WO2015131378A1 - 报告信道状态信息的方法、用户设备和基站 - Google Patents

报告信道状态信息的方法、用户设备和基站 Download PDF

Info

Publication number
WO2015131378A1
WO2015131378A1 PCT/CN2014/073007 CN2014073007W WO2015131378A1 WO 2015131378 A1 WO2015131378 A1 WO 2015131378A1 CN 2014073007 W CN2014073007 W CN 2014073007W WO 2015131378 A1 WO2015131378 A1 WO 2015131378A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal set
csi
matrix
base station
Prior art date
Application number
PCT/CN2014/073007
Other languages
English (en)
French (fr)
Inventor
王建国
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480024942.1A priority Critical patent/CN105210405B/zh
Priority to BR112016020503-0A priority patent/BR112016020503A2/pt
Priority to KR1020167027220A priority patent/KR101851093B1/ko
Priority to EP18169525.5A priority patent/EP3429257B1/en
Priority to EP14884341.0A priority patent/EP3116258B1/en
Priority to PCT/CN2014/073007 priority patent/WO2015131378A1/zh
Priority to PT14884341T priority patent/PT3116258T/pt
Publication of WO2015131378A1 publication Critical patent/WO2015131378A1/zh
Priority to US15/255,953 priority patent/US10454640B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, a user equipment, and a base station for reporting channel state information in the communication field. Background technique
  • LTE Long Term Evolution
  • LTE R8 Long Term Evolution R8
  • LTE R10 Long Term Evolution R10
  • Diversity and array gain can be obtained by transmit beamforming (beam forming) or precoding techniques, and by receiving and combining multiple input multiple output (“Multiple Input Multiple Output") systems.
  • a received signal from a system utilizing BF or precoding techniques can generally be expressed as:
  • y represents the received signal vector
  • H represents the channel matrix
  • V represents the precoding matrix
  • s represents the transmitted symbol vector
  • n represents the measurement noise
  • Precoding usually requires the transmitter to fully know the channel state information (Channel State Information, called "CSI").
  • CSI Channel State Information
  • a common method is that the user equipment quantizes the instantaneous CSI and feeds it back to the base station.
  • the CSI information fed back by the existing LTE R8 system may include a Rank Indicator ("Rain Indicator”), a Precoding Matrix Indicator (PMI), and a Channel Quality Indicator (Channel Quality Indicator).
  • the cartridge is called "CQI”), etc., where RI and PMI are used to indicate the number of layers used and the precoding matrix, respectively.
  • the set of precoding matrices used is generally referred to as a codebook, and each of the precoding matrices may be referred to as a codeword.
  • the existing 4-antenna codebook for the LTE R8 system is based on the Householder transform design, and the LTE R10 system introduces a dual-codebook design for the 8-antenna.
  • the above two codebooks are mainly for the antenna design of a conventional base station, which uses a fixed or remote ESC downtilt angle to control the vertical direction antenna beam direction, and only the horizontal direction can dynamically adjust its beam direction by precoding or beamforming. .
  • AAS Active Antenna Systems
  • the AAS base station further provides design freedom in the vertical direction of the antenna, mainly through its horizontal and vertical two-dimensional antenna array.
  • each antenna port in the horizontal direction can be obtained by weighting a plurality of array elements in the vertical direction
  • the conventional base station uses only a horizontal one-dimensional array.
  • FIG. 1-1A is a schematic diagram of a Uniform Linear Array (ULA) antenna configuration of a conventional base station
  • FIG. 1-1B is a schematic diagram of a Cross Polarization (XPO) antenna configuration of a conventional base station.
  • UUA Uniform Linear Array
  • XPO Cross Polarization
  • Figure 1-2A is a schematic diagram of a uniform line array antenna configuration of an AAS base station
  • Figure 1-2B is a schematic diagram of a cross-polarized antenna configuration of an AAS base station.
  • more antenna ports may need to be considered.
  • the number of antenna ports currently considered may be 8, 16, 32 or 64.
  • the structure of the antenna array may be different even for the same number of antenna ports, so that the same numbered antenna ports may also have different channel state measurements in different array configurations.
  • the antenna array A is a uniform linear array of 2 rows and 8 columns
  • the antenna array B is a uniform linear array of 4 rows and 4 columns, although both the antenna array A and the antenna array B have 16 antenna ports.
  • the structure of the antenna array is different.
  • the embodiment of the invention provides a method for reporting channel state information, a user equipment and a base station, which can improve the efficiency or performance of the system.
  • a method for reporting channel state information CSI comprising: receiving a first reference signal set sent by a base station, where the first reference signal set includes at least two reference signals; and sending a first CSI to the base station, Determining, according to the first reference signal set, the first CSI includes a first rank indication RI and/or a first precoding matrix indication PMI; receiving a second reference signal set sent by the base station, the second reference signal The set is determined based on the first CSI, the second reference signal set includes At least one reference signal; transmitting a second CSI to the base station, the second CSI being determined according to the second reference signal set.
  • the receiving, by the base station, a second reference signal set, where the second reference signal set is determined by the first CSI includes: receiving, sending, by the base station a second reference signal set, the second reference signal set being determined by the first RI included in the first CSI, or the second reference signal set being included by the first CSI and the preset precoding The number of matrix layers is determined, or the second reference signal set is determined based on the first RI and the first PMI included in the first CSI.
  • each reference signal included in the first reference signal set respectively corresponds to one of the base stations An antenna in the antenna sub-array; each of the reference signals included in the second reference signal set respectively corresponds to one of the plurality of antenna sub-arrays included in the base station.
  • the first RI is 2 The power of the integer.
  • the first reference signal set The transmission period is longer than the transmission period of the second reference signal set.
  • a CSI the first CSI is determined according to the first reference signal set, including: determining, according to the first reference signal set, a first precoding matrix from a first codebook; and transmitting, by the base station, a first CSI, the first
  • the CSI includes a first rank indication RI and/or a first precoding matrix indication PMI, where the first PMI is used to indicate the first precoding matrix;
  • the first codebook includes a precoding matrix that is a discrete Fourier transform DFT Matrix, Hadamard Hadamard Matrix, Haushold Householder Matrix, Kronecker Kronecker Product of Two DFT Matrices, Kronecker Product of DFT Matrix and Hadamard Matrix, or DFT Matrix with Hauser The Krone's product of the German matrix.
  • the second CSI is determined according to the second reference signal set, including: determining, according to the second reference signal set, a second precoding matrix from the second codebook; and sending a second CSI to the base station, where
  • the second CSI includes a second rank indicator RI and/or a second precoding matrix indicator PMI, where the second PMI is used to indicate the second precoding matrix;
  • the second codebook includes at least one precoding matrix W, the pre The coding matrix W has a structure determined by the following equation:
  • E ⁇ w ® ve ⁇ w ® v -e ⁇ w ® v , [] ⁇ represents matrix transposition; ® represents Croner's product, ⁇ , ⁇ are positive integers; ⁇ , and are phases.
  • a second aspect provides a method for reporting channel state information, the method comprising: transmitting, to a user equipment, a first reference signal set, where the first reference signal set includes at least two reference signals; receiving the first sent by the user equipment Channel state information CSI, the first CSI is determined based on the first reference signal set, the first CSI includes a first rank indicator RI and/or a first precoding matrix indicator ⁇ ; determining a second reference signal according to the first CSI
  • the second reference signal set includes at least one reference signal; the second reference signal set is sent to the user equipment; and the second CSI sent by the user equipment is received, where the second CSI is determined based on the second reference signal set.
  • Determining, by the CSI, the second reference signal set including: determining, according to the first RI, the second reference signal set when the first CSI includes the first RI; or when the first CSI includes the first ,, according to Determining the second reference signal set by the first ⁇ and the preset precoding matrix layer; or determining, according to the first RI and the first ⁇ , when the first CSI includes the first RI and the first SI The second reference signal set.
  • each reference signal included in the first reference signal set respectively corresponds to one of the base stations An antenna in the antenna sub-array; each of the reference signals included in the second reference signal set respectively corresponds to one of the plurality of antenna sub-arrays included in the base station.
  • the first RI is 2 The power of the integer.
  • the sending period of the first reference signal set is longer than the sending period of the second reference signal set.
  • the first PMI is used And indicating, by the user equipment, a first precoding matrix determined from the first codebook according to the first reference signal set; where the first codebook includes a precoding matrix that is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix. , Haushold Householder matrix, Kronecker kronecker product of two DFT matrices, Kronecker product of DFT matrix and Hadamard matrix, or Kronney of DFT matrix with Haushold matrix Keer product.
  • the receiving the user equipment sends The second CSI includes: receiving a second CSI sent by the user equipment, where the second CSI includes a second rank indication RI and/or a second precoding matrix indication PMI, where the second PMI is used to indicate that the user equipment is configured according to the a second precoding matrix determined from the second codebook; wherein the second codebook includes at least one precoding matrix w having a structure determined by the following equation:
  • T represents matrix transposition
  • ® represents Croner's product
  • M N are positive integers
  • and are phases.
  • a user equipment configured to include: a first receiving module, configured to receive a first reference signal set sent by a base station, where the first reference signal set includes at least two reference signals; And transmitting, by the base station, first channel state information CSI, where the first CSI is determined according to the first reference signal set, where the first CSI includes a first rank indication RI and/or a first precoding matrix indicator ⁇ ; a receiving module, configured to receive a second reference signal set sent by the base station, where the second reference signal set is determined based on the first CSI sent by the first sending module, where the second reference signal set includes at least one reference signal; And a sending module, configured to send, according to the base station, a second CSI, where the second CSI is determined according to the second reference signal set received by the second receiving module.
  • the second receiving module is specifically configured to: receive a second reference signal set sent by the base station, where the second reference signal set is based on the first CSI The first RI determination included, or the second reference signal set is determined based on the first PMI included in the first CSI and a preset number of precoding matrix layers, or the second reference signal set is included based on the first CSI The first RI and the first PMI are determined.
  • the first receiving module receives each reference signal included in the first reference signal set Corresponding to one of the antenna sub-arrays of the base station; each reference signal included in the second reference signal set received by the second receiving module respectively corresponds to one of the plurality of antenna sub-arrays included in the base station Subarray.
  • the first RI is 2 The power of the integer.
  • the first receiving module receives The transmission period of the first reference signal set is longer than the transmission period of the second reference signal set received by the second receiving module.
  • the first sending module is specific And: determining, according to the first reference signal set, a first precoding matrix from the first codebook; and sending, to the base station, a first CSI, where the first CSI includes a first rank indicator RI and/or a first precoding matrix Instructing a PMI, the first PMI is used to indicate the first precoding matrix; wherein the first codebook includes a precoding matrix that is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, a Haushold Householdholder matrix, The Kronecker kronecker product of two DFT matrices, the Kronecker product of the DFT matrix and the Hadamard matrix, or the Kronecker product of the DFT matrix and the Hausschild matrix.
  • the second sending module is specific And: determining, according to the second reference signal set, a second precoding matrix from the second codebook; and sending, to the base station, a second CSI, where the second CSI includes a second rank indicator RI and/or a second precoding matrix Instructing a PMI, where the second PMI is used to indicate the second precoding matrix; wherein the second codebook At least one precoding matrix W is included, the precoding matrix W having a structure determined by the following equation:
  • T represents matrix transposition
  • ® means Kronel's product, M, ⁇ , and are phases.
  • a base station in a fourth aspect, includes: a first sending module, configured to send, to a user equipment, a first reference signal set, where the first reference signal set includes at least two reference signals; Receiving, by the user equipment, first channel state information CSI, the first CSI is determined based on the first reference signal set, where the first CSI includes a first rank indicator RI and/or a first precoding matrix indicator ⁇ ; a module, configured to determine, according to the first CSI received by the first receiving module, a second reference signal set, where the second reference signal set includes at least one reference signal, and a second sending module, configured to send the determining to the user equipment
  • the second reference signal set determined by the module is configured to receive a second CSI sent by the user equipment, where the second CSI is determined based on the second reference signal set.
  • the determining module is specifically configured to: when the first CSI includes the first RI, determine the second reference signal set according to the first RI Or determining the second reference signal set according to the first frame and the preset number of precoding matrix layers when the first CSI includes the first frame; or including the first RI and the first CSI And determining, by the first RI, the second reference signal set according to the first RI and the first ⁇ .
  • the reference signal that is sent by the first sending module includes each reference signal Corresponding to one antenna of one antenna sub-array of the base station; each reference signal included in the second reference signal set sent by the second sending module respectively corresponds to one of the plurality of antenna sub-arrays included in the base station Subarray.
  • the first RI is 2 The power of the integer.
  • the first reference signal set The transmission period is longer than the transmission period of the second reference signal set.
  • the first PMI is used for And indicating, by the user equipment, the first precoding matrix determined from the first codebook according to the first reference signal set; wherein the first codebook includes a precoding matrix that is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, and a ho Schord Householdholder matrix, Kronecker kronecker product of two DFT matrices, Kronecker product of DFT matrix and Hadamard matrix, or DFT matrix with Kronek of Hausdorfd matrix product.
  • a precoding matrix that is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, and a ho Schord Householdholder matrix, Kronecker kronecker product of two DFT matrices, Kronecker product of DFT matrix and Hadamard matrix, or DFT matrix with Kronek of Hausdorfd matrix product.
  • the second receiving module is specific For receiving: the second CSI sent by the user equipment, where the second CSI includes a second rank indication RI and/or a second precoding matrix indication PMI, where the second PMI is used to indicate that the user equipment is configured according to the second reference signal And a second precoding matrix determined from the second codebook; wherein the second codebook includes at least one precoding matrix W having a structure determined by the following equation:
  • T represents matrix transposition;
  • ® means Kronel's product, M, ⁇ , and are phases.
  • the user equipment may receive the first reference signal set sent by the base station, and determine and send the first to the base station according to the first reference signal set.
  • the CSI provides preliminary information about the channel state between the base station and the user equipment, so that the base station can further determine the second reference signal set of the user equipment based on the preliminary information of the channel state, and the user equipment can be according to the second
  • the reference signal set obtains the second CSI more efficiently or more accurately, thereby increasing the efficiency or performance of the system.
  • Figure 1-1A is a schematic diagram of a uniform linear array antenna configuration of a conventional base station.
  • 1-1B is a schematic diagram of a cross-polarized antenna configuration of a conventional base station.
  • Figure 1-2A is a schematic diagram of a uniform linear array antenna configuration of an AAS base station.
  • Figure 1-2B is a schematic diagram of a cross-polarized antenna configuration of an AAS base station.
  • FIG. 2 is a schematic flow chart of a method for reporting channel state information according to an embodiment of the present invention.
  • 3A and 3B are schematic views of a cross-polarized antenna array configuration applied in an embodiment of the present invention.
  • FIG. 4A and 4B are schematic diagrams showing another uniform linear array antenna configuration applied in an embodiment of the present invention.
  • FIG. 5 is another schematic flowchart of a method of reporting channel state information according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is another schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is another schematic block diagram of a base station according to an embodiment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • General Packet Radio Service General Packet Radio Service
  • LTE Long Term Evolution
  • LTE frequency division duplex Frequency Division Duplex
  • LTE time division duplex Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • a user equipment may be referred to as a terminal, a mobile station ("Mobile” (“MS”), or a mobile terminal ( Mobile Terminal), etc.
  • the user equipment can communicate with one or more core networks via a Radio Access Network (“RAN”), for example, the user equipment can be a mobile phone (or “cellular” “Telephone” or a computer with a mobile terminal, etc., for example, the user device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • RAN Radio Access Network
  • the base station may be a base station (Base Transceiver Station, called “BTS”) in GSM or CDMA, or may be a base station (NodeB, "NB” called “NB”) in WCDMA, or may be
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • eNB The evolved base station
  • LTE Long Term Evolution
  • FIG. 2 shows a schematic flow diagram of a method 100 of reporting channel state information CSI, which may be performed by a user equipment, in accordance with an embodiment of the present invention.
  • the method 100 includes:
  • the first reference signal set sent by the base station is received, where the first reference signal set includes at least two reference signals.
  • the first CSI is sent to the base station, where the first CSI is determined according to the first reference signal set, where the first CSI includes a first rank indication RI and/or a first precoding matrix indication PMI;
  • S130 Receive a second reference signal set sent by the base station, where the second reference signal set is determined based on the first CSI, where the second reference signal set includes at least one reference signal.
  • the first reference signal set and the second reference signal set respectively comprise at least two and at least one reference signal.
  • Each reference signal corresponds to one antenna port, and each antenna port may correspond to one physical antenna or may correspond to one virtual antenna, wherein the virtual antenna may be a weighted combination of multiple physical antennas.
  • the user equipment can measure and report channel state information between the user equipment and the antenna port according to the reference signal corresponding to the antenna port.
  • Reference signals can usually be divided into two categories depending on the purpose or function: One type of reference signal Used for channel state or channel quality measurement to achieve scheduling; another type of reference signal is used for coherent demodulation of received signals containing control information or data information.
  • the reference signal for coherent demodulation is called a Demodulation Reference Signal ("DMRS"), which is also referred to as a UE-specific reference signal (UE). -specific reference signal );
  • DMRS Demodulation Reference Signal
  • UE-specific reference signal UE-specific reference signal
  • CSI-RS Channel State Information-Reference Signal
  • the DMRS is transmitted with the physical downlink shared channel (Physical Downlink Shared CHannel), which is used for channel estimation during PDSCH demodulation; and the CSI-RS is used by the user equipment of the LTE R10 system to measure channel status. Especially for the case of multi-antenna transmission.
  • a Rank Indicator (“Rain Indicator")
  • Ca Precoding Matrix Indicator
  • Precoding Matrix Indicator
  • Channel Quality Indicator Channel Quality Indicator
  • a cell-specific reference signal (Cell-specific Reference Signal, called “CRS”) can be used for UE channel estimation, thereby implementing a downlink control channel (Physical Downlink Control CHannel, called "PDCCH”) and other public Demodulation of the channel, the reference signal is inherited from the LTE R8/9 system.
  • the CRS is also used in the LTE R8/9 system for the measurement of channel state information and the demodulation of data channels.
  • the DMRS supports up to eight antenna ports, and the number of DMRS antenna ports used by each UE is notified to the UE through downlink control information (Downlink Control Information, called "DCI").
  • DCI Downlink Control Information
  • CSI-RS Supports up to 8 antenna ports.
  • the number of antenna ports can be 1, 2, 4 or 8.
  • CRS supports up to 4 antenna ports.
  • the number of antenna ports can be 1, 2 or 4.
  • CSI-RS in order to support the same number of antenna ports, CSI-RS has a lower density in frequency, resulting in less overhead.
  • a base station configured with an AAS or a two-dimensional antenna array, particularly a system with a large-scale antenna (such as Massive MIMO)
  • efficient measurement of channel state information and a method of reporting are not found.
  • the design method for the conventional base station is adopted, the channel state information measurement and the notification method are promoted.
  • one antenna port is configured for each physical antenna, and each antenna port corresponds to one reference signal, and then multiple antennas are used.
  • the overhead occupied by the reference signal sent on the port monotonously increases with the number of antenna ports; on the other hand, the feedback overhead of channel state information corresponding to multiple antenna ports also increases, and the user
  • the computational complexity of the device measurement channel state information is also high.
  • the user equipment may receive the first reference signal set sent by the base station, and determine and send the first CSI according to the first reference signal set, where the first CSI provides the base station and the user equipment. Preliminary information of the channel state, so that the base station can further determine the second reference signal set of the user equipment based on the preliminary information of the channel state, so that the user equipment can obtain the second CSI more efficiently or accurately according to the second reference signal set, thereby Improve system efficiency or performance.
  • the first reference signal set may correspond to one antenna subset of the antenna set configured by the base station, where each reference signal in the first reference signal set may correspond to one antenna in the antenna subset, and the antenna subset
  • the size can be much smaller than the size of the antenna collection.
  • the subset of antennas has a strong spatial correlation or the subset of antennas has a coarse spatial resolution.
  • the user equipment may obtain the first CSI according to the first reference signal set, where the first CSI may include a first RI and/or a first PMI, where the first RI may reflect spatial correlation information of a channel between the base station and the user equipment.
  • the first PMI may reflect spatial resolution information of a channel between the base station and the user equipment, such that the second reference signal set may be based on preliminary information provided by the first CSI (including spatial correlation information and/or spatial resolution information) It is determined that the user equipment can then obtain the second CSI more efficiently or more accurately based on the second reference signal set.
  • AAS has been widely deployed and applied in practice.
  • the following will take a cross-polarized antenna array configuration shown in FIGS. 3A and 3B as an example, and A uniform linear array antenna configuration shown in FIGS. 4A and 4B is taken as an example to describe a method of reporting channel state information according to an embodiment of the present invention.
  • the embodiment of the present invention is only described by taking the AAS antenna configuration as an example.
  • the present invention is not limited thereto, and the antenna configuration of other systems may also adopt the technical solution of the embodiment of the present invention.
  • FIG. 3A shows a dual-polarized antenna array consisting of 64 antennas, wherein the antenna array can be divided into two co-polarized antenna arrays, as shown in FIG. 3A, a co-polarized antenna array A and a co-polarized antenna array.
  • B the two co-polarized antenna arrays are respectively +45. It is constructed with an antenna that is -45° polarized.
  • the co-polarized antenna array A can be further divided into four identical antenna sub-arrays, such as the co-polarized antenna sub-arrays a0, al, a2, and a3 shown in FIG.
  • the co-polarized antenna array B is also It can be further divided into four identical antenna sub-arrays b0, bl, b2 and b3; wherein each antenna sub-array comprises 8 antennas.
  • the co-polarized antenna sub-arrays a0, a1, a2, and a3 are in the same position as the antenna sub-arrays b0, bl, b2, and b3, respectively, that is, the dual-polarized antenna array can be divided into eight antenna sub-arrays.
  • the first reference signal set may be transmitted only on one of the antenna sub-arrays, and each reference signal included in the first reference signal set respectively corresponds to one antenna of the base station An antenna in the subarray.
  • the first set of reference signals may be transmitted only on the co-polarized antenna sub-array a0. That is, the first reference signal set may include eight reference signals, wherein each reference signal is transmitted on one of the co-polarized antenna sub-arrays aO. Therefore, the user equipment UE may determine the first precoding matrix from the first codebook by receiving each reference signal in the first reference signal set transmitted by the base station on the co-polarized antenna sub-a, the first precoding matrix. A matrix in an 8-ant precoding codebook.
  • the user equipment may indicate the first precoding matrix determined by the user equipment by sending a first CSI to the base station, where the first CSI may include a first rank indication RI and/or a first PMI.
  • the first PMI may be used to indicate the first precoding matrix;
  • the first RI may be used to indicate the number of columns of the first precoding matrix, that is, the number of layers of the first precoding matrix.
  • the first CSI may further include other information such as a first channel quality indicator CQI.
  • the first rank RI of the first precoding matrix may also be the size of a maximum linear independent group composed of each column vector set of the first precoding matrix. It should also be understood that, since the space between the respective antenna sub-array antenna correlation, often much less than the first number of antennas RI S s-polarized antenna with subarrays included, the S s is the same polarization antenna subarrays size. In addition, since the antenna sub-array has a certain spatial resolution, the user equipment determines the spatial directivity information of the channel between the base station and the user equipment by measuring the first pre-coding matrix determined by the first reference signal set.
  • the first CSI provided by the user equipment to the base station provides the base station with the coverage of the second reference signal set sent to the user equipment (ie, utilizes spatial directivity information).
  • B2 and b3) are precoded to obtain antenna ports corresponding to the respective antenna subarrays.
  • the first precoding matrix determined by the first CSI of the base transmission is consistent, or may be a deformation of the first precoding matrix determined by the first CSI sent by the user equipment, for example, in the first precoding matrix.
  • Each column vector is obtained by symmetric amplitude weighting.
  • Each antenna port is a combination obtained by using the first precoding matrix of the corresponding antenna sub-array. For example, as shown in FIG.
  • antenna ports Pa0, Pal, Pa2, and Pa3 are antenna sub-arrays a0, al, a2, and A3 pre-coded antenna port; antenna ports Pb0, Pbl, Pb2, and Pb3 are antenna sub-arrays The antenna ports obtained by b0, bl, b2, and b3 are precoded.
  • the second reference signal set used by the user equipment determined by the base station may include RI ⁇ Ns reference signals based on the first CSI fed back by the user equipment.
  • the user equipment may calculate and report the second channel state information CSI, where the second CSI may include a second channel quality indicator CQI, a second precoding matrix indication PMI, and a second rank indication. At least one of the RIs.
  • the second CSI is status information corresponding to RI ⁇ Ns antenna ports.
  • the method for reporting channel state information according to an embodiment of the present invention is described in detail above with reference to the cross-polarized antenna array configuration shown in FIG. 3A and FIG. 3B. The following will be described in detail with respect to the uniform linear array antenna configuration shown in FIGS. 4A and 4B. A method of reporting channel state information according to an embodiment of the present invention is described.
  • the homo-linear antenna array is composed of 64 antennas, wherein the array can be divided into two co-polarized antenna arrays, such as the co-polarized antenna array C and the co-polarized antenna array as shown in FIG. 4A. D. Both of the co-polarized antenna arrays are composed of vertically polarized or 90° polarized antennas.
  • the co-polarized antenna array C can be further divided into four identical antenna sub-arrays, as shown in FIG.
  • the first reference signal set may be transmitted only on one of the antenna sub-arrays, for example, on the co-polarized antenna sub-array c0. That is, the first reference signal set may include eight reference signals, wherein each reference signal is transmitted on one of the co-polarized antenna sub-arrays c0. Therefore, the user equipment UE transmits the first base station on the co-polarized antenna sub-array c0 by receiving the base station.
  • a first precoding matrix may be determined from the first codebook, and the first precoding matrix is a matrix in an 8-antenna precoding codebook.
  • the user equipment may indicate the first precoding matrix determined by the user equipment by sending a first CSI to the base station, where the first CSI may include the first rank RI and/or the first PMI. Further, the first CSI may further include other information such as a first channel quality indicator CQI. It should be understood that due to the spatial correlation between the antennas in the antenna sub-array, the first RI is often much smaller than the number of antennas S s included in the co-polarized antenna sub-array, and the S s is the size of the co-polarized antenna sub-array. .
  • the user equipment obtains the spatial directionality information provided by the base station to the user equipment by measuring the precoding matrix obtained by the first reference signal set sent by the antenna sub-array. Therefore, the CSI information provided by the user equipment to the base station provides the base station with the coverage of the second reference signal set sent to the user equipment.
  • the base station may precode each antenna sub-array (including the co-polarized antenna sub-arrays c0, cl, c2, and c3 and the co-polarized antenna sub-arrays d0, dl, d2, and d3), so that corresponding antenna sub-arrays can be obtained.
  • Antenna port The precoding matrix used by the precoding may be consistent with the first precoding matrix determined by the first CSI sent by the user equipment, or the precoding matrix used by the precoding is determined by the first CSI sent by the user equipment.
  • the deformation of the first precoding matrix is obtained, for example, by symmetrically weighting each column vector in the first precoding matrix.
  • the first rank indication is indicated;
  • N s represents the number of antenna sub-arrays.
  • Each antenna port is a combination obtained by using the first precoding matrix for the corresponding antenna sub-array.
  • antenna ports Pc0, Pel, Pc2, and Pc3 are antenna sub-arrays c0, cl, c2, and c3, respectively.
  • the pre-coded antenna port; antenna ports Pb0, Pb1, Pb2, and Pb3 are antenna ports obtained by precoding the antenna sub-arrays b0, bl, b2, and b3, respectively.
  • Each of the antenna ports is a combination obtained by using a column of the first precoding matrix for the corresponding antenna sub-array.
  • the second reference signal set used by the user equipment determined by the base station includes RI ⁇ Ns reference signals.
  • the second reference signal set includes ⁇ ⁇ ⁇ ⁇ ⁇ reference signals, which may be on antenna ports Pc0, Pel, Pc2, and Pc3, and antenna ports Pd0, Pdl, Pd2, and Pd3, respectively.
  • the user equipment may determine and report the second channel state information CSI, where the second CSI may include at least one of the second channel quality indicator CQI, the second precoding matrix indicator PMI, and the second rank indicator RI.
  • the user equipment measures the received reference signal set and the reference signal included in the second reference signal set, and feeds back channel state information, where the first reference signal set uses S s reference signal ports,
  • the two reference signal sets use RI ⁇ Ns reference signal ports.
  • the system uses a total of Ss+RI ⁇ Ns reference signal ports; when one reference signal set can be a subset of another reference signal set, the system uses a total of max (S) s , Rl!*N s ) reference signal ports, where max (S s denotes S s and
  • the user equipment measures the received reference signal set and the reference signal included in the second reference signal set, and feeds back the first CSI and the second CSI, where the first CSI is based on the S s used by the first reference signal set.
  • the reference signal port is obtained, and the second CSI is obtained based on the RI ⁇ Ns reference signal ports used by the second reference signal set, wherein S s , RI ⁇ Ns and Ss+RI ⁇ Ns are smaller than the total number of antenna ports ⁇ ⁇ .
  • the CSI feedback accuracy of the S s or Ss+RI ⁇ Ns antenna ports can be greatly improved by using the same feedback overhead with respect to the channel state information measurement of the ⁇ ⁇ antenna ports, and when the first CSI includes the first In a PMI, the spatial resolution information provided by the first reference signal set may further improve the feedback accuracy of the second CSI; on the other hand, the implementation of CSI measurement of the S s or Ss+Rl!*N s antenna ports
  • the complexity is often much smaller than the implementation complexity of CSI measurements of ⁇ ⁇ antenna ports, which can effectively improve the performance of the system.
  • the embodiment of the present invention is only described by taking the antenna array structure shown in FIG. 3A and FIG. 4A as an example, but the present invention is not limited thereto, and the method according to the embodiment of the present invention may also be applied to other methods.
  • the antenna array structure can be applied, for example, to an alternating polarization antenna array or the like.
  • the division of the antenna array is merely an example, and may be divided by other methods, for example, divided into four, 16 antenna sub-arrays, and the like.
  • the embodiments of the present invention are still applicable, and are not limited to the above examples.
  • the user equipment acquires the first CSI and the second CSI respectively according to the first reference signal set and the second reference signal set sent by the base station, where the second reference signal set Obtaining according to the first CSI, so that the spatial correlation of the antenna ports corresponding to the first reference signal set can be fully utilized, so that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the transmit reference signal or data.
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, wherein the first CSI is obtained based on the first reference signal set The second CSI is obtained based on the second reference signal set, and the number of antenna ports corresponding to the first reference signal set and the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, and the user equipment provides the first reference signal. Further measuring the channel shape using the second reference signal set based on the spatial resolution CSI information, it is possible to enhance the accuracy of the CSI feedback, and can effectively reduce the complexity of the user channel state information measurement apparatus, it is possible to effectively improve the performance of the system.
  • each reference signal included in the first reference signal set respectively corresponds to one antenna in one antenna sub-array of the base station; each reference signal included in the second reference signal set Corresponding to one of the plurality of antenna sub-arrays included in the base station.
  • the first reference signal set may be transmitted only on the co-polarized antenna sub-array a0 or c0, wherein the first reference signal set includes eight reference signals in the co-polarized antenna sub-array a0 Or transmitting on one antenna of c0, that is, the first reference signal set corresponds to one antenna sub-array a0 or c0, and each reference signal included in the first reference signal set respectively corresponds to an antenna sub-array a0 of the base station An antenna, or one of the antenna sub-arrays c0 corresponding to the base station, wherein the first reference signal set includes a number of reference signals equal to the number of antennas in the antenna sub-array.
  • the second reference signal set includes RI ⁇ Ns reference signals, and each reference signal is respectively in 8 antenna sub-arrays a0, a1, a2, a3, b0, bl, b2, and b3.
  • each reference signal included in the second reference signal set respectively corresponds to one of the plurality of antenna sub-arrays included in the base station, for example, each reference signal corresponds to an antenna sub-array A0, al, a2, a3, b0, bl, b2 or b3, wherein the second reference signal set includes The number of reference signals is equal to the number of antenna subarrays.
  • the size of the first reference signal set and the size of the second reference signal set may also be the same.
  • the first reference signal set and the second reference signal set occupy the same time-frequency resource in the resource block or the time-frequency resource used by one of the two is a subset of another used time-frequency resource, but the present invention Not limited to this.
  • the spatial correlation of the antenna ports corresponding to the first reference signal set can be fully utilized, so that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the transmit reference signal or data.
  • the antenna overhead thereby effectively improving the efficiency of the system;
  • the user equipment further measures the channel state information CSI by using the second reference signal set based on the spatial resolution provided by the first reference signal, and can improve the accuracy of the CSI feedback, and
  • the complexity of measuring the channel state information of the user equipment is effectively reduced.
  • the user equipment receives the first reference signal set sent by the base station.
  • the user equipment receives a first reference signal set transmitted by the base station on an antenna sub-array a0 or c0, wherein each reference signal included in the first reference signal set corresponds to one of an antenna sub-array of the base station.
  • the user equipment sends the first channel state information CSI to the base station, where: the user equipment determines, according to the first reference signal set, the first precoding matrix from the first codebook, and sends the first channel state information to the base station.
  • the first CSI may include a first RI, and may also include a first PMI, and may further include a first RI and a first PMI, where the first PMI is used to indicate the first precoding matrix, and further, the first The CSI may also include a first CQI or the like, and the present invention is not limited thereto.
  • the user equipment performs channel estimation based on the reference signal included in the first reference signal set; and may use the channel code and the predefined criteria, such as a channel capacity maximization criterion or a throughput maximization criterion, etc., from the first codebook.
  • the first precoding matrix is selected. It should be understood that, in the embodiment of the present invention, the precoding matrix may be selected by using multiple methods or based on multiple predefined criteria. For the sake of cleaning, no further details are provided herein.
  • the user equipment may receive a second reference signal set sent by the base station, where the second reference signal set is determined by the first CSI.
  • receiving the second reference signal set sent by the base station, where the second reference signal set is determined by the first CSI including:
  • a second reference signal set where the second reference signal set is determined by the first RI included in the first CSI, or the second reference signal set is included in the first PMI by the first CSI And determining a preset precoding matrix layer number, or the second reference signal set is determined based on the first RI and the first PMI included in the first CSI.
  • the first CSI may include only a first rank indication RI, where the first RI is used to indicate a rank (Rank) of the first precoding matrix, and at this time, the second reference The signal set may be determined according to the rank of the first precoding matrix.
  • the first RI may be further used to indicate the number of layers of the first precoding matrix, where the number of layers of the first precoding matrix may be The number of columns equal to the first precoding matrix may also be the size of the maximum linearly independent group composed of the respective column vector sets of the first precoding matrix.
  • the first RI or the preset precoding matrix layer number is an integer power of 2.
  • the first RI or the preset precoding matrix layer number is 1, 2, 4 or 8 and so on.
  • the base station determines the second reference signal set according to the first RI included in the first CSI and the corresponding relationship between the RI and the reference signal set. Specifically, for example, the base station determines, according to a correspondence table between the RI and the reference signal set as shown in Table 1 or Table 2, a second reference signal set in the reference signal set including at least two candidates, where One R
  • the first CSI may include only the first PMI, and does not include the first RI.
  • the reference signal set may be determined by the first PMI included in the first CSI and a preset number of precoding matrix layers, and the preset precoding matrix layer number may be indicated by a predefined first RI.
  • the number of layers of the precoding matrix indicated by the predefined first RI is smaller than the size of the first reference signal set.
  • the size of the first reference signal set may be the number of reference signal ports in the first reference signal set or the number of antenna ports corresponding to the first reference signal set.
  • the number of layers of the first precoding matrix is predefined, that is, the number of layers of the first precoding matrix is equal to the value of the predefined first RI.
  • the size of the second reference signal set is an integer multiple of the number of layers of the first precoding matrix, or is an integer multiple of the predefined first RI; or the number of antenna ports corresponding to the second reference signal set It is an integer multiple of the number of layers of the first precoding matrix, or is a predefined integer multiple of the first RI.
  • the value of the predefined first RI is L
  • the number of layers of the first precoding matrix is L
  • the size of the second reference signal set or the number of antenna ports corresponding to the second reference signal set is L.
  • the value of the predefined first RI may be determined according to the size of the first reference signal set or the number of antenna ports corresponding to the first reference signal set.
  • the value of the predefined first RI or the size of the first reference signal set is notified to the user equipment UE by using a broadcast channel or dedicated signaling.
  • the first CSI when the first CSI includes only the first PMI, the first RI does not need to be fed back, so that the feedback overhead can be further effectively reduced.
  • the first CSI may include the first PMI and the first RI, where the second reference signal set is determined by the first RI or the first PMI included in the first CSI, and may also be The first RI and the first PMI included in the first CSI are jointly determined, and the present invention is not limited thereto.
  • the base station determines the second reference signal set according to the first RI and the first PMI included in the first CSI, and the correspondence between the RI and the PMI and the reference signal set.
  • the base station determines the second reference signal set according to the first PMI included in the first CSI and the predefined first RI, and the correspondence between the RI and the PMI and the reference signal set.
  • the base station may determine the second reference in the set of reference signals including at least two candidates according to the first RI and the correspondence table between the first PMI and the second reference signal set as shown in Table 3 or Table 4
  • the resources used by each antenna port can be notified to the UE by the base station through higher layer signaling, for example, antenna ports x ⁇ x+7, x-x+15
  • the resources used by x ⁇ x+23 or x ⁇ x+31 can be configured by the eNB to the UE through high layer signaling.
  • a sending period of the first reference signal set is longer than a sending period of the second reference signal set.
  • the period in which the base station transmits the first reference signal set is longer than the period in which the second reference signal set is transmitted. Since the antenna port for measuring the first reference signal set generally has stronger spatial or temporal or frequency correlation than the antenna port corresponding to the second reference signal set, the channel state changes relatively slowly, so the first reference signal is sent. The time interval or span of the set can be longer, thereby further reducing the time-frequency resource overhead occupied by the transmitted reference signal set.
  • the first CSI has a larger advertising period than the second CSI, for example, the first CSI reporting period is N times of the second CSI reporting period, where N is a positive integer.
  • the user equipment determines a precoding matrix included in the first codebook used by the first precoding matrix, which is a 2-antenna codebook in the LTE R10 system, a precoding matrix in a 4-antenna codebook or an 8-antenna codebook; or in an LTE R12 system Precoding matrix in 2 antenna codebook, 4 antenna codebook or 8 antenna codebook.
  • a precoding matrix included in the first codebook used by the first precoding matrix which is a 2-antenna codebook in the LTE R10 system, a precoding matrix in a 4-antenna codebook or an 8-antenna codebook; or in an LTE R12 system Precoding matrix in 2 antenna codebook, 4 antenna codebook or 8 antenna codebook.
  • the precoding matrix included in the first codebook is a Discrete Fourier Transform ("DFT") matrix, and a Hadamard matrix.
  • DFT Discrete Fourier Transform
  • the precoding matrix included in the first codebook is a Discrete Fourier Transform ("DFT") matrix, and a Hadamard matrix.
  • DFT Discrete Fourier Transform
  • the precoding matrix included in the first codebook is a Discrete Fourier Transform
  • a Hadamard matrix Householder matrix, Kronecker product of two DFT matrices, Kronecker product of DFT matrices and Hadamard matrices, or DFT matrices and Hausschild matrices Kroneker's product.
  • the precoding matrix in the first codebook may be stored in the user equipment side in advance, or may be stored in the base station side, or may be calculated according to the structure of the precoding matrix, for example, according to the first precoding matrix.
  • the relationship between the indication and the precoding matrix is calculated, but the invention is not limited thereto.
  • the user equipment sends a second CSI to the base station, and the second CSI is determined according to the second reference signal set.
  • the second CSI includes a second channel quality indicator CQI, where the second CQI may be calculated based on a transmit diversity transmission scheme, where the transmit diversity scheme may be a space frequency block coding ("Space Frequency Block Coding") SFBC"), Space Time Block Coding (“STBC”), or Frequency Switch Transmit Diversity (“FSTD”); the second CQI can also be based on The multiple input multiple output (“MIMO”) scheme is calculated.
  • the open-loop MIMO scheme may be a pre-coding scheme based on large delay cyclic delay diversity defined in the LTE R8 system.
  • sending a second CSI to the base station, where the second CSI is determined according to the second reference signal set including:
  • a second CSI where the second CSI includes a second rank indication RI and/or a second precoding matrix indication PMI, where the second PMI is used to indicate the second precoding matrix.
  • the precoding matrix included in the second codebook is a pre-coding in a 2-antenna codebook, a 4-antenna codebook, or an 8-antenna codebook in an LTE R10 system.
  • the second codebook includes a precoding matrix that is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, and Haushold The Householder matrix, the Kronecker kronecker product of two DFT matrices, the Kronecker product of the DFT matrix and the Hadamard matrix, or the Kronecker product of the DFT matrix and the Hausschild matrix.
  • a precoding matrix that is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, and Haushold The Householder matrix, the Kronecker kronecker product of two DFT matrices, the Kronecker product of the DFT matrix and the Hadamard matrix, or the Kronecker product of the DFT matrix and the Hausschild matrix.
  • the second codebook includes a precoding matrix W that is a product of two matrices ⁇ and ⁇ 2 , where the matrix ⁇ is a block diagonalization matrix, and the partition The diagonalization matrix includes at least one block matrix X, each of which is a Kronecker product of two matrices C and D.
  • the kth column of the matrix W 2 can be determined by the following equation (3):
  • the antenna port formed after the coding matrix is precoded (at this time)
  • f ik in the kth column y k of the matrix W 2 may be used to select one of X, as a precoding of the antenna port group formed after the first precoding matrix, It can be used to phase align the precoding of different antenna port groups formed after the first precoding matrix, thereby obtaining a combining gain and greatly improving the signal to interference plus noise ratio of the corresponding layer (Signal to Interference plus Noise Ratio, the tube is called "SINR"). Therefore, by performing CSI feedback using the precoding matrix structure described above, the structural characteristics of the formed antenna array can be utilized to improve the accuracy of the CSI feedback, thereby effectively improving the throughput or spectral efficiency of the system.
  • the precoding matrix in the codebook may be a 2-antenna codebook, a 4-antenna codebook or an 8 antenna in the LTE R10 system.
  • the block matrix X which may be a matrix A, and a matrix B, a kronecker product, that is, a block matrix X, may be determined by the following equation (4) :
  • X. A i .®B i ., 0 ⁇ ⁇ N B -l (4)
  • the block matrix X, 0, l, ..., N s -l is The following equation (5) determines:
  • phase O,l,...,N s -l is a real number.
  • phase can be determined by the following equation
  • a ; "a n a, -" a M _,l (8)
  • the vector f n , n 0, ..., N f -l is a DFT vector, and N f is the number of DFT vectors.
  • the DFT vector f n may be a column vector in the following DFT matrix F, as shown in the following equation (16):
  • the column vector ⁇ can be a column vector in the following matrix G, as shown in the following equation (17):
  • the vector ⁇ can be as shown in Table 5 below:
  • N h is a Hadamard matrix.
  • the column vector may be a column vector in the matrix H NH shown by the following equation (18):
  • the vector may also be determined by (10,), or (10,,):
  • a diag ..., , , N a3 ⁇ 4 / 2 ,,,, , N "
  • N a3 ⁇ 4 /2 ,-1 , a3 ⁇ 4 / 2 ,,, , N a3 ⁇ 4 /2 ,-1,, ⁇ , 1, . 0 a,, 0,,...,, ⁇ -1
  • a ( 10,, ) where the number N of elements in the vector is an even ( even ) number; where, is a real number, m 0,l,...,[N at /2j , LN 3 ⁇ 4 / 2 ” means no The largest integer greater than N / 2 , where vector a in ( 10, ) or ( 10" ) is: a ⁇ f., J, a ⁇ . ⁇ ,... ⁇ ⁇ J or a ⁇ , ⁇ ⁇
  • the vector b may also be determined by (13), or (13"):
  • the vector b, the number of elements N bi is an odd number
  • N b bl ( 13,,) where, in vector b, the number of elements N bi is an even ( even ) number; where is a real number, m 0,l,...,[N bi /2j , [N bi /2" represents the largest integer not greater than /2.
  • the vector b in (11,) or (1 ⁇ ) is be.
  • the matrix A, or the matrix B may also be an LTE R8 system 2 antenna codebook, a precoding matrix in a 4 antenna codebook, or an LTE R10 system 8 antenna codebook or an LTE R12 system 4 antenna code.
  • the precoding matrix in this book may also be an LTE R8 system 2 antenna codebook, a precoding matrix in a 4 antenna codebook, or an LTE R10 system 8 antenna codebook or an LTE R12 system 4 antenna code.
  • the matrix A, and the matrix B one of which may be 1.
  • the phase satisfies the following equation (21):
  • phase difference ⁇ is a real number, Specifically, the value of ⁇ may be 0, a person, a person
  • the phase satisfies the following equation (22) or (23):
  • phase difference ⁇ is a real number, specifically, the ⁇ value may be 0, a woman, a woman,
  • the size of the second reference signal set is 8, That is, the second reference signal set corresponds to 8 antenna ports, and the precoding matrix W may have the following structure:
  • a 0 a 0 (31) where ao e ( f o' f i ⁇ (32)
  • is a 2nd order Hadamard matrix, which is B.
  • W can have the following structure:
  • phase ⁇ is a real number and may be a value of 0, ⁇ , ⁇ , ⁇ , ⁇ ⁇ , ⁇ , ⁇ , and the like (
  • the matrix W may be:
  • ⁇ G ⁇ e 1 , e 2 , e., e i (57)
  • 1, 2, 3, 4 denotes a 4x1 selection vector whose elements except the nth element is 1 Is 0;
  • is a real number, for example, its value can be 0, ⁇ , ⁇ , ⁇ , ⁇ , ⁇ ,
  • the matrix W may be
  • the matrix W 7 may be
  • determining the second precoding matrix from the second codebook according to the second reference signal set includes:
  • a second precoding matrix is selected from the codebook subset based on the second reference signal set.
  • the codebook subset may be pre-defined; or reported by the UE to the base station eNB, and determined by the base station eNB based on the UE's reporting and notified to the UE; or the codebook subset determined and reported by the UE, for example, the most recent The reported codebook subset, etc. Thereby, the feedback overhead and the complexity of the implementation can be further reduced.
  • the codebook subset may comprise a matrix ⁇ or a matrix A, or a matrix B, or a subset of a matrix ⁇ 2 .
  • the codebook subsets have the same matrix ⁇ or matrix A, or matrix B, or a subset of the matrix ⁇ 2 .
  • the codebook subsets overlap each other, and the edge effect of channel state information quantization can be overcome.
  • the block matrix X, and ⁇ ⁇ can be unequal, and can also be equal.
  • X there are multiple Xs, which are equal to ⁇ ⁇ ⁇ , for example, equal X, and ⁇ ⁇ can appear in pairs, which can further reduce the feedback overhead.
  • each of the above matrices may be further multiplied by a scaling factor to achieve power normalization or power balancing.
  • the second codebook includes at least one precoding matrix W, and the precoding matrix W has a structure determined by the following equation:
  • E ⁇ w ® v -e ⁇ w ® v where w and v are N-dimensional column vectors or M-dimensional column vectors, respectively, ® represents the kronecker product, M and N are positive integers;
  • the column vector W or V can be
  • D 1 represents matrix transposition; and is phase
  • the method 100 further includes:
  • the third channel state information CSI is determined and reported.
  • the second CSI may be a second RI and/or a second PMI.
  • the precoding matrix in the first codebook may be stored in the user equipment side in advance, or may be stored in the base station side, or may be calculated according to the structure of the precoding matrix, for example, according to the first precoding matrix.
  • the relationship between the indication and the precoding matrix is calculated, but the invention is not limited thereto.
  • the precoding matrix structure in the codebook involved in each of the above processes is not limited to two or more CSI measurement processes used in the method.
  • the precoding matrix structure described in (67) - (70) may be used in the third CSI measurement and reporting process described above, and may also be used in a CSI measurement process based on a single reference signal set, such as a CRS based on an LTE R8 system. Or the LTE R8 system is based on the CSI-RS CSI measurement process, which is not described here.
  • the scalar is a special case of a vector
  • the vector is a special case of a matrix.
  • the size of the first reference signal set and the size of the second reference signal set may also be the same.
  • the first reference signal set and the second reference signal set occupy the same time-frequency resource in the resource block or the time-frequency resource used by one of the two is a subset of another used time-frequency resource, but the present invention Not limited to this.
  • the first reference signal set and the second reference signal set may use an LTE system cell-specific reference signal CRS or a channel state information reference signal CSI-RS, and the first CSI and the second CSI may be based on LTE R8 or The codebook used by R10 or R12, so that the backward compatibility of the system can be maintained.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the user equipment respectively acquires the first CSI and the second CSI according to the first reference signal set and the second reference signal set sent by the base station, where the user equipment uses The second reference signal set is obtained according to the first rank indication RI and/or the first PMI in the first CSI, so that the day corresponding to the first reference signal set can be fully utilized
  • the spatial correlation of the line ports is such that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna overhead of transmitting the reference signal or data, thereby effectively improving the efficiency of the system;
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, wherein the first CSI is obtained based on the first reference signal set, the second CSI is obtained based on the second reference signal set, and the first reference signal set is obtained.
  • the number of antenna ports corresponding to the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, and the user equipment further measures the channel
  • the CSI improves the accuracy of the CSI feedback and effectively reduces the complexity of measuring the channel state information of the user equipment, thereby effectively improving the performance of the system.
  • a method for reporting channel state information according to an embodiment of the present invention is described in detail from the perspective of a user equipment.
  • a report channel state according to an embodiment of the present invention will be described from the perspective of a base station. The method of information.
  • Figure 5 illustrates a method 200 of reporting channel state information, which may be performed by a base station, in accordance with an embodiment of the present invention. As shown in FIG. 5, the method 200 includes:
  • S220 receiving a first CSI sent by the user equipment, where the first CSI is determined according to the first reference signal set, where the first CSI includes a first rank indication RI and/or a first precoding matrix indication PMI;
  • S230 Determine, according to the first CSI, a second reference signal set, where the second reference signal set includes at least one reference signal.
  • the base station sends the first reference signal set and the second reference signal set, and the user equipment obtains the first according to the first reference signal set and the second reference signal set respectively.
  • a CSI and a second CSI where the second reference signal set sent by the base station to the user equipment is determined according to the first CSI.
  • the base station may further determine the second reference signal set of the user equipment based on the preliminary information of the channel state, so that the user equipment may use the second reference signal according to the preliminary information of the channel state between the base station and the user equipment.
  • the set gets the second CSI more efficiently or more accurately, thereby increasing the efficiency or performance of the system.
  • the first reference signal set may correspond to one antenna of the antenna set configured by the base station.
  • the subset wherein each reference signal in the first reference signal set may correspond to one antenna in the subset of antennas, and the size of the subset of antennas may be much smaller than the size of the antenna set.
  • the antenna subset has a strong spatial correlation or the antenna subset has a coarse-grained spatial resolution.
  • the user equipment may obtain the first CSI according to the first reference signal set, where the first CSI may include a first RI and/or a first PMI, where the first RI may reflect spatial correlation information of a channel between the base station and the user equipment.
  • the first PMI may reflect spatial resolution information of a channel between the base station and the user equipment, such that the second reference signal set may be based on preliminary information provided by the first CSI (including spatial correlation information and/or spatial resolution information) Determining that the user equipment can then obtain the second CSI efficiently or more accurately based on the second set of reference signals.
  • the dual-polarized antenna array consisting of 64 antennas as shown in FIG. 3A, wherein the antenna array includes a co-polarized antenna array A and a co-polarized antenna array B, and the co-polarized antenna array A includes the same polarization.
  • the antenna sub-arrays a0, a1, a2, and a3 the co-polarized antenna array B includes the co-polarized antenna sub-arrays b0, bl, b2, and b3, wherein the dual-polarized antenna array can be divided into a total of eight antenna sub-arrays, each The antenna sub-array has 8 antennas.
  • the base station may transmit the first reference signal set only on one of the antenna sub-arrays, for example, on the co-polarized antenna sub-array a0, that is, the first reference signal set may include 8 reference signal ports, where each reference The signal port is transmitted on one of the co-polarized antenna sub-arrays aO.
  • the user equipment UE may determine the first precoding matrix from the first codebook by receiving each reference signal in the first reference signal set transmitted by the base station on the co-polarized antenna sub-a, the first precoding matrix is A matrix of 8 antenna precoding codebooks.
  • the user equipment may indicate the first precoding matrix determined by the user equipment by sending a first CSI to the base station, where the first CSI may include the first rank RI and/or the first PMI.
  • the first PMI may be used to indicate the first precoding matrix; the first RI may be used to indicate the number of columns of the first precoding matrix, that is, the number of layers of the first precoding matrix. Further, the first CSI may further include other information such as a first channel quality indicator CQI. It should be understood that the first rank RI of the first precoding matrix may also be the size of a maximum linear independent group composed of each column vector set of the first precoding matrix. It should also be understood that, since the space between the respective antenna sub-array antenna correlation, often much less than the first number of antennas RI S s-polarized antenna with subarrays included, the S s is the same polarization antenna subarrays size.
  • the user equipment determines the spatial directivity information of the channel between the base station and the user equipment by measuring the first pre-coding matrix determined by the first reference signal set. Therefore, the first CSI provided by the user equipment to the base station provides the base station with coverage coverage of the second reference signal set sent to the user equipment. Encircle (ie use spatial directional information). B2 and b3) are precoded to obtain antenna ports corresponding to the respective antenna sub-arrays.
  • the first precoding matrix determined by the first CSI is consistent, or may be a variant of the first precoding matrix determined by the first CSI sent by the user equipment, for example, for each of the first precoding matrices.
  • the column vectors are obtained by symmetric amplitude weighting.
  • Each antenna port is a combination obtained by using the first precoding matrix of the corresponding antenna sub-array. For example, as shown in FIG.
  • antenna ports Pa0, Pal, Pa2, and Pa3 are antenna sub-arrays a0, al, a2, and A3 pre-coded antenna port; antenna ports Pb0, Pb1, Pb2, and Pb3 are antenna ports obtained by the pre-coding of the antenna sub-arrays b0, bl, b2, and b3, respectively.
  • the second reference signal set used by the user equipment determined by the base station may include RI ⁇ Ns reference signals based on the first CSI fed back by the user equipment.
  • the user equipment may calculate and report the second channel state information CSI, where the second CSI may include a second channel quality indicator CQI, a second precoding matrix indication PMI, and a second rank indication. At least one of the RIs.
  • the second CSI is status information corresponding to RI ⁇ Ns antenna ports.
  • the base station sends the first reference signal set and the second reference signal set to the user equipment, so that the user equipment acquires the first CSI and the second CSI, respectively.
  • the second reference signal set is obtained according to the first CSI, so that the spatial correlation of the antenna port corresponding to the first reference signal set can be fully utilized, so that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the transmission reference.
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, wherein the first CSI is obtained based on the first reference signal set, The second CSI is obtained based on the second reference signal set, and the number of antenna ports corresponding to the first reference signal set and the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, thereby improving the accuracy of the CSI feedback.
  • the utility model can effectively reduce the complexity of measuring the channel state information of the user equipment, thereby effectively improving the performance of the system.
  • the embodiment of the present invention is only described by taking the antenna array structure shown in FIG. 3A as an example.
  • the present invention is not limited thereto, and the method according to the embodiment of the present invention may also be applied to other antenna array structures, for example, may be applied to Uniform linear array, interlaced polarized array, etc.
  • determining the second reference signal set according to the first CSI includes:
  • the first CSI includes the first PMI, determining the second reference signal set according to the first PMI and the preset number of precoding matrix layers;
  • the first CSI includes the first RI and the first PMI
  • each reference signal included in the first reference signal set respectively corresponds to one antenna in one antenna sub-array of the base station; each reference signal included in the second reference signal set Corresponding to one of the plurality of antenna sub-arrays included in the base station.
  • the first RI may be used to indicate the number of layers of the first precoding matrix, and the number of layers of the first precoding matrix may be equal to the number of columns of the first precoding matrix.
  • the first RI is an integer power of 2.
  • the number of layers of the pre-preconditioned matrix is an integer power of two.
  • the first RI is 1, 2, 4 or 8 and the like.
  • the base station determines the second reference signal set according to the first RI included in the first CSI and the corresponding relationship between the RI and the reference signal set. Specifically, for example, the base station determines, according to a correspondence table between the RI and the reference signal set as shown in Table 1 or Table 2, a second reference signal set in the reference signal set including at least two candidates, where An RI.
  • the first CSI may include only the first PMI, and does not include the first RI.
  • the second reference signal set may be determined by the first PMI included in the first CSI and the preset precoding matrix layer number, where the preset precoding matrix layer number may be indicated by a predefined first RI .
  • the number of layers of the precoding matrix indicated by the predefined first RI is smaller than the size of the first reference signal set.
  • the size of the first reference signal set may be the number of reference signal ports in the first reference signal set or the number of antenna ports corresponding to the first reference signal set.
  • the number of layers of the first precoding matrix is predefined, that is, the number of layers of the first precoding matrix is equal to the value of the predefined first RI.
  • the size of the second reference signal set is an integer multiple of the number of layers of the first precoding matrix, or is an integer multiple of the predefined first RI; or the number of antenna ports corresponding to the second reference signal set It is an integer multiple of the number of layers of the first precoding matrix, or is a predefined integer multiple of the first RI.
  • the value of the predefined first RI is L
  • the number of layers of the first precoding matrix is L
  • the size of the second reference signal set or the number of antenna ports corresponding to the second reference signal set is L.
  • the value of the predefined first RI may be determined according to the size of the first reference signal set or the number of antenna ports corresponding to the first reference signal set.
  • the value of the predefined first RI or the size of the first reference signal set is notified to the user equipment UE by using a broadcast channel or dedicated signaling.
  • the first CSI when the first CSI includes only the first PMI, the first RI does not need to be fed back, so that the feedback overhead can be further effectively reduced.
  • the first CSI may include the first PMI and the first RI, where the second reference signal set is determined by the first RI included in the first CSI, and may also be the first The first RI included in the CSI and the first PMI are jointly determined, and the present invention is not limited thereto.
  • the base station determines the second reference signal set according to the first RI and the first PMI included in the first CSI, and the correspondence between the RI and the PMI and the reference signal set.
  • the base station determines the second reference signal set according to the first PMI included in the first CSI and the predefined first RI, and the correspondence between the RI and the PMI and the reference signal set.
  • the base station may determine, according to the first RI and the correspondence table between the first PMI and the second reference signal set, as shown in Table 3 or Table 4, in the reference signal set including at least two candidates.
  • a second reference signal set is defined, wherein 1 ⁇ represents the first RI; the first PMI is shown.
  • the sending period of the first reference signal set is longer than the sending period of the second reference signal set. That is, the period in which the base station transmits the first reference signal set is longer than the period in which the second reference signal set is transmitted. Since the antenna port for measuring the first reference signal set generally has stronger spatial or temporal or frequency correlation than the antenna port corresponding to the second reference signal set, the channel state changes relatively slowly, so the first reference signal is sent. The time interval or span of the set can be longer, so that the time-frequency resource overhead occupied by the transmitted reference signal set can be further reduced.
  • the first CSI has a larger advertising period than the second CSI, for example, the first CSI reporting period is N times of the second CSI reporting period, where N is a positive integer.
  • the precoding matrix included in the first codebook is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, a Haushold Householdholder matrix, and two DFT matrices of Krone The Kronecker product, the DFT matrix and the Kronel's product of the Hadamard matrix, or the DFT matrix and the Kronegal product of the Haushold matrix.
  • receiving the second CSI sent by the user equipment includes: receiving a second CSI sent by the user equipment, where the second CSI includes a second rank indicator RI and/or a second pre-
  • the coding matrix indicates a PMI
  • the second PMI is used to indicate a second precoding matrix determined by the user equipment from the second codebook according to the second reference signal set.
  • the precoding matrix W included in the second codebook is a product of two matrices, ⁇ and ⁇ 2 , where the matrix ⁇ is a block diagonalization matrix, and the block pair
  • the keratinized matrix includes at least one block matrix X, each of which is a Kronecker product of two matrices C and D.
  • the second codebook includes at least one precoding matrix W, and the precoding matrix W has a structure determined by the formula (67) or (68):
  • E ⁇ w ® v -e ⁇ w ® v where w and v are N-dimensional column vectors or M-dimensional column vectors, respectively, ® represents the kronecker product, M and N are positive integers;
  • the column vector W or V can be
  • the method 200 further includes:
  • the user equipment receives, by the user equipment, a third CSI sent according to the third reference signal set, where the third CSI includes a third rank indicator RI and/or a third precoding matrix indicator, where the third RI and the third ⁇ are used to indicate the And the user equipment determines, according to the third reference signal set, a third precoding matrix determined from the third codebook.
  • the second CSI may be a second RI and/or a second ⁇ .
  • the precoding matrix in the first codebook or the second codebook or the third codebook may be stored in advance on the user equipment side, or may be stored on the base station side, or may be calculated according to the structure of the precoding matrix. For example, it is calculated according to the relationship between the first precoding matrix indication and the precoding matrix, but the invention is not limited thereto.
  • two or more CSI measurement procedures may be used in the third CSI measurement and reporting process described above, and may also be used in a CSI measurement process based on a single reference signal set, such as a CRS based on an LTE R8 system. Or the LTE R8 system is based on the CSI-RS CSI measurement process, which is not described here.
  • the size of the first reference signal set and the size of the second reference signal set may also be the same.
  • the first reference signal set and the second reference signal set occupy the same time-frequency resource in the resource block or the time-frequency resource used by one of the two is a subset of another used time-frequency resource, but the present invention Not limited to this.
  • the first reference signal set and the second reference signal set may use an LTE system cell-specific reference signal CRS or a channel state information reference signal CSI-RS, and the first CSI and the second CSI may be based on LTE R8 or The codebook used by R10 or R12, so that the backward compatibility of the system can be maintained.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation. Therefore, in the method for reporting channel state information according to the embodiment of the present invention, the base station sends the first reference signal set and the second reference signal set to the user equipment, so that the user equipment acquires the first
  • the spatial correlation of the antenna ports is such that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna overhead of transmitting the reference signal or data, thereby effectively improving the efficiency of the system;
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, wherein the first CSI is obtained based on the first reference signal set, and the second CSI is obtained based on the second reference signal set, and the first reference signal is obtained.
  • the number of antenna ports corresponding to the second reference signal set is much smaller than the number of antennas that actually transmit the reference signal or data, thereby improving the accuracy of the CSI feedback and effectively reducing the complexity of measuring the channel state information of the user equipment. Can effectively improve the performance of the system.
  • FIG. 6 shows a schematic block diagram of a user equipment 500 in accordance with an embodiment of the present invention.
  • the user equipment 500 includes:
  • the first receiving module 510 is configured to receive a first reference signal set sent by the base station, where the first reference signal set includes at least two reference signals;
  • the first sending module 520 is configured to send, to the base station, first channel state information CSI, where the first CSI is determined according to the first reference signal set, where the first CSI includes a first rank indicator RI and/or a first precoding matrix. Indicating PMI;
  • the second receiving module 530 is configured to receive a second reference signal set sent by the base station, where the second reference signal set is determined based on the first CSI, where the second reference signal set includes at least one reference signal, and the second sending module 540, And configured to send a second CSI to the base station, where the second CSI is determined according to the second reference signal set received by the second receiving module 530.
  • the user equipment acquires the first CSI and the second CSI according to the first reference signal set and the second reference signal set sent by the base station, respectively, where the second reference signal set is according to the
  • the first rank indication RI and/or the first precoding matrix in a CSI indicates that the PMI is obtained, so that the spatial correlation of the antenna ports corresponding to the first reference signal set can be fully utilized, so that the first reference signal set and the second reference signal are obtained.
  • the set reference signal overhead is much smaller than the transmit reference The antenna overhead of the signal or the data, thereby effectively improving the efficiency of the system;
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, wherein the first CSI is based on the first Obtaining a reference signal set, the second CSI is obtained based on the second reference signal set, and the number of antenna ports corresponding to the first reference signal set and the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, thereby improving
  • the accuracy of the CSI feedback can effectively reduce the complexity of measuring the channel state information of the user equipment, thereby effectively improving the performance of the system.
  • the second receiving module 530 is specifically configured to:
  • a second reference signal set where the second reference signal set is determined by the first RI included in the first CSI, or the second reference signal set is included by the first CSI and the first PMI
  • the number of precoding matrix layers is determined, or the second reference signal set is determined based on the first RI and the first PMI included in the first CSI.
  • each reference signal included in the first reference signal set received by the first receiving module 510 corresponds to one antenna in an antenna sub-array of the base station;
  • Each of the reference signals included in the second reference signal set received by the module 530 respectively corresponds to one of the plurality of antenna sub-arrays included in the base station.
  • the first RI is an integer power of 2.
  • the sending period of the first reference signal set received by the first receiving module 510 is longer than the sending period of the second reference signal set received by the second receiving module 530.
  • the first CSI has a larger advertising period than the second CSI.
  • the first sending module 520 is specifically configured to:
  • the second sending module 540 is specifically configured to:
  • the precoding matrix W included in the second codebook is a product of two matrices, ⁇ and ⁇ 2 , where the matrix ⁇ is a block diagonalization matrix, and the block pair
  • the keratinized matrix includes at least one block matrix X, each of which is a Kronecker product of two matrices C and D.
  • the second codebook includes at least one precoding matrix W, and the precoding matrix W has a structure determined by the formula (67) or the formula (68):
  • E ⁇ w ® V -e ⁇ w ® v where w and v are N-dimensional column vectors or M-dimensional column vectors, respectively, ® represents the kronecker product, M and N are positive integers;
  • the column vector W or V can be
  • the size of the first reference signal set and the size of the second reference signal set may also be the same.
  • the first reference signal set and the second reference signal set occupy the same time-frequency resource in the resource block or the time-frequency resource used by one of the two is a subset of another used time-frequency resource, but the present invention Not limited to this.
  • the first reference signal set and the second reference signal set may use an LTE system cell-specific reference signal CRS or a channel state information reference signal CSI-RS, and the first CSI and the second CSI may be based on LTE R8 or The codebook used by R10 or R12, so that the backward compatibility of the system can be maintained.
  • the precoding matrix structure described in (70) may be used for a third CSI measurement and reporting process, or may be used for a CSI measurement process based on a single reference signal set, such as an LTE R8 system.
  • the CSI-RS based CSI measurement process based on the CRS or LTE R8 system is not described here.
  • the user equipment 500 may correspond to a user equipment in a method of reporting channel state information according to an embodiment of the present invention, and the foregoing and other operations and/or functions of respective modules in the user equipment 500 are respectively The corresponding processes of the various methods in FIG. 1 to FIG. 5 are implemented, and are not described here.
  • the user equipment acquires the first CSI and the second CSI according to the first reference signal set and the second reference signal set sent by the base station, respectively, where the second reference signal set is according to the A CSI is obtained, so that the spatial correlation of the antenna ports corresponding to the first reference signal set can be fully utilized, so that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna overhead of transmitting the reference signal or data, This can effectively improve the efficiency of the system.
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, where the first CSI is obtained based on the first reference signal set, and the second The CSI is obtained based on the second reference signal set, and the number of antenna ports corresponding to the first reference signal set and the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, thereby improving the accuracy of the CSI feedback and being effective.
  • the complexity of measuring the channel state information of the user equipment is reduced, thereby effectively High-performance system.
  • FIG. 7 shows a schematic block diagram of a base station 600 in accordance with an embodiment of the present invention.
  • the base station 600 includes:
  • the first sending module 610 is configured to send, to the user equipment, a first reference signal set, where the first reference signal set includes at least two reference signals;
  • the first receiving module 620 is configured to receive first channel state information CSI sent by the user equipment, where the first CSI is determined based on the first reference signal set, where the first CSI includes a first rank indicator RI and/or a first pre-
  • the coding matrix indicates the PMI
  • a determining module 630 configured to determine, according to the first CSI received by the first receiving module 620, a second reference signal set, where the second reference signal set includes at least one reference signal;
  • a second sending module 640 configured to send the second reference signal set determined by the determining module 640 to the user equipment
  • the second receiving module 650 is configured to receive a second CSI sent by the user equipment, where the second CSI is determined based on the second reference signal set.
  • the base station sends the first reference letter to the user equipment. a set of numbers and a second set of reference signals, such that the user equipment obtains the first CSI and the second CSI, respectively, wherein the second reference signal set indicates the RI and/or the first precoding matrix according to the first rank in the first CSI Instructing the PMI to be obtained, so that the spatial correlation of the antenna ports corresponding to the first reference signal set can be fully utilized, so that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna overhead of transmitting the reference signal or data, This can effectively improve the efficiency of the system.
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, where the first CSI is obtained based on the first reference signal set, and the second The CSI is obtained based on the second reference signal set, and the number of antenna ports corresponding to the first reference signal set and the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, thereby improving the accuracy of the CSI feedback and being effective.
  • the complexity of measuring the channel state information of the user equipment is reduced, thereby effectively improving the performance of the system.
  • the determining module 630 is specifically configured to:
  • the first CSI includes the first PMI, determining the second reference signal set according to the first PMI and the preset number of precoding matrix layers;
  • the first CSI includes the first RI and the first PMI
  • each reference signal included in the first reference signal set sent by the first sending module 610 corresponds to one antenna in an antenna sub-array of the base station;
  • Each reference signal included in the second reference signal set sent by the module 640 corresponds to one of the plurality of antenna sub-arrays included in the base station.
  • the first RI or the preset precoding matrix layer number is an integer power of 2.
  • the sending period of the first reference signal set is longer than the sending period of the second reference signal set.
  • the first CSI has a larger 4 advertising period than the second CSI.
  • the first PMI is used to indicate the first precoding matrix determined by the user equipment from the first codebook according to the first reference signal set sent by the first sending module 610.
  • the precoding matrix included in the first codebook is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, a Haushold Householdholder matrix, and two DFT matrices.
  • the second receiving module 650 is specifically configured to:
  • the second CSI includes a second rank indication RI and/or a second precoding matrix indication PMI
  • the second PMI is used to indicate that the user equipment is configured according to the second reference signal set A second precoding matrix determined in the two codebooks.
  • the precoding matrix W included in the second codebook is a product of two matrices, ⁇ and ⁇ 2 , where the matrix ⁇ is a block diagonalization matrix, and the block pair
  • the keratinized matrix includes at least one block matrix X, each of which is a Kronecker product of two matrices C and D.
  • the second codebook includes at least one precoding matrix W having a structure determined by the formula (67) or (68):
  • E ⁇ w ® v -e ⁇ w ® v where w and v are N-dimensional column vectors or M-dimensional column vectors, respectively, ® represents the kronecker product, M and N are positive integers;
  • the column vector W or V can be
  • the base station 600 may correspond to a base station in a method of reporting channel state information according to an embodiment of the present invention, and the foregoing and other operations and/or functions of respective modules in the base station 600 are respectively implemented to implement FIG. The corresponding processes to the respective methods in FIG. 5 are not described here.
  • the base station sends the first reference signal set and the second reference signal set to the user equipment, so that the user equipment respectively obtains the first CSI and the second CSI, where the second reference signal set is The first rank indication RI and/or the first precoding matrix indication in the first CSI is obtained, so that the space of the antenna port corresponding to the first reference signal set can be fully utilized.
  • the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna overhead of transmitting the reference signal or data, thereby effectively improving the efficiency of the system; and, in the above solution, the channel state information
  • the measurement is implemented by measuring a first CSI and a second CSI, wherein the first CSI is obtained based on a first reference signal set, the second CSI is obtained based on a second reference signal set, and the first reference signal set and the second reference are obtained.
  • the number of antenna ports corresponding to the signal set is much smaller than the number of antennas that actually transmit the reference signal or data, thereby improving the accuracy of the CSI feedback and effectively reducing the complexity of measuring the channel state information of the user equipment, thereby effectively improving the system. Performance.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist, exist alone B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B according to A does not mean that B is determined only on the basis of A, but also based on A and/or other information.
  • an embodiment of the present invention further provides a user equipment 700, which includes a processor 710, a memory 720, a bus system 730, a receiver 740, and a transmitter 750.
  • the processor 710, the memory 720, the receiver 740, and the transmitter 750 are connected by a bus system 730 for storing instructions, and the processor 710 is configured to execute instructions stored by the memory 720 to control the receiver 740 to receive. Signal and control transmitter 750 to send a signal.
  • the receiver 740 is configured to receive a first reference signal set sent by the base station, where the processor 710 is configured to determine, according to the first reference signal set, a first precoding matrix from the first codebook; Transmitting, by the base station, first channel state information CSI, where the first CSI includes a first rank indication RI and/or a first precoding matrix indication PMI, where the first PMI is used to indicate the first precoding matrix; the receiver 740 is further configured to receive a second reference signal set sent by the base station, where the second reference signal set is determined by the first CSI; the transmitter 750 is further configured to send a second CSI to the base station, where the second CSI is according to the second The reference signal set is determined.
  • the user equipment acquires the first CSI and the second CSI according to the first reference signal set and the second reference signal set sent by the base station, respectively, where the second reference signal set is according to the a CSI is obtained so that the corresponding reference signal set can be fully utilized
  • the spatial correlation of the antenna ports is such that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna overhead of transmitting the reference signal or data, thereby effectively improving the efficiency of the system;
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, wherein the first CSI is obtained based on the first reference signal set, the second CSI is obtained based on the second reference signal set, and the first reference signal set is obtained.
  • the number of antenna ports corresponding to the second reference signal set is much smaller than the number of antennas that actually transmit the reference signal or data, thereby improving the accuracy of the CSI feedback and effectively reducing the complexity of measuring the channel state information of the user equipment. Effectively improve the performance of the system.
  • the processor 710 may be a central processing unit (a central processing unit), and the processor 710 may also be another general-purpose processor, a digital signal processor (DSP). ), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs off-the-shelf programmable gate arrays
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 720 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of memory 720 may also include non-volatile random access memory. For example, the memory 720 can also store information of the device type.
  • the bus system 730 can include, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 730 in the figure.
  • the steps of the foregoing methods may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in random memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 720.
  • the processor 710 reads the information in the memory 720 and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the receiver 740 receives the second reference signal set sent by the base station, where the second reference signal set is determined by the first CSI, and includes:
  • each reference signal included in the first reference signal set respectively corresponds to one antenna in one antenna sub-array of the base station; each reference signal included in the second reference signal set respectively corresponds to And one of the plurality of antenna sub-arrays included in the base station.
  • the first RI is an integer power of 2.
  • the sending period of the first reference signal set is longer than the sending period of the second reference signal set.
  • the first CSI has a larger advertising period than the second CSI.
  • the first codebook includes a precoding matrix that is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, a Haushold Householdholder matrix, and two DFT matrices of Kronecker kronecker. The product, the DFT matrix and the Kronel's product of the Hadamard matrix, or the Kronel's product of the DFT matrix and the Hausschild matrix.
  • the transmitter 750 sends a second CSI to the base station, where
  • the CSI is determined according to the second reference signal set, and includes:
  • a second CSI where the second CSI includes a second rank indication RI and/or a second precoding matrix indication PMI, where the second PMI is used to indicate the second precoding matrix.
  • the second codebook includes a precoding matrix W that is a product of two matrices ⁇ and ⁇ 2 , where the matrix ⁇ is a block diagonalization matrix, and the partition diagonal
  • the matrix includes at least one block matrix X, each of which is a Kronecker product of two matrices C and D.
  • the second codebook includes at least one precoding matrix W having a structure determined by the formula (67) or (68):
  • E ⁇ w ® v -e ⁇ w ® v where w and v are N-dimensional column vectors or M-dimensional column vectors, respectively, ® represents the kronecker product, M and N are positive integers;
  • the column vector W or V can be
  • D 1 represents matrix transposition; and is phase
  • the size of the first reference signal set and the size of the second reference signal set may also be the same.
  • the first reference signal set and the second reference signal set occupy the same time-frequency resource in the resource block or the time-frequency resource used by one of the two is a subset of another used time-frequency resource, but the present invention Not limited to this.
  • the user equipment 700 may correspond to a user equipment in a method for reporting channel state information according to an embodiment of the present invention, and may also correspond to a user equipment 500 according to an embodiment of the present invention, and a user.
  • the foregoing and other operations and/or functions of the respective modules in the device 700 are respectively omitted for the purpose of implementing the respective processes of the respective methods in FIG. 1 to FIG.
  • the user equipment acquires the first CSI and the second CSI according to the first reference signal set and the second reference signal set sent by the base station, respectively, where the second reference signal set is according to the A CSI is obtained, so that the spatial correlation of the antenna ports corresponding to the first reference signal set can be fully utilized, so that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna overhead of transmitting the reference signal or data, The efficiency of the system can be effectively improved.
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, where the first CSI is obtained based on the first reference signal set, and the second The CSI is obtained based on the second reference signal set, and the number of antenna ports corresponding to the first reference signal set and the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, thereby improving the accuracy of the CSI feedback and being effective.
  • the complexity of measuring the channel state information of the user equipment is reduced, thereby effectively High-performance system.
  • an embodiment of the present invention further provides a base station 800, which includes a processor 810, a memory 820, a bus system 830, a receiver 840, and a transmitter 850.
  • the processor 810, the memory 820, the receiver 840, and the transmitter 850 are connected by a bus system 830 for storing instructions, and the processor 810 is configured to execute instructions stored by the memory 820 to control the receiver 840 to receive. Signal, and control transmitter 850 to send a signal.
  • the transmitter 850 is configured to send a first reference signal set to the user equipment, where the receiver 840 is configured to receive the first channel state information CSI sent by the user equipment, where the first CSI includes a first rank indicator RI and/or The first precoding matrix indicates ⁇ , the first ⁇ is used to indicate the first precoding matrix determined by the user equipment from the first codebook according to the first reference signal set; the processor 810 is configured to use, according to the first Determining, by a CSI, a second reference signal set; the transmitter 850 is further configured to send the second reference signal set to the user equipment; the receiver 840 is further configured to receive a second CSI sent by the user equipment, the second CSI Determined based on the second reference signal set.
  • the base station sends the first reference signal set and the second reference signal set to the user equipment, so that the user equipment respectively obtains the first CSI and the second CSI, where the second reference signal set is The first CSI is obtained, so that the spatial correlation of the antenna ports corresponding to the first reference signal set can be fully utilized, so that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna that transmits the reference signal or data.
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, where the first CSI is obtained based on the first reference signal set, The second CSI is obtained based on the second reference signal set, and the number of antenna ports corresponding to the first reference signal set and the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, thereby improving
  • the accuracy of the CSI feedback can effectively reduce the complexity of measuring the channel state information of the user equipment, thereby effectively improving the performance of the system.
  • the processor 810 may be a central processing unit (a central processing unit), and the processor 810 may also be another general-purpose processor, a digital signal processor (DSP). ), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs off-the-shelf programmable gate arrays
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of memory 820 may also include non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the bus system 830 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 810 reads the information in the memory 820 and combines the same
  • the hardware completes the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the processor 810 determines, according to the first CSI, a second reference signal set, including:
  • the second reference signal set is determined according to the first PMI and the preset number of precoding matrix layers.
  • each reference signal included in the first reference signal set respectively corresponds to one antenna in one antenna sub-array of the base station; each reference signal included in the second reference signal set respectively corresponds to And one of the plurality of antenna sub-arrays included in the base station.
  • the first RI is an integer power of 2.
  • the sending period of the first reference signal set is longer than the sending period of the second reference signal set.
  • the first CSI has a larger advertising period than the second CSI.
  • the first codebook includes a precoding matrix that is a discrete Fourier transform DFT matrix, a Hadamard Hadamard matrix, a Haushold Householdholder matrix, and two DFT matrices of Kronecker kronecker. The product, the DFT matrix and the Kronel's product of the Hadamard matrix, or the Kronel's product of the DFT matrix and the Hausschild matrix.
  • the receiver 840 receives the second CSI sent by the user equipment, including:
  • the second CSI includes a second rank indication RI and/or a second precoding matrix indication PMI
  • the second PMI is used to indicate that the user equipment is configured according to the second reference signal set A second precoding matrix determined in the two codebooks.
  • the second codebook includes a precoding matrix W that is a product of two matrices ⁇ and ⁇ 2 , where the matrix ⁇ is a block diagonalization matrix, and the partition diagonal
  • the matrix includes at least one block matrix X, each of which is a Kronecker product of two matrices C and D.
  • the second codebook includes at least one precoding matrix W having a structure determined by the formula (67) or (68):
  • E ⁇ w ® v -e ⁇ w ® v where w and v are N-dimensional column vectors or M-dimensional column vectors, respectively, ® represents the kronecker product, M and N are positive integers;
  • the column vector W or V can be
  • the base station 800 may correspond to a base station in a method for reporting channel state information according to an embodiment of the present invention, and may also correspond to a base station 800 according to an embodiment of the present invention, and in the base station 800.
  • the above and other operations and/or functions of the respective modules are respectively omitted in order to implement the respective processes of the respective methods in FIGS. 1 to 5, and are not described herein again.
  • the base station sends the first reference signal set and the second reference signal set to the user equipment, so that the user equipment respectively obtains the first CSI and the second CSI, where the second reference signal set is The first CSI is obtained, so that the spatial correlation of the antenna ports corresponding to the first reference signal set can be fully utilized, so that the reference signal overhead of the first reference signal set and the second reference signal set is much smaller than the antenna that transmits the reference signal or data.
  • the measurement of the channel state information is implemented by measuring the first CSI and the second CSI, where the first CSI is obtained based on the first reference signal set, The second CSI is obtained based on the second reference signal set, and the number of antenna ports corresponding to the first reference signal set and the second reference signal set is much smaller than the number of antennas actually transmitting the reference signal or data, thereby improving
  • the accuracy of the CSI feedback can effectively reduce the complexity of measuring the channel state information of the user equipment, thereby effectively improving the performance of the system.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

本发明公开了一种报告信道状态信息的方法、用户设备和基站。该方法包括:接收基站发送的第一参考信号集,该第一参考信号集包含至少两个参考信号;向该基站发送第一CSI,该第一CSI根据该第一参考信号集确定,该第一CSI包括第一RI和/或第一PMI,该第一PMI用于指示该第一预编码矩阵;接收该基站发送的第二参考信号集,该第二参考信号集基于该第一CSI确定,该第二参考信号集包含至少一个参考信号;向该基站发送第二CSI,该第二CSI根据该第二参考信号集确定。本发明实施例的报告信道状态信息的方法、用户设备和基站,能够提高系统的效率或性能。

Description

报告信道状态信息的方法、 用户设备和基站 技术领域
本发明涉及通信领域, 尤其涉及通信领域中报告信道状态信息的方法、 用户设备和基站。 背景技术
现代通信系统广泛使用多天线, 以提高系统的容量和覆盖, 并改善用户 的体验。 例如, 第三代合作伙伴计戈1 J ( 3rd Generation Partnership Project, 筒 称为 "3GPP" ) 中的长期演进(Long Term Evolution, 筒称为 "LTE" ) R8系 统可以支持 4个天线端口, 而 LTE R10系统可以支持 8个天线端口。通过发 射波束赋形 ( Beam Forming, 筒称为 "BF" )或预编码技术, 并通过接收合 并, 多入多出 ( Multiple Input Multiple Output, 筒称为 "MIMO" ) 系统可以 得到分集和阵列增益。 利用 BF或者预编码技术的系统的接收信号通常可以 表示为:
y = H V s + n
其中, y表示接收信号矢量, H表示信道矩阵, V表示预编码矩阵, s表 示发射的符号矢量, n表示测量噪声。
预编码通常需要发射机完全已知信道状态信息 ( Channel State Information, 筒称为 "CSI" )。 常用的方法是用户设备对瞬时 CSI进行量化 并反馈给基站。 现有的 LTE R8系统反馈的 CSI信息可以包括秩指示 (Rank Indicator, 筒称为 "RI" )、 预编码矩阵指示 ( Precoding Matrix Indicator, 筒 称为 "PMI" )和信道质量指示 (Channel Quality Indicator, 筒称为 "CQI" ) 等, 其中 RI和 PMI分别用于指示使用的层数和预编码矩阵。 通常称所使用 的预编码矩阵的集合为码本, 并可以称其中的每个预编码矩阵为码字。 现有 LTE R8系统的 4天线码本基于豪斯荷尔德( Householder )变换设计, LTE R10 系统则针对 8天线进一步引入了双码本设计。上述两种码本主要针对常规基 站的天线设计,该常规基站采用固定的或者远程电调的下倾角控制垂直方向 天线波束方向, 并且只有水平方向可以通过预编码或者波束赋形动态调整其 波束方向。
为了降低系统费用, 同时达到更高的系统容量和覆盖要求, 有源天线系 统(Active Antenna Systems, 筒称为 "AAS" )在实践中已广泛部署, 并且 目前启动的 LTE R12以及未来的 LTE R13系统正在考虑引入 AAS系统之后 对通信性能的增强。
一方面,有别于常规基站, AAS基站进一步提供了天线垂直方向的设计 自由度, 这主要通过其水平和垂直方向的二维天线阵列实现的。 而对于常规 基站而言,尽管其水平方向的每个天线端口可以由垂直方向的多个阵元加权 组合得到, 但实际上常规基站仅使用水平的一维阵列。 例如, 图 1-1A为常 规基站的均匀线阵( Uniform Linear Array , 筒称 ULA )天线配置的示意图, 图 1-1B为常规基站的交叉极化 ( Cross Polarization, 筒称 XPO )天线配置的 示意图,图 1-2A为 AAS基站的均匀线阵天线配置的示意图, 图 1-2B为 AAS 基站的交叉极化天线配置的示意图。 另一方面, 对于 AAS基站而言, 可能 需要考虑更多的天线端口, 例如目前考虑的天线端口数可以是 8、 16、 32或 64。 此外, 即使对于相同数量的天线端口, 天线阵列的结构也可能不同, 从 而相同编号的天线端口在不同的阵列结构中也可能得到不同的信道状态测 量。 例如, 如图 1-2A所示, 天线阵列 A为 2行 8列的均匀线阵, 天线阵列 B为 4行 4列的均匀线阵, 尽管天线阵列 A与天线阵列 B都具有 16个天线 端口, 但是其天线阵列的结构不同。
此外, 需要特别指出的是, 在设计新的 LTE R12系统或更高版本的 LTE 系统时, 后向兼容性是需要考虑的一个重要因素。 例如, 要求配备 AAS基 站的 LTE R12系统能够保证 LTE R8- R10系统中的 UE能够正常工作或者工 作性能不会下降。 在这种背景下, 需要针对如何测量并报告信道状态信息提 出一种新的设计方案, 以提高通信系统的效率或性能。 发明内容
本发明实施例提供了一种报告信道状态信息的方法、 用户设备和基站, 能够提高系统的效率或性能。
第一方面, 提供了一种报告信道状态信息 CSI的方法, 该包括: 接收基 站发送的第一参考信号集, 该第一参考信号集包含至少两个参考信号; 向该 基站发送第一 CSI, 该第一 CSI根据该第一参考信号集确定, 该第一 CSI包 括第一秩指示 RI和 /或第一预编码矩阵指示 PMI; 接收该基站发送的第二参 考信号集, 该第二参考信号集基于该第一 CSI确定, 该第二参考信号集包含 至少一个参考信号; 向该基站发送第二 CSI, 该第二 CSI根据该第二参考信 号集确定。
结合第一方面, 在第一方面的第一种可能的实现方式中, 该接收该基站 发送的第二参考信号集, 该第二参考信号集由该第一 CSI确定, 包括: 接收 该基站发送的第二参考信号集,该第二参考信号集由该第一 CSI包括的该第 一 RI确定, 或该第二参考信号集由该第一 CSI包括的该第一 PMI以及预置 的预编码矩阵层数确定,或该第二参考信号集基于该第一 CSI包括的该第一 RI和该第一 PMI确定。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二 种可能的实现方式中,该第一参考信号集包括的每个参考信号分别对应于该 基站的一个天线子阵中的一个天线; 该第二参考信号集包括的每个参考信号 分别对应于该基站包括的多个天线子阵中的一个天线子阵。
结合第一方面或第一方面的第一种至第二种可能的实现方式中的任一 种可能的实现方式,在第一方面的第三种可能的实现方式中,该第一 RI为 2 的整数次幂。
结合第一方面或第一方面的第一种至第三种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第四种可能的实现方式中, 该第一参考信 号集的发送周期比该第二参考信号集的发送周期长。
结合第一方面或第一方面的第一种至第四种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第五种可能的实现方式中, 向所述基站发 送第一 CSI, 该第一 CSI根据该第一参考信号集确定, 包括: 根据该第一参 考信号集, 从第一码本中确定第一预编码矩阵; 向该基站发送第一 CSI, 该 第一 CSI 包括第一秩指示 RI和 /或第一预编码矩阵指示 PMI, 该第一 PMI 用于指示所述第一预编码矩阵; 其中, 该第一码本包括的预编码矩阵为离散 傅立叶变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩 阵、 两个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克 罗内可尔积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔积。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第六种可能的实现方式中, 该向该基站发 送第二 CSI, 第二 CSI根据该第二参考信号集确定, 包括: 根据该第二参考 信号集, 从第二码本中确定第二预编码矩阵; 向该基站发送第二 CSI, 该第 二 CSI包括第二秩指示 RI和 /或第二预编码矩阵指示 PMI,该第二 PMI用于 指示该第二预编码矩阵; 其中, 该第二码本至少包括一个预编码矩阵 W , 该 预编码矩阵 W具有由下列等式确定的结构:
W ® V w ® V w ® V
W = (2厦) 或者 W = (4厦)
e^w ® v e^w ® v -e^w ® v
Figure imgf000006_0001
, []τ表示矩阵转 置; ®表示克罗内可尔积, Μ、 Ν为正整数; Θ , 和 为相位。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实 现方式中, 该相位 为 = m;r/16 , m = 0".., 15 ; 或者该相位 为 "; τ/32 , « = 0, ..., 31; 或者该相位 为 = /;τ/2 , Ζ = 0, · ·, 3或者 Ζ = 0, 1 Μ = 0, ·· ·, 31。
第二方面, 提供了一种报告信道状态信息的方法, 该方法包括: 向用户 设备发送第一参考信号集, 该第一参考信号集包含至少两个参考信号; 接收 该用户设备发送的第一信道状态信息 CSI, 该第一 CSI基于该第一参考信号 集确定, 该第一 CSI包括第一秩指示 RI和 /或第一预编码矩阵指示 ΡΜΙ; 根 据该第一 CSI, 确定第二参考信号集, 该第二参考信号集包含至少一个参考 信号; 向该用户设备发送该第二参考信号集; 接收该用户设备发送的第二 CSI, 该第二 CSI基于该第二参考信号集确定。
结合第二方面, 在第二方面的第一种可能的实现方式中, 该根据该第一
CSI, 确定第二参考信号集, 包括: 在该第一 CSI包括该第一 RI时, 根据该 第一 RI确定该第二参考信号集; 或在该第一 CSI包括该第一 ΡΜΙ时, 根据 该第一 ΡΜΙ以及预置的预编码矩阵层数确定该第二参考信号集;或在该第一 CSI包括该第一 RI和该第一 ΡΜΙ时, 根据该第一 RI和该第一 ΡΜΙ确定该 第二参考信号集。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二 种可能的实现方式中,该第一参考信号集包括的每个参考信号分别对应于该 基站的一个天线子阵中的一个天线; 该第二参考信号集包括的每个参考信号 分别对应于该基站包括的多个天线子阵中的一个天线子阵。
结合第二方面或第二方面的第一种至第二种可能的实现方式中的任一 种可能的实现方式,在第二方面的第三种可能的实现方式中,该第一 RI为 2 的整数次幂。
结合第二方面或第二方面的第一种至第三种可能的实现方式中的任一 种可能的实现方式, 在第二方面的第四种可能的实现方式中, 该第一参考信 号集的发送周期比该第二参考信号集的发送周期长。
结合第二方面或第二方面的第一种至第四种可能的实现方式中的任一 种可能的实现方式, 在第二方面的第五种可能的实现方式中, 该第一 PMI 用于指示所述用户设备根据所述第一参考信号集从第一码本中确定的第一 预编码矩阵; 其中, 该第一码本包括的预编码矩阵为离散傅立叶变换 DFT 矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩 阵的克罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可尔积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔积。
结合第二方面或第二方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第二方面的第六种可能的实现方式中, 该接收该用户 设备发送的第二 CSI, 包括: 接收该用户设备发送的第二 CSI, 该第二 CSI 包括第二秩指示 RI和 /或第二预编码矩阵指示 PMI,该第二 PMI用于指示该 用户设备根据该第二参考信号集从第二码本中确定的第二预编码矩阵; 其 中,该第二码本至少包括一个预编码矩阵 w ,该预编码矩阵 W具有由下列等 式确定的结构:
W ® V w ® v w ® v
W = (2厦) e^w ® v 或者 W = (4厦) e^w ® v -e^w ® v e 1 e e
Figure imgf000007_0001
[]T表示矩阵转 置; ®表示克罗内可尔积, M、 N为正整数; Θ , 和 为相位。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实 现方式中, 该相位 为 = m;r/16 , m = 0".., 15 ; 或者该相位 为 ^ = /32 , « = 0, ..., 31; 或者该相位 为 = /;τ/2 , Ζ = 0, · ·, 3或者 Ζ = 0, 1 Μ = 0, ·· ·, 31。
第三方面, 提供了一种用户设备, 该用户设备包括: 第一接收模块, 用 于接收基站发送的第一参考信号集,该第一参考信号集包含至少两个参考信 号; 第一发送模块, 用于向该基站发送第一信道状态信息 CSI, 该第一 CSI 根据该第一参考信号集确定, 该第一 CSI包括第一秩指示 RI和 /或第一预编 码矩阵指示 ΡΜΙ; 第二接收模块, 用于接收该基站发送的第二参考信号集, 该第二参考信号集基于该第一发送模块发送的该第一 CSI确定,该第二参考 信号集包含至少一个参考信号; 第二发送模块, 用于根据向该基站发送第二 CSI, 该第二 CSI根据该第二接收模块接收的该第二参考信号集确定。 结合第三方面, 在第三方面的第一种可能的实现方式中, 该第二接收模 块具体用于: 接收该基站发送的第二参考信号集, 该第二参考信号集基于该 第一 CSI包括的该第一 RI确定, 或该第二参考信号集基于该第一 CSI包括 的该第一 PMI以及预置的预编码矩阵层数确定,或该第二参考信号集基于该 第一 CSI包括的该第一 RI和该第一 PMI确定。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二 种可能的实现方式中,该第一接收模块接收的该第一参考信号集包括的每个 参考信号分别对应于该基站的一个天线子阵中的一个天线; 该第二接收模块 接收的该第二参考信号集包括的每个参考信号分别对应于该基站包括的多 个天线子阵中的一个天线子阵。
结合第三方面或第三方面的第一种至第二种可能的实现方式中的任一 种可能的实现方式,在第三方面的第三种可能的实现方式中,该第一 RI为 2 的整数次幂。
结合第三方面或第三方面的第一种至第三种可能的实现方式中的任一 种可能的实现方式, 在第三方面的第四种可能的实现方式中, 该第一接收模 块接收的该第一参考信号集的发送周期比该第二接收模块接收的该第二参 考信号集的发送周期长。
结合第三方面或第三方面的第一种至第四种可能的实现方式中的任一 种可能的实现方式, 在第三方面的第五种可能的实现方式中, 该第一发送模 块具体用于: 根据该第一参考信号集, 从第一码本中确定第一预编码矩阵; 向该基站发送第一 CSI, 该第一 CSI包括第一秩指示 RI和 /或第一预编码矩 阵指示 PMI, 该第一 PMI用于指示所述第一预编码矩阵; 其中, 该第一码 本包括的预编码矩阵为离散傅立叶变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可尔积、 或 DFT矩阵与豪斯荷尔德矩阵的 克罗内可尔积。
结合第三方面或第三方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第三方面的第六种可能的实现方式中, 该第二发送模 块具体用于: 根据该第二参考信号集, 从第二码本中确定第二预编码矩阵; 向该基站发送第二 CSI, 该第二 CSI包括第二秩指示 RI和 /或第二预编码矩 阵指示 PMI, 该第二 PMI用于指示该第二预编码矩阵; 其中, 该第二码本 至少包括一个预编码矩阵 W , 该预编码矩阵 W具有由下列等式确定的结构:
W ® V w ® V w ® V
W = (2厦) 或者 W = (4厦)
e^w ® v e^w ® v -e^w ® v w 1 e e []T表示矩阵转 置;
Figure imgf000009_0001
®表示克罗内可尔积, M、 Θ , 和 为相位。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实 现方式中, 该相位 为 = m;r/16 , m = 0"..,15 ; 或者该相位 为 ^ = /32 , « = 0,...,31; 或者该相位 为 = /;τ/2 , Ζ = 0, ··,3或者 Ζ = 0,1 Μ = 0, ···, 31。
第四方面, 提供了一种基站, 该基站包括: 第一发送模块, 用于向用户 设备发送第一参考信号集, 该第一参考信号集包含至少两个参考信号; 第一 接收模块, 用于接收该用户设备发送的第一信道状态信息 CSI, 该第一 CSI 基于所述第一参考信号集确定, 该第一 CSI包括第一秩指示 RI和 /或第一预 编码矩阵指示 ΡΜΙ;确定模块,用于根据该第一接收模块接收的该第一 CSI, 确定第二参考信号集, 该第二参考信号集包含至少一个参考信号; 第二发送 模块, 用于向该用户设备发送该确定模块确定的该第二参考信号集; 第二接 收模块, 用于接收该用户设备发送的第二 CSI, 该第二 CSI基于所述第二参 考信号集确定。
结合第四方面, 在第四方面的第一种可能的实现方式中, 该确定模块具 体用于: 在该第一 CSI包括该第一 RI时, 根据该第一 RI确定该第二参考信 号集; 或在该第一 CSI包括该第一 ΡΜΙ时, 根据该第一 ΡΜΙ以及预置的预 编码矩阵层数确定该第二参考信号集; 或在所述第一 CSI 包括所述第一 RI 和所述第一 ΡΜΙ时,根据所述第一 RI和所述第一 ΡΜΙ确定所述第二参考信 号集。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二 种可能的实现方式中,该第一发送模块发送的该第一参考信号集包括的每个 参考信号分别对应于该基站的一个天线子阵中的一个天线; 该第二发送模块 发送的该第二参考信号集包括的每个参考信号分别对应于该基站包括的多 个天线子阵中的一个天线子阵。
结合第四方面或第四方面的第一种至第二种可能的实现方式中的任一 种可能的实现方式,在第四方面的第三种可能的实现方式中,该第一 RI为 2 的整数次幂。 结合第四方面或第四方面的第一种至第三种可能的实现方式中的任一 种可能的实现方式, 在第四方面的第四种可能的实现方式中, 该第一参考信 号集的发送周期比该第二参考信号集的发送周期长。
结合第四方面或第四方面的第一种至第四种可能的实现方式中的任一 种可能的实现方式, 在第四方面的第五种可能的实现方式中, 该第一 PMI 用于指示该用户设备根据该第一参考信号集从第一码本中确定的第一预编 码矩阵; 其中, 该第一码本包括的预编码矩阵为离散傅立叶变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克 罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可尔积、 或 DFT矩 阵与豪斯荷尔德矩阵的克罗内可尔积。
结合第四方面或第四方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第四方面的第六种可能的实现方式中, 该第二接收模 块具体用于: 接收该用户设备发送的第二 CSI, 该第二 CSI包括第二秩指示 RI和 /或第二预编码矩阵指示 PMI, 该第二 PMI用于指示该用户设备根据该 第二参考信号集从第二码本中确定的第二预编码矩阵; 其中, 该第二码本至 少包括一个预编码矩阵 W , 该预编码矩阵 W具有由下列等式确定的结构:
W ® V w ® V w ® V
W = (2厦) e^w ® v 或者 W = (4厦) e^w ® v -e^w ® v e e []T表示矩阵转 置;
Figure imgf000010_0001
®表示克罗内可尔积, M、 Θ , 和 为相位。
结合第四方面的第六种可能的实现方式,在第四方面的第七种可能的实 现方式中, 该相位 为 = m;r/16 , m = 0"..,15 ; 或者该相位 为 ^ = /32 , « = 0,...,31; 或者该相位 为 = /;τ/2 , Ζ = 0,··,3或者 Ζ = 0,1 Μ = 0,···,31。
因此, 在根据本发明实施例的报告信道状态信息的方法、 用户设备和基 站中, 用户设备可以接收基站发送的第一参考信号集, 并根据该第一参考信 号集确定并向基站发送第一 CSI, 由于该第一 CSI提供了基站和用户设备之 间信道状态的初步信息,使得基站可以基于信道状态的初步信息进一步确定 该用户设备的第二参考信号集, 进而用户设备可以根据该第二参考信号集更 高效或更精确地获得第二 CSI, 从而提升系统的效率或性能。 附图说明 为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1-1A是常规基站的均匀线阵天线配置的示意图。
图 1-1B是常规基站的交叉极化天线配置的示意图。
图 1-2A是 AAS基站的均匀线阵天线配置的示意图。
图 1-2B是 AAS基站的交叉极化天线配置的示意图。
图 2是根据本发明实施例的 告信道状态信息的方法的示意性流程图。 图 3A和 3B是本发明实施例应用的一种交叉极化天线阵列配置的示意 图。
图 4A和 4B是本发明实施例应用的另一种均匀线阵天线配置的示意图。 图 5是根据本发明实施例的报告信道状态信息的方法的另一示意性流程 图。
图 6是根据本发明实施例的用户设备的示意性框图。
图 7是根据本发明实施例的基站的示意性框图。
图 8是根据本发明实施例的用户设备的另一示意性框图。
图 9是根据本发明实施例的基站的另一示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 详细地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
应理解, 本发明实施例的技术方案可以应用于各种通信系统, 例如: 全 球移动通讯 ( Global System of Mobile communication, 筒称为 "GSM" )系统、 码分多址(Code Division Multiple Access, 筒称为 "CDMA" ) 系统、 宽带码 分多址( Wideband Code Division Multiple Access, 筒称为 "WCDMA" )系统、 通用分组无线业务(General Packet Radio Service, 筒称为 "GPRS" )、 长期 演进( Long Term Evolution, 筒称为 "LTE" )系统、 LTE频分双工( Frequency Division Duplex,筒称为 "FDD" )系统、 LTE时分双工( Time Division Duplex, 筒称为 "TDD" )、 通用移动通信系统 ( Universal Mobile Telecommunication System, 筒称为 "UMTS" )或全球互联微波接入( Worldwide Interoperability for Microwave Access , 筒称为 "WiMAX" )通信系统等。
还应理解,在本发明实施例中,用户设备( User Equipment,筒称为 "UE" ) 可称之为终端 ( Terminal ), 移动台 ( Mobile Station, 筒称为 "MS" )或移动 终端 (Mobile Terminal )等, 该用户设备可以经无线接入网 (Radio Access Network, 筒称为 "RAN" )与一个或多个核心网进行通信, 例如, 用户设备 可以是移动电话(或称为 "蜂窝" 电话)或具有移动终端的计算机等, 例如, 用户设备还可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动 装置, 它们与无线接入网交换语音和 /或数据。
在本发明实施例中, 基站可以是 GSM 或 CDMA 中的基站 (Base Transceiver Station, 筒称为 "BTS" ), 也可以是 WCDMA中的基站( NodeB , 筒称为 "NB" ), 还可以是 LTE中的演进型基站(Evolutional Node B , 筒称 为 "eNB" ), 本发明并不限定, 但为描述方便, 下述实施例将以 eNB为例进 行说明。
图 2示出了根据本发明实施例的报告信道状态信息 CSI的方法 100的示 意性流程图, 该方法 100可以由用户设备执行。 如图 2所示, 该方法 100包 括:
S110, 接收基站发送的第一参考信号集, 该第一参考信号集包含至少两 个参考信号;
S120,向该基站发送第一 CSI,该第一 CSI根据该第一参考信号集确定, 该第一 CSI包括第一秩指示 RI和 /或第一预编码矩阵指示 PMI;
S130, 接收该基站发送的第二参考信号集, 该第二参考信号集基于该第 一 CSI确定, 该第二参考信号集包含至少一个参考信号;
S140,向该基站发送第二 CSI,该第二 CSI根据该第二参考信号集确定。 在本发明实施例中, 第一参考信号集和第二参考信号集分别包括至少两 个和至少一个参考信号。 每个参考信号对应一个天线端口, 每个天线端口可 以与一个物理天线相对应, 也可以与一个虚拟天线相对应, 其中该虚拟天线 可以是多个物理天线的加权组合。用户设备可以根据天线端口对应的参考信 号, 测量并报告用户设备和该天线端口之间的信道状态信息。
根据用途或者作用的不同, 参考信号通常可以分为两类: 一类参考信号 用于信道状态或者信道质量测量, 从而实现调度; 另一类参考信号则用于对 含有控制信息或者数据信息的接收信号进行相干解调。在 LTE R10的下行系 统中, 用于相干解调的参考信号被称为解调参考信号 (Demodulation Reference Signals, 筒称为 "DMRS" ), 该参考信号又被称为 UE特定的参考 信号( UE-specific reference signal ); 用于信道状态信息测量的参考信号被称 为信道状态信息参考信号 ( Channel State Information-Reference Signal , 筒称 为 "CSI-RS" )。其中, DMRS与物理下行共享信道(Physical Downlink Shared CHannel, 筒称为 "PDSCH" )—起发送, 用于 PDSCH解调时的信道估计; CSI-RS 用于 LTE R10系统的用户设备测量信道状态, 特别是用于多天线传 输的情况。 基于 CSI-RS的信道测量, 可以导出秩指示 (Rank Indicator, 筒 称为 "RI" )、 预编码矩阵指示(Precoding Matrix Indicator, 筒称为 "ΡΜΓ )、 信道质量指示(Channel Quantity Indicator, 筒称为 "CQI" )或其它反馈信息。
此外, 小区特定的参考信号 (Cell-specific Reference Signal, 筒称为 "CRS" ) 可以用于 UE 信道估计, 从而实现对下行控制信道(Physical Downlink Control CHannel , 筒称为 "PDCCH" ) 以及其它公共信道的解调 , 该参考信号继承自 LTE R8/9系统。 CRS在 LTE R8/9系统中还用于信道状态 信息的测量以及数据信道的解调。在 LTE R10中, DMRS最多支持 8个天线 端口, 每个 UE使用的 DMRS 天线端口数通过下行控制信息 (Downlink Control Information, 筒称为 "DCI" )通知给 UE; 在 LTE R10中, CSI-RS 最多支持 8个天线端口,例如,天线端口数可以是 1、 2、 4或 8;在 LTE R8-R10 中, CRS最多支持 4个天线端口, 例如, 天线端口数可以是 1、 2或 4。 相 对于 CRS而言, 为了支持相同的天线端口数, CSI-RS在频率上具有更低的 密度, 从而具有更小的开销。
现有技术中, 针对配置 AAS或二维天线阵列的基站, 特别是大规模天 线的系统(如 Massive MIMO ), 尚未发现高效的信道状态信息的测量和 4艮告 方法。 若仅仅采用针对常规基站的设计方法, 对信道状态信息测量和 告方 法作筒单推广, 例如, 针对每个物理天线均配置一个天线端口, 每个天线端 口与一个参考信号对应, 则多个天线端口上发送的参考信号所占用的开销 (如时间 /频率 /码资源) 随天线端口数单调增长; 另一方面, 多个天线端口 对应的信道状态信息的反馈开销也随之增长, 并且, 用户设备测量信道状态 信息的计算复杂度也很高。 在本发明实施例中, 用户设备可以接收基站发送的第一参考信号集, 并 根据该第一参考信号集确定并向基站发送第一 CSI, 由于该第一 CSI提供了 基站和用户设备之间信道状态的初步信息,使得基站可以基于信道状态的初 步信息进一步确定该用户设备的第二参考信号集,进而用户设备可以根据该 第二参考信号集更高效或更精确地获得第二 CSI, 从而提升系统的效率或性 能。
例如, 该第一参考信号集可以对应所述基站配置的天线集合的一个天线 子集, 其中, 第一参考信号集中的每个参考信号可以对应该天线子集中的一 个天线, 该天线子集的大小可以远小于天线集合的大小。 可选地, 该天线子 集具有较强的空间相关性或者该天线子集具有粗粒度的空间分辨力。用户设 备可以根据该第一参考信号集获得第一 CSI, 该第一 CSI可以包括第一 RI 和 /或第一 PMI, 其中该第一 RI可以反映基站和用户设备之间信道的空间相 关性信息, 该第一 PMI 可以反映基站和用户设备之间信道的空间分辨力信 息, 从而该第二参考信号集可以基于该第一 CSI提供的初步信息(包括空间 相关性信息和 /或空间分辨力信息)确定,进而用户设备可基于该第二参考信 号集更高效或更精确地获得第二 CSI。
为了降低系统费用, 同时达到更高的系统容量和覆盖要求, AAS在实践 中已被广泛部署和应用, 下面将以图 3A和 3B所示的一种交叉极化天线阵 列配置为例, 以及图 4A和 4B所示的一种均匀线阵天线配置为例, 详细说 明根据本发明实施例的报告信道状态信息的方法。 本发明实施例仅以 AAS 天线配置为例进行说明, 但本发明并不限于此, 其它系统的天线配置也可以 采用本发明实施例的技术方案。
图 3A示出了由 64个天线组成的双极化天线阵列,其中该天线阵列可以 划分为两个同极化天线阵列, 如图 3A所示的同极化天线阵列 A和同极化天 线阵列 B, 这两个同极化天线阵列分别由 +45。 和 -45° 极化的天线构成。 例 如, 同极化天线阵列 A可以进一步划分为 4个相同的天线子阵, 如图 3A所 示的同极化天线子阵 a0、 al、 a2和 a3; 类似地, 同极化天线阵列 B也可以 进一步划分为 4个相同的天线子阵 b0、 bl、 b2和 b3; 其中, 每个天线子阵 包括 8个天线。 应注意, 同极化天线子阵 a0、 al、 a2和 a3分别与天线子阵 b0、 bl、 b2和 b3处于相同的位置, 即该双极化天线阵列一共可以划分为 8 个天线子阵。 在本发明实施例中, 可选地, 该第一参考信号集合可以仅在其中的一个 天线子阵上发射, 该第一参考信号集包括的每个参考信号分别对应于所述基 站的一个天线子阵中的一个天线。 例如, 该第一参考信号集合可以仅在同极 化天线子阵 a0上发射。 即该第一参考信号集合可以包括 8个参考信号, 其 中每个参考信号在该同极化天线子阵 aO 中的一个天线上发射。 因而, 用户 设备 UE通过接收基站在同极化天线子阵 aO上发射的第一参考信号集合中的 各个参考信号, 可以从第一码本中确定第一预编码矩阵, 该第一预编码矩阵 为一个 8天线预编码码本中的矩阵。用户设备可以通过向基站发送第一 CSI, 来指示用户设备确定的该第一预编码矩阵,该第一 CSI可以包括第一秩指示 RI和 /或第一 PMI。 其中, 该第一 PMI可以用于指示该第一预编码矩阵; 该 第一 RI可以用于指示该第一预编码矩阵的列数, 即该第一预编码矩阵的层 数。 进一步地, 该第一 CSI还可以包括第一信道质量指示 CQI等其它信息。
应理解, 该第一预编码矩阵的第一秩 RI也可以是该第一预编码矩阵的 各个列矢量集合组成的极大线性无关组的大小。 还应理解, 由于天线子阵中 各个天线之间的空间相关性, 该第一 RI往往远小于同极化天线子阵包括的 天线数量 Ss, 该 Ss即为同极化天线子阵的大小。 此外, 由于天线子阵具有 一定的空间分辨力, 用户设备通过测量第一参考信号集确定的第一预编码矩 阵, 包含基站和用户设备间信道的空间方向性信息。 因此, 用户设备向基站 提供的第一 CSI , 为基站提供了向所述用户设备发送的第二参考信号集的覆 盖范围 (即利用空间方向性信息)。 b2和 b3 )进行预编码, 从而得到各个天线子阵对应的天线端口。 其中, 基 送的第一 CSI所确定的第一预编码矩阵一致,或者也可以是用户设备发送的 第一 CSI所确定的第一预编码矩阵的变形,例如对所述第一预编码矩阵中每 个列向量作对称幅度加权而得到。 以 Rlfl为例,对同极化天线子阵 a0、 al、 a2、 a3、 b0、 bl、 b2和 b3分别进行预编码, 可以得到 RI^Ns = 8个天线端 口, 其中, 表示第一秩指示; Ns表示天线子阵的数量。 其中, 每个天线 端口为相应天线子阵利用该第一预编码矩阵得到的组合, 例如, 如图 3B所 示, 天线端口 Pa0、 Pal、 Pa2和 Pa3分别为天线子阵 a0、 al、 a2和 a3经过 预编码得到的天线端口; 天线端口 Pb0、 Pbl、 Pb2和 Pb3分别为天线子阵 b0、 bl、 b2和 b3经过该预编码得到的天线端口。 类似地, 以 为例, 对同极化天线子阵 a0、 al、 a2、 a3、 b0、 bl、 b2和 b3分别进行预编码, 可 以得到 RI^Ns = 16个天线端口, 其中每个天线端口为相应天线子阵利用该 第一预编码矩阵的一列得到的组合。
基于用户设备反馈的第一 CSI , 基站确定的所述用户设备使用的第二参 考信号集合可以包括 RI^Ns个参考信号。 以 RIFI为例, 该第二参考信号集 合包括 1^*^=8个参考信号,这些参考信号可以分别在天线端口 Pa0、 Pal、 Pa2和 Pa3以及天线端口 Pb0、 Pbl、 Pb2和 Pb3上发射。 此时, 基于该第二 参考信号集合, 用户设备可以计算并上报第二信道状态信息 CSI, 其中该第 二 CSI可以包括第二信道质量指示 CQI、 第二预编码矩阵指示 PMI和第二 秩指示 RI中的至少一个。 应当注意到, 该第二 CSI为 RI^Ns个天线端口对 应的状态信息。由于该 往远小于同极化天线子阵的大小 Ss,因而 RI^Ns 往往远小于 SS*NS=NT, 其中, Ντ表示双极化天线阵列包括的天线的数量, 也表示该双极化天线阵列的大小。
上文中结合图 3A和图 3B所示的交叉极化天线阵列配置, 详细说明根 据本发明实施例的报告信道状态信息的方法, 下面将结合图 4A和 4B所示 的均匀线阵天线配置,详细说明根据本发明实施例的报告信道状态信息的方 法。
如图 4A所示,该均勾线性天线阵列由 64个天线组成,其中该阵列可以 划分为两个同极化天线阵列, 如图 4A所示的同极化天线阵列 C和同极化天 线阵列 D, 这两个同极化天线阵列均由垂直极化或者 90°极化的天线构成。 其中, 同极化天线阵列 C可以进一步划分为 4个相同的天线子阵, 如图 4A 所示的同极化天线子阵 c0、 cl、 c2和 c3; 类似地, 同极化天线阵列 D可以 进一步划分为 4个相同的天线子阵 d0、 dl、 d2和 d3; 其中每个天线子阵包 括 8个天线。 应注意到, 同极化天线子阵 c0、 cl、 c2和 c3分别与天线子阵 d0、 dl、 d2和 d3处于不同的位置, 即该双极化天线阵列一共可以划分为 8 个天线子阵。
在本发明实施例中, 该第一参考信号集合可以仅在其中的一个天线子阵 上发射, 例如在同极化天线子阵 c0上发射。 即该第一参考信号集合可以包 括 8个参考信号, 其中每个参考信号在该同极化天线子阵 c0中的一个天线 上发射。 因而,用户设备 UE通过接收基站在同极化天线子阵 c0上发射的第 一参考信号集合中的各个参考信号, 可以从第一码本中确定第一预编码矩 阵, 该第一预编码矩阵为一个 8天线预编码码本中的矩阵。 用户设备可以通 过向基站发送第一 CSI, 来指示用户设备确定的该第一预编码矩阵, 该第一 CSI可以包括第一秩 RI和 /或第一 PMI。 进一步地, 该第一 CSI还可以包括 第一信道质量指示 CQI等其它信息。应理解, 由于天线子阵中各个天线之间 的空间相关性, 该第一 RI往往远小于同极化天线子阵包括的天线数量 Ss, 该 Ss即为同极化天线子阵的大小。 此外, 由于天线子阵具有一定的空间分 辨力, 用户设备通过测量天线子阵发送的第一参考信号集获取的预编码矩 阵, 包含基站到用户设备提供的空间方向性信息。 因此, 用户设备向基站提 供的 CSI信息,为基站提供了向所述用户设备发送的第二参考信号集的覆盖 范围。
基站可以对各个天线子阵(包括同极化天线子阵 c0、 cl、 c2和 c3以及 同极化天线子阵 d0、 dl、 d2和 d3 )进行预编码, 从而可以得到各个天线子 阵对应的天线端口。 其中, 所述预编码使用的预编码矩阵, 可以与用户设备 发送的第一 CSI所确定的第一预编码矩阵一致,或者预编码使用的预编码矩 阵是用户设备发送的第一 CSI所确定的第一预编码矩阵的变形,例如对所述 第一预编码矩阵中每个列向量作对称幅度加权而得到。 以 Rlfl为例, 对同 极化天线子阵 c0、 cl、 c2和 c3以及同极化天线子阵 d0、 dl、 d2和 d3分别 进行预编码, 可以得到 1^*^ = 8个天线端口, 其中, 表示第一秩指示; Ns表示天线子阵的数量。其中每个天线端口为相应天线子阵利用该第一预编 码矩阵得到的组合, 例如, 如图 4B所示, 天线端口 Pc0、 Pel , Pc2和 Pc3 分别为天线子阵 c0、cl、c2和 c3经过预编码得到的天线端口;天线端口 Pb0、 Pbl、 Pb2和 Pb3分别为天线子阵 b0、 bl、 b2和 b3经过预编码得到的天线 端口。 类似地, 以 为例, 对同极化天线子阵 c0、 cl、 c2和 c3以及同 极化天线子阵 d0、 dl、 d2和 d3分别进行预编码, 可以得到 RI^Ns = 16个 天线端口, 其中每个天线端口为相应的天线子阵利用该第一预编码矩阵的一 列得到的组合。
基于用户设备反馈的第一 CSI, 基站确定的所述用户设备所用的第二参 考信号集合包含 RI^Ns个参考信号。 以 Rlfl为例, 所述第二参考信号集合 包含的 Ι Ι^Ν^δ个参考信号,这些参考信号可以分别在天线端口 Pc0、 Pel , Pc2和 Pc3上以及天线端口 Pd0、 Pdl、 Pd2和 Pd3上发射。 此时, 基于该第 二参考信号集合, 用户设备可以确定并上报第二信道状态信息 CSI, 其中该 第二 CSI可以包括第二信道质量指示 CQI、 第二预编码矩阵指示 PMI和第 二秩指示 RI中的至少一个。 应当注意到, 该第二 CSI为 RI^Ns个天线端口 对应的状态信息。 由于该 往往远小于同极化天线子阵的大小 Ss, 因而 RI^Ns往往远小于 SS*NS=NT, 其中, Ντ表示双极化天线阵列包括的天线的 数量, 也表示该双极化天线阵列的大小。
综上所述, 用户设备对接收的第一参考信号集合和第二参考信号集合包 括的参考信号进行测量, 并反馈信道状态信息, 其中该第一参考信号集合使 用 Ss个参考信号端口, 第二参考信号集合使用 RI^Ns个参考信号端口。 当 这二个参考信号集合的交集为空集时, 系统一共使用 Ss+RI^Ns个参考信号 端口; 当一个参考信号集合可以是另外一个参考信号集合的子集时, 系统一 共使用 max ( Ss ,Rl!*Ns )个参考信号端口,其中 max ( Ss 表示 Ss
RI^Ns中的最大值。 此外, 第一参考信号集合可以与第二参考信号集合具有 相同的大小, 即这两个参考信号集合具有 Ss = RI^Ns个参考信号端口。 进 一步地, 该第一参考信号集合与第二参考信号集合是相同的参考信号集。 由 于天线子阵的空间相关性, 该 往往远小于同极化天线子阵的大小 Ss, 但 不论是 Ss+RI^Ns还是 max ( Ss ,RIi*Ns ), 均小于天线阵列包括的天线总数 Ντ。 因此, 根据本发明实施例的方法可以有效地降低参考信号的开销, 从而 能够有效地提高系统的效率。
此外, 用户设备对接收的第一参考信号集和第二参考信号集包括的参考 信号进行测量, 并反馈第一 CSI和第二 CSI, 其中第一 CSI基于第一参考信 号集使用的 Ss个参考信号端口得到, 第二 CSI基于第二参考信号集使用的 RI^Ns个参考信号端口得到, 其中, Ss、 RI^Ns和 Ss+RI^Ns均小于天线端 口总数 Ντ。 一方面, 相对于 Ντ个天线端口的信道状态信息测量而言, 使用 相同的反馈开销,可以大大提升 Ss或者 Ss+RI^Ns个天线端口的 CSI反馈精 度, 并且当第一 CSI包含第一 PMI时, 还可以基于第一参考信号集提供的 空间分辨力信息, 进一步提升第二 CSI 的反馈精度; 另一方面, Ss或者 Ss+Rl!*Ns个天线端口的 CSI测量的实现复杂度往往远小于 Ντ个天线端口的 CSI测量的实现复杂度, 从而能够有效地提高系统的性能。
应理解, 本发明实施例仅以图 3A和图 4A所示的天线阵列结构为例进 行说明, 但本发明并不限于此, 根据本发明实施例的方法也可以应用于其它 天线阵列结构, 例如可以应用于交错极化( alternating polarization ) 天线阵 列等。 并且, 上述天线阵列的划分仅为举例说明, 也可以采用其他方式进行 划分, 例如划分为 4个、 16个天线子阵等。 本发明实施例仍然可以适用, 并 不仅局限于上述举例情况。
因此, 在根据本发明实施例的报告信道状态信息的方法中, 用户设备根 据基站发送的第一参考信号集和第二参考信号集分别获取第一 CSI 和第二 CSI, 其中第二参考信号集根据所述第一 CSI得到, 从而可以充分利用第一 参考信号集对应的天线端口的空间相关性,使得第一参考信号集和第二参考 信号集的参考信号开销远小于发射参考信号或者数据的天线开销, 由此能够 有效地提高系统的效率; 另外, 在上述方案中, 信道状态信息的测量是通过 测量第一 CSI和第二 CSI实现的,其中该第一 CSI基于第一参考信号集合得 到, 该第二 CSI基于第二参考信号集合得到, 而第一参考信号集和第二参考 信号集对应的天线端口数远小于实际发射参考信号或者数据的天线数, 用户 设备在第一参考信号提供的空间分辨力基础上利用第二参考信号集进一步 测量信道状态信息 CSI, 由此能够提升 CSI反馈的精度, 并能够有效地降低 用户设备测量信道状态信息的复杂度, 由此能够有效地提高系统的性能。
在本发明实施例中, 可选地, 该第一参考信号集包括的每个参考信号分 别对应于该基站的一个天线子阵中的一个天线; 该第二参考信号集包括的每 个参考信号分别对应于该基站包括的多个天线子阵中的一个天线子阵。
例如, 如上例所示, 该第一参考信号集合可以仅在同极化天线子阵 a0 或 c0上发射, 其中该第一参考信号集合包括的 8个参考信号在该同极化天 线子阵 a0或 c0中的一个天线上发射, 即该第一参考信号集对应于一个天线 子阵 a0或 c0, 该第一参考信号集包括的每个参考信号分别对应于该基站的 一个天线子阵 a0中的一个天线, 或对应于该基站的一个天线子阵 c0中的一 个天线, 其中, 第一参考信号集包括的参考信号的数量与该天线子阵中的天 线的数量相等。
例如, 仍如上例所示, 该第二参考信号集包括 RI^Ns个参考信号, 每 个参考信号分别在 8个天线子阵 a0、 al、 a2、 a3、 b0、 bl、 b2和 b3中的一 个天线子阵上发射, 即该第二参考信号集包括的每个参考信号分别对应于该 基站包括的多个天线子阵中的一个天线子阵, 例如, 每个参考信号对应于天 线子阵 a0、 al、 a2、 a3、 b0、 bl、 b2或 b3 , 其中, 第二参考信号集包括的 参考信号的数量与该天线子阵的数量相等。
应理解, 在本发明实施例中, 第一参考信号集的大小与第二参考信号集 的大小也可以相同。 此外, 第一参考信号集与第二参考信号集在资源块内占 有相同的时频资源或者二者其中之一所用的时频资源是另一个所用的时频 资源的子集, 但本发明并不限于此。
因此, 根据本发明实施例的方法, 能够充分利用第一参考信号集对应的 天线端口的空间相关性,使得第一参考信号集和第二参考信号集的参考信号 开销远小于发射参考信号或者数据的天线开销, 由此能够有效地提高系统的 效率; 用户设备在第一参考信号提供的空间分辨力基础上利用第二参考信号 集进一步测量信道状态信息 CSI, 并能够提升 CSI反馈的精度, 以及有效地 降低用户设备测量信道状态信息的复杂度。
例如, 在 S110 中, 用户设备接收基站发送的第一参考信号集。 例如, 用户设备接收基站在一个天线子阵 a0或 c0上发射的第一参考信号集,其中, 第一参考信号集包括的每个参考信号对应于基站的一个天线子阵中的一个 天线。
在 S120 中, 用户设备向该基站发送第一信道状态信息 CSI, 包括: 用 户设备根据该第一参考信号集, 从第一码本中确定第一预编码矩阵, 向基站 发送第一信道状态信息 CSI, 该第一 CSI可以包括第一 RI, 也可以包括第一 PMI, 还可以包括第一 RI和第一 PMI, 该第一 PMI用于指示该第一预编码 矩阵, 进一步地, 该第一 CSI还可以包括第一 CQI等, 本发明并不限于此。 例如, 用户设备基于第一参考信号集包括的参考信号, 进行信道估计; 并可 以根据该信道估计以及预定义的准则, 例如信道容量最大化准则或者吞吐量 最大化准则等, 从第一码本中选择第一预编码矩阵。 应理解, 在本发明实施 例中, 可以采用多种方法或基于多种预定义准则来选择预编码矩阵, 为了筒 洁, 在此不再赘述。
在 S130中, 用户设备可以接收该基站发送的第二参考信号集, 该第二 参考信号集由该第一 CSI确定。
在本发明实施例中, 可选地, 该接收该基站发送的第二参考信号集, 该 第二参考信号集由该第一 CSI确定, 包括:
接收该基站发送的第二参考信号集,该第二参考信号集由该第一 CSI包 括的该第一 RI确定, 或该第二参考信号集由该第一 CSI包括的该第一 PMI 以及预置的预编码矩阵层数确定,或该第二参考信号集基于该第一 CSI包括 的该第一 RI和该第一 PMI确定。
具体而言, 在本发明实施例中, 该第一 CSI可以仅包括第一秩指示 RI, 该第一 RI用于指示该第一预编码矩阵的秩(Rank ), 此时, 该第二参考信号 集可以根据该第一预编码矩阵的秩确定; 在本发明实施例中, 该第一 RI还 可以用于指示该第一预编码矩阵的层数, 该第一预编码矩阵的层数可以等于 第一预编码矩阵的列数,也可以是该第一预编码矩阵的各个列矢量集合组成 的极大线性无关组的大小。
可选地,在本发明实施例中,该第一 RI或者预置的预编码矩阵层数为 2 的整数次幂。 例如, 该第一 RI或者预置的预编码矩阵层数为 1、 2、 4或 8 等。
进一步, 在本发明实施例中, 可选地, 基站根据第一 CSI包括的该第一 RI, 以及 RI与参考信号集的对应关系, 确定第二参考信号集。 具体地, 例 如, 基站根据如表一或表二所示的 RI与参考信号集的对应关系表, 在包括 至少两个候选的参考信号集合中确定第二参考信号集, 其中, 1^表示第一 R
Figure imgf000021_0001
表二
第二参考信号集
RIi 参考信号序列初始化 ID 天线端口数 天线端口号
( HsciD )
1 8 x~x+7 nsciD-0 x~x+7 nsciD-0
2 16
x~x+7 nsciD-l
x~x+7 nsciD-0
3 24 x~x+7 nsciD-1
x+8~x+15 nsciD-0 x~x+7 nsciD-0 x~x+7 nsciD-1
4 32
x+8~x+15 nsciD-0 x+8~x+15 nsciD-1 在本发明实施例中, 该第一 CSI可以仅包括第一 PMI, 不包括第一 RI, 此时, 该第二参考信号集可以由该第一 CSI包括的该第一 PMI以及预置的 预编码矩阵层数确定, 该预置的预编码矩阵层数可以由预定义的第一 RI指 示。
可选地, 在本发明实施例中, 预定义的第一 RI指示的预编码矩阵的层 数小于该第一参考信号集的大小。 其中, 该第一参考信号集的大小可以为第 一参考信号集中的参考信号端口数或者第一参考信号集对应的天线端口数。 此时, 该第一预编码矩阵的层数是预定义的, 即该第一预编码矩阵的层数等 于所预定义的第一 RI的取值。
具体地, 该第二参考信号集的大小为该第一预编码矩阵的层数的整数 倍, 或者为预定义的该第一 RI的整数倍; 或者该第二参考信号集对应的天 线端口数为该第一预编码矩阵的层数的整数倍, 或者为预定义的该第一 RI 的整数倍。
例如, 假设预定义的第一 RI的取值为 L, 则该第一预编码矩阵的层数 为 L, 该第二参考信号集的大小或者第二参考信号集对应的天线端口数为 L 的整数倍, 例如为 L、 2L或 3L等, 其中 L为正整数, 例如 L=l、 2或 3等, 或者 L为 1、 2、 4或 8等。
进一步地, 在本发明实施例中, 该预定义的第一 RI的取值可以根据该 第一参考信号集的大小或者第一参考信号集对应的天线端口数确定。 可选 地, 该预定义的第一 RI的取值或该第一参考信号集的大小通过广播信道或 者专用信令通知给用户设备 UE。
因此, 在本发明实施例中, 当第一 CSI仅包括第一 PMI时, 不需要反 馈第一 RI, 从而可以进一步有效地减小反馈开销。
应理解, 在本发明实施例中, 第一 CSI可以包括第一 PMI和第一 RI, 其中,该第二参考信号集由该第一 CSI包括的该第一 RI或者第一 PMI确定, 也可以由该第一 CSI包括的该第一 RI和第一 PMI共同确定, 本发明并不限 于此。
进一步, 在本发明实施例中, 可选地, 基站根据第一 CSI包括的该第一 RI和第一 PMI, 以及 RI和 PMI与参考信号集的对应关系, 确定第二参考信 号集。 可选地, 基站根据第一 CSI包括的第一 PMI和预定义的第一 RI, 以 及 RI和 PMI与参考信号集的对应关系, 确定第二参考信号集。
具体地, 例如, 基站可以根据如表三或表四所示的第一 RI和第一 PMI 与第二参考信号集的对应关系表,在包括至少两个候选的参考信号集合中确 定第二参考信号集, 其中, 1¾表示 一 RI; 示第一 PMI。
Figure imgf000023_0001
Figure imgf000023_0002
表四 第二参考信号集
Ii PMl! 参考信号序列初始化 天线端口数 天线端口号
ID ( nSciD )
0 8 x~x+7 HsciD -0
1 8 x~x+7 nSCID -1
1
2 8 x~x+7 nsciD -2
3 8 x~x+7 nsciD -3
x~x+7 HsciD -0
0 16
x~x+7 nsciD -1 x~x+7 nsciD -2
1 16
x~x+7 nsciD -3
2
x~x+7 nsciD -0
3 16
x~x+7 nsciD -2 x~x+7 nsciD -1
4 16
x~x+7 nsciD -3 应理解, 在表一至表四中, 各天线端口所用的资源可以由基站通过高层 信令来通知 UE, 例如, 天线端口 x~x+7、 x-x+15 , x~x+23或 x~x+31所用 的资源可以由 eNB通过高层信令配置给 UE。
可选地, 在本发明实施例中, 该第一参考信号集的发送周期比该第二参 考信号集的发送周期长。
即基站发送该第一参考信号集合的周期比发送该第二参考信号集合的 周期更长。 由于该第一参考信号集用于测量的天线端口通常比该第二参考信 号集对应的天线端口具有更强的空间或者时间或者频率相关性,信道状态变 化相对较慢, 因此发送第一参考信号集的时间间隔或者跨度可以更长, 从而 进一步减少发送参考信号集占用的时频资源开销。
可选地,在本发明实施例中,第一 CSI比第二 CSI具有更大的 4艮告周期, 例如第一 CSI报告周期是第二 CSI报告周期的 N倍, 其中 N为正整数。
在本发明实施例中, 可选地, 作为一个实施例, 用户设备确定第一预编 码矩阵所使用的该第一码本所包括的预编码矩阵,为 LTE R10系统中的 2天 线码本、 4天线码本或 8天线码本中的预编码矩阵; 或为 LTE R12系统中的 2天线码本、 4天线码本或 8天线码本中的预编码矩阵。
在本发明实施例中, 可选地, 作为一个实施例, 该第一码本包括的预编 码矩阵为离散傅立叶变换(Discrete Fourier Transform, 筒称为 "DFT" )矩 阵、 哈达马(Hadamard )矩阵、 豪斯荷尔德(Householder )矩阵、 两个 DFT 矩阵的克罗内可尔( kronecker )积、 DFT矩阵与哈达马矩阵的克罗内可尔积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔积。
需要指出的是, 该第一码本中的预编码矩阵可以事先存储在用户设备 侧, 也可以存储在基站侧, 还可以根据预编码矩阵的结构计算得到, 例如, 根据该第一预编码矩阵指示与预编码矩阵之间的关系计算得到,但本发明对 此并不限定。
在 S140中, 用户设备向该基站发送第二 CSI, 第二 CSI根据该第二参 考信号集确定。
可选地, 该第二 CSI 包括第二信道质量指示 CQI, 其中, 该第二 CQI 可以基于发射分集传输方案计算, 该发射分集方案可以是空频分组编码 ( Space Frequency Block Coding, 筒称为 "SFBC" )、 空时分组编码(Space Time Block Coding, 筒称为 "STBC" )、 或者频率切换发送分集( Frequency Switch Transmit Diversity, 筒称为 "FSTD" )等; 该第二 CQI也可以基于开 环多入多出 ( Multiple Input Multiple Output, 筒称为 "MIMO" )方案计算, 该开环 MIMO方案可以为 LTE R8系统中所定义的基于大延迟循环延迟分集 的预编码方案等。
可选地,向该基站发送第二 CSI,第二 CSI根据该第二参考信号集确定, 包括:
根据该第二参考信号集, 从第二码本中确定第二预编码矩阵;
向该基站发送第二 CSI, 该第二 CSI包括第二秩指示 RI和 /或第二预编 码矩阵指示 PMI, 该第二 PMI用于指示该第二预编码矩阵。
在本发明实施例中, 可选地, 作为一个实施例, 该第二码本所包括的预 编码矩阵为 LTE R10系统中的 2天线码本、 4天线码本或 8天线码本中的预 编码矩阵; 或为 LTE R12系统中的 2天线码本、 4天线码本或 8天线码本中 的预编码矩阵。
在本发明实施例中, 可选地, 作为一个实施例, 该第二码本包括的预编 码矩阵为离散傅立叶变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与 哈达马矩阵的克罗内可尔积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔 积。
可选地,作为一个实施例, 该第二码本包括的预编码矩阵 W为两个矩阵 \\^和\¥2的乘积, 其中矩阵\\^为分块对角化矩阵, 该分块对角化矩阵包括至 少一个分块矩阵 X , 每个该分块矩阵 X为两个矩阵 C和 D的克罗内克尔积。
具体地, 该第二码本包括的预编码矩阵 W可以由下列等式(1 )确定: w = w,w, ( 1 ) 其中, W为分块对角矩阵并可以由下列等式(2 )确定:
Figure imgf000026_0001
矩阵 W2的第 k列 可以由下列等式(3 )确定:
Figure imgf000026_0002
其中, 正整数 r为预编码矩阵 W的秩, 并且 r≥l ; 相位 为实数, i = Q,...., NB _ k = l,..., r , ^为正整数; 列矢量 yi A为一个选择矢量, 其中至 多存在一个元素为 1 , 其余元素均为 0; 表示单位纯虚数, 即 = >Π。
以图 3Α或 4Α所示的例子为例, 在本发明实施例中, 各个分块矩阵 Χ; , i = 0,1, ..., NB -1可以包括一个或者多个列矢量,并可以分别用于对天线子阵 a0、 al、 a2、 a3、 b0、 bl、 b2或 b3 (或者对天线子阵 c0、 cl、 c2、 c3、 d0、 dl、 d2 或 d3 ) 经过该第一预编码矩阵之后形成的天线端口进行预编码 (此时
NB = S ); 该矩阵 W2的第 k列 yk中的 fi k可以用于选择 X,中的一列, 作为对该 第一预编码矩阵之后形成的天线端口组进行预编码, 所述 可以用于对所 述第一预编码矩阵之后形成的不同的天线端口组的预编码进行相位对齐,从 而能够得到合并增益,并极大地提高对应层的信号与干扰加噪声比( Signal to Interference plus Noise Ratio, 筒称为 "SINR" )。 因此, 通过利用上述预编码 矩阵结构进行 CSI反馈, 可以利用所形成的天线阵列的结构特性, 提高 CSI 反馈的精度, 从而能够有效提高系统的吞吐量或者谱效率。
可选地, 作为一个实施例, 各个分块矩阵 Χ, , ί· = 0,1,...,Λ^ -1可以为 LTE R10系统中的 2天线码本、 4天线码本或 8天线码本中的预编码矩阵。
可选地, 作为一个实施例, 各个分块矩阵 X, , = 0,1,..., NS -1可以为离散 傅立叶变换 DFT矩阵、哈达马( Hadamard )矩阵、豪斯荷尔德( Householder ) 矩阵、 或者两个 DFT矩阵的克罗内可尔 (Kronecker)积。
可选地, 作为一个实施例, 该分块矩阵 X,可以为矩阵 A,和矩阵 B,的克罗 内克尔 (kronecker)积, 即分块矩阵 X,可以由下列等式(4)确定:
X. =Ai.®Bi., 0≤ ≤NB-l (4) 可选地, 作为一个实施例, 该分块矩阵 X, = 0,l,...,Ns-l由下列等式(5) 确定:
Xi =eMX0,i = 0,l,...,NB-l (5) 其中, 相位 , = O,l,...,Ns-l为实数。 具体地, 该相位 可以由下列等式
(6)或 (7)确定: φι =ί-Αφ,ί = 0,1,...,ΝΒ -1 (6)
Figure imgf000027_0001
-1 其中,相位差 为实数,具体地,该 取值可以为 0、 士 、 士 、 士 、
64 32 16
±±±πψ。
8 4 2
可选地, 作为一个实施例, 该分块矩阵 X, =八,(¾8,, = 0,1,...,^-1中的矩 阵 Α,或者矩阵 Β,的各列可以为离散傅立叶变换 DFT 矢量或者豪斯荷尔德 ( Householder )矩阵或者哈达马(Hadamard)矩阵的列矢量, 即可以由下列 等式(8)和(9)确定:
A;=「an a, -" aM_,l (8)
B, b。 b, N„- (9) 其中, 矢量 可以由下列等式(10)、 (11 )或 (12)确定:
Figure imgf000027_0002
a, e{g0,g1,...,gNg_1 = 0,...,Na-l (11)
Figure imgf000027_0003
其中, 矢量 b,可以由下列等式(13)、 (14)或 (15)确定: •,/ = 0,...,Nb-l (13) g0,gl,...,gN , ,/ = 0,...,Nb-l (14) b, e h^h,, ,/ = 0,...,Nb-l (15) 其中, Na和 Nb分别为矩阵 A,和矩阵 B,的列数。
在本发明实施例中, 可选地, 该矢量 fn,n = 0,...,Nf -l为 DFT矢量, Nf为 DFT矢量的个数。 DFT矢量 fn可以为以下 DFT矩阵 F中的列矢量, 如下列等式( 16)所示:
m ,«
Figure imgf000028_0001
= 0,l...,Nt-l;
个不同的 DFT矩阵。
在本发明实施例中, 可选地, 该矢量 gn,n = 0,...,Ng-l为豪斯荷尔德 ( Householder )矩阵 G的列矢量, Ng为豪斯荷尔德( Householder )矩阵 G列 矢量的个数。 例如该列矢量 ^可以为以下矩阵 G中的列矢量, 如下列等式 (17)所示:
Figure imgf000028_0002
例如, 矢量^可以如下表五所示:
表五
Figure imgf000028_0003
在本发明实施例中,可选地,该矢量 hn,n = 0,...,Nh -1为哈达马( Hadamard ) 矩阵 HNH的列矢量, Nh为哈达马 (Hadamard)矩阵 HNH列矢量的个数。 例如 该列矢量 可以为下列等式(18)所示的矩阵 HNH中的列矢量:
[h0 … ( 18) 例如, 当 Nh =2以及 Nh =2w时, 该哈达马矩阵可以由下列的等式( 19) 和(20)确定:
1 1
( 19)
1 -1
H2N =Η2 ®Η2 ®···®Η2, N = 1,2,3,4,5,... (20)
W个 H2
其中, ®表示两个矩阵的克罗内克尔 (Kronecker)积。 在本发明实施例中, 可选地, 作为一个实施例, 该矢量 还可以(10,)、 或 ( 10,,)确定:
a, = diag 1 , , , ,, , , ,····, " 。j >a,,fc = Ο,,.,.,,Ν -1
/2J-1 ' [ /2」, [ /2」— 1, , 1, 。 a ( 10, ) 其中, 矢量 中元素的个数 N¾为奇(odd)数;
a, = diag ..., , , N / 2 ,,, , N "
Figure imgf000029_0001
N /2 ,-1 , / 2 ,,, , N /2 ,-1,,····,, 1, 。 0 a,, = 0,,...,,Ν -1
a ( 10,, ) 其中, 矢量 中元素的个数 N 为偶 ( even ) 数; 其中, 为实数, m = 0,l,...,[Nat /2j , LN¾ /2」表示不大于 N /2的最大整数,其中,( 10, )或( 10" ) 中的矢量 a为: a {f。, J、 a ^。^,…^ ― J或 a {ΐΐο,ΐι ···,!^— J。 在本发明实施例中, 可选地, 作为一个实施例, 该矢量 b,还可以 ( 13,)、 或 ( 13")确定:
b, = 0,...,Nh-l (13,)
Figure imgf000029_0002
其中, 矢量 b,中元素的个数 Nbi为奇(odd)数; 或者
, /2」 ,- ΐ ,Ί /2」 ,,Ίβ /2」 ,,Ίβ /2」 ,- 1 ,,....,,^,,^o0)jb,,/ = 0,,...,
Figure imgf000029_0003
,Nb b-l ( 13,,) 其中, 矢量 b,中元素的个数 Nbi为偶 ( even ) 数; 其中 为实数, m 0,l,...,[Nbi/2j , [Nbi /2」表示不大于 /2的最大整数。 其中(11,)或(1Γ)中 的矢量 b为 b e 。
Figure imgf000030_0001
可选地, 所述矩阵 A,或者矩阵 B,也可以为 LTE R8系统 2天线码本、 4 天线码本中的预编码矩阵, 或者为 LTE R10系统 8天线码本或 LTE R12系 统 4天线码本中的预编码矩阵。
可选地, 作为另一实施例, 所述矩阵 A,和矩阵 B,其中之一可以为 1。 例 如, 八,=1则该 =8,, 其中 B,可以如上述等式(9)、 ( 13)至(20)、 ( 13,) 或(13")所示; 或者 B,=l则所述 X,=A,, 其中 A,可以如上述等式(8)、 (10) 至( 12 )、 ( 16 )至( 20 )、 ( 10,)或 ( 10" )所示。
可选地, 作为另一实施例, 式(3)所示的所述矩阵\¥2的第 k列yλ的结 构中, 所述相位 满足以下等式(21 ):
0l+NB/u=e +i-A0k,i = OX...,NB/2-l,k = l,...,r (21) 其中,所述相位差 Δ 为实数,具体地,所述 Δ 取值可以为 0、士 、士
64 32 士一、 士一、 士一、 士一、 π奇。
16 8 4 2
可选地, 作为一个实施例, 在上述等式(3)所示的矩阵 W2的第 k列yλ 的结构中, 相位 满足下列等式(22)或 (23):
0ik =i-A0k,i = O,l,...,NB-l,k=l,...,r ( 22 ) θ
Figure imgf000030_0002
-r, (23) 其中,所述相位差 Δ 为实数,具体地,所述 Δ 取值可以为 0、士 、士 、
64 32 士一、 士一、 士一、 士一、 π奇。
16 8 4 2
可选地, 作为另一实施例, 在上述等式(3)所示的该矩阵 W2的第 k列 yi的结构中, 该矢量 满足下列等式(24):
y, =y,, = o,l..„- i, i"..,r (24) 进一步地, 该矢量 满足下列等式(25)或 (26):
yi,k = y0,k,i = u e_i,k = .,r (25) y !+ = _y" , '· = o, i, ·· ·, NB /2 _ ΐΉ…, r (26) 以图 3B和图 4B为例, 该第二参考信号集的大小为 8, 即第二参考信号 集对应 8个天线端口, 该预编码矩阵 W可以具有以下结构:
W = w,w2 (27)
W! =ώα^{Χ0,Χ. (28) 该分块矩阵 X。和 为:
X, =Xn =An®Bn (29) 或者
X1 =X0 =B0®A0 (30) 可选地, 作为一个实施例, 其中该 A。为
A0 =a0 (31) 其中, ao e(fo'fi} (32)
[f0 fj ] =diag il,ejr"c>16)F2,n = 0,1,···, 7 (33)
Figure imgf000031_0001
或者
Figure imgf000031_0002
其中, ^为 2阶哈达马 (Hadamard)矩阵, 该矩阵 B。为
Figure imgf000031_0003
其中, cmody表示对 x取模 y的操作, 表示单位纯虚数即 = > Ϊ; 或 者该矩阵8。为 LTE R8系统 4天线秩 4码本中的预编码矩阵。 W, (39)
Figure imgf000032_0001
(40) 或者 w, (41 )
Figure imgf000032_0002
Figure imgf000032_0003
(γΐ'γ2)£{(δ 11),(δ22),(δ3'δ3),(δ4^4),(δ12),(§2,§3),(614)'(δ 2,δ4)} ( 42 ) 其中, g„,w = l,2,3,4表示 4x1的选择矢量,其元素除了第 n个元素为 1夕卜, 其余元素均为 0。
可选地, 作为另一实施例, 以分块矩阵的个数 NB =4和第二参考信号集 的大小为 16即第二参考信号集对应 16个天线端口为例,所述预编码矩阵 W 可以具有以下结构:
W=W,W (43)
χ0,···,χ wB- 1J N。 =4 (44)
X, =emXn,X, =e X (45) 其中, 相位 ^和 为实数, 可以取值为 0,± ,± ,± ,±^,± ,± , 等(
1 3 64 32 16 8 4 2 进一步地, 在本发明实施例中, 2= 。, 3= , 此时 可选地, 作为另一实施例, 其中该分块矩阵 X。和 X2为: χ, = Χ =An®B (46) 或者
X2=X0=B0®A0。 (47) 可选地, 作为一个实施例, 其中该 A。为
(48) 其中, (49)
[f0 ,f, ,f2,f3] =diag il,ejn7'16, ejml%, ejinl16 }F4,W = 0,1, (50)
Figure imgf000033_0001
或者
Figure imgf000033_0002
其中, ^为 4阶哈达马矩阵, 该矩阵 B。为
B : 4 = 0,1,···, 15 (54)
b, (¾+;)raxl32
Figure imgf000033_0003
e 32 e 32 J =0,1,2,3 ( 55 ) 其中, cmody表示对 x取模 y的操作, 表示单位纯虚数即 · = ^; 或者该 矩阵 Β。为 LTE R8系统 4天线秩 4码本中的预编码矩阵。
可选地, 作为另一实施例, 该矩阵 W,可以为:
W, (56)
Figure imgf000033_0004
Υ G { e1,e2,e.,ei (57) 其中, έ„,η = 1,2,3,4表示 4x1的选择矢量, 其元素除了第 η个元素为 1外其余 元素均为 0; ^为实数, 例如其取值可以为 0、 ± 、 士 、 ± 、 ± 、 ± 、
64 32 16 8 4
± 、 r等。 可选地, 作为另一实施例, 该矩阵 W,可以为
Figure imgf000034_0001
(γΐ'γ2)ε{(δ 11),(δ22),(δ3'δ3),(δ4^4),(δ12),(§23),(§14),(§24)} ( 59) 其中, έ„, « = 1,2,3,4表示 4x1的选择矢量, 其元素除了第 η个元素为 1外其余 π π π 元素均为 0; ^和 θ12为实数, 或者 6>12的取值可以为 0 +- +- +-
64 32 16
± ± ± 、 ; rc
8 4 2
可选地,作为另一实施例,以分块矩阵的个数 Ns =2和 16发射天线为例, 构成预编码矩阵 W的各个矩阵也可以分别为:
Figure imgf000034_0002
或者
Figure imgf000034_0003
其中, 矢量 U = 0,...,3以及矢量 h,, = 0,...,3分别如上述等式所示。 矩阵 Β ί· = 1,2可以如上述等式所示,或者矩阵 Β,为 LTER8系统 4天线秩 4码本中的预编码矩阵。
可选地, 作为另一实施例, 该矩阵 W7可以为
Figure imgf000034_0004
Figure imgf000034_0005
Υ G { e1,e2,e3,e4,e5,e6,e7,ei (64) 或者 w 1
(65)
Figure imgf000034_0006
(Yl'Y2)e{(ei'ei)'(e2'e2)'(e3'e3)'(e4'e4)'(ei'e2)'(e2'e3)'(ei'e4)'(e2'e 4)} ^ 66) 其中, e„, « = 1,2,···, 8表示 8x1的选择矢量, 其元素除了第 n个元素为 1夕卜 其余元素均为 0 进一步地, 该根据该第二参考信号集, 从第二码本中确定第二预编码矩 阵, 包括:
基于第二参考信号集, 从码本子集中选择第二预编码矩阵。
其中, 该码本子集可以是预定义的; 或者由 UE上报给基站 eNB, 并由 基站 eNB基于 UE的上报确定并通知给该 UE; 或为 UE确定并上报的码本 子集, 例如最近上报的码本子集等。 由此, 可以进一步降低反馈开销和实现 的复杂性。
可选地, 该码本子集可以包括矩阵 ^或者矩阵 A,或者矩阵 B,或者矩阵 \¥2的子集。
可选地,该码本子集彼此具有相同的矩阵 ^或者矩阵 A,或者矩阵 B,或者 矩阵 \¥2的子集。 从而使得该码本子集彼此重叠, 可以克服信道状态信息量 化的边缘效应。
可选地, 在该预编码矩阵中, 分块矩阵 X,与 Χ ≠ ·可以不等, 也可以相 等。 在存在多个 X,与 Χ ≠ ·相等的情况下, 例如相等的 X,与 Χ ≠ ·可以成 对出现, 可以进一步减低反馈开销。
应理解, 上述矩阵 Α,或者矩阵 Β,也可以采用其他形式, 此处不进一步展 开。 另外, 需要指出的是, 上述各个矩阵可以进一步乘以一个比例因子, 以 实现功率归一化或者功率平衡。
在本发明实施例中, 可选地, 该第二码本至少包括一个预编码矩阵 W , 该预编码矩阵 W具有由下列等式确定的结构:
W® V
W = ( 2ΝΜ (67)
e^w ® v 或者
W® V W® V
W = (4厦) (68)
e^w ® v -e^w ® v 其中, wv分别为 N 维列矢量或 M 维列矢量, ®表示克罗内可尔 ( kronecker )积, M、 N为正整数; 为相位。
可选地, 列矢量 W或者 V可以分别为
W (69)
(70) 其中 D1表示矩阵转置; 和 为相位 可选地,该相位 为 = m;r/16 ; m = 0"..,15 ;或可选地,该相位 为 = /32; « = 0,...,31; 或可选地, 该相位 为 = /;τ/2 , Ζ = 0, ..,3或者/ = 0, 1。
可选地, 作为另一实施例, 该方法 100还包括:
接收基站发送的第三参考信号集, 该第三参考信号集由该第二 CSI确 定;
基于该第三参考信号集, 确定并上报第三信道状态信息 CSI。
可选地, 所述第二 CSI可以是第二 RI和 /或第二 PMI。
需要指出的是, 该第一码本中的预编码矩阵可以事先存储在用户设备 侧, 也可以存储在基站侧, 还可以根据预编码矩阵的结构计算得到, 例如, 根据该第一预编码矩阵指示与预编码矩阵之间的关系计算得到,但本发明对 此并不限定。 此外, 应理解, 在本发明的各种实施例中, 上述各过程所涉及 的码本中的预编码矩阵结构并不局限于用于所述方法中的两次或者多次 CSI 测量过程。 例如(67 ) - ( 70 )所述的预编码矩阵结构可以用于以上所述第 三 CSI测量和报告过程,也可以用于基于单一参考信号集合的 CSI测量过程, 例如类似 LTE R8系统基于 CRS或者 LTE R8系统基于 CSI-RS的 CSI测量 过程, 此处不进一步赘述。 另外, 需要指出的是, 本发明实施例中, 标量是 矢量的特例, 矢量是矩阵的特例。
应理解, 在本发明实施例中, 第一参考信号集的大小与第二参考信号集 的大小也可以相同。 此外, 第一参考信号集与第二参考信号集在资源块内占 有相同的时频资源或者二者其中之一所用的时频资源是另一个所用的时频 资源的子集, 但本发明并不限于此。 例如, 第一参考信号集合和第二参考信 号集合可以使用 LTE系统小区特定的 (Cell specific)参考信号 CRS或者信道 状态信息参考信号 CSI-RS, 其第一 CSI和第二 CSI可以基于 LTE R8或者 R10或者 R12所采用的码本, 这样, 可以保持系统的后向兼容性。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
因此, 在根据本发明实施例的报告信道状态信息的方法中, 用户设备根 据基站发送的第一参考信号集和第二参考信号集分别获取第一 CSI 和第二 CSI, 其中所述用户设备所用的第二参考信号集根据所述第一 CSI中的第一 秩指示 RI和 /或第一 PMI得到,从而可以充分利用第一参考信号集对应的天 线端口的空间相关性,使得第一参考信号集和第二参考信号集的参考信号开 销远小于发射参考信号或者数据的天线开销, 由此能够有效地提高系统的效 率; 另外, 在上述方案中, 信道状态信息的测量是通过测量第一 CSI和第二 CSI实现的, 其中该第一 CSI基于第一参考信号集合得到, 该第二 CSI基于 第二参考信号集合得到, 而第一参考信号集和第二参考信号集对应的天线端 口数远小于实际发射参考信号或者数据的天线数,用户设备在第一参考信号 提供的空间分辨力基础上利用第二参考信号集进一步测量信道状态信息
CSI, 从而提升 CSI反馈的精度, 并有效地降低用户设备测量信道状态信息 的复杂度, 由此能够有效地提高系统的性能。
上文中结合图 1至图 4B, 从用户设备的角度详细描述了根据本发明实 施例的报告信道状态信息的方法, 下面将结合图 5, 从基站的角度描述根据 本发明实施例的报告信道状态信息的方法。
图 5示出了根据本发明实施例的报告信道状态信息的方法 200, 该方法 200可以由基站执行。 如图 5所示, 该方法 200包括:
S210, 向用户设备发送第一参考信号集, 该第一参考信号集包含至少两 个参考信号;
S220, 接收该用户设备发送的第一 CSI, 该第一 CSI基于该第一参考信 号集确定, 该第一 CSI包括第一秩指示 RI和 /或第一预编码矩阵指示 PMI;
S230, 根据该第一 CSI, 确定第二参考信号集, 该第二参考信号集包含 至少一个参考信号;
S240, 向该用户设备发送该第二参考信号集;
S250, 接收该用户设备发送的第二 CSI, 该第二 CSI基于该第二参考信 号集确定。
因此, 在根据本发明实施例的报告信道状态信息的方法中, 基站发送第 一参考信号集和第二参考信号集, 用户设备根据所述第一参考信号集和第二 参考信号集分别获取第一 CSI和第二 CSI, 其中, 基站向所述用户设备发送 的第二参考信号集根据所述第一 CSI确定。由于该第一 CSI提供了基站和用 户设备之间信道状态的初步信息,基站可以基于该信道状态的初步信息进一 步确定该用户设备的第二参考信号集,使得用户设备可以根据该第二参考信 号集更高效或更精确地获得第二 CSI, 从而提升系统的效率或性能。
例如, 该第一参考信号集可以对应所述基站配置的天线集合的一个天线 子集, 其中, 第一参考信号集中的每个参考信号可以对应该天线子集中的一 个天线, 该天线子集的大小可以远小于天线集合的大小。 可选地, 该天线子 集具有较强的空间相关性或者该天线子集具有粗粒度的空间分辨力。用户设 备可以根据该第一参考信号集获得第一 CSI, 该第一 CSI可以包括第一 RI 和 /或第一 PMI, 其中该第一 RI可以反映基站和用户设备之间信道的空间相 关性信息, 该第一 PMI 可以反映基站和用户设备之间信道的空间分辨力信 息, 从而该第二参考信号集可以基于该第一 CSI提供的初步信息(包括空间 相关性信息和 /或空间分辨力信息)确定,进而用户设备可基于该第二参考信 号集高效或更精确地获得第二 CSI。
仍以图 3A所示的由 64个天线组成的双极化天线阵列为例,其中该天线 阵列包括同极化天线阵列 A和同极化天线阵列 B, 同极化天线阵列 A包括 同极化天线子阵 a0、 al、 a2和 a3, 同极化天线阵列 B包括同极化天线子阵 b0、 bl、 b2和 b3, 其中该双极化天线阵列一共可以划分为 8个天线子阵, 每个天线子阵具有 8个天线。
基站可以仅在其中的一个天线子阵上发射该第一参考信号集合, 例如在 同极化天线子阵 a0上发射, 即该第一参考信号集合可以包括 8个参考信号 端口, 其中每个参考信号端口在该同极化天线子阵 aO中的一个天线上发射。 用户设备 UE通过接收基站在同极化天线子阵 aO上发射的第一参考信号集合 中的各个参考信号, 可以从第一码本中确定第一预编码矩阵, 该第一预编码 矩阵为一个 8天线预编码码本中的矩阵。用户设备可以通过向基站发送第一 CSI, 来指示用户设备确定的该第一预编码矩阵, 该第一 CSI可以包括第一 秩 RI和 /或第一 PMI。 其中, 该第一 PMI可以用于指示该第一预编码矩阵; 该第一 RI可以用于指示该第一预编码矩阵的列数, 即该第一预编码矩阵的 层数。进一步地,该第一 CSI还可以包括第一信道质量指示 CQI等其它信息。 应理解, 该第一预编码矩阵的第一秩 RI也可以是该第一预编码矩阵的各个 列矢量集合组成的极大线性无关组的大小。 还应理解, 由于天线子阵中各个 天线之间的空间相关性, 该第一 RI往往远小于同极化天线子阵包括的天线 数量 Ss, 该 Ss即为同极化天线子阵的大小。 此外, 由于天线子阵具有一定 的空间分辨力, 用户设备通过测量第一参考信号集确定的第一预编码矩阵, 包含基站和用户设备间信道的空间方向性信息。 因此, 用户设备向基站提供 的第一 CSI , 为基站提供了向所述用户设备发送的第二参考信号集的覆盖范 围 (即利用空间方向性信息)。 b2和 b3 )进行预编码, 从而可以得到各个天线子阵对应的天线端口。 其中, 的第一 CSI所确定的第一预编码矩阵一致,或者也可以是用户设备发送的第 一 CSI所确定的第一预编码矩阵的变形,例如对所述第一预编码矩阵中每个 列向量作对称幅度加权而得到。 以 Rlfl为例, 对同极化天线子阵 a0、 al、 a2、 a3、 b0、 bl、 b2和 b3分别进行预编码, 可以得到 RI^Ns = 8个天线端 口, 其中, 表示第一秩指示; Ns表示天线子阵的数量。 其中, 每个天线 端口为相应天线子阵利用该第一预编码矩阵得到的组合, 例如, 如图 3B所 示, 天线端口 Pa0、 Pal、 Pa2和 Pa3分别为天线子阵 a0、 al、 a2和 a3经过 预编码得到的天线端口; 天线端口 Pb0、 Pbl、 Pb2和 Pb3分别为天线子阵 b0、 bl、 b2和 b3经过该预编码得到的天线端口。 类似地, 以 为例, 对同极化天线子阵 a0、 al、 a2、 a3、 b0、 bl、 b2和 b3分别进行预编码, 可 以得到 RI^Ns = 16个天线端口, 其中每个天线端口为相应天线子阵利用该 第一预编码矩阵的一列得到的组合。
基于用户设备反馈的第一 CSI , 基站确定的所述用户设备使用的第二参 考信号集合可以包括 RI^Ns个参考信号。 以 RIFI为例, 该第二参考信号集 合包括 1^*^=8个参考信号,这些参考信号可以分别在天线端口 Pa0、 Pal、 Pa2和 Pa3以及天线端口 Pb0、 Pbl、 Pb2和 Pb3上发射。 此时, 基于该第二 参考信号集合, 用户设备可以计算并上报第二信道状态信息 CSI, 其中该第 二 CSI可以包括第二信道质量指示 CQI、 第二预编码矩阵指示 PMI和第二 秩指示 RI中的至少一个。 应当注意到, 该第二 CSI为 RI^Ns个天线端口对 应的状态信息。由于该 往远小于同极化天线子阵的大小 Ss,因而 RI^Ns 往往远小于 SS*NS=NT, 其中, Ντ表示双极化天线阵列包括的天线的数量, 也表示该双极化天线阵列的大小。
因此, 在根据本发明实施例的报告信道状态信息的方法中, 基站向用户 设备发送第一参考信号集和第二参考信号集, 以使得用户设备分别获取第一 CSI和第二 CSI, 其中第二参考信号集根据所述第一 CSI得到, 从而可以充 分利用第一参考信号集对应的天线端口的空间相关性,使得第一参考信号集 和第二参考信号集的参考信号开销远小于发射参考信号或者数据的天线开 销, 由此能够有效地提高系统的效率; 另外, 在上述方案中, 信道状态信息 的测量是通过测量第一 CSI和第二 CSI实现的,其中该第一 CSI基于第一参 考信号集合得到, 该第二 CSI基于第二参考信号集合得到, 而第一参考信号 集和第二参考信号集对应的天线端口数远小于实际发射参考信号或者数据 的天线数, 由此能够提升 CSI反馈的精度, 并能够有效地降低用户设备测量 信道状态信息的复杂度, 由此能够有效地提高系统的性能。
应理解, 本发明实施例仅以图 3A所示的天线阵列结构为例进行说明, 但本发明并不限于此,根据本发明实施例的方法也可以应用于其它天线阵列 结构, 例如可以应用于均匀线阵、 交错极化阵列等。
在本发明实施例中, 可选地, 该根据该第一 CSI, 确定第二参考信号集, 包括:
在该第一 CSI包括该第一 RI时,根据该第一 RI确定该第二参考信号集; 或
在该第一 CSI包括该第一 PMI时, 根据该第一 PMI以及预置的预编码 矩阵层数确定该第二参考信号集; 或
在该第一 CSI包括该第一 RI和该第一 PMI时, 根据该第一 RI和该第 一 PMI确定该第二参考信号集。
在本发明实施例中, 可选地, 该第一参考信号集包括的每个参考信号分 别对应于该基站的一个天线子阵中的一个天线; 该第二参考信号集包括的每 个参考信号分别对应于该基站包括的多个天线子阵中的一个天线子阵。
在本发明实施例中, 该第一 RI还可以用于指示该第一预编码矩阵的层 数, 该第一预编码矩阵的层数可以等于第一预编码矩阵的列数。
在本发明实施例中, 可选地, 该第一 RI为 2的整数次幂。 可选地, 预 置的预编码矩阵的层数为 2的整数次幂。 例如, 该第一 RI为 1、 2、 4或 8 等。
进一步, 在本发明实施例中, 可选地, 基站根据第一 CSI包括的该第一 RI, 以及 RI与参考信号集的对应关系, 确定第二参考信号集。 具体地, 例 如, 基站根据如表一或表二所示的 RI与参考信号集的对应关系表, 在包括 至少两个候选的参考信号集合中确定第二参考信号集, 其中, 1^表示第一 RI。
在本发明实施例中, 该第一 CSI可以仅包括第一 PMI, 不包括第一 RI, 此时, 该第二参考信号集可以由该第一 CSI包括的该第一 PMI以及预置的 预编码矩阵层数确定, 该预置的预编码矩阵层数可以由预定义的第一 RI指 示。
可选地, 在本发明实施例中, 预定义的第一 RI指示的预编码矩阵的层 数小于该第一参考信号集的大小。 其中, 该第一参考信号集的大小可以为第 一参考信号集中的参考信号端口数或者第一参考信号集对应的天线端口数。 此时, 该第一预编码矩阵的层数是预定义的, 即该第一预编码矩阵的层数等 于所预定义的第一 RI的取值。
具体地, 该第二参考信号集的大小为该第一预编码矩阵的层数的整数 倍, 或者为预定义的该第一 RI的整数倍; 或者该第二参考信号集对应的天 线端口数为该第一预编码矩阵的层数的整数倍, 或者为预定义的该第一 RI 的整数倍。
例如, 假设预定义的第一 RI的取值为 L, 则该第一预编码矩阵的层数 为 L, 该第二参考信号集的大小或者第二参考信号集对应的天线端口数为 L 的整数倍, 例如为 L、 2L或 3L等, 其中 L为正整数, 例如 L=l、 2或 3等, 或者 L为 1、 2、 4或 8等。
进一步地, 在本发明实施例中, 该预定义的第一 RI的取值可以根据该 第一参考信号集的大小或者第一参考信号集对应的天线端口数确定。 可选 地, 该预定义的第一 RI的取值或该第一参考信号集的大小通过广播信道或 者专用信令通知给用户设备 UE。
因此, 在本发明实施例中, 当第一 CSI仅包括第一 PMI时, 不需要反 馈第一 RI, 从而可以进一步有效地减小反馈开销。
应理解, 在本发明实施例中, 第一 CSI可以包括第一 PMI和第一 RI, 其中, 该第二参考信号集由该第一 CSI包括的该第一 RI确定, 也可以由该 第一 CSI包括的该第一 RI和第一 PMI共同确定, 本发明并不限于此。
进一步, 在本发明实施例中, 可选地, 基站根据第一 CSI包括的该第一 RI和第一 PMI, 以及 RI和 PMI与参考信号集的对应关系, 确定第二参考信 号集。 可选地, 基站根据第一 CSI包括的第一 PMI和预定义的第一 RI, 以 及 RI和 PMI与参考信号集的对应关系, 确定第二参考信号集。
具体地, 例如, 基站可以根据如表三或表四所示的第一 RI和第一 PMI 与第二参考信号集的对应关系表,在包括至少两个候选的参考信号集合中确 定第二参考信号集, 其中, 1^表示第一 RI; 示第一 PMI。
在本发明实施例中, 可选地, 该第一参考信号集的发送周期比该第二参 考信号集的发送周期长。 即基站发送该第一参考信号集合的周期比发送该第 二参考信号集合的周期更长。 由于该第一参考信号集用于测量的天线端口通 常比该第二参考信号集对应的天线端口具有更强的空间或者时间或者频率 相关性, 信道状态变化相对较慢, 因此发送第一参考信号集的时间间隔或者 跨度可以更长, 从而能够进一步减少发送参考信号集占用的时频资源开销。
可选地,在本发明实施例中,第一 CSI比第二 CSI具有更大的 4艮告周期, 例如第一 CSI报告周期是第二 CSI报告周期的 N倍, 其中 N为正整数。
在本发明实施例中, 可选地, 该第一码本包括的预编码矩阵为离散傅立 叶变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内 可尔积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔积。
在本发明实施例中, 可选地, 该接收该用户设备发送的第二 CSI, 包括: 接收该用户设备发送的第二 CSI, 该第二 CSI包括第二秩指示 RI和 /或 第二预编码矩阵指示 PMI, 该第二 PMI用于指示该用户设备根据该第二参 考信号集从第二码本中确定的第二预编码矩阵。
在本发明实施例中, 可选地, 该第二码本包括的预编码矩阵 W为两个矩 阵 \^和\¥2的乘积, 其中矩阵^为分块对角化矩阵, 该分块对角化矩阵包括 至少一个分块矩阵 X ,每个该分块矩阵 X为两个矩阵 C和 D的克罗内克尔积。
在本发明实施例中, 可选地, 该第二码本至少包括一个预编码矩阵 W , 该预编码矩阵 W具有式(67 )或者(68 )确定的结构:
W ® V
W = ( 2NM ( 67 )
e^w ® v 或者
W ® V W ® V
W = (4厦) ( 68 )
e^w ® v -e^w ® v 其中, wv分别为 N 维列矢量或 M 维列矢量, ®表示克罗内可尔 ( kronecker )积, M、 N为正整数; 为相位。
可选地, 列矢量 W或者 V可以分别为
W 1 e ( 69 ) 1 e e ( 70 ) 其中 D iT1表示矩阵转置; 和 为相位。
可选地,该相位 >为 > = m;r/16 ; m = 0,〜,15 ;或可选地,该相位 为 = w;r/32; « = 0,...,31; 或可选地, 该相位 为 = /;τ/2 , / = 0, ..,3或者/ = 0,1。
可选地, 在本发明实施例中, 该方法 200还包括:
根据第二 CSI, 确定第三参考信号集;
向用户设备发送该第三参考信号集;
接收用户设备根据该第三参考信号集发送的第三 CSI, 该第三 CSI包括 第三秩指示 RI和 /或第三预编码矩阵指示 ΡΜΙ, 该第三 RI和该第三 ΡΜΙ用 于指示该用户设备根据该第三参考信号集从第三码本中确定的第三预编码 矩阵。
可选地, 所述第二 CSI可以是第二 RI和 /或第二 ΡΜΙ。
需要指出的是, 该第一码本或第二码本或第三码本中的预编码矩阵可以 事先存储在用户设备侧, 也可以存储在基站侧, 还可以根据预编码矩阵的结 构计算得到, 例如, 根据该第一预编码矩阵指示与预编码矩阵之间的关系计 算得到,但本发明对此并不限定。 此外,应理解, 在本发明的各种实施例中, 的两次或者多次 CSI测量过程。 例如(67 ) - ( 70 )所述的预编码矩阵结构 可以用于以上所述第三 CSI测量和报告过程,也可以用于基于单一参考信号 集合的 CSI测量过程, 例如类似 LTE R8系统基于 CRS或者 LTE R8系统基 于 CSI-RS的 CSI测量过程, 此处不进一步赘述。
应理解, 在本发明实施例中, 第一参考信号集的大小与第二参考信号集 的大小也可以相同。 此外, 第一参考信号集与第二参考信号集在资源块内占 有相同的时频资源或者二者其中之一所用的时频资源是另一个所用的时频 资源的子集, 但本发明并不限于此。 例如, 第一参考信号集合和第二参考信 号集合可以使用 LTE系统小区特定的 (Cell specific)参考信号 CRS或者信道 状态信息参考信号 CSI-RS, 其第一 CSI和第二 CSI可以基于 LTE R8或者 R10或者 R12所采用的码本, 这样, 可以保持系统的后向兼容性。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。 因此, 在根据本发明实施例的报告信道状态信息的方法中, 基站向用户 设备发送第一参考信号集和第二参考信号集, 以使得用户设备分别获取第一
CSI和第二 CSI,其中所述用户设备所用的第二参考信号集根据所述第一 CSI 中的第一秩指示 RI和 /或第一 PMI得到确定,从而可以充分利用第一参考信 号集对应的天线端口的空间相关性,使得第一参考信号集和第二参考信号集 的参考信号开销远小于发射参考信号或者数据的天线开销, 由此能够有效地 提高系统的效率; 另外, 在上述方案中, 信道状态信息的测量是通过测量第 一 CSI和第二 CSI实现的, 其中该第一 CSI基于第一参考信号集合得到, 该 第二 CSI基于第二参考信号集合得到,而第一参考信号集和第二参考信号集 对应的天线端口数远小于实际发射参考信号或者数据的天线数, 由此能够提 升 CSI反馈的精度, 并能够有效地降低用户设备测量信道状态信息的复杂 度, 由此能够有效地提高系统的性能。
上文中结合图 1至图 5, 详细描述了根据本发明实施例的报告信道状态 信息的方法, 下面将结合图 6至图 9, 详细描述根据本发明实施例的用户设 备和基站。
图 6示出了根据本发明实施例的用户设备 500的示意性框图。如图 6所 示, 该用户设备 500包括:
第一接收模块 510, 用于接收基站发送的第一参考信号集, 该第一参考 信号集包含至少两个参考信号;
第一发送模块 520, 用于向该基站发送第一信道状态信息 CSI, 该第一 CSI根据该第一参考信号集确定, 该第一 CSI包括第一秩指示 RI和 /或第一 预编码矩阵指示 PMI;
第二接收模块 530, 用于接收该基站发送的第二参考信号集, 该第二参 考信号集基于该第一 CSI确定, 该第二参考信号集包含至少一个参考信号; 第二发送模块 540, 用于向该基站发送第二 CSI, 该第二 CSI根据所述 第二接收模块 530接收的该第二参考信号集确定。
因此, 在根据本发明实施例的用户设备中, 用户设备根据基站发送的第 一参考信号集和第二参考信号集分别获取第一 CSI和第二 CSI, 其中第二参 考信号集根据所述第一 CSI 中的第一秩指示 RI和 /或第一预编码矩阵指示 PMI得到, 从而可以充分利用第一参考信号集对应的天线端口的空间相关 性,使得第一参考信号集和第二参考信号集的参考信号开销远小于发射参考 信号或者数据的天线开销, 由此能够有效地提高系统的效率; 另外, 在上述 方案中, 信道状态信息的测量是通过测量第一 CSI和第二 CSI实现的, 其中 该第一 CSI基于第一参考信号集合得到,该第二 CSI基于第二参考信号集合 得到, 而第一参考信号集和第二参考信号集对应的天线端口数远小于实际发 射参考信号或者数据的天线数, 由此能够提升 CSI反馈的精度, 并能够有效 地降低用户设备测量信道状态信息的复杂度, 由此能够有效地提高系统的性 能。
在本发明实施例中, 可选地, 该第二接收模块 530具体用于:
接收该基站发送的第二参考信号集,该第二参考信号集由该第一 CSI包 括的该第一 RI确定, 或该第二参考信号集由该第一 CSI包括的该第一 PMI 以及预置的预编码矩阵层数确定,或该第二参考信号集基于该第一 CSI包括 的该第一 RI和该第一 PMI确定。
在本发明实施例中, 可选地, 该第一接收模块 510接收的该第一参考信 号集包括的每个参考信号分别对应于该基站的一个天线子阵中的一个天线; 该第二接收模块 530接收的该第二参考信号集包括的每个参考信号分别对应 于该基站包括的多个天线子阵中的一个天线子阵。
在本发明实施例中, 可选地, 该第一 RI为 2的整数次幂。
在本发明实施例中, 可选地, 该第一接收模块 510接收的该第一参考信 号集的发送周期比该第二接收模块 530接收的该第二参考信号集的发送周期 长。
可选地,在本发明实施例中,第一 CSI比第二 CSI具有更大的 4艮告周期。 在本发明实施例中, 可选地, 该第一发送模块 520具体用于:
根据该第一参考信号集, 从第一码本中确定第一预编码矩阵; 向该基站 发送第一 CSI, 该第一 CSI 包括第一秩指示 RI和 /或第一预编码矩阵指示 PMI, 该第一 PMI用于指示该第一预编码矩阵; 其中, 该第一码本包括的预 编码矩阵为离散傅立叶变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与 哈达马矩阵的克罗内可尔积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔 积。
在本发明实施例中, 可选地, 该第二发送模块 540具体用于:
根据该第二参考信号集, 从第二码本中确定第二预编码矩阵; 向该基站发送第二 CSI, 该第二 CSI包括第二秩指示 RI和 /或第二预编 码矩阵指示 PMI, 该第二 PMI用于指示该第二预编码矩阵。
在本发明实施例中, 可选地, 该第二码本包括的预编码矩阵 W为两个矩 阵 \^和\¥2的乘积, 其中矩阵^为分块对角化矩阵, 该分块对角化矩阵包括 至少一个分块矩阵 X ,每个该分块矩阵 X为两个矩阵 C和 D的克罗内克尔积。
在本发明实施例中, 可选地, 该第二码本至少包括一个预编码矩阵 W , 该预编码矩阵 W具有式(67)或者式(68)确定的结构:
W® V
W = ( 2NM (67)
e^w ® V 或者
W® V W® V
W = (4厦) (68)
e^w ® V -e^w ® v 其中, wv分别为 N 维列矢量或 M 维列矢量, ®表示克罗内可尔 ( kronecker )积, M、 N为正整数; 为相位。
可选地, 列矢量 W或者 V可以分别为
W 1 βίφ e (69)
1 βιθ e (70) 其中 1表示矩阵转置; 和 为相位。
可选地,该相位 为 = m;r/16 ; m = 0,〜,15 ;或可选地,该相位 为 = w;r/32; « = 0,...,31; 或可选地, 该相位 为 = /;τ/2 , / = 0,..,3或者/ = 0,1。
应理解, 在本发明实施例中, 第一参考信号集的大小与第二参考信号集 的大小也可以相同。 此外, 第一参考信号集与第二参考信号集在资源块内占 有相同的时频资源或者二者其中之一所用的时频资源是另一个所用的时频 资源的子集, 但本发明并不限于此。 例如, 第一参考信号集合和第二参考信 号集合可以使用 LTE系统小区特定的 (Cell specific)参考信号 CRS或者信道 状态信息参考信号 CSI-RS, 其第一 CSI和第二 CSI可以基于 LTE R8或者 R10或者 R12所采用的码本, 这样, 可以保持系统的后向兼容性。
应理解, 在本发明的各种实施例中, 上述设备所涉及的码本中的预编码
(67) - (70)所述的预编码矩阵结构可以用于第三 CSI测量和 ^艮告过程, 也可以用于基于单一参考信号集合的 CSI测量过程, 例如类似 LTE R8系统 基于 CRS或者 LTE R8系统基于 CSI-RS的 CSI测量过程, 此处不进一步赘 述。
根据本发明实施例的用户设备 500, 可对应于执行根据本发明实施例的 报告信道状态信息的方法中的用户设备, 并且用户设备 500中的各个模块的 上述和其它操作和 /或功能分别为了实现图 1至图 5 中的各个方法的相应流 程, 为了筒洁, 在此不再赘述。
因此, 在根据本发明实施例的用户设备中, 用户设备根据基站发送的第 一参考信号集和第二参考信号集分别获取第一 CSI和第二 CSI, 其中第二参 考信号集根据所述第一 CSI得到,从而可以充分利用第一参考信号集对应的 天线端口的空间相关性,使得第一参考信号集和第二参考信号集的参考信号 开销远小于发射参考信号或者数据的天线开销, 由此能够有效地提高系统的 效率; 另外, 在上述方案中, 信道状态信息的测量是通过测量第一 CSI和第 二 CSI实现的, 其中该第一 CSI基于第一参考信号集合得到, 该第二 CSI 基于第二参考信号集合得到, 而第一参考信号集和第二参考信号集对应的天 线端口数远小于实际发射参考信号或者数据的天线数, 由此能够提升 CSI反 馈的精度, 并能够有效地降低用户设备测量信道状态信息的复杂度, 由此能 够有效地提高系统的性能。
图 7示出了根据本发明实施例的基站 600的示意性框图。 如图 7所示, 该基站 600包括:
第一发送模块 610, 用于向用户设备发送第一参考信号集, 该第一参考 信号集包含至少两个参考信号;
第一接收模块 620,用于接收该用户设备发送的第一信道状态信息 CSI, 该第一 CSI基于该第一参考信号集确定, 该第一 CSI包括第一秩指示 RI和 / 或第一预编码矩阵指示 PMI;
确定模块 630, 用于根据该第一接收模块 620接收的该第一 CSI, 确定 第二参考信号集, 该第二参考信号集包含至少一个参考信号;
第二发送模块 640, 用于向该用户设备发送该确定模块 640确定的该第 二参考信号集;
第二接收模块 650, 用于接收该用户设备发送的第二 CSI, 该第二 CSI 基于该第二参考信号集确定。
因此, 在根据本发明实施例的基站中, 基站向用户设备发送第一参考信 号集和第二参考信号集, 以使得用户设备分别获取第一 CSI和第二 CSI, 其 中第二参考信号集根据所述第一 CSI中的第一秩指示 RI和 /或第一预编码矩 阵指示 PMI得到,从而可以充分利用第一参考信号集对应的天线端口的空间 相关性,使得第一参考信号集和第二参考信号集的参考信号开销远小于发射 参考信号或者数据的天线开销, 由此能够有效地提高系统的效率; 另外, 在 上述方案中, 信道状态信息的测量是通过测量第一 CSI和第二 CSI实现的, 其中该第一 CSI基于第一参考信号集合得到,该第二 CSI基于第二参考信号 集合得到, 而第一参考信号集和第二参考信号集对应的天线端口数远小于实 际发射参考信号或者数据的天线数, 由此能够提升 CSI反馈的精度, 并能够 有效地降低用户设备测量信道状态信息的复杂度, 由此能够有效地提高系统 的性能。
在本发明实施例中, 可选地, 该确定模块 630具体用于:
在该第一 CSI包括该第一 RI时,根据该第一 RI确定该第二参考信号集; 或
在该第一 CSI包括该第一 PMI时, 根据该第一 PMI以及预置的预编码 矩阵层数确定该第二参考信号集; 或
在该第一 CSI包括该第一 RI和该第一 PMI时, 根据该第一 RI和该第 一 PMI确定该第二参考信号集。
在本发明实施例中, 可选地, 该第一发送模块 610发送的该第一参考信 号集包括的每个参考信号分别对应于该基站的一个天线子阵中的一个天线; 该第二发送模块 640发送的该第二参考信号集包括的每个参考信号分别对应 于该基站包括的多个天线子阵中的一个天线子阵。
在本发明实施例中,可选地,该第一 RI或者预置的预编码矩阵层数为 2 的整数次幂。
在本发明实施例中, 可选地, 该第一参考信号集的发送周期比该第二参 考信号集的发送周期长。
可选地,在本发明实施例中,第一 CSI比第二 CSI具有更大的 4艮告周期。 在本发明实施例中,可选地,该第一 PMI用于指示该用户设备根据该第 一发送模块 610发送的该第一参考信号集从第一码本中确定的第一预编码矩 阵; 其中, 该第一码本包括的预编码矩阵为离散傅立叶变换 DFT矩阵、 哈 达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克罗 内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可尔积、 或 DFT矩阵 与豪斯荷尔德矩阵的克罗内可尔积。
在本发明实施例中, 可选地, 该第二接收模块 650具体用于:
接收该用户设备发送的第二 CSI, 该第二 CSI包括第二秩指示 RI和 /或 第二预编码矩阵指示 PMI, 该第二 PMI用于指示该用户设备根据该第二参 考信号集从第二码本中确定的第二预编码矩阵。
在本发明实施例中, 可选地, 该第二码本包括的预编码矩阵 W为两个矩 阵 \^和\¥2的乘积, 其中矩阵^为分块对角化矩阵, 该分块对角化矩阵包括 至少一个分块矩阵 X ,每个该分块矩阵 X为两个矩阵 C和 D的克罗内克尔积。
在本发明实施例中, 可选地, 该第二码本至少包括一个预编码矩阵 W , 该预编码矩阵 W具有由式(67 )或者(68 )确定的结构:
Figure imgf000049_0001
W ® V W ® V
W = (4厦) ( 68 )
e^w ® v -e^w ® v 其中, wv分别为 N 维列矢量或 M 维列矢量, ®表示克罗内可尔 ( kronecker )积, M、 N为正整数; 为相位。
可选地, 列矢量 W或者 V可以分别为
W 1 e ( 69 )
)e
1 e ( 70 ) 其中 [ 表示矩阵转置; S和 为相位。
可选地,该相位 为 = m;r/16 ; m = 0"..,15 ;或可选地,该相位 为 = /32; « = 0,...,31; 或可选地, 该相位 为 = /;τ/2 , / = 0, ..,3或者/ = 0,1。
根据本发明实施例的基站 600, 可对应于执行根据本发明实施例的报告 信道状态信息的方法中的基站, 并且基站 600中的各个模块的上述和其它操 作和 /或功能分别为了实现图 1至图 5中的各个方法的相应流程, 为了筒洁, 在此不再赘述。
因此, 在根据本发明实施例的基站中, 基站向用户设备发送第一参考信 号集和第二参考信号集, 以使得用户设备分别获取第一 CSI和第二 CSI, 其 中第二参考信号集根据所述第一 CSI中的第一秩指示 RI和 /或第一预编码矩 阵指示 ΡΜΙ得到,从而可以充分利用第一参考信号集对应的天线端口的空间 相关性,使得第一参考信号集和第二参考信号集的参考信号开销远小于发射 参考信号或者数据的天线开销, 由此能够有效地提高系统的效率; 另外, 在 上述方案中, 信道状态信息的测量是通过测量第一 CSI和第二 CSI实现的, 其中该第一 CSI基于第一参考信号集合得到,该第二 CSI基于第二参考信号 集合得到, 而第一参考信号集和第二参考信号集对应的天线端口数远小于实 际发射参考信号或者数据的天线数, 由此能够提升 CSI反馈的精度, 并能够 有效地降低用户设备测量信道状态信息的复杂度, 由此能够有效地提高系统 的性能。
另外, 本文中术语 "系统" 和 "网络" 在本文中常被可互换使用。 本文 中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种 关系, 例如, A和 /或 B, 可以表示: 单独存在 A , 同时存在 A和 B, 单独存 在 B这三种情况。另外,本文中字符 "/" ,一般表示前后关联对象是一种 "或" 的关系。
应理解, 在本发明实施例中, "与 A相应的 B"表示 B与 A相关联, 根 据 A可以确定 B。 但还应理解, 根据 A确定 B并不意味着仅仅根据 A确定 B, 还可以根据 A和 /或其它信息确定
如图 8所示,本发明实施例还提供了一种用户设备 700,该用户设备 700 包括处理器 710、 存储器 720、 总线系统 730、 接收器 740和发送器 750。 其 中, 处理器 710、 存储器 720、 接收器 740和发送器 750通过总线系统 730 相连, 该存储器 720用于存储指令, 该处理器 710用于执行该存储器 720存 储的指令, 以控制接收器 740接收信号,并控制发送器 750发送信号。其中, 该接收器 740用于接收基站发送的第一参考信号集; 该处理器 710用于根据 该第一参考信号集, 从第一码本中确定第一预编码矩阵; 该发送器 750用于 向该基站发送第一信道状态信息 CSI, 该第一 CSI包括第一秩指示 RI和 /或 第一预编码矩阵指示 PMI, 该第一 PMI用于指示该第一预编码矩阵; 该接 收器 740还用于接收该基站发送的第二参考信号集, 该第二参考信号集由该 第一 CSI确定; 该发送器 750还用于向该基站发送第二 CSI, 第二 CSI根据 该第二参考信号集确定。
因此, 在根据本发明实施例的用户设备中, 用户设备根据基站发送的第 一参考信号集和第二参考信号集分别获取第一 CSI和第二 CSI, 其中第二参 考信号集根据所述第一 CSI得到,从而可以充分利用第一参考信号集对应的 天线端口的空间相关性,使得第一参考信号集和第二参考信号集的参考信号 开销远小于发射参考信号或者数据的天线开销, 由此能够有效地提高系统的 效率; 另外, 在上述方案中, 信道状态信息的测量是通过测量第一 CSI和第 二 CSI 实现的, 其中该第一 CSI基于第一参考信号集合得到, 该第二 CSI 基于第二参考信号集合得到, 而第一参考信号集和第二参考信号集对应的天 线端口数远小于实际发射参考信号或者数据的天线数, 由此能够提升 CSI反 馈的精度, 并能够有效地降低用户设备测量信道状态信息的复杂度, 由此能 够有效地提高系统的性能。
应理解,在本发明实施例中,该处理器 710可以是中央处理单元( Central Processing Unit, 筒称为 "CPU" ), 该处理器 710还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 720可以包括只读存储器和随机存取存储器, 并向处理器 710 提供指令和数据。存储器 720的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 720还可以存储设备类型的信息。
该总线系统 730除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 730。
在实现过程中, 上述方法的各步骤可以通过处理器 710中的硬件的集成 逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 720, 处理器 710读取存储器 720中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
可选地, 作为一个实施例, 该接收器 740接收该基站发送的第二参考信 号集, 该第二参考信号集由该第一 CSI确定, 包括:
接收该基站发送的第二参考信号集,该第二参考信号集由该第一 CSI包 括的该第一 RI确定, 或该第二参考信号集由该第一 CSI包括的该第一 PMI 以及预置的预编码矩阵层数确定。 可选地, 作为一个实施例, 该第一参考信号集包括的每个参考信号分别 对应于该基站的一个天线子阵中的一个天线; 该第二参考信号集包括的每个 参考信号分别对应于该基站包括的多个天线子阵中的一个天线子阵。
可选地, 作为一个实施例, 该第一 RI为 2的整数次幂。
可选地, 作为一个实施例, 该第一参考信号集的发送周期比该第二参考 信号集的发送周期长。
可选地,在本发明实施例中,第一 CSI比第二 CSI具有更大的 4艮告周期。 可选地, 作为一个实施例, 该第一码本包括的预编码矩阵为离散傅立叶 变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两 个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可 尔积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔积。
可选地, 作为一个实施例, 该发送器 750向该基站发送第二 CSI, 第二
CSI根据该第二参考信号集确定, 包括:
根据该第二参考信号集, 从第二码本中确定第二预编码矩阵;
向该基站发送第二 CSI, 该第二 CSI包括第二秩指示 RI和 /或第二预编 码矩阵指示 PMI, 该第二 PMI用于指示该第二预编码矩阵。
可选地,作为一个实施例, 该第二码本包括的预编码矩阵 W为两个矩阵 \\^和\¥2的乘积, 其中矩阵^为分块对角化矩阵, 该分块对角化矩阵包括至 少一个分块矩阵 X , 每个该分块矩阵 X为两个矩阵 C和 D的克罗内克尔积。
可选地, 作为一个实施例, 该第二码本至少包括一个预编码矩阵 W , 该 预编码矩阵 W具有由式(67 )或者(68 )确定的结构:
W ® V
W = ( 2NM ( 67 )
e^w ® V
W ® V W ® V
W = (4厦) ( 68 )
e^w ® v -e^w ® v 其中, wv分别为 N 维列矢量或 M 维列矢量, ®表示克罗内可尔 ( kronecker )积, M、 N为正整数; 为相位。
可选地, 列矢量 W或者 V可以分别为
W ( 69 )
( 70 ) 其中 D1表示矩阵转置; 和 为相位 可选地,该相位 为 = m;r/16 ; m = 0"..,15 ;或可选地,该相位 为 = /32; « = 0,...,31; 或可选地, 该相位 为 = /;τ/2 , Ζ = 0, ..,3或者/ = 0, 1。
应理解, 在本发明实施例中, 第一参考信号集的大小与第二参考信号集 的大小也可以相同。 此外, 第一参考信号集与第二参考信号集在资源块内占 有相同的时频资源或者二者其中之一所用的时频资源是另一个所用的时频 资源的子集, 但本发明并不限于此。
应理解, 根据本发明实施例的用户设备 700, 可对应于执行根据本发明 实施例的报告信道状态信息的方法中的用户设备,还可以对应于根据本发明 实施例的用户设备 500, 并且用户设备 700中的各个模块的上述和其它操作 和 /或功能分别为了实现图 1至图 5中的各个方法的相应流程, 为了筒洁,在 此不再赘述。
因此, 在根据本发明实施例的用户设备中, 用户设备根据基站发送的第 一参考信号集和第二参考信号集分别获取第一 CSI和第二 CSI, 其中第二参 考信号集根据所述第一 CSI得到,从而可以充分利用第一参考信号集对应的 天线端口的空间相关性,使得第一参考信号集和第二参考信号集的参考信号 开销远小于发射参考信号或者数据的天线开销, 由此能够有效地提高系统的 效率; 另外, 在上述方案中, 信道状态信息的测量是通过测量第一 CSI和第 二 CSI 实现的, 其中该第一 CSI基于第一参考信号集合得到, 该第二 CSI 基于第二参考信号集合得到, 而第一参考信号集和第二参考信号集对应的天 线端口数远小于实际发射参考信号或者数据的天线数, 由此能够提升 CSI反 馈的精度, 并能够有效地降低用户设备测量信道状态信息的复杂度, 由此能 够有效地提高系统的性能。
如图 9所示, 本发明实施例还提供了一种基站 800, 该基站 800包括处 理器 810、 存储器 820、 总线系统 830、 接收器 840和发送器 850。 其中, 处 理器 810、 存储器 820、 接收器 840和发送器 850通过总线系统 830相连, 该存储器 820用于存储指令, 该处理器 810用于执行该存储器 820存储的指 令, 以控制接收器 840接收信号, 并控制发送器 850发送信号。 其中, 该发 送器 850用于向用户设备发送第一参考信号集; 该接收器 840用于接收该用 户设备发送的第一信道状态信息 CSI, 该第一 CSI包括第一秩指示 RI和 /或 第一预编码矩阵指示 ΡΜΙ, 该第一 ΡΜΙ用于指示该用户设备根据该第一参 考信号集从第一码本中确定的第一预编码矩阵; 该处理器 810用于根据该第 一 CSI, 确定第二参考信号集; 该发送器 850还用于向该用户设备发送该第 二参考信号集; 该接收器 840还用于接收该用户设备发送的第二 CSI, 该第 二 CSI基于该第二参考信号集确定。
因此, 在根据本发明实施例的基站中, 基站向用户设备发送第一参考信 号集和第二参考信号集, 以使得用户设备分别获取第一 CSI和第二 CSI, 其 中第二参考信号集根据所述第一 CSI得到,从而可以充分利用第一参考信号 集对应的天线端口的空间相关性,使得第一参考信号集和第二参考信号集的 参考信号开销远小于发射参考信号或者数据的天线开销, 由此能够有效地提 高系统的效率; 另外, 在上述方案中, 信道状态信息的测量是通过测量第一 CSI和第二 CSI实现的, 其中该第一 CSI基于第一参考信号集合得到, 该第 二 CSI基于第二参考信号集合得到,而第一参考信号集和第二参考信号集对 应的天线端口数远小于实际发射参考信号或者数据的天线数, 由此能够提升
CSI反馈的精度, 并能够有效地降低用户设备测量信道状态信息的复杂度, 由此能够有效地提高系统的性能。
应理解,在本发明实施例中,该处理器 810可以是中央处理单元( Central Processing Unit, 筒称为 "CPU" ), 该处理器 810还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 820可以包括只读存储器和随机存取存储器, 并向处理器 810 提供指令和数据。存储器 820的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 820还可以存储设备类型的信息。
该总线系统 830除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 830。
在实现过程中, 上述方法的各步骤可以通过处理器 810中的硬件的集成 逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 820, 处理器 810读取存储器 820中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
可选地, 作为一个实施例, 该处理器 810根据该第一 CSI, 确定第二参 考信号集, 包括:
在该第一 CSI包括该第一 RI时,根据该第一 RI确定该第二参考信号集; 或
在该第一 CSI包括该第一 PMI时, 根据该第一 PMI以及预置的预编码 矩阵层数确定该第二参考信号集。
可选地, 作为一个实施例, 该第一参考信号集包括的每个参考信号分别 对应于该基站的一个天线子阵中的一个天线; 该第二参考信号集包括的每个 参考信号分别对应于该基站包括的多个天线子阵中的一个天线子阵。
可选地, 作为一个实施例, 该第一 RI为 2的整数次幂。
可选地, 作为一个实施例, 该第一参考信号集的发送周期比该第二参考 信号集的发送周期长。
可选地,在本发明实施例中,第一 CSI比第二 CSI具有更大的 4艮告周期。 可选地, 作为一个实施例, 该第一码本包括的预编码矩阵为离散傅立叶 变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两 个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可 尔积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔积。
可选地, 作为一个实施例, 该接收器 840接收该用户设备发送的第二 CSI, 包括:
接收该用户设备发送的第二 CSI, 该第二 CSI包括第二秩指示 RI和 /或 第二预编码矩阵指示 PMI, 该第二 PMI用于指示该用户设备根据该第二参 考信号集从第二码本中确定的第二预编码矩阵。
可选地, 作为一个实施例, 该第二码本包括的预编码矩阵 W为两个矩阵 \\^和\¥2的乘积, 其中矩阵^为分块对角化矩阵, 该分块对角化矩阵包括至 少一个分块矩阵 X , 每个该分块矩阵 X为两个矩阵 C和 D的克罗内克尔积。
可选地, 作为一个实施例, 该第二码本至少包括一个预编码矩阵 W , 该 预编码矩阵 W具有由式(67 )或者(68 )确定的结构:
, 、—丄「 W ® V ~| / , 、
W = (2厦) 2 ( 67 ) W ® V W ® V
W = (4厦) ( 68 )
e^w ® v -e^w ® v 其中, wv分别为 N 维列矢量或 M 维列矢量, ®表示克罗内可尔 ( kronecker )积, M、 N为正整数; 为相位。
可选地, 列矢量 W或者 V可以分别为
w ( 69 )
J ( 70 ) 其中 [ 表示矩阵转置; 和 为相位。
可选地,该相位 1为 > = m;r/16 ; m = 0,〜,15 ;或可选地,该相位 为 = w;r/32; « = 0,...,31; 或可选地, 该相位 为 = /;τ/2 , Ζ = 0, ..,3或者/ = 0, 1。
应理解, 根据本发明实施例的基站 800, 可对应于执行根据本发明实施 例的报告信道状态信息的方法中的基站,还可以对应于根据本发明实施例的 基站 800, 并且基站 800中的各个模块的上述和其它操作和 /或功能分别为了 实现图 1至图 5中的各个方法的相应流程, 为了筒洁, 在此不再赘述。
因此, 在根据本发明实施例的基站中, 基站向用户设备发送第一参考信 号集和第二参考信号集, 以使得用户设备分别获取第一 CSI和第二 CSI, 其 中第二参考信号集根据所述第一 CSI得到,从而可以充分利用第一参考信号 集对应的天线端口的空间相关性,使得第一参考信号集和第二参考信号集的 参考信号开销远小于发射参考信号或者数据的天线开销, 由此能够有效地提 高系统的效率; 另外, 在上述方案中, 信道状态信息的测量是通过测量第一 CSI和第二 CSI实现的, 其中该第一 CSI基于第一参考信号集合得到, 该第 二 CSI基于第二参考信号集合得到, 而第一参考信号集和第二参考信号集对 应的天线端口数远小于实际发射参考信号或者数据的天线数, 由此能够提升
CSI反馈的精度, 并能够有效地降低用户设备测量信道状态信息的复杂度, 由此能够有效地提高系统的性能。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。 所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1、 一种 ^艮告信道状态信息 CSI的方法, 其特征在于, 包括:
接收基站发送的第一参考信号集, 所述第一参考信号集包含至少两个参 考信号;
向所述基站发送第一 CSI,所述第一 CSI根据所述第一参考信号集确定, 所述第一 CSI包括第一秩指示 RI和 /或第一预编码矩阵指示 PMI;
接收所述基站发送的第二参考信号集, 所述第二参考信号集基于所述第 一 CSI确定, 所述第二参考信号集包含至少一个参考信号;
向所述基站发送第二 CSI,所述第二 CSI根据所述第二参考信号集确定。
2、 根据权利要求 1所述的方法, 其特征在于, 所述接收所述基站发送 的第二参考信号集, 所述第二参考信号集基于所述第一 CSI确定, 包括: 接收所述基站发送的第二参考信号集, 所述第二参考信号集基于所述第 一 CSI包括的所述第一 RI确定, 或所述第二参考信号集基于所述第一 CSI 包括的所述第一 PMI以及预置的预编码矩阵层数确定,或所述第二参考信号 集基于所述第一 CSI包括的所述第一 RI和所述第一 PMI确定。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述第一参考信号 集包括的每个参考信号分别对应于所述基站的一个天线子阵中的一个天线; 所述第二参考信号集包括的每个参考信号分别对应于所述基站包括的多个 天线子阵中的一个天线子阵。
4、 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述第一 RI为 2的整数次幂。
5、 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述第一 参考信号集的发送周期比所述第二参考信号集的发送周期长。
6、 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述向所 述基站发送第一 CSI, 第一 CSI根据所述第一参考信号集确定, 包括:
根据所述第一参考信号集, 从第一码本中确定第一预编码矩阵; 向所述基站发送第一 CSI, 所述第一 CSI包括第一秩指示 RI和 /或第一 预编码矩阵指示 PMI, 所述第一 PMI用于指示所述第一预编码矩阵;
其中, 所述第一码本包括的预编码矩阵为离散傅立叶变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克 罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可尔积、 或 DFT矩 阵与豪斯荷尔德矩阵的克罗内可尔积。
7、 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 所述向所 述基站发送第二 CSI, 所述第二 CSI根据所述第二参考信号集确定, 包括: 根据所述第二参考信号集, 从第二码本中确定第二预编码矩阵; 向所述基站发送第二 CSI, 所述第二 CSI包括第二秩指示 RI和 /或第二 预编码矩阵指示 PMI, 所述第二 PMI用于指示所述第二预编码矩阵;
其中,所述第二码本至少包括一个预编码矩阵 W ,所述预编码矩阵 W具 有由下列等式确定的结构:
W® V w® v w® v
W = ( 2NM 或者 W =(4厦)
e^w ® V e^w ® v -e^w ® v
1 e e
Figure imgf000059_0001
[]T表示矩阵转 置; ®表示克罗内可尔积, M、 N为正整数; Θ , 和 为相位。
8、 根据权利要求 7所述的方法, 其特征在于, 所述相位 S为 = mr/16 , m = 0"..,15 ;或者所述相位 为 32 , " = 0,···,31 ;或者所述相位 为 = /;τ/2 , / = 0,..,3或者 / = 0,1。
9、 一种 ^艮告信道状态信息 CSI的方法, 其特征在于, 包括:
向用户设备发送第一参考信号集, 所述第一参考信号集包含至少两个参 考信号;
接收所述用户设备发送的第一 CSI, 所述第一 CSI基于所述第一参考信 号集确定,所述第一 CSI包括第一秩指示 RI和 /或第一预编码矩阵指示 ΡΜΙ; 根据所述第一 CSI, 确定第二参考信号集, 所述第二参考信号集包含至 少一个参考信号;
向所述用户设备发送所述第二参考信号集;
接收所述用户设备发送的第二 CSI, 所述第二 CSI基于所述第二参考信 号集确定。
10、根据权利要求 9所述的方法, 其特征在于, 所述根据所述第一 CSI, 确定第二参考信号集, 包括:
在所述第一 CSI包括所述第一 RI时,根据所述第一 RI确定所述第二参 考信号集; 或
在所述第一 CSI包括所述第一 ΡΜΙ时, 根据所述第一 ΡΜΙ以及预置的 预编码矩阵层数确定所述第二参考信号集; 或 在所述第一 CSI包括所述第一 RI和所述第一 PMI时,根据所述第一 RI 和所述第一 PMI确定所述第二参考信号集。
11、 根据权利要求 9或 10所述的方法, 其特征在于, 所述第一参考信 号集包括的每个参考信号分别对应于所述基站的一个天线子阵中的一个天 线; 所述第二参考信号集包括的每个参考信号分别对应于所述基站包括的多 个天线子阵中的一个天线子阵。
12、 根据权利要求 9至 11 中任一项所述的方法, 其特征在于, 所述第 一 RI为 2的整数次幂。
13、 根据权利要求 9至 12中任一项所述的方法, 其特征在于, 所述第 一参考信号集的发送周期比所述第二参考信号集的发送周期长。
14、 根据权利要求 9至 13中任一项所述的方法, 其特征在于, 所述第 一 PMI用于指示所述用户设备根据所述第一参考信号集从第一码本中确定 的第一预编码矩阵; 其中, 所述第一码本包括的预编码矩阵为离散傅立叶变 换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可尔 积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔积。
15、 根据权利要求 9至 14中任一项所述的方法, 其特征在于, 所述接 收所述用户设备发送的第二 CSI, 所述第二 CSI基于所述第二参考信号集确 定, 包括:
接收所述用户设备发送的第二 CSI, 所述第二 CSI 包括第二秩指示 RI 和 /或第二预编码矩阵指示 PMI, 所述第二 PMI用于指示所述用户设备根据 所述第二参考信号集从第二码本中确定的第二预编码矩阵;
其中,所述第二码本至少包括一个预编码矩阵 W ,所述预编码矩阵 W具 有由下列等式确定的结构:
W ® V w ® v w ® v
W = ( 2NM 或者 W = (4厦)
e^w ® V e^w ® v -e^w ® v
Figure imgf000060_0001
[]T表示矩阵转 置; ®表示克罗内可尔积, M、 N为正整数; Θ , 和 为相位。
16、根据权利要求 15所述的方法,其特征在于,所述相位 为 = m r/16 , m = 0 ., 15 ;或者所述相位 为 = /32 , w = 0 ., 31 ;或者所述相位 为 = /;τ/2 , Ζ = 0, · ·, 3或者 Ζ = 0, 1。
17、 一种用户设备, 其特征在于, 包括:
第一接收模块, 用于接收基站发送的第一参考信号集, 所述第一参考信 号集包含至少两个参考信号;
第一发送模块, 用于向所述基站发送第一信道状态信息 CSI, 所述第一 CSI根据所述第一参考信号集确定, 所述第一 CSI包括第一秩指示 RI和 /或 第一预编码矩阵指示 PMI;
第二接收模块, 用于接收所述基站发送的第二参考信号集, 所述第二参 考信号集基于所述第一 CSI确定,所述第二参考信号集包含至少一个参考信 号;
第二发送模块, 用于向所述基站发送第二 CSI, 所述第二 CSI根据所述 第二接收模块接收的所述第二参考信号集确定。
18、 根据权利要求 17所述的用户设备, 其特征在于, 所述第二接收模 块具体用于:
接收所述基站发送的第二参考信号集, 所述第二参考信号集基于所述第 一 CSI包括的所述第一 RI确定, 或所述第二参考信号集基于所述第一 CSI 包括的所述第一 PMI以及预置的预编码矩阵层数确定,或所述第二参考信号 集基于所述第一 CSI包括的所述第一 RI和所述第一 PMI确定。
19、 根据权利要求 17或 18所述的用户设备, 其特征在于, 所述第一接 收模块接收的所述第一参考信号集包括的每个参考信号分别对应于所述基 站的一个天线子阵中的一个天线; 所述第二接收模块接收的所述第二参考信 号集包括的每个参考信号分别对应于所述基站包括的多个天线子阵中的一 个天线子阵。
20、 根据权利要求 17至 19中任一项所述的用户设备, 其特征在于, 所 述第一 RI为 2的整数次幂。
21、 根据权利要求 17至 20中任一项所述的用户设备, 其特征在于, 所 述第一接收模块接收的所述第一参考信号集的发送周期比所述第二接收模 块接收的所述第二参考信号集的发送周期长。
22、 根据权利要求 17至 21中任一项所述的用户设备, 其特征在于, 所 述第一发送模块具体用于:
根据所述第一参考信号集, 从第一码本中确定第一预编码矩阵; 向所述 基站发送第一 CSI, 所述第一 CSI包括第一秩指示 RI和 /或第一预编码矩阵 指示 PMI, 所述第一 PMI用于指示所述第一预编码矩阵;
其中, 所述第一码本包括的预编码矩阵为离散傅立叶变换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克 罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可尔积、 或 DFT矩 阵与豪斯荷尔德矩阵的克罗内可尔积。
23、 根据权利要求 17至 22中任一项所述的用户设备, 其特征在于, 所 述第二发送模块具体用于:
根据所述第二参考信号集, 从第二码本中确定第二预编码矩阵; 向所述 基站发送第二 CSI, 所述第二 CSI包括第二秩指示 RI和 /或第二预编码矩阵 指示 PMI, 所述第二 PMI用于指示所述第二预编码矩阵;
其中,所述第二码本至少包括一个预编码矩阵 W ,所述预编码矩阵 W具 有由下列等式确定的结构:
W ® V W ® V w ® v
W = ( 2NM 或者 W = (4厦)
e^w ® V e^w ® V -e^w ® v
[]T表示矩阵转 置;
Figure imgf000062_0001
位。
24、 根据权利要求 23 所述的用户设备, 其特征在于, 所述相位 为 θ = ιηπ/16 , m = 0,...,15 ; 或者所述相位 为 w;r/32 , w = 0,...,31 ; 或者所述相 φ = Ιπ/2 , Ζ = 0,··,3或者 Ζ = 0, 1。
25、 一种基站, 其特征在于, 包括:
第一发送模块, 用于向用户设备发送第一参考信号集, 所述第一参考信 号集包含至少两个参考信号;
第一接收模块, 用于接收所述用户设备发送的第一信道状态信息 CSI, 所述第一 CSI基于所述第一参考信号集确定,所述第一 CSI包括第一秩指示 RI和 /或第一预编码矩阵指示 ΡΜΙ;
确定模块, 用于根据所述第一接收模块接收的所述第一 CSI, 确定第二 参考信号集, 所述第二参考信号集包含至少一个参考信号;
第二发送模块, 用于向所述用户设备发送所述确定模块确定的所述第二 参考信号集;
第二接收模块, 用于接收所述用户设备发送的第二 CSI, 所述第二 CSI 基于所述第二参考信号集确定。
26、 根据权利要求 25所述的基站, 其特征在于, 所述确定模块具体用 于:
在所述第一 CSI包括所述第一 RI时,根据所述第一 RI确定所述第二参 考信号集; 或
在所述第一 CSI包括所述第一 PMI时, 根据所述第一 PMI以及预置的 预编码矩阵层数确定所述第二参考信号集; 或
在所述第一 CSI包括所述第一 RI和所述第一 PMI时,根据所述第一 RI 和所述第一 PMI确定所述第二参考信号集。
27、 根据权利要求 25或 26所述的基站, 其特征在于, 所述第一发送模 块发送的所述第一参考信号集包括的每个参考信号分别对应于所述基站的 一个天线子阵中的一个天线; 所述第二发送模块发送的所述第二参考信号集 包括的每个参考信号分别对应于所述基站包括的多个天线子阵中的一个天 线子阵。
28、 根据权利要求 25至 27中任一项所述的基站, 其特征在于, 所述第 一 RI为 2的整数次幂。
29、 根据权利要求 25至 28中任一项所述的基站, 其特征在于, 所述第 一参考信号集的发送周期比所述第二参考信号集的发送周期长。
30、 根据权利要求 25至 29中任一项所述的基站, 其特征在于, 所述第 一 PMI用于指示所述用户设备根据所述第一参考信号集从第一码本中确定 的第一预编码矩阵; 其中, 所述第一码本包括的预编码矩阵为离散傅立叶变 换 DFT矩阵、 哈达马 Hadamard矩阵、 豪斯荷尔德 Householder矩阵、 两个 DFT矩阵的克罗内可尔 kronecker积、 DFT矩阵与哈达马矩阵的克罗内可尔 积、 或 DFT矩阵与豪斯荷尔德矩阵的克罗内可尔积。
31、 根据权利要求 25至 30中任一项所述的基站, 其特征在于, 所述第 二接收模块具体用于:
接收所述用户设备发送的第二 CSI, 所述第二 CSI 包括第二秩指示 RI 和 /或第二预编码矩阵指示 PMI, 所述第二 PMI用于指示所述用户设备根据 所述第二参考信号集从第二码本中确定的第二预编码矩阵;
其中,所述第二码本至少包括一个预编码矩阵 W ,所述预编码矩阵 W具 有由下列等式确定的结构:
W ® V W ® V W ® V
W = ( 2NM 或者 W = (4厦)
e^w ® V e^w ® V -e^w ® v -1
W 1 e e .ί -ΐ 1 e e [ 表示矩阵转 置; ®表示克罗内可尔积, M、 N为正整数; Θ, 和 为相位。
32、根据权利要求 31所述的基站,其特征在于,所述相位 为^ mr/16, m = 0"..,15;或者所述相位 为 32 , w = 0,〜,31;或者所述相位 为 = /;τ/2 , / = 0,..,3或者 Ζ = 0,1。
PCT/CN2014/073007 2014-03-06 2014-03-06 报告信道状态信息的方法、用户设备和基站 WO2015131378A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201480024942.1A CN105210405B (zh) 2014-03-06 2014-03-06 报告信道状态信息的方法、用户设备和基站
BR112016020503-0A BR112016020503A2 (pt) 2014-03-06 2014-03-06 método para informar canal estatal de informação, equipamentos de usuário, e estação base
KR1020167027220A KR101851093B1 (ko) 2014-03-06 2014-03-06 채널 상태 정보를 보고하기 위한 방법, 사용자 장비, 및 기지국
EP18169525.5A EP3429257B1 (en) 2014-03-06 2014-03-06 Method for reporting channel state information, user equipment, and base station
EP14884341.0A EP3116258B1 (en) 2014-03-06 2014-03-06 Method for reporting channel state information, user equipment, and base station
PCT/CN2014/073007 WO2015131378A1 (zh) 2014-03-06 2014-03-06 报告信道状态信息的方法、用户设备和基站
PT14884341T PT3116258T (pt) 2014-03-06 2014-03-06 Método para reportar informação do estado de canal, equipamento de utilizador e estação base
US15/255,953 US10454640B2 (en) 2014-03-06 2016-09-02 Method for reporting channel state information, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073007 WO2015131378A1 (zh) 2014-03-06 2014-03-06 报告信道状态信息的方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/255,953 Continuation US10454640B2 (en) 2014-03-06 2016-09-02 Method for reporting channel state information, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2015131378A1 true WO2015131378A1 (zh) 2015-09-11

Family

ID=54054382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073007 WO2015131378A1 (zh) 2014-03-06 2014-03-06 报告信道状态信息的方法、用户设备和基站

Country Status (7)

Country Link
US (1) US10454640B2 (zh)
EP (2) EP3116258B1 (zh)
KR (1) KR101851093B1 (zh)
CN (1) CN105210405B (zh)
BR (1) BR112016020503A2 (zh)
PT (1) PT3116258T (zh)
WO (1) WO2015131378A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136749A1 (en) * 2016-02-03 2017-08-10 Docomo Innovations, Inc. User equipment and method for wireless communication
WO2017162106A1 (en) * 2016-03-25 2017-09-28 Qualcomm Incorporated Channel state information reference signal transmission
CN107404345A (zh) * 2016-05-21 2017-11-28 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107707285A (zh) * 2016-08-05 2018-02-16 华为技术有限公司 信道状态信息的发送方法、接收方法、装置和系统
CN108288983A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置
US11101955B2 (en) 2017-03-24 2021-08-24 Huawei Technologies Co., Ltd. Channel state information transmission method, terminal device, and network device
WO2023222021A1 (zh) * 2022-05-17 2023-11-23 华为技术有限公司 一种信道测量方法及装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064939B1 (ko) * 2013-08-07 2020-01-13 삼성전자 주식회사 다수의 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 피드백 송수신 방법 및 장치
WO2015167119A1 (en) * 2014-05-02 2015-11-05 Lg Electronics Inc. Method and apparatus for channel estimation
WO2016148352A1 (ko) * 2015-03-13 2016-09-22 엘지전자 주식회사 무선 통신 시스템에서 csi 정보를 피드백하는 방법 및 그 장치
CN107431520B (zh) * 2015-03-24 2021-08-20 索尼公司 用于通信的装置
US10122424B2 (en) * 2015-04-10 2018-11-06 Kyocera Corporation Mobile communication system, base station, and user terminal
EP3381133B1 (en) * 2015-11-23 2019-08-14 Telefonaktiebolaget LM Ericsson (publ) Antenna system configuration
US10601482B2 (en) * 2016-01-13 2020-03-24 Lg Electronics Inc. Method for reporting channel state information for must transmission in wireless communication system and device therefor
WO2017171485A1 (ko) * 2016-03-31 2017-10-05 엘지전자 주식회사 무선 통신 시스템에서 dm-rs 기반 하향링크 전송을 위한 피드백 정보 송신 방법 및 이를 위한 장치
CN116388898A (zh) * 2016-04-01 2023-07-04 瑞典爱立信有限公司 用于灵活的信道状态信息-参考信号传送的系统和方法
US20180077617A1 (en) * 2016-09-09 2018-03-15 Qualcomm Incorporated Wireless Communication Enhancements for Unmanned Aerial Vehicle Communications
JP6955558B2 (ja) * 2016-10-11 2021-10-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 復調用参照信号の密度を適応させるための方法
US10110284B2 (en) * 2016-11-03 2018-10-23 At&T Intellectual Property I, L.P. Providing a format indicator comprising rank indication and channel state information spatial domain resolution type
US11888771B2 (en) * 2017-05-05 2024-01-30 Qualcomm Incorporated Beam procedure information for channel state information reference signals (CSI-RS)
CN111316692B (zh) * 2017-11-17 2022-04-26 华为技术有限公司 信道状态信息的反馈方法、通信装置和系统
CN110034803B (zh) * 2018-01-12 2021-06-04 华为技术有限公司 无线通信系统中信道状态信息反馈方法和装置
CN111788785B (zh) * 2018-01-29 2022-02-01 华为技术有限公司 一种预编码矩阵索引上报方法、通信装置及介质
WO2019157757A1 (zh) 2018-02-14 2019-08-22 华为技术有限公司 通信方法、通信装置和系统
US10588089B1 (en) * 2018-09-21 2020-03-10 Qualcomm Incorporated Mitigation of calibration errors
WO2020106005A1 (ko) * 2018-11-20 2020-05-28 주식회사 후본 매트릭스 레이어를 이용하여 태그와 통신을 수행하는 통신 장치
US20220150040A1 (en) * 2019-04-30 2022-05-12 Telefonaktiebolaget Lm Ericsson (Publ) Codebook assisted covariance transformation in frequency division duplex (fdd) systems
EP4005103A1 (en) 2019-08-01 2022-06-01 Huawei Technologies Co., Ltd. Adaptive kronecker product mimo precoding for a multi-antenna network entity and a wireless communication device and corresponding methods
US20230028888A1 (en) * 2020-02-11 2023-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Antenna Arrangement Having Unequally Many Physical Antenna Elements for Transmission and Reception
US11876654B2 (en) * 2020-04-22 2024-01-16 Qualcomm Incorporated Methods and apparatus for unified codebooks for orthogonal sequence transmission
CN113765830B (zh) * 2020-06-03 2022-12-27 华为技术有限公司 获取信道信息的方法及通信装置
AU2021419025A1 (en) * 2021-01-14 2023-08-24 Zte Corporation Systems and methods for ue reporting to facilitate handover

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147416A2 (en) * 2009-06-18 2010-12-23 Lg Electronics Inc. Method and apparatus for feeding back channel state information
CN102291212A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 信道状态信息的反馈方法和设备
CN103326761A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 信道状态信息处理方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082626A1 (en) * 2010-01-08 2011-07-14 Huawei Technologies Co., Ltd. Reporting of channel state information
CN102271031B (zh) * 2011-08-09 2018-02-06 中兴通讯股份有限公司 一种信道信息反馈的方法和系统
CN102315871B (zh) * 2011-09-30 2017-03-29 中兴通讯股份有限公司 非周期的信道状态信息的处理方法、装置及系统
EP2763338B1 (en) * 2011-09-30 2018-11-28 LG Electronics Inc. Method and apparatus for transmitting channel state information in wireless communication system
CN103108405B (zh) * 2011-11-15 2017-09-08 中兴通讯股份有限公司 无线通信方法和系统
KR101890419B1 (ko) * 2012-01-16 2018-08-21 삼성전자주식회사 기준신호를 송수신하기 위한 방법 및 장치
US9154205B2 (en) * 2012-04-20 2015-10-06 Lg Electronics Inc. Method for downlink beamforming in wireless access system and device therefor
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
CN103621000B9 (zh) 2012-06-14 2017-07-07 华为技术有限公司 确定预编码矩阵指示的方法、用户设备、基站演进节点
US20130343300A1 (en) * 2012-06-21 2013-12-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
KR20150035545A (ko) 2012-06-24 2015-04-06 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
WO2014073901A1 (ko) * 2012-11-09 2014-05-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
US9178583B2 (en) * 2013-01-08 2015-11-03 Samsung Electronics Co., Ltd. Channel state information feedback design in advanced wireless communication systems
KR101978776B1 (ko) * 2013-02-28 2019-05-16 삼성전자주식회사 다수의 안테나를 사용하는 이동통신 시스템에서 피드백 송수신 방법 및 장치
JP6052468B2 (ja) 2013-05-10 2016-12-27 華為技術有限公司Huawei Technologies Co.,Ltd. プリコーディング行列インジケータを決定するための方法、ユーザ機器、及び、基地局
WO2014179990A1 (zh) 2013-05-10 2014-11-13 华为技术有限公司 确定预编码矩阵指示的方法、用户设备和基站
US20170005712A1 (en) * 2014-01-22 2017-01-05 Nec Corporation Method and apparatus for channel measurement and feedback

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147416A2 (en) * 2009-06-18 2010-12-23 Lg Electronics Inc. Method and apparatus for feeding back channel state information
CN102291212A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 信道状态信息的反馈方法和设备
CN103326761A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 信道状态信息处理方法及装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506084A (ja) * 2016-02-03 2019-02-28 株式会社Nttドコモ ユーザ装置及び無線通信方法
JP7337747B2 (ja) 2016-02-03 2023-09-04 株式会社Nttドコモ ユーザ装置、無線通信方法、基地局及びシステム
WO2017136749A1 (en) * 2016-02-03 2017-08-10 Docomo Innovations, Inc. User equipment and method for wireless communication
US10972168B2 (en) 2016-02-03 2021-04-06 Ntt Docomo, Inc. User equipment and method for wireless communication
JP2020115692A (ja) * 2016-02-03 2020-07-30 株式会社Nttドコモ ユーザ装置、無線通信方法及び基地局
US11431450B2 (en) 2016-03-25 2022-08-30 Qualcomm Incorporated Channel state information reference signal transmission
WO2017162106A1 (en) * 2016-03-25 2017-09-28 Qualcomm Incorporated Channel state information reference signal transmission
CN107404345B (zh) * 2016-05-21 2020-10-02 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107404345A (zh) * 2016-05-21 2017-11-28 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107707285A (zh) * 2016-08-05 2018-02-16 华为技术有限公司 信道状态信息的发送方法、接收方法、装置和系统
CN107707285B (zh) * 2016-08-05 2021-04-09 华为技术有限公司 信道状态信息的发送方法、接收方法以及装置
CN108288983A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置
CN108288983B (zh) * 2017-01-09 2022-01-28 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置
US11652515B2 (en) 2017-01-09 2023-05-16 Zte Corporation Method and device for feeding back channel state information, and method and device for determining channel state information
US11101955B2 (en) 2017-03-24 2021-08-24 Huawei Technologies Co., Ltd. Channel state information transmission method, terminal device, and network device
WO2023222021A1 (zh) * 2022-05-17 2023-11-23 华为技术有限公司 一种信道测量方法及装置

Also Published As

Publication number Publication date
KR101851093B1 (ko) 2018-04-20
CN105210405B (zh) 2021-01-29
US10454640B2 (en) 2019-10-22
EP3429257A1 (en) 2019-01-16
EP3116258A1 (en) 2017-01-11
CN105210405A (zh) 2015-12-30
EP3116258B1 (en) 2018-07-04
EP3429257B1 (en) 2020-05-13
EP3116258A4 (en) 2017-03-22
US20160380734A1 (en) 2016-12-29
BR112016020503A2 (pt) 2018-07-10
KR20160129057A (ko) 2016-11-08
PT3116258T (pt) 2018-10-19

Similar Documents

Publication Publication Date Title
WO2015131378A1 (zh) 报告信道状态信息的方法、用户设备和基站
CN107733493B (zh) 用于确定预编码矩阵的方法和装置
EP3140922B1 (en) Beam forming using a dual polarized antenna arrangement
CN106464332B (zh) 使用天线布置的波束形成
CN104396153B (zh) 用于蜂窝无线通信系统的信道状态信息码字构造的方法和装置
EP3748866A1 (en) Method and apparatus for explicit csi reporting in advanced wireless communication systems
JP6267336B2 (ja) プリコーディングマトリクス指標を決定する方法、受信装置、および送信装置
CN107872261B (zh) 一种报告信道状态信息的方法、用户设备和基站
CN106797242B (zh) 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
CN107370558B (zh) 一种信道信息发送方法、数据发送方法和设备
JP6108250B2 (ja) チャネル状態情報を報告および受信する方法およびデバイス
WO2014179991A1 (zh) 确定预编码矩阵指示的方法、用户设备和基站
CN107395259B (zh) 一种二级预编码方法及装置
CN106452538B (zh) 用于多输入多输出通信的短期反馈的方法和装置
JP6208370B2 (ja) チャンネル情報フィードバック方法、基地局及び端末
KR20140005336A (ko) 네트워크 디바이스에서 코드북들 및 관련 데이터를 생성하기 위한 방법 및 장치
WO2014205848A1 (zh) 确定预编码矩阵指示的方法、装置,以及用户设备和基站
WO2015054879A1 (zh) 信道状态信息的测量和反馈方法、终端及基站
EP3363122A1 (en) Pmi reporting for a set of ports
WO2017028641A1 (zh) 信息反馈方法、信息反馈装置及终端
JP2018074605A (ja) プリコーディングマトリクス指標を決定する方法、受信装置、および送信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014884341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167027220

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016020503

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016020503

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160905