定的第二信道信息、第二PMI信息对应的波束赋形向量,结合自身所支持的码流数RI,在本地的波束赋形向量码本中确定达到最佳波束赋形性能的波束赋形向量;
所述最佳波束赋形性能是指对待发送至UE的信号波束赋形后,总体的吞吐量最大化、信噪比最大化或者块误码率最小化等等。
其中,所述码本是各波束赋形向量元素的集合,在用户设备侧和网络侧均保存同一套码本,码本中包含RI、PMI信息与波束赋形向量的对应关系,一个RI和一个PMI信息对应一个波束赋形向量。
通常的RI为1。
进一步的,可以利用公式(1)、公式(2)或公式(3)来确定第一PMI信息。
Figure PCTCN2015089871-appb-000001
PMI1=arg optPMI1=codebook_1f(GH2×V2)  (2)
Figure PCTCN2015089871-appb-000002
在公式(1)、公式(2)及公式(3)中,PMI1表示第一PMI信息,codebook_1是表示第一PMI信息对应的码本;arg opt是指在一组可选的变量中,选择一个最佳的变量,来达到某一函数的最优化,f()表示网络侧的波束赋形性能函数,a为比例系数,H1表示第一信道信息,H2表示第二信道信息,V1表示第一赋形向量,与第一PMI信息对应,V2表示第二赋形向量,与第二PMI信息对应;G表示利用PMI1以及H1确定的第一赋形增益;H表示总体信道信息,可以由H1和H2的函数得到(例如:由H1和H2进行卷积运算得到),如:H=f1(H1,H2)(例如:
Figure PCTCN2015089871-appb-000003
或者
Figure PCTCN2015089871-appb-000004
)。
步骤A4:所述UE将确定的所述达到最佳波束赋形性能的波束赋形向量对应的PMI作为所述第一PMI信息。
此外,在可用第一下行信道导频测量信道确定总体信道信息时,该步骤301包括以下步骤B1至步骤B3:
步骤B1:UE利用该第一下行信道导频测量确定总体信道信息;
步骤B2:所述UE根据第二PMI信息,在本地的波束赋形向量码本中确定该第二PMI信息对应的波束赋形向量;
步骤B3:所述UE根据确定的总体信道信息、第二PMI信息对应的波束赋形向量,结合自身所支持的码流数RI,在本地的波束赋形向量码本中确定达到最佳波束赋形性能的波束赋形向量;
具体的,本步骤B3可利用上述公式(3)来实现。
步骤302:所述UE向网络侧设备反馈所述第一PMI信息;
步骤303:所述UE根据所述第一PMI信息和第二PMI信息确定信道质量指示CQI信息;
步骤304:所述UE向网络侧设备反馈所述CQI信息。
需要说明的是,上述步骤303和步骤304是本实施例的优选步骤,步骤303可以在步骤301之后执行;若步骤303在步骤301之后且步骤302之前执行,则步骤304可以和步骤302同时执行,也可以在步骤302之后执行,这里并不对其执行顺序进行限定;
需要说明的是,本步骤303中确定的CQI信息是假设网络侧设备使用UE上报的所述第一PMI信息(和第一RI)和第二PMI(和第二RI)信息做波束赋形以及传输数据(例如:用PDSCH(Physical Downlink Shared Channel,物理下行共享信道)进行数据传输),UE可以测量到的CQI(例如最高的MCS(Modulation Coding Scheme,调制编码方案)或SNR)。与传统CQI并不相同,传统CQI是指网络侧设备使用UE上报的单一PMI/RI做波束赋形来传输下行数据,UE可以测量到的CQI,该单一PMI是直接由UE对水平维度CSI-RS资源测量得到,或者是由对垂直维度CSI-RS资源测量得到。
具体的,本步骤303中,根据第一PMI信息和第二PMI信息确定包括:
步骤C1:UE根据第一PMI信息,在本地的波束赋形向量码本中确定该第一PMI信息对应的波束赋形向量;以及根据第二PMI信息,在本地的波束赋形向量码本中确定该第二PMI信息对应的波束赋形向量;
步骤C2:UE确定第一信道信息和第二信道信息,所述第二信道信息的维度与第一信道信息的维度不同,或者UE确定总体信道信息;
其中,在第一下行信道测量导频为二维联合天线阵列下行信道测量导频时,UE可根据该二维联合天线阵列确定总体信道信息;在第一下行信道测量导频不为二维联合天线阵列下行信道测量导频时,UE可根据该第一下行信道测量导频确定第一信道信息;
步骤C3:UE根据确定的第一信道信息、第二信道信息、第一PMI信息对应的波束赋形向量和第二PMI信息对应的波束赋形向量确定CQI信息;或 者根据确定的总体信道信息、第一PMI信息对应的波束赋形向量和第二PMI信息对应的波束赋形向量确定CQI信息。
作为一种优选的方式,本步骤303中,可以根据以下公式(4)、(5)、(6)或(7)来确定所述CQI信息。
Figure PCTCN2015089871-appb-000005
Figure PCTCN2015089871-appb-000006
Figure PCTCN2015089871-appb-000007
CQI=SNR(GH×V2)  (7)
在上述公式(4)、(5)、(6)和(7)中,SNR表示信噪比,参数G、H、a、V1、V2、H1、H2均与上述公式(1)、公式(2)及公式(3)中的相应参数的物理含义相同,这里不再赘述。
可选地,所述UE根据两种方式的任一种确定所述第二PMI信息:
方式1:所述UE测量下行导频信号,确定所述第二PMI信息;
方式2:所述UE根据接收的网络侧设备下发的第二PMI信息,确定所述第二PMI信息。
方式1中的下行导频信号包括CSI-RS资源或者小区特定参考符号(Cell-specific Reference Symbol,CRS);
可选地,上述方式1,包括:所述UE测量所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频,确定所述第二PMI信息;
上述步骤301,包括:
所述UE根据第二PMI信息、网络侧设备配置的第一下行信道测量导频和第二下行信道测量导频,确定所述第一PMI信息;或
所述UE根据第二PMI信息、网络侧设备配置的二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第一PMI信息。
此时,所述UE可根据所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频测量下行导频信号,确定上述第二信道信息。
可选地,所述UE测量下行导频信号,确定所述第二PMI信息之后,所 述方法还包括:
所述UE将确定的所述第二PMI信息上报给所述网络侧设备。
可选地,所述UE将确定的所述第二PMI信息上报给网络侧设备之后,还包括:
所述UE在接收到所述网络侧设备配置的第二PMI信息后,将接收到的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息;
所述UE在接收到所述网络侧设备发送的确认消息后,将上报的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息。
下面对比现有技术中的CSI反馈方式来说明本公开实施例的优点:
在现有技术中,UE在每一个CSI-RS资源测量到的信道信息(CSI)只反映本CSI-RS资源上的信道情况,所以只反映一个维度上的信道;由于不同维度CSI-RS资源上测量到的CSI是完全独立的,因此,网络侧设备接收到不同维度上的CSI反馈之后不能直接用于3D-MIMO下行传输,而必须根据不同维度的CSI进行一系列结算来得到下行3D-MIMO的赋形信息和用于进行下行链路调整的信息CQI,不但提高了eNB的复杂度,而且降低了下行传输的精确度;
而在本公开实施例的方案中,UE根据第一下行信道测量导频和第二PMI信息确定第一PMI信息,将该第一PMI信息反馈后,网络侧设备即可利用该第一PMI信息进行波束赋形,由于UE只需反馈第一PMI信息,因此,相对于现有技术的反馈两套独立的包含RI、PMI、CQI信息的CSI而言,本公开实施例的方案较大程度上降低了上行反馈开销;进一步地,UE确定的所述第一PMI信息是从第一维度的码本中选择的达到最佳波束赋形性能的波束赋形向量对应的PMI,由于利用了第二PMI信息,并且是达到最佳波束赋形性能的波束赋形向量对应的PMI,因此,UE反馈的第一PMI信息的精度较高,在利用该第一PMI信息进行波束赋形时,能较大程度上提高下行传输的精确度;更进一步地,UE根据第一PMI信息和第二PMI信息确定并反馈CQI信息,由于该CQI信息是根据第一PMI信息和第二PMI信息确定的,是对各不同维度的信道质量的总体反映,因此,网络侧设备可以直接利用上述UE 确定并反馈的CQI信息对待发送至该UE的信号进行下行链路调整,相对于现有技术的网络侧设备根据不同维度PMI信息进行确定CQI的方案,较大程度上降低了网络侧设备的复杂度。
参见图4,为本公开实施例提供的一种网络侧设备的结构示意图,所述网络侧设备包括:配置模块41和接收模块42;其中:
配置模块41,用于为用户设备UE配置第一下行信道测量导频;
接收模块42,用于接收UE反馈的第一预编码矩阵指示PMI信息,所述第一PMI信息是所述UE根据对所述第一下行信道测量导频的测量和第二PMI信息得到的,其中,所述第一PMI信息和所述第二PMI信息表示的维度不同。
可选地,所述网络侧设备还包括:
处理模块43,用于根据所述第一PMI信息和第二PMI信息对待发送至所述UE的信号进行波束赋形。
可选地,所述接收模块42,还用于接收UE反馈的信道质量指示CQI信息,所述CQI信息是所述UE根据第一PMI信息和第二PMI信息确定的。
可选地,所述处理模块43,还用于根据所述CQI信息对待发送至UE的信号进行链路调整。
可选地,所述配置模块41,还用于为UE配置第二PMI信息,以使所述UE根据配置给UE的所述第二PMI信息和第一下行信道测量导频确定第一PMI信息以及根据所述第一PMI信息和配置给UE的所述第二PMI信息确定CQI信息。
可选地,所述网络侧设备还包括:确定模块44,用于接收所述UE上报的第二PMI信息;或测量所述UE发送的上行信号,确定所述第二PMI信息。
可选地,所述配置模块41,还用于在确定模块接收所述UE上报的所述第二PMI信息之前为UE配置第二下行信道测量导频,以使所述UE根据所述第二下行信道测量导频确定所述第二PMI信息;或者为UE配置二维联合天线阵列下行信道测量导频,以使所述UE根据所述二维联合天线阵列下行信道测量导频确定所述第二PMI信息。
可选地,所述配置模块41,具体用于将所述第二PMI信息发送给UE, 以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据配置的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据配置的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息,以及以使所述UE根据所述第一PMI信息和配置的所述第二PMI信息确定CQI信息;或通知UE使用自身确定的第二PMI信息,以使所述UE当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息,以及以使所述UE根据所述第一PMI信息和所述UE确定的所述第二PMI信息确定CQI信息。
参见图5,为本公开实施例提供的一种用户设备的结构示意图,所述用户设备包括:第一确定模块51和发送模块52;其中:
第一确定模块51,用于根据第二预编码矩阵指示PMI信息和网络侧设备配置的第一下行信道测量导频确定第一PMI信息,所述第一PMI信息和所述第二PMI信息表示的维度不同;
发送模块52,用于向网络侧设备反馈所述第一PMI信息。
可选地,所述第一确定模块51,还用于根据所述第一PMI信息和第二PMI信息确定信道质量指示CQI信息;
所述发送模块52,还用于向网络侧设备反馈所述CQI信息。
可选地,所述用户设备,还包括:
第二确定模块53,用于测量下行导频信号,确定所述第二PMI信息;或根据接收的网络侧设备下发的第二PMI信息,确定所述第二PMI信息。
可选地,所述第二确定模块53,具体用于测量所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频,确定所述第二PMI信息;
所述第一确定模块51,具体用于根据第二PMI信息、网络侧设备配置的 第一下行信道测量导频和第二下行信道测量导频,确定所述第一PMI信息;或所述UE根据第二PMI信息、网络侧设备配置的二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第一PMI信息。
可选地,所述发送模块52,还用于在第二确定模块测量下行导频信号,确定所述第二PMI信息之后,将确定的所述第二PMI信息上报给所述网络侧设备。
可选地,所述用户设备还包括:
第三确定模块54,用于在发送模块将确定的所述第二PMI信息上报给网络侧设备之后,在接收到所述网络侧设备发送的第二PMI信息后,将收到的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息;或在接收到所述网络侧设备发送的确认消息后,将上报的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息。
参见图6,为本公开实施例提供的一种信道状态信息反馈系统,包括:网络侧设备61和用户设备62;
所述网络侧设备61,用于为用户设备配置第一下行信道测量导频;接收UE反馈的第一预编码矩阵指示PMI信息,所述第一PMI信息和所述第二PMI信息表示的维度不同;
所述用户设备62,用于根据第二PMI信息和网络侧设备配置的第一下行信道测量导频确定第一PMI信息;向网络侧设备反馈所述第一PMI信息。
可选地,所述网络侧设备61,还用于根据所述第一PMI信息和第二PMI信息对待发送至所述UE的信号进行波束赋形。
可选地,所述网络侧设备61,还用于接收UE反馈的信道质量指示CQI信息;
所述用户设备62,还用于根据所述第一PMI信息和第二PMI信息确定信道质量指示CQI信息;向网络侧设备反馈所述CQI信息。
可选地,所述网络侧设备61,还用于根据所述CQI信息对待发送至UE的信号进行链路调整。
可选地,所述网络侧设备61,还用于为UE配置第二PMI信息,以使所述UE根据配置给UE的所述第二PMI信息和第一下行信道测量导频确定第 一PMI信息以及根据所述第一PMI信息和配置给UE的所述第二PMI信息确定CQI信息;
所述用户设备62,还用于测量下行导频信号,确定所述第二PMI信息;或所述UE根据网络侧设备配置的第二PMI信息,确定所述第二PMI信息。
可选地,所述网络侧设备61,还用于接收所述UE上报的第二PMI信息;或所述网络侧设备测量所述UE发送的上行信号,确定所述第二PMI信息;
所述用户设备62,还用于所述UE测量下行导频信号,确定所述第二PMI信息之后,将确定的所述第二PMI信息上报给所述网络侧设备。
可选地,所述网络侧设备61,还用于网络侧设备接收所述UE上报的第二PMI信息;或所述网络侧设备测量所述UE发送的上行信号,确定所述第二PMI信息。
所述用户设备62,还用于将确定的所述第二PMI信息上报给所述网络侧设备。
可选地,所述网络侧设备61,还用于在接收所述UE上报的所述第二PMI信息之前为UE配置第二下行信道测量导频,以使所述UE根据所述第二下行信道测量导频确定所述第二PMI信息;或为UE配置二维联合天线阵列下行信道测量导频,以使所述UE根据所述二维联合天线阵列下行信道测量导频确定所述第二PMI信息;
所述用户设备62,具体用于所述UE测量所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频,确定所述第二PMI信息;根据第二PMI信息、网络侧设备配置的第一下行信道测量导频和第二下行信道测量导频,确定所述第一PMI信息;或根据第二PMI信息、网络侧设备配置的二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第一PMI信息。
可选地,所述网络侧设备61,具体用于将所述第二PMI信息发送给UE,以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据配置的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据配置的所述第二PMI信息和二维联合天线阵列下行信 道测量导频确定第一PMI信息,以及以使所述UE根据所述第一PMI信息和配置的所述第二PMI信息确定CQI信息;或通知UE使用自身确定的第二PMI信息,以使所述UE当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息,以及以使所述UE根据所述第一PMI信息和所述UE确定的所述第二PMI信息确定CQI信息;
所述用户设备62,还用于在将确定的所述第二PMI信息上报给网络侧设备之后,在接收到所述网络侧设备发送的第二PMI信息后,将接收到的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息;或所述UE在接收到所述网络侧设备发送的确认消息后,将上报的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息。
下面结合优选的硬件结构,分别对本公开实施例提供的网络侧设备和用户设备的结构、处理方式进行说明。
参见图7,为本公开实施例提供的另一种网络侧设备的结构示意图,包括处理器700、收发机710和存储器720;并且处理器700、收发机710和存储器720通过总线接口进行通信,其中:
处理器700,用于读取存储器720中的程序,执行下列过程:
为用户设备UE配置第一下行信道测量导频;通过收发机710接收UE反馈的第一预编码矩阵指示PMI信息,所述第一PMI信息是所述UE根据对所述第一下行信道测量导频的测量和第二PMI信息得到的;其中,所述第一PMI信息和所述第二PMI信息表示的维度不同。
收发机710,用于在处理器700的控制下接收和发送数据。
可选地,所述处理器700,用于读取存储器720中的程序,还执行下列过程:
根据所述第一PMI信息和第二PMI信息对待发送至所述UE的信号进行波束赋形。
可选地,所述处理器700,用于读取存储器720中的程序,还执行下列过程:
通过收发机710接收UE反馈的信道质量指示CQI信息,所述CQI信息是所述UE根据所述第一PMI信息和所述第二PMI信息确定的。
可选地,所述处理器700,用于读取存储器720中的程序,还执行下列过程:
根据所述CQI信息对待发送至UE的信号进行链路调整。
可选地,所述处理器700,用于读取存储器720中的程序,还执行下列过程:
为UE配置第二PMI信息,以使所述UE根据配置给UE的所述第二PMI信息和第一下行信道测量导频确定第一PMI信息以及根据所述第一PMI信息和配置给UE的所述第二PMI信息确定CQI信息。
可选地,所述处理器700,用于读取存储器720中的程序,还执行下列过程:
通过收发机710接收UE上报的第二PMI信息,或者测量所述UE发送的上行信号,确定所述第二PMI信息;
可选地,所述处理器700,用于读取存储器720中的程序,还执行下列过程:
通过收发机710接收所述UE上报的所述第二PMI信息之前,为UE配置第二下行信道测量导频,以使所述UE根据所述第二下行信道测量导频确定所述第二PMI信息;或为UE配置二维联合天线阵列下行信道测量导频,以使所述UE根据所述二维联合天线阵列下行信道测量导频确定所述第二PMI信息。
可选地,所述处理器700,用于读取存储器720中的程序,具体执行下列过程:通过收发机710将所述第二PMI信息发送给UE,以使当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据配置的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据配置的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第 一PMI信息,以及以使所述UE根据所述第一PMI信息和配置的所述第二PMI信息确定CQI信息;或将确认消息通过收发机710发送给UE,以使所述UE当网络侧设备为UE配置了第二下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息、第一下行信道测量导频和第二下行信道测量导频确定第一PMI信息,当网络侧设备为UE配置了二维联合天线阵列下行信道测量导频时,所述UE根据所述UE确定的所述第二PMI信息和二维联合天线阵列下行信道测量导频确定第一PMI信息,以及以使所述UE根据所述第一PMI信息和所述UE确定的所述第二PMI信息确定CQI信息。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
参见图8,为本公开实施例提供的另一种用户设备的结构示意图,包括处理器800、收发机801、存储器802和用户接口803;
处理器800,用于读取存储器802中的程序,执行下列过程:
根据第二PMI信息和网络侧设备配置的第一下行信道测量导频确定第一PMI信息;通过收发机801向网络侧设备反馈所述第一PMI信息;其中,所述第一PMI信息和所述第二PMI信息表示的维度不同。
收发机801,用于在处理器800的控制下接收和发送数据。
可选地,处理器800,用于读取存储器802中的程序,还执行下列过程:根据所述第一PMI信息和第二PMI信息确定信道质量指示CQI信息;通过收发机801向网络侧设备反馈所述CQI信息。
可选地,处理器800,用于读取存储器802中的程序,还执行下列过程:
测量下行导频信号,确定所述第二PMI信息;或根据通过收发机801接收的网络侧设备下发的第二PMI信息,确定所述第二PMI信息。
可选地,处理器800,用于读取存储器802中的程序,具体执行下列过程:
测量所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频,确定所述第二PMI信息;根据第二PMI信息、网络侧设备配置的第一下行信道测量导频和第二下行信道测量导频,确定所述第一PMI信息;或根据第二PMI信息、网络侧设备配置的二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第一PMI信息。
可选地,处理器800,用于读取存储器802中的程序,还执行下列过程:
在测量下行导频信号,确定所述第二PMI信息之后,将确定的所述第二PMI信息通过收发机801上报给所述网络侧设备。
可选地,处理器800,用于读取存储器802中的程序,还执行下列过程:
在将确定的所述第二PMI信息通过收发机801上报给网络侧设备之后,在通过收发机801接收到所述网络侧设备发送的第二PMI信息后,将收到的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息;或在通过收发机801接收到所述网络侧设备发送的确认消息后,将上报的所述第二PMI信息作为确定第一PMI信息和CQI信息使用的第二PMI消息。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器802代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机801可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口803还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器800负责管理总线架构和通常的处理,存储器802可以存储处理器800在执行操作时所使用的数据。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (31)

  1. 一种信道状态信息反馈方法,包括:
    网络侧设备为用户设备配置第一下行信道测量导频;
    所述网络侧设备接收所述用户设备反馈的第一预编码矩阵指示信息,所述第一预编码矩阵指示信息是所述用户设备根据对所述第一下行信道测量导频的测量和第二预编码矩阵指示信息得到的;
    其中,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同。
  2. 如权利要求1所述的方法,其中,所述方法还包括:
    所述网络侧设备根据所述第一预编码矩阵指示信息和第二预编码矩阵指示信息对待发送至所述用户设备的信号进行波束赋形。
  3. 如权利要求1或2所述的方法,其中,所述方法还包括:
    所述网络侧设备接收所述用户设备反馈的信道质量指示信息,所述信道质量指示信息是所述用户设备根据所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息确定的。
  4. 如权利要求3所述的方法,还包括:
    所述网络侧设备根据所述信道质量指示信息对待发送至所述用户设备的信号进行链路调整。
  5. 如权利要求1或2所述的方法,还包括:
    所述网络侧设备为所述用户设备配置第二预编码矩阵指示信息,以使所述用户设备根据配置给所述用户设备的所述第二预编码矩阵指示信息和第一下行信道测量导频确定第一预编码矩阵指示信息以及根据所述第一预编码矩阵指示信息和配置给所述用户设备的所述第二预编码矩阵指示信息确定信道质量指示信息。
  6. 如权利要求5所述的方法,其中,所述网络侧设备根据下列方式确定所述第二预编码矩阵指示信息:
    所述网络侧设备接收所述用户设备上报的第二预编码矩阵指示信息;或
    所述网络侧设备测量所述用户设备发送的上行信号,确定所述第二预编 码矩阵指示信息。
  7. 如权利要求6所述的方法,其中,所述网络侧设备接收所述用户设备上报的所述第二预编码矩阵指示信息之前,还包括:
    所述网络侧设备为所述用户设备配置第二下行信道测量导频,以使所述用户设备根据所述第二下行信道测量导频确定所述第二预编码矩阵指示信息;或
    所述网络侧设备为所述用户设备配置二维联合天线阵列下行信道测量导频,以使所述用户设备根据所述二维联合天线阵列下行信道测量导频确定所述第二预编码矩阵指示信息。
  8. 如权利要求7所述的方法,其中,所述网络侧设备为所述用户设备配置第二预编码矩阵指示信息,包括:
    所述网络侧设备将所述第二预编码矩阵指示信息发送给所述用户设备,以使当网络侧设备为所述用户设备配置了第二下行信道测量导频时,所述用户设备根据接收的所述第二预编码矩阵指示信息、第一下行信道测量导频和第二下行信道测量导频确定第一预编码矩阵指示信息,当网络侧设备为所述用户设备配置了二维联合天线阵列下行信道测量导频时,所述用户设备根据接收的所述第二预编码矩阵指示信息和二维联合天线阵列下行信道测量导频确定第一预编码矩阵指示信息;或
    所述网络侧设备通知所述用户设备使用自身确定的第二预编码矩阵指示信息,以使当网络侧设备为所述用户设备配置了第二下行信道测量导频时,所述用户设备根据所述用户设备确定的所述第二预编码矩阵指示信息、第一下行信道测量导频和第二下行信道测量导频确定第一预编码矩阵指示信息,当网络侧设备为所述用户设备配置了二维联合天线阵列下行信道测量导频时,所述用户设备根据所述用户设备确定的所述第二预编码矩阵指示信息和二维联合天线阵列下行信道测量导频确定第一预编码矩阵指示信息。
  9. 一种信道状态信息反馈方法,包括:
    用户设备根据第二预编码矩阵指示信息和网络侧设备配置的第一下行信道测量导频确定第一预编码矩阵指示信息;
    所述用户设备向网络侧设备反馈所述第一预编码矩阵指示信息;
    其中,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同。
  10. 如权利要求9所述的方法,其中,还包括:
    所述用户设备根据所述第一预编码矩阵指示信息和第二预编码矩阵指示信息确定信道质量指示信息;
    所述用户设备向网络侧设备反馈所述信道质量指示信息。
  11. 如权利要求9或10所述的方法,其中,所述用户设备根据下列方式确定所述第二预编码矩阵指示信息;
    所述用户设备测量下行导频信号,确定所述第二预编码矩阵指示信息;或
    所述用户设备根据网络侧设备配置的第二预编码矩阵指示信息,确定所述第二预编码矩阵指示信息。
  12. 如权利要求11所述的方法,其中,所述用户设备测量下行导频信号,确定所述第二预编码矩阵指示信息,包括:
    所述用户设备测量所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频,确定所述第二预编码矩阵指示信息;
    所述用户设备根据第二预编码矩阵指示信息和网络侧设备配置的第一下行信道测量导频确定第一预编码矩阵指示信息,包括:
    所述用户设备根据第二预编码矩阵指示信息、网络侧设备配置的第一下行信道测量导频和第二下行信道测量导频,确定所述第一预编码矩阵指示信息;或
    所述用户设备根据第二预编码矩阵指示信息、网络侧设备配置的二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第一预编码矩阵指示信息。
  13. 如权利要求11所述的方法,其中,所述用户设备测量下行导频信号,确定所述第二预编码矩阵指示信息之后,还包括:
    所述用户设备将确定的所述第二预编码矩阵指示信息上报给所述网络侧设备。
  14. 如权利要求13所述的方法,其中,所述用户设备将确定的所述第二 预编码矩阵指示信息上报给网络侧设备之后,还包括:
    所述用户设备在接收到所述网络侧设备发送的第二预编码矩阵指示信息后,将接收到的所述第二预编码矩阵指示信息作为确定第一预编码矩阵指示信息和信道质量指示信息使用的第二预编码矩阵指示消息;
    所述用户设备在接收到所述网络侧设备发送的确认消息后,将上报的所述第二预编码矩阵指示信息作为确定第一预编码矩阵指示信息和信道质量指示信息使用的第二预编码矩阵指示消息。
  15. 一种网络侧设备,包括:
    配置模块,用于为用户设备配置第一下行信道测量导频;
    接收模块,用于接收所述用户设备反馈的第一预编码矩阵指示信息,所述第一预编码矩阵指示信息是所述用户设备根据对所述第一下行信道测量导频的测量和第二预编码矩阵指示信息得到的,其中,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同。
  16. 如权利要求15所述的网络侧设备,其中,所述网络侧设备还包括:
    处理模块,用于根据所述第一预编码矩阵指示信息和第二预编码矩阵指示对待发送至所述用户设备的信号进行波束赋形。
  17. 如权利要求15或16所述的网络侧设备,其中,所述接收模块,还用于接收所述用户设备反馈的信道质量指示信息,所述信道质量指示信息是所述用户设备根据第一预编码矩阵指示信息和第二预编码矩阵指示信息确定的。
  18. 如权利要求17所述的网络侧设备,其中,所述处理模块,还用于根据所述信道质量指示信息对待发送至所述用户设备的信号进行链路调整。
  19. 如权利要求15或16所述的网络侧设备,其中,所述配置模块,还用于为所述用户设备配置第二预编码矩阵指示信息,以使所述用户设备根据配置给所述用户设备的所述第二预编码矩阵指示信息和第一下行信道测量导频确定第一预编码矩阵指示信息以及根据所述第一预编码矩阵指示信息和配置给所述用户设备的所述第二预编码矩阵指示信息确定信道质量指示信息。
  20. 如权利要求19所述的网络侧设备,其中,所述网络侧设备还包括: 确定模块,用于接收所述用户设备上报的第二预编码矩阵指示信息;或测量所述用户设备发送的上行信号,确定所述第二预编码矩阵指示信息。
  21. 如权利要求20所述的网络侧设备,其中,所述配置模块,还用于在确定模块接收所述用户设备上报的所述第二预编码矩阵指示信息之前为所述用户设备配置第二下行信道测量导频,以使所述用户设备根据所述第二下行信道测量导频确定所述第二预编码矩阵指示信息;或者为所述用户设备配置二维联合天线阵列下行信道测量导频,以使所述用户设备根据所述二维联合天线阵列下行信道测量导频确定所述第二预编码矩阵指示信息。
  22. 如权利要求21所述的网络侧设备,其中,所述配置模块,具体用于将所述第二预编码矩阵指示信息发送给所述用户设备,以使当网络侧设备为所述用户设备配置了第二下行信道测量导频时,所述用户设备根据配置的所述第二预编码矩阵指示信息、第一下行信道测量导频和第二下行信道测量导频确定第一预编码矩阵指示信息,当网络侧设备为所述用户设备配置了二维联合天线阵列下行信道测量导频时,所述用户设备根据配置的所述第二预编码矩阵指示信息和二维联合天线阵列下行信道测量导频确定第一预编码矩阵指示信息;或通知所述用户设备使用自身确定的第二预编码矩阵指示信息,以使当网络侧设备为所述用户设备配置了第二下行信道测量导频时,所述用户设备根据所述用户设备确定的所述第二预编码矩阵指示信息、第一下行信道测量导频和第二下行信道测量导频确定第一预编码矩阵指示信息,当网络侧设备为所述用户设备配置了二维联合天线阵列下行信道测量导频时,所述用户设备根据所述用户设备确定的所述第二预编码矩阵指示信息和二维联合天线阵列下行信道测量导频确定第一预编码矩阵指示信息。
  23. 一种用户设备,包括:
    第一确定模块,用于根据第二预编码矩阵指示信息和网络侧设备配置的第一下行信道测量导频确定第一预编码矩阵指示信息,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同;
    发送模块,用于向网络侧设备反馈所述第一预编码矩阵指示信息。
  24. 如权利要求23所述的用户设备,其中,所述第一确定模块,还用于根据所述第一预编码矩阵指示信息和第二预编码矩阵指示信息确定信道质量 指示信息;
    所述发送模块,还用于向网络侧设备反馈所述信道质量指示信息。
  25. 如权利要求23或24所述的用户设备,其中,所述用户设备,还包括:第二确定模块,用于测量下行导频信号,确定所述第二预编码矩阵指示信息;或根据网络侧设备配置的第二预编码矩阵指示信息,确定所述第二预编码矩阵指示信息。
  26. 如权利要求25所述的用户设备,其中,所述第二确定模块,具体用于测量所述网络侧设备配置的第二下行信道测量导频或二维联合天线阵列下行信道测量导频,确定所述第二预编码矩阵指示信息;
    所述第一确定模块,具体用于根据第二预编码矩阵指示信息、网络侧设备配置的第一下行信道测量导频和第二下行信道测量导频,确定所述第一预编码矩阵指示信息;或所述用户设备根据第二预编码矩阵指示信息、网络侧设备配置的二维联合天线阵列下行信道测量导频测量下行导频信号,确定所述第一预编码矩阵指示信息。
  27. 如权利要求25所述的用户设备,其中,所述发送模块,还用于在第二确定模块测量下行导频信号,确定所述第二预编码矩阵指示信息之后,将确定的所述第二预编码矩阵指示信息上报给所述网络侧设备。
  28. 如权利要求27所述的用户设备,其中,所述用户设备还包括:
    第三确定模块,用于在发送模块将确定的所述第二预编码矩阵指示信息上报给网络侧设备之后,在接收到所述网络侧设备发送的第二预编码矩阵指示信息后,将收到的所述第二预编码矩阵指示信息作为确定第一预编码矩阵指示信息和信道质量指示信息使用的第二预编码矩阵指示消息;或在接收到所述网络侧设备发送的确认消息后,将上报的所述第二预编码矩阵指示信息作为确定第一预编码矩阵指示信息和信道质量指示信息使用的第二预编码矩阵指示消息。
  29. 一种信道状态信息反馈系统,包括:网络侧设备和用户设备;
    所述网络侧设备,用于为用户设备配置第一下行信道测量导频;接收所述用户设备反馈的第一预编码矩阵指示信息,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同;
    所述用户设备,用于根据第二预编码矩阵指示信息和网络侧设备配置的第一下行信道测量导频确定第一预编码矩阵指示信息;向网络侧设备反馈所述第一预编码矩阵指示信息。
  30. 一种网络侧设备,包括:
    处理器;
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;以及
    收发机,通过所述总线接口与所述处理器和所述存储器相连接,并且用于在所述处理器的控制下接收和发送数据,
    当所述处理器调用并执行所述存储器中所存储的程序和数据时,用于为用户设备配置第一下行信道测量导频;并用于接收所述用户设备反馈的第一预编码矩阵指示信息,所述第一预编码矩阵指示信息是所述用户设备根据对所述第一下行信道测量导频的测量和第二预编码矩阵指示信息得到的,其中,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同。
  31. 一种用户设备,包括:
    处理器;
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;以及
    收发机,通过所述总线接口与所述处理器和所述存储器相连接,并且用于在所述处理器的控制下接收和发送数据,
    当所述处理器调用并执行所述存储器中所存储的程序和数据时,用于根据第二预编码矩阵指示信息和网络侧设备配置的第一下行信道测量导频确定第一预编码矩阵指示信息,所述第一预编码矩阵指示信息和所述第二预编码矩阵指示信息表示的维度不同;并用于向网络侧设备反馈所述第一预编码矩阵指示信息。
PCT/CN2015/089871 2014-09-28 2015-09-17 信道状态信息反馈方法、设备及系统 WO2016045535A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/514,817 US10291308B2 (en) 2014-09-28 2015-09-17 Channel state information feedback method, device and system
EP15844823.3A EP3200356A4 (en) 2014-09-28 2015-09-17 Channel state information feedback method, device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410509463.0 2014-09-28
CN201410509463.0A CN105530036B (zh) 2014-09-28 2014-09-28 信道状态信息反馈方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2016045535A1 true WO2016045535A1 (zh) 2016-03-31

Family

ID=55580294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089871 WO2016045535A1 (zh) 2014-09-28 2015-09-17 信道状态信息反馈方法、设备及系统

Country Status (4)

Country Link
US (1) US10291308B2 (zh)
EP (1) EP3200356A4 (zh)
CN (1) CN105530036B (zh)
WO (1) WO2016045535A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031367A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Methods, apparatus, systems and procedures for uplink (ul) channel reciprocity
WO2018028464A1 (zh) * 2016-08-12 2018-02-15 中兴通讯股份有限公司 信道状态信息的反馈方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155695B (zh) * 2016-05-13 2021-01-29 华为技术有限公司 信道状态信息的上报方法、读取方法及相关设备
CN107889220B (zh) 2016-09-29 2022-01-28 华为技术有限公司 通信方法、基站和终端设备
CN108023717B (zh) * 2016-11-04 2021-08-20 华为技术有限公司 一种参考信号的测量方法和装置
CN108271174A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 上行传输的方法、装置和系统
CN108282250B (zh) * 2017-01-06 2021-03-26 维沃移动通信有限公司 一种下行信道状态信息的测量方法、基站及终端
CN109121206B (zh) 2017-06-22 2021-08-31 华为技术有限公司 通信方法及通信节点
WO2020000273A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 一种数据传输方法及装置
CN112217550B (zh) 2019-07-12 2022-03-29 华为技术有限公司 预编码处理方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152140A (zh) * 2013-03-05 2013-06-12 东南大学 一种基于直积码书的三维多用户mimo有限反馈方法
CN103716078A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 一种信道状态信息的处理方法及装置
WO2014059944A1 (zh) * 2012-10-19 2014-04-24 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN103825678A (zh) * 2014-03-06 2014-05-28 重庆邮电大学 一种基于Khatri-Rao积3D MU-MIMO的预编码方法
CN104065448A (zh) * 2013-03-22 2014-09-24 电信科学技术研究院 一种确定预编码矩阵的方法、系统和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158263B (zh) * 2010-02-11 2015-12-02 索尼公司 基于码书的信道信息反馈方法、设备和系统
CN101867458B (zh) * 2010-06-21 2016-03-02 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
CN102291212B (zh) * 2011-08-12 2014-06-18 电信科学技术研究院 信道状态信息的反馈方法和设备
CN103828276A (zh) * 2012-06-28 2014-05-28 华为技术有限公司 信道状态信息处理方法及终端
CN103840868A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种指示和反馈信道质量信息的方法、设备及系统
US8971437B2 (en) * 2012-12-20 2015-03-03 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
WO2014117352A1 (en) 2013-01-31 2014-08-07 Qualcomm Incorporated 3d mimo csi feedback based on virtual elevation ports
CN105934904A (zh) * 2014-01-22 2016-09-07 日本电气株式会社 用于信道测量和反馈的方法和装置
US9912394B2 (en) * 2014-04-09 2018-03-06 Lg Electronics Inc. Method and apparatus for performing feedback for massive antenna array based beamforming in wireless communication system
US9405578B2 (en) * 2014-07-11 2016-08-02 Accenture Global Services Limited Intelligent application back stack management

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716078A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 一种信道状态信息的处理方法及装置
WO2014059944A1 (zh) * 2012-10-19 2014-04-24 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN103152140A (zh) * 2013-03-05 2013-06-12 东南大学 一种基于直积码书的三维多用户mimo有限反馈方法
CN104065448A (zh) * 2013-03-22 2014-09-24 电信科学技术研究院 一种确定预编码矩阵的方法、系统和设备
CN103825678A (zh) * 2014-03-06 2014-05-28 重庆邮电大学 一种基于Khatri-Rao积3D MU-MIMO的预编码方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200356A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031367A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Methods, apparatus, systems and procedures for uplink (ul) channel reciprocity
US10826573B2 (en) 2016-08-10 2020-11-03 Idac Holdings, Inc. Methods, apparatus, systems and procedures for uplink (UL) channel reciprocity
RU2739395C2 (ru) * 2016-08-10 2020-12-23 Идак Холдингз, Инк. Способы, устройства, системы и процедуры для взаимности канала восходящей линии связи (ul)
US11489563B2 (en) 2016-08-10 2022-11-01 Idac Holdings, Inc. Methods, apparatus, systems and procedures for uplink (ul) channel reciprocity
WO2018028464A1 (zh) * 2016-08-12 2018-02-15 中兴通讯股份有限公司 信道状态信息的反馈方法及装置

Also Published As

Publication number Publication date
EP3200356A4 (en) 2017-09-27
US10291308B2 (en) 2019-05-14
US20170222707A1 (en) 2017-08-03
CN105530036B (zh) 2019-04-02
EP3200356A1 (en) 2017-08-02
CN105530036A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2016045535A1 (zh) 信道状态信息反馈方法、设备及系统
CN109644039B (zh) 用于下行链路和上行链路信道状态信息获取的方法和设备
KR102401001B1 (ko) 부분 프리코딩 csi-rs 및 csi 피드백을 위한 다운링크 시그널링 방법 및 장치
US10778297B2 (en) Signal transmission method and apparatus
JP6411367B2 (ja) アドバンスト無線通信システムにおけるチャンネル状態情報フィードバック設計
TWI580209B (zh) 用於具有天線陣列之基地台之預編碼矩陣指示符增益正規化校正及通道品質指示符回授之方法及裝置
US20210203392A1 (en) Method and device for transmitting and receiving channel state information in wireless communication system using multiple antennas
JP6093097B2 (ja) 3次元複数入力複数出力システムにおけるチャネル評価およびフィードバックのための方法および装置
JP6019502B2 (ja) 協調マルチポイント送信のためのチャネルフィードバック
CN105471546B (zh) 一种反馈和接收信道状态信息csi的方法及装置
KR20200008595A (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
JP2019537874A (ja) プリコーディング行列指示方法、装置、及びシステム
US20150341097A1 (en) CSI Feedback with Elevation Beamforming
EP2897316A1 (en) Method and terminal for determining channel state information
WO2017136292A1 (en) Method and apparatus for optimizing antenna precoder selection with coupled antennas
KR20160086948A (ko) 채널 상태 정보의 피드백 방법 및 장치
WO2017076347A1 (zh) 一种信道状态信息量化反馈方法及终端
WO2016078478A1 (zh) 一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备
WO2022009178A1 (en) Signaling to aid enhanced nr type ii csi feedback
WO2017096954A1 (zh) Cqi估计、sinr确定方法及相关设备
WO2016062178A1 (zh) 一种信道状态信息的反馈、获取方法及装置
WO2017166977A1 (zh) 信道状态信息反馈的获取方法、相关设备及系统
WO2022009151A1 (en) Shared csi-rs for partial-reciprocity based csi feedback
EP4268380A1 (en) Methods for reducing overhead of nr type ii channel state information feedback using angle and delay reciprocity
WO2016066036A1 (zh) 一种信道状态信息的反馈、获取方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844823

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015844823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15514817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE