WO2014179990A1 - 确定预编码矩阵指示的方法、用户设备和基站 - Google Patents

确定预编码矩阵指示的方法、用户设备和基站 Download PDF

Info

Publication number
WO2014179990A1
WO2014179990A1 PCT/CN2013/075486 CN2013075486W WO2014179990A1 WO 2014179990 A1 WO2014179990 A1 WO 2014179990A1 CN 2013075486 W CN2013075486 W CN 2013075486W WO 2014179990 A1 WO2014179990 A1 WO 2014179990A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
user equipment
reference signal
subset
matrices
Prior art date
Application number
PCT/CN2013/075486
Other languages
English (en)
French (fr)
Inventor
王建国
周永行
伍勇
夏亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP22180177.2A priority Critical patent/EP4135210A1/en
Priority to ES13883972T priority patent/ES2756338T3/es
Priority to KR1020197006252A priority patent/KR102071440B1/ko
Priority to CN201910638072.1A priority patent/CN110460361B/zh
Priority to EP13883972.5A priority patent/EP2988430B1/en
Priority to CN201380073755.8A priority patent/CN105075138B/zh
Priority to CN202010741465.8A priority patent/CN112039566B/zh
Priority to CN201910624545.2A priority patent/CN110336597B/zh
Priority to PCT/CN2013/075486 priority patent/WO2014179990A1/zh
Priority to EP20200157.4A priority patent/EP3836413B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19186667.2A priority patent/EP3641148B1/en
Priority to KR1020157034668A priority patent/KR101955679B1/ko
Priority to CN202010749255.3A priority patent/CN112003638A/zh
Publication of WO2014179990A1 publication Critical patent/WO2014179990A1/zh
Priority to US14/936,092 priority patent/US9967008B2/en
Priority to US15/950,820 priority patent/US10141990B2/en
Priority to US15/951,153 priority patent/US10181882B2/en
Priority to US16/107,653 priority patent/US10263674B2/en
Priority to US16/233,444 priority patent/US10523291B2/en
Priority to US16/697,789 priority patent/US10735064B2/en
Priority to US16/931,622 priority patent/US11101853B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly, to a method, user equipment, and base station for determining a precoding matrix indication. Background technique
  • BF Beam Forming
  • MIMO Multiple Input Multiple Output
  • Optimal precoding usually requires the transmitter to be fully aware of CSI (Channel State Information).
  • CSI Channel State Information
  • a common method is that the user equipment quantizes the instantaneous CSI and feeds it back to the base station.
  • the CSI information fed back by the existing LTE R8 system includes an RI ( Rank Indicator, a PMK Precoding Matrix Indicator, a Precoding Matrix Indicator), and a CQI (Channel Quality Indicator), where the RI and the PMI respectively indicate the use.
  • RI Rank Indicator
  • PMK Precoding Matrix Indicator a Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • the set of precoding matrices used is often referred to as a codebook (sometimes each of the precoding matrices is a codeword).
  • the existing LTE (Long Term Evolution) R8 4 antenna codebook is based on the Househoulder transform design, and the R10 system introduces a dual-codebook design for the 8-day line.
  • the above two codebooks are mainly for the antenna design of a conventional base station.
  • Conventional base stations use a fixed or remote ESC downtilt to control the direction of the vertical antenna beam. Only the horizontal direction can dynamically adjust its beam direction by precoding or beamforming.
  • AAS Active Antenna Systems
  • the currently launched LTE R12 standard is considering enhancements to communication performance after the introduction of AAS systems.
  • the AAS further provides the design freedom in the vertical direction.
  • the antenna port can be further increased due to the ease of deployment.
  • the number of antenna ports included in the current LTE R12 and its future evolved version can be 8, 16 , 32, 64 and more. This puts new demands on the codebook design, especially its precoding performance and feedback overhead compromise and air interface support.
  • a new design scheme is needed for the AAS base station antenna, especially its precoding matrix and feedback process. Summary of the invention
  • the embodiments of the present invention provide a method for determining a precoding matrix indication, a user equipment, and a base station, which can improve CSI feedback accuracy without increasing feedback overhead, thereby improving system performance.
  • a method for determining a precoding matrix indication comprising: receiving a first reference signal set sent by a base station, wherein the first reference signal set is associated with a user equipment specific matrix or matrix set; Determining, by the first reference signal set, a precoding matrix, wherein the precoding matrix is a function of a matrix or a matrix set of the user equipment; sending a precoding matrix indicating PMI to the base station, where the PMI and the The selected precoding matrix corresponds.
  • the user equipment specific matrix or matrix set is notified by the base station to the user equipment.
  • the first reference signal set includes one or more reference signal subsets, and the reference signal subset corresponds to the same polarization
  • the precoding matrix is a function of the user equipment specific matrix or a subset of the matrix set
  • the method includes: the precoding matrix W is the product of two matrices ⁇ and ⁇ 2 , where H is a block diagonalization matrix, and the block diagonalization matrix contains at least one block matrix, each of which is A function of the user equipment specific matrix or matrix set.
  • At least one of the two matrices C and D is a matrix of the user equipment specific matrix or a matrix of the matrix set subset Functions, including:
  • c k diag ⁇ l, , ⁇ ⁇ ⁇ ⁇ , e ⁇ , l , € ⁇ € ⁇ E KJ or, the vector/d column vector d of the matrix D, or
  • N v N H , N c and N D are positive integers
  • a m is the first column vector of matrix A
  • matrix A is a matrix in a user-specific matrix or matrix set
  • A is a phase shift.
  • the matrix of the user equipment-specific matrix or matrix set subset is a discrete Fourier transform DFT vector or a Hadamard Hadamard matrix. Or a matrix of column vectors of the Haushold Householdholder matrix.
  • the user equipment specific matrix or the matrix of the matrix set subset is each column being a discrete Fourier transform DFT vector, including: DFT vector a, satisfied
  • the first reference signal The set includes at least one subset of reference signals associated with the matrix C or the set of matrices D.
  • the subset of reference signals has a longer transmission period than other reference signals.
  • a method for determining a precoding matrix indication comprising: transmitting a first reference signal set to a user equipment, wherein the first reference signal set is associated with a user equipment specific matrix or matrix set;
  • the precoding matrix sent by the user equipment indicates a PMI, where the PMI indicates a precoding matrix selected by the user equipment based on the first reference signal set, where the precoding matrix is a matrix or matrix set specific to the user equipment.
  • the user equipment specific matrix or matrix set is notified by the base station to the user equipment.
  • the first reference signal set includes one or more subsets of reference signals, the subset of reference signals corresponding to a subset of co-polarized antenna ports, or a subset of antenna ports aligned in the same direction in the antenna port array, or Corresponds to a subset of quasi-colocated antenna ports.
  • the precoding matrix is a function of a matrix or a matrix set of the user equipment
  • the at least one of the two matrices C and D is a function of the user equipment specific matrix or matrix set, and includes:
  • the first column vector of the matrix C is
  • c k diag ⁇ , , ⁇ , ev li, c , ⁇ , ⁇ , ⁇ ⁇ ⁇ , e]ee] Nvl i—i, i Nc J
  • the vector/d column vector d of the matrix D is
  • N v , N H , N c and N D are positive integers
  • a m is the first column vector of matrix A
  • matrix A is a matrix in a user-specific matrix or matrix set
  • A is a phase shift.
  • the matrix in the user equipment specific matrix or the matrix set is a discrete Fourier transform DFT vector or a Hadamard Hadamard matrix or The matrix of the column vector of the Haushold Householder matrix.
  • the matrix of the user equipment-specific matrix or the matrix is a discrete Fourier transform DFT
  • the vector includes: the DFT vector a, satisfying e where [] ⁇ is a matrix transpose, ⁇ , ⁇ are positive integers, and N C ⁇ N or N D ⁇ N.
  • the first reference signal set includes at least one reference signal subset, and the reference signal subset and the matrix C or The set of matrices D is associated.
  • the reference signal subset has a longer transmission period than other reference signals.
  • a third aspect provides a user equipment, including: a receiving unit, configured to receive a first reference signal set sent by a base station, where the first reference signal set is associated with a user equipment specific matrix or matrix set; a unit, configured to select, according to the first reference signal set, a precoding matrix, where the precoding matrix is a function of a matrix or a matrix set of the user equipment, and a sending unit, configured to send a pre
  • the coding matrix indicates a PMI that corresponds to the selected precoding matrix.
  • the receiving unit is further configured to receive the user equipment-specific matrix or matrix set notified by the base station.
  • the first reference signal set includes one or more reference signal subsets, and the reference signal subset corresponds to the same polarization
  • At least one of the two matrices C and D is a function of the user equipment specific matrix or matrix set, including:
  • the kth column vector of the matrix C is
  • the vector/d column vector d of matrix D is or
  • N v , N H , N c and N D are positive integers
  • a m is the first column vector of matrix A, where matrix A is a user-specific matrix or a matrix in a matrix set, and is a phase shift.
  • the matrix in the user equipment specific matrix or the matrix set is a discrete Fourier transform DFT vector or a Hadamard Hadamard matrix or The matrix of the column vector of the Haushold Householder matrix.
  • the DFT vector a is satisfied.
  • the first reference signal set includes at least one reference signal subset, and the reference signal subset and the matrix C or The set of matrices D is associated.
  • the reference signal subset has a longer transmission period than other reference signals.
  • a base station including: a sending unit, configured to send, to a user equipment, a first reference signal set, where the first reference signal set is associated with a user equipment specific matrix or matrix set; And a precoding matrix indicating PMI sent by the user equipment, where the PMI indicates a precoding matrix selected by the user equipment based on the first reference signal set, where the precoding matrix is specific to the user equipment.
  • a precoding matrix indicating PMI sent by the user equipment, where the PMI indicates a precoding matrix selected by the user equipment based on the first reference signal set, where the precoding matrix is specific to the user equipment.
  • the sending unit is further configured to notify the user equipment of a matrix or a matrix set specific to the user equipment.
  • the first reference signal set includes one or more reference signal subsets, and the reference signal subset corresponds to the same polarization
  • the precoding matrix W is a product of two matrices, ⁇ and ⁇ 2 , where two U, where the matrix ⁇ is a partition A diagonalization matrix, the block diagonalization matrix comprising at least one block matrix, each of the block matrices being a function of a matrix or matrix set specific to the user equipment.
  • the at least one of the two matrices C and D is a function of the user equipment specific matrix or matrix set, and includes:
  • the kth column vector of the matrix C is
  • c k diag ⁇ l, e J2 " /Nc , ⁇ , e J2 ⁇ /Nc ⁇ a m ,
  • c k diag ⁇ l, e j2 " /Nc , ⁇ , e l2jlNvl2 - 1)lNc , ⁇ ⁇ , ⁇ ⁇ e j2 ⁇ , ⁇ , ⁇ ⁇ ev J ⁇
  • the vector/d column vector d of the matrix D is
  • d, diag ⁇ l, e j2 ⁇ , ⁇ , e ⁇ (w H / 2 — 1)/ , e] ⁇ L , e ⁇ e ⁇ , ⁇ ⁇ ⁇ , e ,. J ⁇
  • Nv, N H , N c and N D are positive integers
  • a m is the first column vector of matrix A, where matrix A is a user-specific matrix or a matrix in a matrix set, and is a phase shift.
  • the matrix in the user equipment specific matrix or the matrix set is a discrete Fourier transform DFT vector or a Hadamard Hadamard matrix or Column of Haushold Householder Matrix Vector composition of the matrix.
  • the user equipment-specific matrix or the matrix in the matrix set is a discrete Fourier transform DFT vector, including the DFT vector a, satisfied
  • the first reference signal set includes at least one reference signal subset, the reference signal subset and the matrix C or The set of matrices D is associated.
  • the reference signal subset has a longer transmission period than other reference signals.
  • a fifth aspect provides a user equipment, including: a receiver, configured to receive a first reference signal set sent by a base station, where the first reference signal set is associated with a user equipment specific matrix or matrix set; And selecting, according to the first reference signal set, a precoding matrix, where the precoding matrix is a function of a matrix or a matrix set of the user equipment; and a transmitter, configured to send a pre The coding matrix indicates a PMI that corresponds to the selected precoding matrix.
  • the receiver is further configured to receive the user equipment-specific matrix or matrix set notified by the base station.
  • the first reference signal set includes one or more reference signal subsets, and the reference signal subset corresponds to the same polarization
  • the at least one of the two matrices C and D is a function of the user equipment specific matrix or matrix set, and includes:
  • the kth column vector of the matrix C is
  • c k diag ⁇ l, , ⁇ , e ] Nvl2 - l)lNc , , e j2 ⁇ , ⁇ , ⁇ ⁇ 2 / J &m or, the vector/d column vector d of the matrix D,
  • Nv N H , N c and N D are positive integers
  • a m is the first column vector of matrix A, where matrix A is a user-specific matrix or a matrix in a matrix set, and is a phase shift.
  • the matrix in the user equipment specific matrix or the matrix set is a discrete Fourier transform DFT vector or a Hadamard Hadamard matrix or The matrix of the column vector of the Haushold Householder matrix.
  • the DFT vector a is satisfied
  • N e N ⁇ e N where [] T is a matrix transpose, MN is a positive integer, and N C ⁇ N or N D ⁇ N
  • the first reference signal set includes at least one reference signal subset, the reference signal subset and the matrix C or The set of matrices D is associated.
  • the reference signal subset has a longer transmission period than other reference signals.
  • a base station including: a transmitter, configured to send, to a user equipment, a first reference signal set, where the first reference signal set and a user equipment specific matrix or matrix set And a receiver, configured to receive a precoding matrix indication PMI sent by the user equipment, where the PMI indicates a precoding matrix selected by the user equipment based on the first reference signal set, where the precoding matrix is A function of the user equipment specific matrix or matrix set.
  • the transmitter is further configured to notify the user equipment of a specific matrix or matrix set of the user equipment.
  • the first reference signal set includes one or more reference signal subsets, and the reference signal subset corresponds to the same polarization
  • the precoding matrix W is a product of two matrices ⁇ and ⁇ 2 , where two U, where the matrix ⁇ is a partition A diagonalization matrix, the block diagonalization matrix comprising at least one block matrix, each of the block matrices being a function of a matrix or matrix set specific to the user equipment.
  • the at least one of the two matrices C and D is a function of the user equipment specific matrix or matrix set, and includes:
  • the kth column vector of the matrix C is
  • c k diag ⁇ l, e j2 " /Nc , ⁇ , e j2 Nv/2 - 1)/Nc , ⁇ ⁇ , ⁇ ⁇ ⁇ ]2 ⁇ ' ⁇ - , ⁇ , ⁇ ⁇ , ⁇ ⁇ &m
  • the vector/d column vector d of the matrix D is
  • N v , N H , N c and N D are positive integers
  • a m is the first column vector of matrix A, where matrix A is a user-specific matrix or a matrix in a matrix set, and is a phase shift.
  • the matrix in the user equipment specific matrix or matrix set is each column is a discrete Fourier transform
  • a DFT vector or a Hadamard matrix or a matrix of Hauser's Householder matrix is a DFT vector or a Hadamard matrix or a matrix of Hauser's Householder matrix.
  • the user equipment-specific matrix or the matrix in the matrix set is a discrete Fourier transform DFT vector, including the DFT vector a, satisfied
  • the first reference signal set includes at least one reference signal subset, the reference signal subset and the matrix C or The set of matrices D is associated.
  • the first reference signal set includes at least one reference signal subset, and the reference signal subset has a longer duration than other reference signals The sending cycle.
  • the first reference signal set of the embodiment of the present invention is associated with a user equipment specific matrix or matrix set, and the precoding matrix is a function of the user equipment specific matrix or matrix set, so that the user equipment can be based on the user equipment.
  • a particular matrix or set of matrices selects a precoding matrix and feeds back the PMI, which constitutes a user equipment specific codebook rather than a cell or system specific codebook.
  • a cell or system specific codebook is a collection of precoding matrices designed for a cell or all users within the system.
  • the user equipment specific codebook is a subset of the cell or system specific codebook. Therefore, the embodiment of the present invention can improve the CSI feedback accuracy under the condition of not increasing the feedback overhead, thereby improving the system performance.
  • 1 is a flow chart of a method of determining a precoding matrix indication in accordance with an embodiment of the present invention.
  • 2 is a flow chart of a method of determining a precoding matrix indication according to another embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a multi-antenna transmission method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a user equipment in accordance with an embodiment of the present invention.
  • FIG. 5 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • FIG. 6 is a block diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 7 is a block diagram of a base station according to another embodiment of the present invention. detailed description
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a user equipment which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a mobile device that can be portable, pocket-sized, handheld, built-in or in-vehicle; It can also be a relay; they exchange language and/or data with the radio access network.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved Node B (eNB or e-NodeB, evolved Node B) in LTE. Or relay, the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved Node B
  • e-NodeB evolved Node B
  • FIG. 1 is a flow chart of a method of determining a precoding matrix indication in accordance with an embodiment of the present invention.
  • the method of Figure 1 is performed by a user equipment (e.g., a UE).
  • a user equipment e.g., a UE
  • the first reference signal set of the embodiment of the present invention is associated with a user equipment specific matrix or matrix set, and the precoding matrix is a function of the user equipment specific matrix or matrix set, so that the user equipment can be based on the user equipment.
  • a particular matrix or set of matrices selects a precoding matrix and feeds back the PMI, the set of precoding matrices forming a user equipment specific codebook rather than a cell specific codebook or system specific codebook.
  • a cell or system specific codebook is a collection of precoding matrices designed for a cell or all users within the system.
  • the user equipment specific codebook is a subset of the cell or system specific codebook. Therefore, the embodiment of the present invention can improve the CSI feedback precision without increasing the feedback overhead, thereby improving system performance.
  • the matrix may include a matrix of multiple rows and columns, a vector of multiple rows and columns, a vector of single rows and multiple columns, and a scalar (matrix of single row and single column).
  • the user equipment specific matrix or matrix set is notified by the base station to the user equipment.
  • the user equipment may further receive a second reference signal set sent by the base station, where the second reference signal set is associated with a matrix or a matrix set. And determining, by the user equipment, a second index, where the second index is used to indicate the antenna port or the antenna port subset selected by the user equipment, or is related to the antenna port or antenna port subset selected by the user equipment, based on the second reference signal set. A subset of a matrix or matrix set.
  • the first reference signal set may be a subset of the second reference signal set.
  • the user equipment when receiving the second reference signal set sent by the base station, may receive the reference signal of the second reference signal set sent by the base station at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the matrix or matrix set associated with the second set of reference signals is cell or system specific.
  • the first reference signal set includes one or more reference signal subsets, where the reference signal subset corresponds to a co-polarized antenna port subset, or corresponds to the same in the antenna port array.
  • the user equipment when receiving the first reference signal set sent by the base station, may receive the reference signal of the first reference signal set sent by the base station at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the block diagonalization matrix comprises at least one block matrix, each block matrix being a function of a matrix or matrix set specific to the user equipment.
  • the matrix ⁇ 2 is used to select or weight the column vectors in the combination matrix ⁇ to form the matrix w.
  • each column of the at least one of the two matrices C and D is a rotation of a column vector in a matrix of a user equipment-specific matrix or a matrix set, that is, the first of the matrix C
  • Column vector ( ⁇ ) is
  • c k diag ⁇ l, e j2 ⁇ , ⁇ , e j Nv/2 - 1)/Nc , ⁇ ⁇ , ⁇ ⁇ e j2 ⁇ , ⁇ , ⁇ ⁇ ⁇ ⁇ , (3 ) or, matrix
  • the first/column vector d of D is
  • N v , N H , N c and N D are positive integers
  • a m is the first column vector of matrix A, where matrix A is a user-specific matrix or a matrix in a matrix set, and A is the phase shift, and the value is such as ⁇ ; ⁇ /2, ⁇ ; ⁇ /4, ⁇ ; ⁇ /8, etc.
  • the corresponding matrix C or the matrix vector of the matrix D satisfies (2) - (5) and does not mean different positions on the diagonal in the ⁇
  • the block matrix X has the same matrix C or matrix D.
  • the block matrix X for different positions may have the same or different matrix C or matrix 1).
  • the matrix in the user equipment specific matrix or matrix set is a Discrete Fourier Transformation (DFT) vector or a Hadamard matrix or Haushold ( Householder A matrix of matrix vectors.
  • DFT Discrete Fourier Transformation
  • Hamard matrix or Haushold Householder A matrix of matrix vectors.
  • the DFT vector a is satisfied.
  • [] ⁇ is matrix transposed, M, N are positive integers, and N C ⁇ N or N D ⁇ N.
  • the first reference signal set includes at least one reference signal subset, and the reference signal subset is associated with the matrix C or the set of the matrix D.
  • the reference signal subset has a longer transmission period than other reference signals.
  • the precoding matrix W may be the following matrix
  • the indication is no more than ⁇ / big history.
  • is a positive integer, for example, you can take values 1, 2, 4, 6, 8, 16, 32. 64 and so on.
  • the precoding matrix W may be the following matrix
  • is a positive integer, for example, it can be 1, 2, 4, 6, 8, 16, 32, 64, etc.
  • W is a positive integer, for example, it can be 1, 2, 4, 6, 8, 16, 32 , 64, etc.
  • the precoding matrix w can match the actually deployed antenna configuration; since the granularity of the S value is ⁇ /16, thereby achieving more accurate spatial quantization, the CSI feedback accuracy can be improved;
  • the two columns of the coding matrix W are orthogonal to each other, and the interference between the layers can be reduced.
  • FIG. 2 is a flow chart of a method of determining a precoding matrix indication according to another embodiment of the present invention.
  • the method of Figure 2 is performed by a base station (e.g., an eNB).
  • a base station e.g., an eNB
  • 201 Send a first reference signal set to a user equipment, where the first reference signal set is associated with a user equipment specific (UE specific) matrix or matrix set.
  • UE specific user equipment specific
  • 202 Receive a precoding matrix indication PMI sent by the user equipment, where the PMI is used to indicate a precoding matrix selected by the user equipment based on the first reference signal, where the precoding matrix is a matrix specific to the user equipment. Or a function of a matrix set.
  • the first reference signal set of the embodiment of the present invention is associated with a user equipment specific matrix or a subset of a matrix set, the precoding matrix being a function of the user equipment specific matrix or matrix set, so that the user equipment can be based on the
  • the matrix or subset of matrix sets selects the precoding matrix and feeds back the PMI, the set of precoding matrices forming a user equipment specific codebook rather than a cell or system specific codebook.
  • a cell or system specific codebook is a set of precoding matrices designed for a cell or all users in the system.
  • the user equipment specific codebook is cell or system specific. A subset of the codebook. Therefore, the embodiment of the present invention can improve the CSI feedback accuracy without increasing the feedback overhead, thereby improving system performance.
  • a precoding matrix may also be obtained according to the received PMI.
  • the user equipment specific matrix or matrix set is notified by the base station to the user equipment.
  • the base station may further send a second reference signal set to the user equipment, where the second reference signal set is associated with a matrix or a matrix set.
  • the base station receives a second index determined by the user equipment based on the second set of reference signals.
  • the second index is used to indicate a subset of antenna ports or antenna ports selected by the user equipment, or a set of matrices or matrices associated with a subset of antenna ports or antenna ports selected by the user equipment.
  • the first reference signal set is a subset of the second reference signal set.
  • the base station when the base station sends the second reference signal set to the user equipment, the base station may send the reference signal of the second reference signal set to the user equipment at different times.
  • the matrix or matrix set associated with the second set of reference signals is cell or system specific.
  • the base station may further obtain a channel estimation of the user equipment according to channel disparity by measuring an uplink physical channel or an uplink physical signal.
  • a user selects a first reference signal and a user equipment specific matrix or matrix set based on predefined criteria.
  • the uplink physical channel may be a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH);
  • the physical signal may be a listening reference signal (Sounding Reference) Signal, called SRS) or other upstream demodulation reference signal (DMRS).
  • SRS Sounding Reference
  • DMRS upstream demodulation reference signal
  • the first reference signal set may include one or more reference signal subsets.
  • the reference signal subset corresponds to a subset of co-polarized antenna ports, or to a subset of antenna ports arranged in the same direction in the array of antenna ports, or to a subset of antenna ports that are quasi-co-located.
  • the base station may send a subset of the first reference signal set to the user equipment at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the matrix contains at least one block matrix, each block matrix being a function of a matrix or matrix set specific to the user equipment.
  • the matrix ⁇ 2 is used to select or weight the column vectors in the combination matrix ⁇ to form the matrix W.
  • each column of the at least one of the two matrices C and D is a rotation of a column vector in a matrix in a user equipment specific matrix or a matrix set, that is, a first column vector of the matrix C
  • the vector/column vector of the matrix D or the matrix D is represented by the formula (4) or (5), wherein N v , N H , N c and N D are positive integers, a m is the first column vector of matrix A, where matrix A is a matrix in a user equipment specific matrix or matrix set.
  • the corresponding matrix C or the matrix vector of the matrix D satisfies (2) - (5) and does not mean different positions on the diagonal in the ⁇
  • the block matrix X has the same matrix C or matrix D.
  • the block matrix X for different positions may have the same or different matrix C or matrix 1).
  • the matrix in the user equipment specific matrix or matrix set is a matrix composed of column vectors of DFT vectors or Hadamard matrices or Householder matrices.
  • the DFT vector a is as shown in the formula (6), wherein the N C ⁇ N or N D > N.
  • the first reference signal set includes at least one reference signal subset, and the reference signal subset is associated with the matrix C or the set of the matrix D.
  • the reference signal subset has a longer transmission period than other reference signals.
  • the precoding matrix W may be the following matrix
  • M is a positive integer.
  • the value can be 1, 2, 4, 6, 8, 16, 32, 64, etc.
  • W is a positive integer, for example, the value can be 1, 2, 4, 6, 8, 16, 32 , 64, etc.
  • the precoding matrix W may be the following matrix
  • is a positive integer, for example, it can be 1, 2, 4, 6, 8, 16, 32, 64, etc.
  • W is a positive integer, for example, it can be 1, 2, 4, 6, 8, 16, 32 , 64, etc.
  • the precoding matrix w can match the actually deployed antenna configuration; since the granularity of the S value is ⁇ /16, thereby achieving more accurate spatial quantization, the CSI feedback accuracy can be improved;
  • the two columns of the coding matrix W are orthogonal to each other, and the interference between the layers can be reduced.
  • Embodiments of the present invention are described in more detail below with reference to specific examples.
  • the eNB is used as an example of the base station
  • the UE is used as an example of the user equipment.
  • the embodiment of the present invention is not limited thereto, and the same can be applied to other communication systems.
  • FIG. 3 is a schematic flow chart of a multi-antenna transmission method according to an embodiment of the present invention.
  • the UE receives a first reference signal set, where the first reference signal set is associated with a user equipment specific (UE-specific) matrix or matrix set.
  • UE-specific user equipment specific
  • the first reference signal set received by the UE is notified by the eNB through high layer signaling or dynamically notified by using a downlink control channel.
  • the reference signal may be a cell-specific reference signal (CRS, Cell specific RS) or a demodulation reference signal (DMRS, DeModulation RS) or a channel state information reference signal (CSI-RS, channel state information RS)
  • CRS cell-specific reference signal
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • the signal may correspond to one physical antenna, or may correspond to one virtual antenna, where the virtual antenna is a weighted combination of multiple physical antennas.
  • the first set of reference signals may comprise one or more subsets of reference signals.
  • the UE receives the first reference signal set as P, and includes a total of eight reference signals, which are respectively pi, p2, p3, . . . , p7, p8.
  • the first reference signal set may comprise a subset of reference signals, in which case the reference signal subset is identical to the first reference signal set; that is, the eight reference signals pl, p2, ..., s8 in P.
  • the first set of reference signals may comprise a plurality of reference signal subsets.
  • the subset of reference signals included in the first reference signal set may correspond to a subset of co-polarized antenna ports.
  • a subset of the first reference signal set Pl ⁇ p5, p 6, p7, p8 ⁇ corresponds to another co-polarized antenna port a subset of.
  • the subset of reference signals included in the first reference signal set may correspond to a subset of ports arranged in the same direction in the antenna port array.
  • the subset of reference signals included in the first reference signal set may correspond to a subset of the quasi-colocated antenna ports.
  • the antenna port of the quasi-co-location QL, Quasi-Co-Location
  • the spacing between the antennas corresponding to the antenna ports is within a range of wavelengths.
  • each antenna port described above corresponds to one physical antenna or virtual antenna, wherein the virtual antenna is a weighted combination of multiple physical antennas or antenna elements.
  • the reference signal in the plurality of reference signal subsets included in the first reference signal set may occupy different symbol/frequency/sequence resources in the same subframe, or occupy the same symbol/frequency/sequence resource in different The subframe is transmitted.
  • the first reference signal set is associated with a UE-specific matrix or a subset of the matrix set, and may be each reference signal in the first reference signal set and a user equipment specific A (UE-specific) matrix or a subset of a set of matrices is associated.
  • the reference signal set notified by the eNB is S, which includes 8 reference signals, which are respectively sl, s2, s3, ..., s7, s8.
  • the above reference signals are respectively associated with the matrices wl, w2, ..., w8, or respectively associated with ⁇ wl, w2 ⁇ , ⁇ w2, w3 ⁇ ..., ⁇ w7, w8 ⁇ , ⁇ w8, wl ⁇ .
  • the first reference signal set is associated with a subset of a matrix or matrix set, and may also be a reference signal subset of the first reference signal set associated with a user equipment specific matrix or a subset of the matrix set .
  • the reference signal set notified by the eNB is S, which includes eight reference signals, respectively sl, s2, s3, ..., s7, s8.
  • the reference signal subset ⁇ sl, s2, s3, s4 ⁇ is associated with the matrix pi or the matrix subset ⁇ pi,..., pm ⁇ , the reference signal subset ⁇ s5, s6, s7, s8 ⁇ and a matrix wl or
  • the matrix subset ⁇ wl,...,wn ⁇ is associated, where m and n are positive integers.
  • the reference signal subset ⁇ sl, s2 ⁇ , ⁇ s3, s4 ⁇ , ..., ⁇ s7, s8 ⁇ are associated with the matrices wl, w2, w3, w4, respectively.
  • the reference signal subset ⁇ sl, s2 ⁇ , ⁇ s3, s4 ⁇ , ..., ⁇ s7, s8 ⁇ are associated with the matrix ⁇ wl, w2 ⁇ , ⁇ w3, w4 ⁇ , ..., ⁇ w7, respectively. W8 ⁇ .
  • the matrix here includes vectors.
  • the association or correspondence of the first reference signal set with a user equipment specific matrix or matrix set may be signaled.
  • the high-level signaling such as radio resource control (RRC, Radio Resource Control) signaling
  • RRC Radio Resource Control
  • the reference signal subset ⁇ sl, s2, s3, s4 ⁇ is related to the matrix pi or the matrix subset ⁇ pi, ..., pm ⁇ .
  • the reference signal subset ⁇ s5, s6, s7, s8 ⁇ is associated with a matrix wl or a matrix subset ⁇ wl,...,wn ⁇ .
  • DCI Downlink Control information
  • each matrix subset in the signaling may be represented by a bitmap.
  • the RRC signaling may be UE-specific signaling, such as dedicated physical signaling, and the indication information of the first reference signal set and the UE-specific matrix or matrix set may be sent in the same RRC dedicated signaling.
  • the association or mapping of the first reference signal set with a user equipment specific matrix or matrix set may also be predefined.
  • the reference signal subset ⁇ sl, s2, s3, s4 ⁇ is associated with the matrix pi or the matrix subset ⁇ pi,..., pm ⁇
  • the wl or matrix subset ⁇ wl,...,wn ⁇ is associated with a predefined one and is well known to user equipment and base stations.
  • the first reference signal set is associated with a matrix or a subset of a matrix set
  • the first reference signal set may be associated with a matrix or a set of matrices, wherein the matrix or matrix subset subset passes Signaling or pre-defined.
  • the high-level signaling such as the RRC signaling notification matrix or the dynamic notification by the DCI
  • the high-level signaling such as the RRC signaling notification matrix set
  • the matrix associated with the first reference signal set or the matrix A of the matrix set subset may be a matrix in which each column is a DFT vector, that is,
  • N a ⁇ l is the number of columns of the matrix A
  • N f ⁇ 1 is the number of columns of the DFT vector.
  • the user equipment-specific (UE specific) matrix or a matrix A in the matrix set may also be a matrix composed of column vectors of a Hadamard matrix, that is,
  • N a ⁇ 1 is the number of columns of the matrix
  • N h ⁇ 1 is the number of columns of the Hadamard matrix
  • h m , m 0, ..., N
  • the column vector of the Hadamard matrix for example
  • the user equipment specific (UE specific) matrix set may be at least two matrices, one of which is a matrix A as described above, and the other matrix is a column a matrix B composed of a DFT vector or a column vector of a Hadamard matrix, ie
  • N b ⁇ 1 is the number of columns of the matrix B, ⁇ 1 and N; ⁇ 1 is the number of columns of the Hadamard matrix and the number of columns of the DFT vector, respectively.
  • 11 1 is 13 ⁇ 4 (1&11 ⁇ (1 matrix column vector.
  • f is DFT vector, ie f n ' is expressed as
  • the first reference signal set may be divided into two subsets, which are respectively associated with a subset consisting of a matrix ⁇ and a matrix ⁇ or a matrix ⁇ and a matrix ⁇ .
  • the user equipment specific (UE specific) matrix or a matrix in the matrix set may also be a matrix Y of the following form
  • Y A® B (18) wherein ⁇ and ⁇ may have the structures shown by (8) - (13) and (14) - (17), respectively, as described above.
  • the user equipment specific (UE specific) matrix or the matrix in the matrix set may also adopt other forms of matrix, such as the Householder matrix or the 4 antennas in LTE R8 or the precoding matrix in the 8 antenna codebook in LTER10.
  • the user equipment specific (UE specific) matrix or a matrix in the matrix set may have the following structure
  • each block matrix in the matrix ⁇ can be represented as two moments P car kronecker product, such as
  • c k diag ⁇ l, e j2 " /Nc , ⁇ , e ⁇ Nvj2 - l)lNc , ⁇ ⁇ , ⁇ ⁇ ⁇ , ⁇ , ⁇ ⁇ e ⁇ v l c J ⁇ (25) or, D, the / column d satisfies
  • N v , N H , N c and N D are positive integers
  • vectors a, and b are columns of matrix A and matrix B, respectively
  • ⁇ ⁇ and ⁇ are phase shifts, such as 0, ⁇ , ⁇ /2, ⁇ ; ⁇ /4, ⁇ ; ⁇ /8, etc.
  • the vector or ⁇ in (24) - (27) may have a finer granularity than a, or b, respectively.
  • the set of the above vector or matrix A or B or Y or W is ⁇ or ⁇ or C Y or c w , and can be further divided into a plurality of subsets
  • the subset may contain only one element), where each subset may be associated with a user equipment identity or have a mapping relationship.
  • the subset in C A is associated or mapped to the user equipment identity IDi
  • another subset of C A is associated or mapped to the user equipment identity ID 2 .
  • the subset and C may have an intersection, or there may be no intersection.
  • the association or mapping relationship between the foregoing vector or the matrix or the subset of the matrix and the user equipment identifier may be predefined, or may be notified by the eNB to the UE, such as by high layer signaling, such as RRC signaling or downlink control channel notification.
  • Each of the above subsets may contain only one element.
  • the reference signal set can be associated with a user equipment identity.
  • the reference signal set notified by the eNB is S, and a total of eight reference signals are included, which are respectively sl, s2, s3, ..., s7, s8.
  • the above reference signal is associated with the user equipment identification ID.
  • the reference signal set received by the UE may be divided into two or more subsets, wherein the subsets are respectively associated with a specific user equipment identifier, such as a reference signal received by the UE. Numbers can be set into two subsets each comprising a reference signal sl, s2, s3, s4 or s5, s6, s7, s8, the sl, s2, s3, s4 and a user equipment identifier ID ⁇ ID 2 is associated.
  • the association or mapping relationship between the foregoing reference signal set and the user equipment identifier may be predefined or may be notified by the eNB.
  • the foregoing user equipment identifier is not necessarily a specific communication protocol, such as a UE ID in LTE, and may also be a specific parameter for distinguishing user equipment attributes, such as an index or offset in a certain user group or UE group.
  • an index or offset in a certain user group or UE group such as an index or offset in a certain user group or UE group.
  • the above offset or index facilitates different beam-related characteristics between user equipments or user groups.
  • the reference signals in the reference signal set may be transmitted at different times, such as different subframes, wherein different times may be associated or mapped to different vectors/matrices or subsets of matrix sets.
  • the different reference vectors/matrices or subsets of the matrix sets of the reference signals that are associated or mapped at different times may be predefined or may be notified by the eNB, such as by RRC signaling.
  • the UE selects a precoding matrix based on the first reference signal set, where the precoding matrix is a function of the user equipment specific matrix or matrix set.
  • the precoding matrix is a function of the user equipment specific matrix or matrix set, including
  • the precoding matrix is a product of two matrices and w 2 , ie
  • W U (29) where matrix ⁇ is a function of matrix A or B, which is a matrix in a user-specific matrix or matrix set.
  • is matrix A or matrix B;
  • the matrix ⁇ is a block diagonalization matrix, the block diagonalization matrix comprising at least one block matrix, each block matrix being a function of the matrix A or B.
  • each block matrix in matrix ⁇ is a function of matrix A or matrix B, for example
  • c k diag ⁇ l, e j2 " /Nc , ⁇ , e l ⁇ l2 - l)lNc , ⁇ ⁇ , e j2 " /Nc , ⁇ , ⁇ ⁇ 2 - 1 ) Ja m (35) or
  • N v N H , N c and N D are positive integers
  • the vector a m and the vector b consult are the first column vector of the matrix A and the “column vector of the matrix B, respectively, and the phase shift is taken as 0, ⁇ , ⁇ /2, ⁇ /4, ⁇ ⁇ /8, etc.
  • At least one of the matrix A or the matrix B is a matrix in a matrix or matrix set specific to the user equipment.
  • the matrix ⁇ 2 can be w Y 1 Y 1 Y 1 Y
  • the block matrix X is the kronecker product of two matrices A and B, ie
  • X A® B (46) where matrix A or matrix B is a matrix in the user-specific (UE-specific) matrix or matrix set.
  • Each column of at least one of the matrices C and D is a rotation of a column vector in the matrix A or B, that is, a first column vector of the matrix C is
  • W 2 [ei e 2 ... e r] (51) where 6; represents an addition to the i-th element is other than 1, the other elements are 0 in unit column vector. Further, the vector ( ⁇ or d A in (47) - (50) may have a ratio of a, or b, having a finer granularity, that is,
  • the UE transmits a precoding matrix indication PMI to the base station, and the PMI corresponds to the selected precoding matrix.
  • the precoding matrix indicates that the PMI can include one or more indices.
  • the precoding matrix indicates that the PMI may include an index.
  • the precoding matrix indicates that the PMI can also be two indexes, such as ⁇ and 1 2 .
  • ⁇ and ⁇ 2 in the equation (29) are respectively indicated by i ⁇ 2 such that i 2 indicates the precoding matrix W.
  • the index ⁇ can be reported based on a subset of ⁇ .
  • the complete set of W ⁇ is Q
  • the subset of set Q is Q. ,..., Q.3
  • the index is used to indicate that the matrix Q k in a certain subset Q k can be (3 ⁇ 4,( ⁇ ...,() a subset of 3 ⁇ 4.
  • Qk can be pre- Defining, which may be determined and reported by the UE, may also be notified to the UE by the eNB.
  • the subsets Q0, ..., Q3 may not intersect each other, that is, the intersection of each subset is an empty set; the subset Q0,... Q3 can also intersect each other, that is, the intersection of each subset is not an empty set.
  • the index reported by the UE for indicating the precoding matrix may also be three, such as i 3 , i 4 , and i 5 .
  • i 3 and i 4 respectively, and ⁇ 2 is implicitly indicated by 1 5 .
  • i 3 , i 4 and i 5 indicate the precoding matrix W.
  • the index i 3 can be reported based on the subset.
  • the complete set is R
  • the subset of set R is R. ,..., R 7 .
  • the index i 3 is now used to indicate the matrix in a certain subset R k .
  • R k can Thought! ⁇ ,! ⁇ ...,! A subset of ⁇ .
  • R k may be predefined, and may be determined by the UE to be "3 ⁇ 4" or may be notified by the eNB to the UE.
  • the subset, ..., 1 7 may be mutually disjoint, that is, the intersection of each subset is an empty set.
  • subsets R.,..., R 7 can intersect each other, that is, the intersection of each subset is not an empty set; similarly, i 4 and i 5 can be reported based on a subset of ⁇ 2 respectively.
  • the subset of $ 2 may be predefined, may be determined and reported by the UE, or may be notified to the UE by the eNB.
  • the index reported by the UE for indicating the precoding matrix may also be another three indexes, such as i 6 , i 7 and i 8 .
  • the index i 6 can be reported based on the subset. For example, the complete set of ⁇ is 0, and the subset of set 0 is 0. ,..., 0 7 . At this time, the index i 6 is used to indicate the matrix C in a certain subset O k ; o k can be 0. , O .., 0 7 of a subset.
  • the O K may be predefined, or may be determined and reported by the UE, or may be notified by the eNB to the UE.
  • Subset 0. ,..., 0 7 can be mutually disjoint, that is, the intersection of each subset is an empty set; the subset is 0.
  • ⁇ 7 and i 8 can be reported based on a subset of 1) ; and ⁇ 2 , respectively.
  • ⁇ ⁇ 2 subsets may be predefined, may be determined and reported by the UE, an eNB may be notified to the UE.
  • the index used by the UE to indicate the precoding matrix may also be four indexes, such as ⁇ and ⁇ .
  • ⁇ , ⁇ and i 12 indicate the precoding matrix ⁇ .
  • the indexes ⁇ , and ⁇ can be reported based on a subset of C 2 , D ⁇ PW 2 , respectively.
  • the subset of C L C 2 , D ⁇ PW 2 may be predefined, may be determined by the UE and may be up to >3 ⁇ 4, or may be notified by the eNB to the UE.
  • the index value may be calculated based on a reference signal subset.
  • the index value n as described above is calculated based on the reference signal subset P described in step 301 or the index value and i 2 or i 3 , i 4 and i 5 or i 6 , i 7 , i 8 or i 9 , iio, in and i 12 are calculated based on the reference signal subset P described in step 1.
  • the index value may be jointly calculated based on a plurality of reference signal subsets, for example, the index value n as described above is calculated based on the reference signal subsets P1 and P2 described in step 301 or the index value and i 2 or L3, U and or 16, 17, 18 or ⁇ 9, ⁇ ⁇ ⁇ 1 and i 12 are calculated based on the reference signal subsets P1 and P2 described in step 1.
  • the index value is separately calculated based on a plurality of reference signal subsets, for example, the index value i 3 as described above is based on the reference signal subsets PI, i 4 and i 5 described in step 301 based on the parameters described in step 301. Test signal subset P2 calculation.
  • the index value i 6 as described above is calculated based on the subset of reference signals PI, i 7 and i 8 based on step 301, based on the reference signal subset P2 described in step 301.
  • the reference signal subsets PI, i n and i 12 based on step 301 are calculated based on the reference signal subset P2 described in step 301.
  • the UE may determine the one or more indexes based on the measured channel state based on preset criteria, where the preset criterion may be a throughput maximum criterion or a capacity maximum criterion. After obtaining the one or more indexes, the UE may feed back to the eNB through the PUCCH or the PUSCH.
  • the precoding matrix indicates that the PMI may include one or more indexes, and the UE may report to the eNB by using a Physical Uplink Control Channel (PUCCH) through different subframes.
  • PUCCH Physical Uplink Control Channel
  • the different multiple indexes may be reported to the eNB by using the PUCCH in different subframes for different subbands in the frequency domain.
  • the matrix corresponding to each index described above may be a single matrix, so that it is not necessary to feed back the corresponding index.
  • the single matrix may be a predefined matrix, may be signaled by the base station, or may be implicitly obtained according to other parameters; for example, ⁇ 2 is fixedly selected as the matrix represented by the formula (51), so that no feedback is needed.
  • the index corresponding to W 2 , at this time ⁇ 2 is implicitly obtained according to the rank r of the precoding matrix.
  • the base station indicates the PMI based on the received precoding matrix, and obtains a precoding matrix ⁇ .
  • the base station uses the precoding matrix W to transmit a signal vector s.
  • the signal vector transmitted after precoding is W s .
  • the UE receives the signal sent by the base station and performs data detection. Specifically, the UE receives the signal as
  • y HWs + n
  • y the received signal vector
  • H the estimated channel matrix
  • n the measured noise and interference
  • the first set of reference signals is associated or corresponds to a user equipment specific matrix or matrix set, the precoding matrix being a function of the user equipment specific matrix or matrix set.
  • the user equipment is enabled to select a precoding matrix based on the user equipment specific matrix or matrix set and to feed back a PMI, the set of precoding matrices constituting a user equipment specific codebook rather than a cell or system specific codebook.
  • a cell or system-specific codebook is a set of precoding matrices designed for a cell or all users in the system.
  • the user equipment specific codebook is a cell or A subset of system-specific codebooks. Therefore, the embodiments of the present invention can improve the CSI feedback accuracy without increasing the feedback overhead, thereby improving system performance.
  • feedback of one or more indexes based on the subset to indicate the precoding matrix will fully utilize the time/frequency domain/space correlation of the channel, thereby greatly reducing the overhead of feedback.
  • Determining and reporting a second index where the second index is used to indicate a preferred antenna port or antenna port subset of the UE in the second reference signal set or an antenna port or antenna preferred by the UE, based on the received second reference signal set.
  • the first reference signal set is a subset of the second reference signal set or the second reference signal set is a superset of the first reference signal set;
  • the first reference signal set is a subset of the second reference signal set (or equivalently, the second reference signal set is a superset of the first reference signal set), including: the second reference signal set The same as the first reference signal set; or the true reference set of the second reference signal set and the first reference signal set, where the number of reference signals included in the second reference signal set is less than the number of reference signals included in the first reference signal set .
  • the base station sets, as the first reference signal set, a reference signal or a reference signal subset corresponding to the antenna port or the antenna port subset preferred by the UE according to the second reference signal indicated by the second index reported by the UE; or the base station according to the UE
  • the reported second index indicates a matrix or a subset of matrices associated with the UE's preferred antenna port or antenna port subset as a subset of the matrix or matrix associated with the first reference signal set.
  • the embodiment of the present invention does not limit the operation of the base station based on the second index.
  • the base station can refer to the second index as an aid, but the base station may not refer to the second index.
  • the user equipment 40 of FIG. 4 includes a receiving unit 41, a determining unit 42, and a transmitting unit 43.
  • the receiving unit 41 receives a first reference signal set transmitted by the base station, wherein the first reference signal set is associated with a UE-specific matrix or matrix set.
  • the determining unit 42 selects a precoding matrix based on the first reference signal set, wherein the precoding matrix is a function of the user equipment specific matrix or matrix set.
  • the transmitting unit 43 transmits a precoding matrix indication PMI to the base station, and the PMI corresponds to the selected precoding matrix.
  • the first reference signal set of the embodiment of the present invention is associated with or corresponds to a user equipment specific matrix or matrix set, and the precoding matrix is a function of the user equipment specific matrix or matrix set, so that the PMI can be based on
  • the user equipment specific matrix or matrix set selects a precoding matrix and feeds back the PMI, the set of precoding matrices forming a user equipment specific codebook rather than a cell or system specific codebook.
  • a cell or system specific codebook is a collection of precoding matrices designed for a cell or all users within the system.
  • the user equipment specific codebook is a subset of the cell or system specific codebook. Therefore, the embodiment of the present invention can improve the CSI feedback accuracy without increasing the feedback overhead, thereby improving the system performance.
  • the receiving unit 41 is further configured to receive the user equipment specific matrix or matrix set notified by the base station.
  • the receiving unit is further configured to: before receiving the first reference signal set, receive a second reference signal set sent by the base station, where the second reference signal set and a matrix
  • the determining unit is further configured to determine, according to the second reference signal set, a second index, where the second index is used to indicate a subset of antenna ports or antenna ports selected by the user equipment, or a matrix or a matrix set associated with the antenna port or the antenna port subset selected by the user equipment; the sending unit is further configured to send the second index to the base station; optionally, where the first reference The signal set is a subset of the second reference signal set.
  • the matrix or matrix set associated with the second set of reference signals is cell or system specific.
  • the receiving unit is specifically configured to receive a reference signal of the second reference signal set sent by the base station at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the first reference signal set includes one or more reference signal subsets, where the reference signal subset corresponds to a co-polarized antenna port subset, or corresponds to an antenna port array.
  • the receiving unit is specifically configured to receive a reference signal of the first reference signal set sent by the base station at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the precoding matrix W is a product of two matrices W ⁇ PW 2 , w ⁇ u, where the matrix ⁇ is a block diagonalization matrix, and the partition diagonal
  • the matrix comprises at least one block matrix, each of said block matrices being a function of a matrix or matrix set specific to said user equipment.
  • the matrix ⁇ 2 is used to select or weight the column vectors in the combined matrix W to form the matrix w.
  • each column of the at least one of the two matrices C and D is a rotation of a column vector in a matrix in a user equipment specific matrix or a matrix set, that is, a kth of the matrix C
  • the column vector ⁇ is as shown in the formula (2) or (3); or, the column/vector vector d of the matrix D is as shown in the formula (4) or (5).
  • N v , N H , N c and N D are positive integers
  • Stephen is the first column vector of matrix A, where matrix A is a user-specific matrix or a matrix in a matrix set.
  • the corresponding matrix C or the matrix vector of the matrix D satisfies (2) - ( 5 ) does not mean that the diagonal is different in ⁇
  • the block matrix X of the locations has the same matrix C or matrix D.
  • the tile matrix X for different locations may have the same or different matrix C or matrix 1).
  • the matrix in the user equipment specific matrix or matrix set is a matrix in which each column is a DFT vector or a column vector of a Hadamard matrix or a Householder matrix.
  • the DFT vector a is as shown in the formula (6), wherein the N C ⁇ N or N D ⁇ N.
  • the first reference signal set includes at least one reference signal subset, and the reference signal subset is associated with the matrix C or the set of the matrix D.
  • FIG. 5 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • the base station 50 of FIG. 5 includes a transmitting unit 51 and a receiving unit 52.
  • the sending unit 51 is configured to send, to the user equipment, a first reference signal set, where the first reference signal set is associated with a UE-specific matrix or matrix set; and the receiving unit 52 is configured to receive the Precoding matrix indicating PMI sent by the user equipment, where the PMI indicates a precoding matrix selected by the user equipment based on the first reference signal, where the precoding matrix is a matrix or matrix set of the user equipment specific Function
  • the first reference signal set of the embodiment of the present invention is associated with or corresponds to a user equipment specific matrix or matrix set, and the precoding matrix is a function of the user equipment specific matrix or matrix set, so that the user equipment can be based on the
  • the matrix or matrix set selects the precoding matrix and feeds back the PMI, which constitutes a user equipment specific codebook rather than a cell or system specific codebook.
  • a cell or system specific codebook is a set of precoding matrices designed for a cell or all users within the system.
  • the user equipment specific codebook is a subset of the cell or system specific codebook. Therefore, the embodiment of the present invention can improve the CSI feedback accuracy under the condition of not increasing the feedback overhead, thereby improving the system performance.
  • the base station 50 may further include an obtaining unit 53 configured to obtain a precoding matrix according to the received PMI.
  • the sending unit 51 is further configured to notify the user equipment of the matrix or matrix set specific to the user equipment.
  • the sending unit 51 is further configured to: before sending the first reference signal set to the user equipment, send a second reference signal set to the user equipment, where the second The reference signal set is associated with a matrix or a set of matrices; the receiving unit is further configured to receive a second index determined by the user equipment based on the second reference signal set, where the second index is used to indicate user equipment selection a subset of antenna ports or antenna ports, or a matrix or matrix set associated with a subset of antenna ports or antenna ports selected by the user equipment;
  • the first reference signal set is a subset of the second reference signal set.
  • the matrix or matrix set associated with the second set of reference signals is cell or system specific.
  • the acquiring unit 53 is further configured to: by the base station, measure an uplink physical channel or an uplink physical signal, and obtain a channel estimation of the user equipment according to the channel dissimilarity. Selecting a first reference signal and a user equipment specific matrix for the user based on predefined criteria or Matrix collection.
  • the uplink physical channel may be a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH); the physical signal may be a listening reference signal (Sounding Reference) Signal, called SRS) or other upstream demodulation reference signal (DMRS).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference
  • DMRS upstream demodulation reference signal
  • the sending unit is specifically configured to send the reference signal of the second reference signal set to the user equipment at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the first reference signal set includes one or more reference signal subsets, where the reference signal subset corresponds to a co-polarized antenna port subset, or corresponds to an antenna port array.
  • the reference signal subset corresponds to a co-polarized antenna port subset, or corresponds to an antenna port array.
  • the sending unit is specifically configured to send the reference signal of the first reference signal set to the user equipment at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the keratinized matrix comprises at least one block matrix, each of said block matrices being a function of a matrix or matrix set specific to said user equipment.
  • the matrix ⁇ 2 is used to select or weight the column vectors in the combined matrix W to form the matrix w.
  • each column of the at least one of the two matrices C and D is a rotation of a column vector in a matrix in a user equipment specific matrix or a matrix set, that is, a kth of the matrix C
  • the column vector ⁇ is represented by the formula (2) or (3) or the column vector d of the matrix D is as shown in the formula (4) or (5), wherein N v , N H , N c and N D is a positive integer, and a m is the first column vector of the matrix A, where the matrix A is a matrix in a user equipment specific matrix or a matrix set.
  • the corresponding matrix C or the matrix vector of the matrix D satisfies (2) - ( 5 ) does not mean that the diagonal is different in ⁇ Location
  • the block matrix X has the same matrix C or matrix D.
  • the block matrix X for different positions may have the same or different matrix C or matrix 1).
  • the matrix in the user equipment specific matrix or matrix set is a matrix composed of column vectors of DFT vectors or Hadamard matrices or Householder matrices.
  • the DFT vector a is as shown in the formula (6), where the N C ⁇ N or N D > N.
  • the first reference signal set includes at least one reference signal subset, and the reference signal subset is associated with the matrix C or the set of the matrix D.
  • the reference signal subset has a longer transmission period than other reference signals.
  • the user equipment 60 of FIG. 6 includes a receiver 62, a transmitter 63, a processor 64, and a memory 65.
  • the receiver 62 is configured to receive a first reference signal set sent by the base station, where the first reference signal set is associated with a user equipment specific (UE specific) matrix or matrix set.
  • UE specific user equipment specific
  • the memory 65 stores instructions that cause the processor 64 to: based on the first set of reference signals, select a precoding matrix, wherein the precoding matrix is a function of the user equipment specific matrix or matrix set.
  • the transmitter 63 is configured to send a precoding matrix indication PMI to the base station, where the PMI corresponds to the selected precoding matrix.
  • the first reference signal set of the embodiment of the present invention is associated with or corresponds to a user equipment specific matrix or matrix set, and the precoding matrix is a function of the user equipment specific matrix or matrix set, so that the user equipment can be based on the
  • the user equipment specific matrix or matrix set selects the precoding matrix and feeds back the PMI, the set of precoding matrices forming a user equipment specific codebook rather than a cell or system specific codebook.
  • a cell or system specific codebook is a collection of precoding matrices designed for a cell or all users within the system.
  • the user equipment specific codebook is a subset of the cell or system specific codebook. Therefore, the embodiment of the present invention can improve the CSI feedback accuracy without increasing the feedback overhead, thereby improving the system performance.
  • the receiver 62, the transmitter 63, the processor 64 and the memory 65 can be integrated into one processing chip.
  • the receiver 62, the transmitter 63, the processor 64, and the memory 65 are connected by a bus 66.
  • user equipment 60 may also include an antenna 61.
  • the processor 64 can also control the operation of the user device 60, which can also be referred to as a CPU (Central Processing Unit).
  • Memory 65 can include read only memory and random access memory and provides instructions and data to processor 64. A portion of the memory 65 may also include a non-volatile random access memory.
  • bus system 66 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 66 in the figure.
  • the receiver 62 is further configured to receive the user equipment specific matrix or matrix set notified by the base station.
  • the receiver 62 is further configured to: before receiving the first reference signal set, receive a second reference signal set sent by the base station, where the second reference signal set is A matrix or matrix set is associated; the memory 65 also stores instructions that cause the processor 64 to: determine a second index based on the second reference signal set, the second index to indicate an antenna selected by a user equipment a port or a subset of antenna ports, or a matrix or matrix set associated with the antenna port or antenna port subset selected by the user equipment 60; the transmitter 63 is further configured to send the second index to the base station ;
  • the first reference signal set is a subset of the second reference signal set.
  • the receiver 62 is specifically configured to receive a reference signal of the second reference signal set sent by the base station at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the first reference signal set includes one or more reference signal subsets, where the reference signal subset corresponds to a co-polarized antenna port subset, or corresponds to an antenna port array.
  • the reference signal subset corresponds to a co-polarized antenna port subset, or corresponds to an antenna port array.
  • the receiver 62 is specifically configured to receive a reference signal of the first reference signal set sent by the base station at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the matrix ⁇ 2 is used to select or weight the column vectors in the combined matrix W to form the matrix W.
  • each column of the at least one of the two matrices C and D is a rotation of a column vector in a matrix in a user equipment specific matrix or a matrix set, that is, a kth of the matrix C
  • the column vector ⁇ is as shown in the formula (2) or (3); or, the column/vector vector d of the matrix D is as shown in the formula (4) or (5).
  • N v , N H , N c and N D are positive integers
  • Stephen is the first column vector of matrix A, where matrix A is a user-specific matrix or a matrix in a matrix set.
  • the corresponding matrix C or the matrix vector of the matrix D satisfies (2) - ( 5 ) does not mean that the diagonal is different in ⁇
  • the block matrix X of the locations has the same matrix C or matrix D.
  • the tile matrix X for different locations may have the same or different matrix C or matrix 1).
  • the matrix in the user equipment specific matrix or matrix subset is a matrix in which each column is a DFT vector or a column vector of a Hadamard matrix or a Householder matrix.
  • the DFT vector a is as shown in the formula (6), wherein the N C ⁇ N or N D ⁇ N.
  • the base station 70 of FIG. 7 includes a transmitter 72, a receiver 73, a processor 74, and a memory 75.
  • the transmitter 72 is configured to send a first reference signal set to the user equipment, where the first reference signal set is associated with a user equipment specific (UE specific) matrix or matrix set.
  • UE specific user equipment specific
  • a receiver 73 configured to receive a precoding matrix indication PMI sent by the user equipment, where the PMI is used to indicate a precoding matrix selected by the user equipment based on the first reference signal, where the precoding matrix is A user-specific matrix or set of matrix functions.
  • the memory 75 may store instructions that cause the processor 74 to: obtain the precoding matrix from the received PMI.
  • the first reference signal set of the embodiment of the present invention is associated with or corresponds to a user equipment specific matrix or matrix set, and the precoding matrix is a function of the user equipment specific matrix or matrix set, so that the user equipment can be based on the user
  • the device-specific matrix or matrix set selects the precoding matrix and feeds back the PMI, which constitutes a user equipment specific codebook rather than a cell or system specific codebook.
  • a cell or system specific codebook is a set of precoding matrices designed for a cell or all users within the system.
  • the user equipment specific codebook is a subset of the cell or system specific codebook. Therefore, the embodiment of the present invention can improve the CSI feedback accuracy without increasing the feedback overhead, thereby improving system performance.
  • the transmitter 72, the receiver 73, the processor 74, and the memory 75 can be integrated into one processing chip.
  • the transmitter 72, the receiver 73, the processor 74, and the memory 75 are connected by a bus 76.
  • base station 70 can also include an antenna 71.
  • the processor 74 can also control the operation of the base station 70, which can also be referred to as a CPU (Central Processing Unit).
  • Memory 75 can include read only memory and random access memory and provides instructions and data to processor 74. A portion of the memory 75 may also include a non-volatile random access memory.
  • the various components of the user device 70 are coupled together by a bus system 76, which may include, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 76 in the figure.
  • the transmitter 72 is further configured to notify the user equipment of the user equipment specific matrix or matrix set.
  • the transmitter 72 is further configured to send, to the user equipment, a second reference signal set, where the second reference is sent before sending the first reference signal set to the user equipment.
  • the signal set is associated with a matrix or a set of matrices;
  • the receiver 73 is further configured to receive a second index determined by the user equipment based on the second reference signal set, where the second index is used to indicate user equipment selection a subset of antenna ports or antenna ports, or a matrix or matrix set associated with a subset of antenna ports or antenna ports selected by the user equipment;
  • the first reference signal set is a subset of the second reference signal set.
  • the matrix or matrix set associated with the second set of reference signals is cell or system specific.
  • the processor is further configured to measure an uplink physical channel or an uplink physical signal, and obtain a channel estimation of the user equipment according to the channel dissimilarity. Based on predefined criteria Then the user selects the first reference signal and the user equipment specific matrix or matrix set.
  • the uplink physical channel may be a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH);
  • the physical signal may be a listening reference signal (Sounding Reference) Signal, called SRS) or other DeModulation Reference signal (DMRS).
  • the transmitter 72 is specifically configured to send a reference signal of the second reference signal set to the user equipment at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the first reference signal set includes one or more reference signal subsets, where the reference signal subset corresponds to a co-polarized antenna port subset, or corresponds to an antenna port array.
  • the reference signal subset corresponds to a co-polarized antenna port subset, or corresponds to an antenna port array.
  • the transmitter 72 is specifically configured to send a reference signal of the first reference signal set to the user equipment at different times.
  • different times may be associated with the same or different matrices, respectively, or with the same or different subsets of the set of matrices, respectively.
  • the precoding matrix W is a product of two matrices W ⁇ PW 2 , W 2 U , where the matrix ⁇ is a block diagonalization matrix, and the partition diagonal
  • the matrix comprises at least one block matrix, each of said block matrices being a function of a matrix or matrix set specific to said user equipment.
  • the matrix ⁇ 2 is used to select or weight the column vectors in the combined matrix W to form the matrix W.
  • each column of the at least one of the two matrices C and D is a rotation of a column vector in a matrix in a user equipment specific matrix or a matrix set, that is, a kth of the matrix C
  • the column vector ⁇ is represented by the formula (2) or (3) or the column vector d of the matrix D is as shown in the formula (4) or (5), wherein N v , N H , N c and N D is a positive integer, a m is a matrix A
  • the corresponding matrix C or the matrix vector of the matrix D satisfies (2) - ( 5 ) does not mean that the diagonal is different in ⁇
  • the block matrix X of the locations has the same matrix C or matrix D.
  • the tile matrix X for different locations may have the same or different matrix C or matrix 1).
  • the matrix in the user equipment specific matrix or matrix set is a matrix composed of column vectors of DFT vectors or Hadamard matrices or Householder matrices.
  • the DFT vector a is as shown in the formula (6), wherein the N C ⁇ N or N D ⁇ N.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated in one unit. In the unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

本发明实施例一种确定预编码矩阵指示的方法、用户设备和基站。该方法包括:接收基站发送的第一参考信号集,其中该第一参考信号集与一个用户设备特定的矩阵或矩阵集合相关联;基于该第一参考信号集,选择一个预编码矩阵,其中该预编码矩阵为用户设备特定的矩阵或者矩阵集合的函数;向该基站发送预编码矩阵指示,该预编码矩阵指示与所选择的预编码矩阵相对应。本发明实施例能够在不过多增加反馈开销的条件下提高CSI反馈精度,从而提高系统性能。

Description

确定预编码矩阵指示的方法、 用户设备和基站 技术领域
本发明实施例涉及无线通信领域, 并且更具体地, 涉及确定预编码矩阵 指示的方法、 用户设备和基站。 背景技术
通过发射 BF ( Beam Forming, 波束赋形)或预编码技术, 并通过接收 合并技术, MIMO ( Multiple Input Multiple Output, 多入多出)无线系统可 以得到分集和阵列增益。 利用 BF或者预编码的典型系统通常可以表示为 y = H V s + n
其中 y是接收信号矢量, H是信道矩阵, V是预编码矩阵, s是发射的符号矢 量, n是测量噪声。 最优预编码通常需要发射机完全已知 CSI ( Channel State Information, 信道状态信息)。 常用的方法是用户设备对瞬时 CSI进行量化 并反馈给基站。 现有 LTE R8系统反馈的 CSI信息包括 RI ( Rank Indicator, 秩指示;)、 PMK Precoding Matrix Indicator,预编码矩阵指示)和 CQI( Channel Quality Indicator, 信道质量指示)等, 其中 RI和 PMI分别指示使用的层数 和预编码矩阵。 通常称所使用的预编码矩阵的集合为码本(有时称其中的每 个预编码矩阵为码字)。 现有 LTE ( Long Term Evolution, 长期演进) R8 4 天线码本基于豪斯荷尔德( Househoulder ) 变换设计, R10系统则针对 8天 线进一步引入了双码本设计。 上述两种码本主要针对常规基站的天线设计。 常规基站采用固定的或者远程电调的下倾角控制垂直向天线波束方向, 只有 水平向可以通过预编码或者波束赋形动态调整其波束方向。
为了降低系统费用同时达到更高的系统容量和覆盖要求, AAS ( Active Antenna Systems,有源天线系统)在实践中已广泛部署, 目前启动的 LTE R12 标准正在考虑引入 AAS 系统之后对通信性能的增强。 相对于传统的基站天 线, AAS进一步提供了垂直方向的设计自由度, 同时, 由于便于部署, 其天 线端口可以进一步增加,例如目前 LTE R12及其未来演进版本包含的天线端 口数可以是 8、 16、 32、 64甚至更多。 这对于码本设计特别是其预编码性能 与反馈开销折中以及空口支持等方面提出新的要求。 在这种背景下, 需要针 对 AAS基站天线特别是其预编码矩阵与反馈过程提出一种新的设计方案。 发明内容
本发明实施例提供一种确定预编码矩阵指示的方法、 用户设备和基站, 能够能够在不过多增加反馈开销的条件下提高 CSI反馈精度,从而提高系统 性能。
第一方面, 提供了一种确定预编码矩阵指示的方法, 包括: 接收基站发 送的第一参考信号集,其中所述第一参考信号集与一个用户设备特定的矩阵 或矩阵集合相关联; 基于所述第一参考信号集, 选择一个预编码矩阵, 其中 所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数; 向所述基 站发送预编码矩阵指示 PMI, 所述 PMI与所选择的预编码矩阵相对应。
结合第一方面及其上述实现方式, 在第一方面的第一种实现方式中, 所 述用户设备特定的矩阵或矩阵集合由基站通知给用户设备。
结合第一方面及其上述实现方式, 在第一方面的第二种实现方式中, 所 述第一参考信号集包括一个或多个参考信号子集,所述参考信号子集对应于 同极化的天线端口子集, 或者对应于天线端口阵列中同一方向排列的天线端 口子集, 或者对应于位于准同位的天线端口子集。
结合第一方面及其上述实现方式, 在第一方面的第三种实现方式中, 所 述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合子集的函数, 包括: 所述预编码矩阵 W为两个矩阵 \^和\¥2的乘积, H 其中矩阵^为分 块对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分块 矩阵是与所述用户设备特定的矩阵或者矩阵集合的函数。
结合第一方面及其上述实现方式, 在第一方面的第四种实现方式中, 每 个所述分块矩阵 X是两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集 合的函数。
结合第一方面及其上述实现方式, 在第一方面的第五种实现方式中, 所 述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合 子集中的矩阵的函数, 包括:
Figure imgf000004_0001
或者 ck = diag {l, ,· · ·, e ^、l ,Ά Ά EK J 或者, 矩阵 D的第 /个列矢量 d,为 或者
dt = diag {l, ,· · ·, , 6Λ , EA J
其中 Nv NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 矩阵 A为 用户设备特定的矩阵或者矩阵集合中的矩阵, 和 A为相移。
结合第一方面及其上述实现方式, 在第一方面的第六种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合子集中的矩阵是各列为离散傅立叶变 换 DFT矢量或者哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列 矢量构成的矩阵。
结合第一方面及其上述实现方式, 在第一方面的第七种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合子集中的矩阵是各列为离散傅立叶变 换 DFT矢量, 包括: 所述 DFT矢量 a,满足
'~ e ~ ■■■ e N 其中 []T为矩阵转置, M N为正整数, 并且 NC≥N或者 ND≥N
结合第一方面及其上述实现方式, 在第一方面的第八种实现方式中, 结 合第一方面及其上述实现方式, 在第一方面的第六种实现方式中, 所述第一 参考信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩阵 C或 者所述矩阵 D的集合相关联。
结合第一方面及其上述实现方式, 在第一方面的第九种实现方式中, 所 述参考信号子集具有比其它参考信号更长的发送周期。
第二方面, 提供了一种确定预编码矩阵指示的方法, 包括: 向用户设备 发送第一参考信号集,其中所述第一参考信号集与一个用户设备特定的矩阵 或矩阵集合相关联; 接收所述用户设备发送的预编码矩阵指示 PMI, 所述 PMI指示用户设备基于所述第一参考信号集选择的一个预编码矩阵,其中所 述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
结合第二方面及其上述实现方式, 在第二方面的第一种实现方式中, 所 述用户设备特定的矩阵或矩阵集合由基站通知给用户设备。
结合第一方面及其上述实现方式, 在第二方面的第二种实现方式中, 所 述第一参考信号集包括一个或多个参考信号子集,所述参考信号子集对应于 同极化的天线端口子集, 或者对应于天线端口阵列中同一方向排列的天线端 口子集, 或者对应于准同位的天线端口子集。
结合第二方面及其上述实现方式, 在第二方面的第三种实现方式中, 所 述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数, 包括: 所述 预编码矩阵 W为两个矩阵 \^和\¥2的乘积, W = WiW2 , 其中矩阵 ^为分块对 角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分块矩阵 是与所述用户设备特定的矩阵或者矩阵集合的函数。
结合第二方面及其上述实现方式, 在第二方面的第四种实现方式中, 每 个所述分块矩阵 X是两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集 合的函数。
结合第二方面及其上述实现方式, 在第二方面的第五种实现方式中, 所 述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合 的函数, 包括:
所述矩阵 C的第 个列矢量 为
ck = diag
Figure imgf000006_0001
,···, ej2"NvlNc | am ,
或者
ck = diag ΐ, ,· · ·, e vli,cβΆβΆ , · · · , e]e e] Nvli—i、iNc J
或者, 矩阵 D的第 /个列矢量 d,为
d, = {1 · · y } 或者
d, = diag {l, ,· · ·, , , e^ , e^ , · · ·, J
其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 矩阵 A为 用户设备特定的矩阵或者矩阵集合中的矩阵, 和 A为相移。
结合第二方面及其上述实现方式, 在第二方面的第六种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合中的矩阵是各列为离散傅立叶变换 DFT矢量或者哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列 矢量构成的矩阵。
结合第二方面及其上述实现方式, 在第二方面的第七种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合中的矩阵各列为离散傅立叶变换 DFT 矢量, 包括: 所述 DFT矢量 a,满足 e 其中 []Τ为矩阵转置, Μ、 Ν为正整数, 并且 NC≥N或者 ND≥N。
结合第二方面及其上述实现方式, 在第二方面的第八种实现方式中, 所 述第一参考信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩 阵 C或者所述矩阵 D的集合相关联。
结合第二方面及其上述实现方式, 在第二方面的第九种实现方式中, 所 述参考信号子集具有比其它参考信号更长的发送周期。
第三方面, 提供了一种用户设备, 包括: 接收单元, 用于接收基站发送 的第一参考信号集, 其中所述第一参考信号集与一个用户设备特定的矩阵或 矩阵集合相关联; 确定单元, 用于基于所述第一参考信号集, 选择一个预编 码矩阵,其中所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函 数; 发送单元, 用于向所述基站发送预编码矩阵指示 PMI, 所述 PMI与所 选择的预编码矩阵相对应。
结合第三方面及其上述实现方式, 在第三方面的第一种实现方式中, 所 述接收单元,还用于接收所述基站通知的所述用户设备特定的矩阵或矩阵集 合。
结合第三方面及其上述实现方式, 在第三方面的第二种实现方式中, 所 述第一参考信号集包括一个或多个参考信号子集,所述参考信号子集对应于 同极化的天线端口子集, 或者对应于天线端口阵列中同一方向排列的天线端 口子集, 或者对应于位于准同位的天线端口子集。
结合第三方面及其上述实现方式, 在第三方面的第三种实现方式中, 所 述预编码矩阵 W为两个矩阵 \^和\¥2的乘积, W = WiW2 , 其中矩阵^为分块 对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分块矩 阵是与所述用户设备特定的矩阵或者矩阵集合的函数。
结合第三方面及其上述实现方式, 在第三方面的第四种实现方式中, 每 个所述分块矩阵 X是两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集 合的函数。
结合第三方面及其上述实现方式, 在第三方面的第五种实现方式中, 所 述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合 的函数, 包括:
所述矩阵 C的第 k个列矢量 为
ck = dkig \ ^lNlN m ,
或者
Ck = diag {l, ej2^ , , · · ·, J ^
或者, 矩阵 D的第 /个列矢量 d,为 或者
dt = diag {l, β]2πΐΝ- ,···, , 6Λ , 6Λ ,···, J a
其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 其中矩阵 A 为用户设备特定的矩阵或者矩阵集合中的矩阵, 和 为相移。
结合第三方面及其上述实现方式, 在第三方面的第六种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合中的矩阵是各列为离散傅立叶变换 DFT矢量或者哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列矢 量构成的矩阵。
结合第三方面及其上述实现方式, 在第三方面的第七种实现方式中, 所 述 DFT矢量 a,满足
'~ e ~ ■■■ e N 其中 []T为矩阵转置, M、 N为正整数, 并且 NC≥N或者 ND≥N。
结合第三方面及其上述实现方式, 在第三方面的第八种实现方式中, 所 述第一参考信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩 阵 C或者所述矩阵 D的集合相关联。
结合第三方面及其上述实现方式, 在第三方面的第九种实现方式中, 所 述参考信号子集具有比其它参考信号更长的发送周期。
第四方面, 提供了一种基站, 包括: 发送单元, 用于向用户设备发送第 一参考信号集,其中所述第一参考信号集与一个用户设备特定的矩阵或矩阵 集合相关联;接收单元,用于接收所述用户设备发送的预编码矩阵指示 PMI, 所述 PMI指示用户设备基于所述第一参考信号集选择的一个预编码矩阵, 其 中所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。 结合第四方面及其上述实现方式, 在第四方面的第一种实现方式中, 所 述发送单元,还用于向所述用户设备通知所述用户设备特定的矩阵或矩阵集 合。
结合第四方面及其上述实现方式, 在第四方面的第二种实现方式中, 所 述第一参考信号集包括一个或多个参考信号子集,所述参考信号子集对应于 同极化的天线端口子集, 或者对应于天线端口阵列中同一方向排列的天线端 口子集, 或者对应于准同位的天线端口子集。
结合第四方面及其上述实现方式, 在第四方面的第三种实现方式中, 所 述预编码矩阵 W为两个矩阵 \^和\¥2的乘积, 二 U, 其中矩阵^为分块 对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分块矩 阵是与所述用户设备特定的矩阵或者矩阵集合的函数。
结合第四方面及其上述实现方式, 在第四方面的第四种实现方式中, 每 个所述分块矩阵 X是两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集 合子集中的矩阵的函数。
结合第四方面及其上述实现方式, 在第四方面的第五种实现方式中, 所 述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合 的函数, 包括:
所述矩阵 C的第 k个列矢量 为
ck = diag {l, eJ2"/Nc ,···, eJ2^/Nc } am ,
或者
ck = diag {l, ej2"/Nc ,···, el2jlNvl2-1)lNc , βΆ , βΆ ej2^ ,···, βΆ e v J ^
或者, 矩阵 D的第 /个列矢量 d,为
d,=^{l,e^,-,^^}am
或者
d, = diag {l, ej2^ ,···, e^(wH/21)/ , e]<L , e^ e ΰ, · · ·, e ,。 J ^
其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 其中矩阵 A 为用户设备特定的矩阵或者矩阵集合中的矩阵, 和 为相移。
结合第四方面及其上述实现方式, 在第四方面的第六种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合中的矩阵是各列为离散傅立叶变换 DFT矢量或者哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列 矢量构成的矩阵。
结合第四方面及其上述实现方式, 在第四方面的第七种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合中的矩阵各列为离散傅立叶变换 DFT 矢量, 包括, 所述 DFT矢量 a,满足
N e N … e N 其中 []T为矩阵转置, Μ、 Ν为正整数, 并且 NC≥N或者 ND≥N。
结合第四方面及其上述实现方式, 在第四方面的第八种实现方式中, 所 述第一参考信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩 阵 C或者所述矩阵 D的集合相关联。
结合第四方面及其上述实现方式, 在第四方面的第九种实现方式中, 所 述参考信号子集具有比其它参考信号更长的发送周期。
第五方面, 提供了一种用户设备, 包括: 接收器, 用于接收基站发送的 第一参考信号集, 其中所述第一参考信号集与一个用户设备特定的矩阵或矩 阵集合相关联; 处理器, 用于基于所述第一参考信号集, 选择一个预编码矩 阵, 其中所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数; 发射器, 用于向所述基站发送预编码矩阵指示 PMI, 所述 PMI与所选择的 预编码矩阵相对应。
结合第五方面及其上述实现方式, 在第五方面的第一种实现方式中, 所 述接收器, 还用于接收所述基站通知的所述用户设备特定的矩阵或矩阵集 合。
结合第五方面及其上述实现方式, 在第五方面的第二种实现方式中, 所 述第一参考信号集包括一个或多个参考信号子集,所述参考信号子集对应于 同极化的天线端口子集, 或者对应于天线端口阵列中同一方向排列的天线端 口子集, 或者对应于位于准同位的天线端口子集。
结合第五方面及其上述实现方式, 在第五方面的第三种实现方式中, 所 述预编码矩阵 W为两个矩阵 \^和\¥2的乘积, W = U , 其中矩阵^为分块 对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分块矩 阵是与所述用户设备特定的矩阵或者矩阵集合的函数。
结合第五方面及其上述实现方式, 在第五方面的第四种实现方式中, 每 个所述分块矩阵 X是两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集 合的函数。
结合第五方面及其上述实现方式, 在第五方面的第五种实现方式中, 所 述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合 的函数, 包括:
所述矩阵 C的第 k个列矢量 为
ck =diag{l,ej2^,-,ej2"N^}am ,
或者
ck = diag {l, ,···, e] Nvl2-l)lNc , , ej2^ ,···, εΆ 2 / J &m 或者, 矩阵 D的第 /个列矢量 d,为
=diag\ jl ,… ,e
或者
d, = diag {l, ^ e'2^2-1^ , e1^ e H、l J ^
其中 Nv NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 其中矩阵 A 为用户设备特定的矩阵或者矩阵集合中的矩阵, 和 为相移。
结合第五方面及其上述实现方式, 在第五方面的第六种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合中的矩阵是各列为离散傅立叶变换 DFT矢量或者哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列矢 量构成的矩阵。
结合第五方面及其上述实现方式, 在第五方面的第七种实现方式中, 所 述 DFT矢量 a,满足
N e N ··· e N 其中 []T为矩阵转置, M N为正整数, 并且 NC≥N或者 ND≥N
结合第五方面及其上述实现方式, 在第五方面的第八种实现方式中, 所 述第一参考信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩 阵 C或者所述矩阵 D的集合相关联。
结合第五方面及其上述实现方式, 在第五方面的第九种实现方式中, 所 述参考信号子集具有比其它参考信号更长的发送周期。
第六方面, 提供了一种基站, 包括: 发射器, 用于向用户设备发送第一 参考信号集, 其中所述第一参考信号集与一个用户设备特定的矩阵或矩阵集 合相关联; 接收器, 用于接收所述用户设备发送的预编码矩阵指示 PMI, 所 述 PMI指示用户设备基于所述第一参考信号集选择的一个预编码矩阵, 其中 所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
结合第六方面及其上述实现方式, 在第六方面的第一种实现方式中, 所 述发送器, 还用于向所述用户设备通知所述用户设备特定的矩阵或矩阵集 合。
结合第六方面及其上述实现方式, 在第六方面的第二种实现方式中, 所 述第一参考信号集包括一个或多个参考信号子集,所述参考信号子集对应于 同极化的天线端口子集, 或者对应于天线端口阵列中同一方向排列的天线端 口子集, 或者对应于准同位的天线端口子集。
结合第六方面及其上述实现方式, 在第六方面的第三种实现方式中, 所 述预编码矩阵 W为两个矩阵 \^和\¥2的乘积, 二 U, 其中矩阵^为分块 对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分块矩 阵是与所述用户设备特定的矩阵或者矩阵集合的函数。
结合第六方面及其上述实现方式, 在第六方面的第四种实现方式中, 每 个所述分块矩阵 X是两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集 合的函数。
结合第六方面及其上述实现方式, 在第六方面的第五种实现方式中, 所 述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合 的函数, 包括:
所述矩阵 C的第 k个列矢量 为
ck = diag |l, ej2"lNc ,···, e]l7lNvlNc | am ,
或者
ck = diag {l, ej2"/Nc ,···, e j2 Nv/2-1)/Nc , βΆ , βΆ β]2π'Ν- ,···, βΆ ,^ } &m 或者, 矩阵 D的第 /个列矢量 d,为
d^diag^e …
或者
d, = diag {l, β]2πΐΝ- ,···, , , 6Λ , EA , · · ·, -i J a
其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 其中矩阵 A 为用户设备特定的矩阵或者矩阵集合中的矩阵, 和 为相移。 结合第六方面及其上述实现方式, 在第六方面的第六种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合中的矩阵是各列为离散傅立叶变换
DFT矢量或者哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列 矢量构成的矩阵。
结合第六方面及其上述实现方式, 在第六方面的第七种实现方式中, 所 述用户设备特定的矩阵或者矩阵集合中的矩阵各列为离散傅立叶变换 DFT 矢量, 包括, 所述 DFT矢量 a,满足
'~ e ~ ■■■ e N 其中 []T为矩阵转置, M、 N为正整数, 并且 NC≥N或者 ND≥N。
结合第六方面及其上述实现方式, 在第六方面的第八种实现方式中, 所 述第一参考信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩 阵 C或者所述矩阵 D的集合相关联。
结合第六方面及其上述实现方式, 在第六方面的第九种实现方式中, 所 述第一参考信号集至少包含一个参考信号子集, 所述参考信号子集具有比其 它参考信号更长的发送周期。
本发明实施例的第一参考信号集合关联于一个用户设备特定的矩阵或者 矩阵集合, 所述预编码矩阵是所述用户设备特定的矩阵或者矩阵集合的函 数,使得用户设备能够基于所述用户设备特定的矩阵或者矩阵集合选择预编 码矩阵并反馈 PMI,所述预编码矩阵的集合构成一个用户设备特定的码本而 不是一个小区或者系统特定的码本。 小区或者系统特定的码本为小区或者系 统内所有用户而设计的预编码矩阵的集合, 用户设备特定的码本是小区或者 系统特定的码本的子集。 因此, 本发明实施例能够在不过多增加反馈开销的 条件下提高 CSI反馈精度, 从而提高系统性能。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例的确定预编码矩阵指示的方法的流程图。 图 2是本发明另一实施例的确定预编码矩阵指示的方法的流程图。
图 3是本发明一个实施例的多天线传输方法的示意流程图。
图 4是本发明一个实施例的用户设备的框图。
图 5是本发明一个实施例的基站的框图。
图 6是本发明另一实施例的用户设备的框图。
图 7是本发明另一实施例的基站的框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通信系 统( GSM, Global System of Mobile communication ), 码分多址( CDMA, Code Division Multiple Access ) 系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ),通用分组无线业务 ( GPRS , General Packet Radio Service ), 长期演进 ( LTE, Long Term Evolution )等。
用户设备 ( UE , User Equipment ) , 也可称之为移动终端 ( Mobile Terminal ),移动用户设备等, 可以经无线接入网(例如, RAN, Radio Access Network )与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移 动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携 式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置; 用户设备还可以 是中继 (Relay ); 它们与无线接入网交换语言和 /或数据。
基站,可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ) ,还可以是 LTE中的演进型节点 B( eNB 或 e-NodeB , evolved Node B )或者中继 ( Relay ), 本发明并不限定。
图 1是本发明一个实施例的确定预编码矩阵指示的方法的流程图。 图 1 的方法由用户设备 (例如 UE )执行。
101 , 接收基站发送的第一参考信号集, 其中第一参考信号集与一个用 户设备特定的 ( UE-specific )矩阵或矩阵集合相关联。
102, 基于第一参考信号集, 选择一个预编码矩阵, 其中所述预编码矩 阵为用户设备特定的矩阵或者矩阵集合的函数。
103 , 向基站发送预编码矩阵指示 PMI, 所述 PMI与所选择的预编码矩 阵相对应。
本发明实施例的第一参考信号集合关联于一个用户设备特定的矩阵或 者矩阵集合, 所述预编码矩阵是所述用户设备特定的矩阵或者矩阵集合的函 数,使得用户设备能够基于所述用户设备特定的矩阵或者矩阵集合选择预编 码矩阵并反馈 PMI,所述预编码矩阵的集合构成一个用户设备特定的码本而 不是一个小区或者系统特定的码本 ( cell specific codebook or system specific codebook )。 小区或者系统特定的码本为小区或者系统内所有用户而设计的 预编码矩阵的集合, 用户设备特定的码本是小区或者系统特定的码本的子 集。 因此, 本发明实施例能够在不过多增加反馈开销的条件下提高 CSI反馈 精度, 从而提高系统性能。
应理解, 矩阵可以包括多行多列的矩阵, 也可以包括多行单列的矢量、 单行多列的矢量以及标量(单行单列的矩阵)。
可选地, 作为一个实施例, 所述用户设备特定的矩阵或矩阵集合由基站 通知给用户设备。
可选地, 作为另一实施例, 在步骤 101之前, 用户设备还可以接收基站 发送的第二参考信号集, 其中第二参考信号集与一个矩阵或矩阵集合相关 联。 基于第二参考信号集, 用户设备确定并向基站发送第二索引, 第二索引 用于指示用户设备选择的天线端口或天线端口子集, 或者与用户设备选择的 天线端口或天线端口子集相关联的矩阵或矩阵集合的子集。
可选地, 所述第一参考信号集可以是第二参考信号集的子集。
可选地, 作为另一实施例, 用户设备在接收基站发送的第二参考信号集 时, 可接收基站在不同的时间发送的第二参考信号集的参考信号。 这里, 不 同的时间可分别关联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相 同或者不同子集。
可选地, 与第二参考信号集关联的矩阵或矩阵集合是小区或者系统特定 的。
可选地, 作为另一实施例, 第一参考信号集包括一个或多个参考信号子 集, 所述参考信号子集对应于同极化的天线端口子集, 或者对应于天线端口 阵列 中 同一方向排列 的天线端 口 子集, 或者对应于准同位 (Quasi-Co-Location, 筒称 QCL) 的天线端口子集。
可选地, 作为另一实施例, 用户设备在接收基站发送的第一参考信号集 时,可接收基站在不同的时间发送的所述第一参考信号集的参考信号。这里, 不同的时间可分别关联于相同或者不同的矩阵, 或者分别关联于矩阵集合的 相同或者不同子集。
可选地, 作为另一实施例, 预编码矩阵 W为两个矩阵 \^和\¥2的乘积, w = w,w2 (1) 其中矩阵 为分块对角化矩阵。 该分块对角化矩阵包含至少一个分块矩阵, 每个分块矩阵是与用户设备特定的矩阵或者矩阵集合的函数。
可选地,所述矩阵\¥2用于选择或者加权组合矩阵 ^中的列矢量从而构成 矩阵 w。
可选地, 作为另一实施例, 每个所述分块矩阵 X是两个矩阵 C和 D的克 罗内克尔 (kronecker)积, X = C®D。 两个矩阵 C和 D中至少一个矩阵为所 述用户设备特定的矩阵或者矩阵集合的函数。
可选地, 作为另一实施例, 两个矩阵 C和 D中至少一个矩阵的各列是用 户设备特定的矩阵或者矩阵集合子集中的矩阵中列矢量的旋转, 即所述矩阵 C的第 个列矢量 (^为
ck = diag {1, ej2^ ,··· C } am , (2) 或者
ck = diag {l, ej2^ ,···, ej Nv/2-1)/Nc , εΆ , εΆ ej2^ ,···, εΆ } ^ , (3) 或者, 矩阵 D的第 /个列矢量 d,为
= diag {1, ej2^ ,···, y J am , (4) 或者
d, = diag {l, ej2^ ,···, e^(wH/21)/ , e]<L , e^ e ΰ, · · ·, e ,。 } ^ , (5) 其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 其中矩阵 A 为用户设备特定的矩阵或者矩阵集合中的矩阵, 和 A为相移, 取值如 士; τ/2,士; τ/4,士; τ/8等。
需要指出的是,以上所述 Nc或者 ND可以取值为无穷大,从而有 2r/Nc =0 或者 2;r/ND =0此时 cA =am或者 cA = diag {l, 1, · · · , 1, eA , , · · · , βΆ } am d, =am或者 d, = diag {1,1,···, 1, eA , eA ,···, eA } am。 需要说明的是, 对于 ^中对角线上不同位置的分块矩阵 X其对应的矩阵 C或者矩阵 D的列矢量满足(2 ) - ( 5 )并不意味着 ^中对角线上不同位置的 分块矩阵 X具有相同的矩阵 C或者矩阵 D ,相反,对于不同位置的分块矩阵 X 可以具有相同或者不同的矩阵 C或者矩阵1)。
可选地,作为另一实施例, 用户设备特定的矩阵或者矩阵集合中的矩阵 是各列为离散傅立叶变换(DFT, Discrete Fourier Transformation ) 矢量或者 哈达马(Hadamard )矩阵或者豪斯荷尔德(Householder )矩阵的列矢量构成 的矩阵。
可选地, 作为另一实施例, DFT矢量 a,满足
Figure imgf000017_0001
其中 []Τ为矩阵转置, M、 N为正整数, 并且 NC≥N或者 ND≥N。
可选地,作为另一实施例, 所述第一参考信号集至少包含一个参考信号 子集, 所述参考信号子集与所述矩阵 C或者所述矩阵 D的集合相关联。
可选地,作为另一实施例, 所述参考信号子集具有比其它参考信号更长 的发送周期。
作为本发明一个实施例, 所述预编码矩阵 W可以是以下矩阵
Figure imgf000017_0002
或者,
Figure imgf000017_0003
或者, 1 e j
e
1 e j
e
(2NM) ΪΦ e
1 eje e 其中 = 0, r/2 , r, /1 =0,...,15, /2 =0,···,15 , 符号 " χ
Figure imgf000018_0001
示不大于 ^/ 大 史。 φ = ^, =0,...,15,...,32 或:^ = 0,±1,...,±15,±16 。
32
为正整数, 例如可以取值为 1, 2, 4, 6, 8, 16, 32, 64等; ^为正 整数, 例如可以取值为 1, 2, 4, 6, 8, 16, 32, 64等。
作为本发明另一实施例, 所述预编码矩阵 W可以是以下矩阵
Figure imgf000018_0002
e 1 e jo
(4層
Figure imgf000018_0003
1 eJ° 1 eje … ej M~l)e 或者,
Figure imgf000019_0001
1 e e 1 e e
1 eje e 1 eje
(4層)
Figure imgf000019_0002
je 1 e e -je 1 e e 其中^ (21 +L2/4」) , i, :0 .,15 , =0,—,15, 符号 "^」" 表示不大于 X的 最大整数。 φ =― , = 0,...,15,...,32 或:^ = 0,±1,...,±15,±16 。
32
Μ为正整数, 例如可以取值为 1, 2, 4, 6, 8, 16, 32, 64等; W为正 整数, 例如可以取值为 1, 2, 4, 6, 8, 16, 32, 64等。
考察上述预编码矩阵 W可知, 上述预编码矩阵 w可以匹配实际部署的 天线配置; 由于 S取值的颗粒度为 τ/16 , 从而实现更精确的空间量化, 能够 提高 CSI的反馈精度; 并且预编码矩阵 W两列之间彼此正交, 可以降低层间 的干扰。
图 2是本发明另一实施例的确定预编码矩阵指示的方法的流程图。 图 2 的方法由基站 (例如 eNB)执行。
201, 向用户设备发送第一参考信号集, 其中第一参考信号集与一个用 户设备特定的 (UE specific)矩阵或矩阵集合相关联。
202, 接收用户设备发送的预编码矩阵指示 PMI, 其中所述 PMI用于指 示用户设备基于所述第一参考信号选择的一个预编码矩阵, 其中所述预编码 矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
本发明实施例的第一参考信号集合关联于用户设备特定的矩阵或者矩 阵集合的子集,所述预编码矩阵是所述用户设备特定的矩阵或者矩阵集合的 函数,使得用户设备能够基于所述矩阵或者矩阵集合子集选择预编码矩阵并 反馈 PMI,所述预编码矩阵的集合构成一个用户设备特定的码本而不是一个 小区或者系统特定的码本。 小区或者系统特定的码本为小区或者系统内所有 用户而设计的预编码矩阵的集合, 用户设备特定的码本是小区或者系统特定 的码本的子集。 因此, 本发明实施例能够在不过多增加反馈开销的条件下提 高 CSI反馈精度, 从而提高系统性能。
可选地, 还可以根据所接收的 PMI, 得到预编码矩阵。
可选地, 作为一个实施例, 所述用户设备特定的矩阵或矩阵集合由基站 通知给用户设备。
可选地, 作为另一实施例, 在步骤 201之前, 基站还可以向用户设备发 送第二参考信号集, 其中第二参考信号集与一个矩阵或矩阵集合相关联。 然 后基站接收用户设备基于第二参考信号集确定的第二索引。 第二索引用于指 示用户设备选择的天线端口或天线端口子集,或者与用户设备选择的天线端 口或天线端口子集相关联的矩阵或矩阵集合。
可选地, 第一参考信号集是第二参考信号集的子集。
可选地, 作为另一实施例, 基站在向用户设备发送第二参考信号集时, 可在不同的时间向用户设备发送第二参考信号集的参考信号。
可选地, 与第二参考信号集关联的矩阵或矩阵集合是小区或者系统特定 的。
可选地, 作为一个实施例, 在步骤 201之前, 基站还可以通过测量上行 物理信道或者上行物理信号, 根据信道互异性, 得到用户设备的信道估计。 基于预定义的准则为用户选择第一参考信号以及用户设备特定的矩阵或者 矩阵集合。 所述上行物理信道可以是物理上行控制信道(Physical Uplink Control Channel, 筒称 PUCCH )或者物理上行共享信道(Physical Uplink Shared Channel,筒称 PUSCH );所述物理信号可以是侦听参考信号( Sounding Reference Signal, 筒称 SRS ) 或者其它上行解调参考信号 ( DeModulation Reference signal, 筒称 DMRS )。
可选地, 作为另一实施例, 第一参考信号集可包括一个或多个参考信号 子集。 参考信号子集对应于同极化的天线端口子集, 或者对应于天线端口阵 列中同一方向排列的天线端口子集, 或者对应于准同位的天线端口子集。
可选地, 作为另一实施例, 在步骤 201中, 基站可以在不同的时间向用 户设备发送第一参考信号集的子集。 这里, 不同的时间可分别关联于相同或 者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子集。 可选地, 作为另一实施例, 预编码矩阵 W为两个矩阵 \^和\¥2的乘积, w = w:w2 ,其中矩阵^为分块对角化矩阵,该分块对角化矩阵包含至少一个 分块矩阵, 每个分块矩阵是与用户设备特定的矩阵或者矩阵集合的函数。
可选地,所述矩阵\¥2用于选择或者加权组合矩阵 ^中的列矢量从而构成 矩阵 W。
可选地,作为另一实施例,每个分块矩阵 X是两个矩阵 C和 D的 kronecker 积, X = C ® D。 两个矩阵 C和 D中至少一个矩阵为用户设备特定的矩阵或者 矩阵集合的函数。
可选地,作为另一实施例, 两个矩阵 C和 D中至少一个矩阵的各列是用户 设备特定的矩阵或者矩阵集合中的矩阵中列矢量的旋转, 即矩阵 C的第 个 列矢量 如式(2 )或者(3 )所示或者所述矩阵 D的第 /个列矢量 如式(4 ) 或者(5 )所示, 其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列 矢量, 其中矩阵 A为用户设备特定的矩阵或者矩阵集合中的矩阵。
需要说明的是, 对于 ^中对角线上不同位置的分块矩阵 X其对应的矩阵 C或者矩阵 D的列矢量满足(2 ) - ( 5 )并不意味着 ^中对角线上不同位置的 分块矩阵 X具有相同的矩阵 C或者矩阵 D ,相反,对于不同位置的分块矩阵 X 可以具有相同或者不同的矩阵 C或者矩阵1)。
可选地, 作为另一实施例, 用户设备特定的矩阵或者矩阵集合中的矩阵 是各列为 DFT矢量或者 Hadamard矩阵或者 Householder矩阵的列矢量构成 的矩阵。
可选地, 作为另一实施例, DFT矢量 a,如式(6 )所示, 其中所述 NC≥N 或者 ND > N。
可选地,作为另一实施例, 所述第一参考信号集至少包含一个参考信号 子集, 所述参考信号子集与所述矩阵 C或者所述矩阵 D的集合相关联。
可选地,作为另一实施例, 所述参考信号子集具有比其它参考信号更长 的发送周期。
作为本发明一个实施例, 所述预编码矩阵 W可以是以下矩阵
)e ί ί
(2M 1 e e e e 或者,
Figure imgf000022_0001
或者,
1 e e
0ίΦ \ 1 e e e
2ΝΜ Ί e
1 e e 其中 = 0, ;τ/2, τ , 3τ/2… = ^ ( 2ί; + ί Ο,—, , ,·2 =0"..,15 , 符号 "[ 表示不大于 x的最大整数。 φ = ^, Α = 0,…, 5,...,32等或者 = 0,±1,...,±15,±16等。
M为正整数, 例如可以取值为 1, 2, 4, 6, 8, 16, 32, 64等; W为正 整数, 例如可以取值为 1, 2, 4, 6, 8, 16, 32, 64等。
作为本发明另一实施例, 所述预编码矩阵 W可以是以下矩阵
1 e'e … eiiM-l)e 1 eie
Figure imgf000022_0002
e „ ew
4層
Figure imgf000022_0003
eAN -、 Φ「ι eW ... 6ΑΜ- —βΑΝ- Φ「 ... 6ΑΜ-ψ 或者,
Figure imgf000023_0001
1 e e ,ίΦ\ 1 e e
1 eje e 1 eje
(4層)
Figure imgf000023_0002
je 1 e e -je 1 e e 其中^ (21 +L2/4」) ^C .,15, =0"..,15, 符号 "^」" 表示不大于 X的 最大整数。 = 0,...,15,...,32 或:^ = 0,±1,...,±15,±16 。
32
Μ为正整数, 例如可以取值为 1, 2, 4, 6, 8, 16, 32, 64等; W为正 整数, 例如可以取值为 1, 2, 4, 6, 8, 16, 32, 64等。
考察上述预编码矩阵 W可知, 上述预编码矩阵 w可以匹配实际部署的 天线配置; 由于 S取值的颗粒度为 τ/16, 从而实现更精确的空间量化, 能够 提高 CSI的反馈精度; 并且预编码矩阵 W两列之间彼此正交, 可以降低层间 的干扰。
下面结合具体例子, 更加详细地描述本发明的实施例。 在下面描述的实 施例中, 以 eNB作为基站的例子, 以 UE作为用户设备的例子, 但本发明实 施例不限于此, 同样可以应用于其他通信系统。
图 3是本发明一个实施例的多天线传输方法的示意流程图。
301, UE接收第一参考信号集, 其中所述第一参考信号集与一个用户设 备特定的 ( UE-specific )矩阵或者矩阵集合相关联。
具体地,所述 UE接收的第一参考信号集由 eNB通过高层信令通知或者 通过下行控制信道动态通知。 所述参考信号可以是小区特定的参考信号 ( CRS, Cell specific RS )或者解调参考信号 ( DMRS, DeModulation RS ) 或者信道状态信息参考信号(CSI-RS, channel state information RS )„ 其中所 述参考信号可以对应于一个物理天线, 也可以对应于一个虚拟天线, 其中虚 拟天线是多个物理天线的加权组合。
所述第一参考信号集可以包含一个或者多个参考信号子集。 具体地, 例如 UE接收第一参考信号集为 P,其中共包含 8个参考信号, 分别为 pi, p2, p3,..., p7, p8。 第一参考信号集可以包含一个参考信号子集, 此时,参考信号子集与第一参考信号集相同;即 P中的 8个参考信号 pl,p2,..., s8。
或者,第一参考信号集可以包含多个参考信号子集。例如第一参考信号集 为 P, 包含两个参考信号子集 P1和 P2, 其中 PI = { pi, p2, p3, p4}, P2 = { s5,s6,s7, s8}。
进一步地, 第一参考信号集中包含的参考信号子集可以对应于同极化的 天线端口的子集。例如,如上所述的第一参考信号集的子集?1 = { 1 2 3, p4}对应于一个同极化天线端口的子集; 第一参考信号集的子集 Pl = {p5, p 6, p7, p8}对应于另外一个同极化天线端口的子集。
可选地,作为另一实施例,第一参考信号集中包含的参考信号子集可以对 应于天线端口阵列中同一方向排列的端口子集。 例如, 如上所述的第一参考 信号集的子集 PI = { pi, p2, p3, p4}对应于天线端口阵列中垂直方向一列的 天线端口子集。第一参考信号集的子集?2 = ^5 6 7 8}对应于天线端口 阵列中水平方向一行的天线端口的子集。 或者 PI = { pi, P2, p3, p4}和 P2 = {p5, p 6, p7, p8}分别对应于天线端口阵列中不同的两行天线端口子集。 或者 PI = { pl, p2, p3, p4}和 P2 = {p5, p 6, p7, p8}分别对应于天线端口阵列中不同 的两列天线端口子集。
可选地,作为另一实施例,第一参考信号集中包含的参考信号子集可以对 应于准同位的天线端口子集。 例如, 如上所述的第一参考信号集的子集 Pl = { pi, p2, p3, p4}对应于一个准同位的天线端口的子集。 第一参考信号集的子 集 Pl = {p5, p 6, p7, p8}对应于位于另一准同位的天线端口的子集。 注意, 所 述准同位(QCL, Quasi-Co-Location ) 的天线端口是指所述的天线端口对应 的天线相互之间的间距在以波长为尺度的范围内。
需要指出的是, 以上所述每个天线端口对应一个物理天线或者虚拟天 线, 其中虚拟天线是多个物理天线或者天线阵元的加权组合。
进一步地,所述第一参考信号集包含的多个参考信号子集中的参考信号 可以占用不同的符号 /频率 /序列资源在相同的子帧发射, 或者占用相同的符 号 /频率 /序列资源在不同的子帧发射。
上述参考信号子集的划分可以进一步降低实现的复杂度。 具体地, 所述第一参考信号集与一个用户设备特定的 ( UE-specific )矩 阵或者矩阵集合的子集相关联, 可以是所述第一参考信号集中的每一个参考 信号与一个用户设备特定的( UE-specific )矩阵或者矩阵集合的子集相关联。 例如 eNB 通知的参考信号集合为 S , 其中共包含 8 个参考信号, 分别为 sl,s2,s3,...,s7,s8。 上述参考信号分别关联于矩阵 wl,w2,...,w8 , 或者分别关 联于 {wl,w2},{w2,w3 } ..., {w7,w8 },{w8,wl }。
所述第一参考信号集与一个矩阵或者矩阵集合的子集相关联,也可以是 所述第一参考信号集的一个参考信号子集与一个用户设备特定的矩阵或者 矩阵集合的子集相关联。 例如 eNB通知的参考信号集合为 S , 其中共包含 8 个参考信号, 分别为 sl,s2,s3,...,s7,s8。 参考信号子集 {sl,s2,s3,s4}与矩阵 pi 或者矩阵子集 {pi,...,pm}相关联, 参考信号子集 {s5,s6,s7,s8 }与一个矩阵 wl 或者矩阵子集 {wl,...,wn}相关联, 其中 m和 n为正整数。 或者, 参考信号子 集 {sl,s2},{s3, s4},...,{s7,s8}分别关联于矩阵 wl,w2, w3,w4。 或者, 参考信号 子 集 {sl,s2},{s3, s4},...,{s7,s8 } 分 别 关 联 于 矩 阵 {wl,w2},{w3, w4},...,{w7,w8}。 这里的矩阵包括矢量。
进一步地,所述第一参考信号集与一个用户设备特定的矩阵或者矩阵集 合的关联或者对应关系可以通过信令通知。 例如, 通过高层信令如无线资源 控制 (RRC, Radio Resource Control )信令通知参考信号子集 {sl,s2,s3,s4}与 矩阵 pi或者矩阵子集 {pi,...,pm}相关联, 参考信号子集 {s5,s6,s7,s8}与一个 矩阵 wl或者矩阵子集 {wl,...,wn}相关联。 或者, 通过下行控制信息(DCI, Downlink Control information )动态通知。 或者, 通过高层信令如 RRC信令 通知多个候选的关联关系,进一步通过 DCI动态通知候选的关联关系中的一 个。具体地,所述信令中每个矩阵子集可以用位图(bitmap )表示。所述 RRC 信令可以是 UE特定的信令如专用物理信令, 此外, 所述第一参考信号集与 所述 UE特定的矩阵或矩阵集合的指示信息可以在同一 RRC专用信令中发 送。
可选地, 作为另一实施例, 所述第一参考信号集与一个用户设备特定的 矩阵或者矩阵集合的关联关系或者映射也可以是预定义的。 例如, 参考信号 子集 {sl,s2,s3,s4}与矩阵 pi或者矩阵子集 {pi,...,pm}相关联, 参考信号子集 {s5,s6,s7,s8}与一个矩阵 wl或者矩阵子集 {wl,...,wn}相关联是预定义的, 为 用户设备和基站所共知。 具体地, 所述第一参考信号集与一个矩阵或者矩阵集合的子集相关联, 可以是所述第一参考信号集与一个矩阵或者矩阵集合相关联,其中所述矩阵 或者矩阵集合 子集通过信令通知或者预定义。例如,通过高层信令如 RRC 信令通知矩阵或者 或者通过 DCI动态通知; 或者通过高层信令如 RRC信令通知矩阵集合, 进一步通过 DCI动态通知矩阵集合中的一个或者 子集。
具体地,所述与第一参考信号集合相关联的矩阵或者矩阵集合子集中的 矩阵 A可以是一个各列为 DFT矢量构成的矩阵, 即
Figure imgf000026_0001
其中 Na≥l为矩阵 A的列数, Nf ≥1为 DFT矢量的列数。 fn,n = 0,..., Nf -l为 DFT 矢量,即! 表示为
其中 Μ和 Ν均为整数。 例如, 对于 Μ=Ν=4, 有
Figure imgf000026_0002
具体地, 所述用户设备特定的 (UE specific )矩阵或者矩阵集合中的一 个矩阵 A也可以是一个由 Hadamard矩阵的列矢量构成的矩阵, 即
A = | an a, (11) 其中
(12) 其中 Na≥ 1为矩阵 Α的列数, Nh≥ 1为 Hadamard矩阵的列数, hm , m = 0, ..., N
Hadamard矩阵的列向量, 例如
Figure imgf000026_0003
进一步地, 所述用户设备特定的 ( UE specific )矩阵集合可以是至少包 含两个矩阵, 其中一个为如上所述的矩阵 A , 另外一个矩阵是一个各列为 DFT矢量或者 Hadamard矩阵的列矢量构成的矩阵 B , 即
B = [b。 … 4], (14) 其中
bk ^{f^;,...,^,_1},k = ,...,Nb-l (15) 或者
b^h ,!!;'...'!^— ^。,. (16) 其中 Nb≥ 1为矩阵 B的列数, ≥ 1和 N;≥ 1分别为 Hadamard矩阵的列数和 DFT 矢量的列数。 111为1¾(1&11^(1矩阵的列向量。 f 为 DFT矢量,即 fn'表示为
J~ e ~ ··· e ^^~ (17) 其中 Μ',Ν'均为整数。 此时, 所述第一参考信号集可以分为两个子集, 分别关 联于矩阵 Α和矩阵 Β或者矩阵 Α构成的子集和矩阵 Β构成的子集。
或者, 所述用户设备特定的 (UE specific)矩阵或者矩阵集合中的一个 矩阵也可以是以下形式的矩阵 Y
Y = A®B (18) 其中 Α和 Β可以分别具有如上所述具有(8) - ( 13)和(14) - (17)所 示的结构。
此外, 所述用户设备特定的 (UE specific)矩阵或者矩阵集合中的矩阵 也可以采用其他形式的矩阵,如 Householder矩阵或者 LTE R8中 4天线或者 LTER10中 8天线码本中的预编码矩阵。
所述用户设备特定的 (UE specific)矩阵或者矩阵集合中的一个矩阵, 可以具有如下结构
w = ww2 (19) 其中矩阵^为分块对角化矩阵, 如
W^diagjX^X,} (20) 其中矩阵^中的每个分块矩阵是矩阵 A和 B或者 Y的函数。 如:
X,. =diag{ 70, ^,...,} A ®B, = 1,2, (21) 或者
X^diagj ^ ,...^, = 1,2, (22) 其中 。, ^,…,为标量, 例如 ρ。 =Ρι =,···, = 1。
可选地,作为另一实施例,矩阵 ^中的每个分块矩阵可以表示为两个矩 P车的 kronecker积 , 如
X;=C;®D;, i = l,2, (23) 其中 ®表示矩阵 kronecker积。 其中矩阵 C,或者 D,满足以下关系
矩阵 C,的第 列 c,满足
ck = diag {1, ej2^ ,···, β]2πΝ^ } am (24) 或者
ck = diag {l, ej2"/Nc ,···, e} Nvj2-l)lNc , βΆ , βΆ ^ ,···, βΆ evl c J ^ (25) 或者, D,的第 /列 d满足
d, = diag { ,··· , W wD J b n (26) 或者
d, = diag em,···, i)/wD (27)
Figure imgf000028_0001
其中 Nv、 NH、 Nc和 ND均为正整数,矢量 a,和 b,分别为矩阵 A和矩阵 B的列, ΘΑ和 Α为相移, 取值如 0, π, ±π/2,±; τ/4,士; τ/8等。
需要指出的是,以上所述 Nc或者 ND可以取值为无穷大,从而有 2r/Nc =0 或者 2;r/ND =0此时 =am或者 cA =^¾^{1,1,'",1, ,^ ,'", }&„1或者 =b„或者 d, = diag |l, \,· · · n
Figure imgf000028_0002
进一步地, (24 ) - ( 27 ) 中的矢量 或者 ^可以分别具有比 a,或者 b,更 细的颗粒度即
NC≥N或者 ND > N' (28) 进一步地,上述矢量或者矩阵 A或者 B或者 Y或者 W构成的集合为 ^或 者^或者 CY或者 cw,可以进一步分为多个子集(所述子集可以仅包含一个元 素), 其中每个子集可以与用户设备标识相关联或者存在映射关系。 例如 CA 中的子集 关联或者映射于用户设备标识 IDi, CA中的另外一个子集 关 联或者映射于用户设备标识 ID2。 其中子集 与 C 可以存在交集, 也可以 不存在交集。上述矢量或者矩阵或者矩阵的子集与用户设备标识的关联或者 映射关系, 可以是预先定义的, 也可以是 eNB通知给 UE的, 如通过高层信令 如 RRC信令或者下行控制信道通知。 上述每个子集可以仅含有一个元素。 或 者所述参考信号集可以与用户设备标识相关联。 例如 eNB通知的参考信号集 合为 S, 其中共包含 8个参考信号, 分别为 sl,s2,s3,...,s7,s8。 上述参考信号关 联于用户设备标识 ID。;或者 UE接收的参考信号集可以分为两个或者多个子 集, 其中的子集分别与特定的用户设备标识相关联, 例如 UE接收的参考信 号集可以分为两个子集分别包含参考信号为 sl,s2,s3, s4或者 s5,s6,s7, s8, 则 sl,s2,s3, s4与用户设备标识 ID^ ID2相关联。 上述参考信号集与用户设备标 识的关联或者映射关系可以是预先定义的, 也可以是 eNB通知的。
注意,上述用户设备标识不一定是一个特定通信协议如 LTE中的 UE ID, 它也可以是用于区分用户设备属性的特定参数, 如某一用户组或者 UE组中 的某个索引或者偏移量.或者筒单地就是用于同一个用户组或者 UE组内的 一个索引或者偏移量。 上述偏移量或者索引, 便于实现用户设备之间或者用 户组区分不同的波束相关的特性。
进一步地,所述参考信号集中的参考信号可以在不同的时间如不同的子 帧发送,其中不同的时间可以关联或者映射于不同的矢量 /矩阵或者矩阵集合 的子集。所述参考信号在不同的时间关联或者映射的不同的矢量 /矩阵或者矩 阵集合的子集, 可以是预先定义的, 也可以是 eNB通知的, 如通过 RRC信 令通知。
302, UE基于所述第一参考信号集, 选择一个预编码矩阵, 其中所述预 编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
具体地,所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函 数, 包括
所述预编码矩阵为两个矩阵 和 w2的乘积,即
W = U (29) 其中矩阵^为矩阵 A或者 B的函数, 所述矩阵 A或者 B是与用户设备特定的 矩阵或者矩阵集合中的矩阵。 例如 ^为矩阵 A或者矩阵 B;
或者
所述矩阵 ^为分块对角化矩阵, 该分块对角化矩阵包含至少一个分块矩 阵, 每个分块矩阵是所述矩阵 A或者 B的函数。 例如
= { , 2} (30) 其中矩阵 ^中的每个分块矩阵是矩阵 A或者矩阵 B的函数, 例如
χ· = Α, = 1,2 (31) 或者
X! Α,···,} Α, = 1,2 (32) 其中 7。,Α,...为标量, 可以为非负实数, 也可以为复数。 或者
X; = C; ® D;, = 1,2 (33) 其中 ®表示两个矩阵的 kronecker积。 其中矩阵 C,的第 列 c,或者 D,的第 /列 d, 满足以下关系
ck = diag {1, ej2^ ,···, β]2πΝ^ } am (34) 或者
ck = diag {l, ej2"/Nc ,···, el ^l2-l)lNc , βΆ , ej2"/Nc ,···, βΆ 2 -1 ) Jam (35) 或者
d, =diag{l,ej2"/N -,ej2"N"/N-}bn (36) 或者
d, = diag ,··· -l -l fe (37)
Figure imgf000030_0001
其中 Nv NH、 Nc和 ND均为正整数, 矢量 am和矢量 b„分别为矩阵 A的第 个列 矢量和矩阵 B的第《个列矢量, 和 为相移,取值如 0, τ,士 τ/2,士 τ/4,±± τ/8等。
需要指出的是,以上所述 Nc或者 ND可以取值为无穷大,从而有 2r/Nc =0 或者 2;r/ND =0此时 =am或者 cA W , am或者 d, =b„或者 d, = diag {1,1,···, 1, eJ eJ , · · · , e } b„
其中所述矩阵 A或者矩阵 B至少一个是与用户设备特定的矩阵或者矩阵集合 中的矩阵。
在此情况下, 所述矩阵\¥2中的列矢量可以具有结构 y„ =[e〖 》 ] ,其中 表示为一个选择矢量,该矢量除了第 n个元素为 1之外其余元素均为 0, θη 为相移。 以分块矩阵 和 分别为 4列为例, 所述矩阵\¥2可以为
Figure imgf000030_0002
Figure imgf000030_0004
Y e { e!,e2,e3,e4 (39) 或者
Figure imgf000030_0003
Figure imgf000030_0005
(Yi'Y2)e{(e1,S ,(g2,g ,(g3,S3)'(e4,e4),(g1,g2),(g2,53),(e1,S4)'(e2,S4)} (41) 其中^ ,« = 1,2,3,4表示 4x1的选择矢量, 其元素除了第 n个元素为 1外其余元 素均为 0
以分块矩阵 和 分别为 8列为例, 所述矩阵\¥2可以为 w Y 1 Y 1 Y 1 Y
(42)
Y 7"Y -Y -7"Y
(43) 或者
Figure imgf000031_0001
Figure imgf000031_0002
(Yl'Y2)e{(ei'ei)'(e2'e2)'(e3'e3)'(e4'e4)'(ei'e2)'(e2'e 3)'(ei'e4)'(e2'e4)i (45) 其中 e„,w = l,2,...,8表示 8x1的选择矢量, 其元素除了第 n个元素为 1外其余 元素均为 0
或者
所述分块对角化矩阵 \^仅含有一个分块矩阵,即\¥1 = ,所述分块矩阵 X 是所述矩阵 A或者 B的函数。 例如
所述分块矩阵 X为两个矩阵 A和 B的 kronecker乘积, 即
X = A®B (46) 其中所述矩阵 A或者矩阵 B是所述用户设备特定的 (UE-specific)矩阵或者 矩阵集合中的矩阵。
或者
所述分块矩阵 X是两个矩阵 C和 D的克罗内克尔 (kronecker) 积, X = C®D。 两个矩阵 C和 D中至少一个矩阵为所述矩阵 A或者 B的函数。 例 如
所述矩阵 C和 D中至少一个矩阵的各列是所述矩阵 A或者 B中列矢量的 旋转, 即所述矩阵 C的第 个列矢量 为
ck = diag \ \e 1 c,--,e vl c (47) 或者
。je l
(48) 或者, 矩阵 D的第 /个列矢量 d,为
d, = { · H/wD } b " , (49) 或者
d, = diag {l, βΐ2πΐΝ- ,···, , eA eA } b " , (50) 其中 Nv NH、 Nc和 ND均为正整数, 矢量 am和矢量 b„分别为矩阵 A的第 个列 矢量和矩阵 B的第《个列矢量, 和 A为相移, 取值如 0, τ,士 τ/2,士 τ/4,士 τ/8等。 需要指出的是,以上所述 Nc或者 ND可以取值为无穷大,从而有
Figure imgf000032_0001
或者 2;r/ND =0此时 cA =am或者 cA = {U-", A, am或者 d, =b„或者 d, = diag |l, 1, · · · , 1, , ,···, | b„。
可选地, 在此情况下, 所述矩阵 \¥2为列选择矩阵, 用于从 X = C®D中选 择 r 歹l, 其中 r为预编码矩阵的秩。 例如 W2可以用于总是选择 X = C®D中的 fr歹l, 贝1 j
W2=[ei e2 … er] (51) 其中 6;表示一个除了第 i个元素为 1之外, 其它元素均为 0的单位列矢量。 进一步地, (47) - (50) 中的矢量(^或者 dA可以具有比 a,或者 b,具有更 细的颗粒度即
NC≥N或者 ND≥N (52) 303, UE向基站发送预编码矩阵指示 PMI, 所述 PMI与所选择的预编 码矩阵相对应。
所述预编码矩阵指示 PMI可以包括一个或者多个索引。
具体地, 所述预编码矩阵指示 PMI可以包括一个索引,此时, 所述索引 直接指示预编码矩阵 W, 例如, 共有 16个不同的预编码矩阵, 则可以用索 引值 n = 0,...,15分别指示标号为 0,1,...15的预编码矩阵 W。
或者,所述预编码矩阵指示 PMI也可以为两个索引,如 ^和12。其中式(29) 中的 \^和\¥2分别用 i^ 2指示从而使得 i 2指示预编码矩阵 W。
进一步地, 索引 ^可以基于\\^的子集上报。 例如 W 々全集为 Q, 集合 Q 的子集分别为 Q。,..., Q.3此时索引 用于指示某一个子集 Qk中的矩阵 Qk 可以为(¾,(^...,(¾中的某一个子集。 其中 Qk可以是预定义的, 可以 UE确 定并上报的, 也可使是 eNB通知给 UE的。 子集 Q0,...,Q3可以互不相交即 各个子集的交集为空集; 子集 Q0,...,Q3也可以彼此相交即各个子集的交集 非空集。
或者, UE上报的用于指示预编码矩阵的索引也可以为三个, 如 i3,i4和 i5。 其中式(30) 中的 和 2分别用 i3和 i4隐含指示, \¥2用15隐含指示。 从而使 得 i3,i4和 i5指示预编码矩阵 W。
进一步地, 索引 i3可以基于 的子集上报。 例如 的全集为 R, 集合 R的 子集分别为 R。,..., R7。 此时索引 i3用于指示某一个子集 Rk中的矩阵 。 Rk可 以为!^,!^…,!^中的某一个子集。其中 Rk可以是预定义的,可以是 UE确定并 上"¾的, 也可以是 eNB通知给 UE的。 子集 ,..., 1 7可以互不相交即各个子集 的交集为空集; 子集 R。,..., R7可以彼此相交即各个子集的交集不为空集; 与 之类似, i4和 i5可以分别基于 和\¥2的子集上报。 其中 和\¥2的子集可以 是预定义的, 可以 UE确定并上报的, 也可使是 eNB通知给 UE的。
或者, UE上报的用于指示预编码矩阵的索引也可以为另外三个索引,如 i6,i7和 i8。 其中式(33 ) 中的。;和1);分别用 i6和 i7隐含指示, \¥2用 隐含指示。 从而使得 i6,i7和 i8指示预编码矩阵 W , 此时 = C2和 A = D2
进一步地, 索引 i6可以基于 的子集上报。 例如 ^的全集为 0, 集合 0的 子集分别为 0。,..., 07。 此时索引 i6用于指示某一个子集 Ok中的矩阵 C;。 ok可 以为 0。, O .., 07中的某一个子集。 其中 OK可以是预定义的, 也可以是 UE确 定并上报的, 也可以是 eNB通知给 UE的。 子集 0。,..., 07可以互不相交即各个 子集的交集为空集; 子集 0。,..., 07可以彼此相交即各个子集的交集不为空 集; 与之类似, i7和 i8可以分别基于 1);和\¥2的子集上报。 其中 1);和\¥2的子集 可以是预定义的, 可以 UE确定并上报的, 也可以是 eNB通知给 UE的。
具体地, UE上报的用于指示预编码矩阵的索引也可以为四个索引,如 ,^ 和^。 其中式(33 ) 中的 C^PC2分别用 i9,i 隐含指示, D1 = D W2分 别用 iu和 i12指示。 从而使得 ^,ίκ^η和 i12指示预编码矩阵\¥。
进一步地, 索引 ^^, 和^可以分别基于 C2 , D^P W2的子集上报。 其中 CL C2 , D^P W2的子集可以是预定义的, 可以 UE确定并上>¾的, 也可 以是 eNB通知给 UE的。
具体地, UE基于所述第一参考信号集选择预编码矩阵并确定第一索引 时, 所述索引值可以基于一个参考信号子集计算。 例如, 如上所述的索引值 n基于步骤 301所述的参考信号子集 P计算或者所述的索引值 和 i2或者 i3,i4 和 i5或者 i6,i7,i8或者 i9,iio,in和 i12基于步骤 1所述的参考信号子集 P计算。
或者, 所述索引值可以基于多个参考信号子集联合计算,例如,如上所述 的索引值 n基于步骤 301所述的参考信号子集 P1和 P2计算或者所述的索引 值 和 i2或者 l3,U和 或者 16,17,18或者 Ϊ9,ΐΐθ ΐ1和 i12基于步骤 1所述的参考信 号子集 P1和 P2计算。
或者,所述索引值基于多个参考信号子集分别计算,例如,如上所述的索 引值 i3基于步骤 301所述的参考信号子集 PI , i4和 i5基于步骤 301所述的参 考信号子集 P2计算。 或者,如上所述的索引值 i6基于步骤 301所述的参考信 号子集 PI , i7和 i8基于步骤 301所述的参考信号子集 P2计算。 或者,如上所 述的索引值 。基于步骤 301所述的参考信号子集 PI , in和 i12基于步骤 301 所述的参考信号子集 P2计算。
具体地, UE可以根据测量的信道状态基于预设的准则确定上述一个或 者多个索引, 该预设的准则可以是吞吐量最大准则或者容量最大准则。 得到 上述一个或者多个索引之后, UE可以通过 PUCCH或者 PUSCH反馈给 eNB。
进一步地, 所述预编码矩阵指示 PMI可以包含一个或者多个索引, UE 可以通过不同的子帧利用物理上行控制信道 ( PUCCH , Physical Uplink Control Channel )上报给 eNB。
更进一步地, 上述不同的多个索引, 可以针对频域上不同的子带通过不 同的子帧利用 PUCCH上报给 eNB。
需要特别指出的是,以上所述各个索引对应的矩阵,可以为单一的矩阵, 从而不需要反馈对应的索引。 所述单一的矩阵可以为预定义的矩阵, 也可以 为基站通过信令通知的, 也可以根据其它参数隐式得到; 例如 \¥2固定选择 为式(51 )所示矩阵, 从而不需要反馈与 W2对应的索引, 此时 \¥2根据预编 码矩阵的秩 r隐式得到。
304, 基站基于接收的预编码矩阵指示 PMI, 得到预编码矩阵\¥。
305, 基站利用该预编码矩阵 W发射信号矢量 s。 具体地, 经过预编码之 后发射的信号矢量为 W s。
306, UE接收到基站发送的信号并进行数据检测。 具体地, UE接收到 信号为
y = HWs + n 其中 y为接收到的信号矢量, H为通过估计得到的信道矩阵, n为测量 到的噪声和干扰。
这样,第一参考信号集合关联或者对应于一个用户设备特定的矩阵或者 矩阵集合, 所述预编码矩阵是所述用户设备特定的矩阵或者矩阵集合的函 数。使得用户设备能够基于所述用户设备特定的矩阵或者矩阵集合选择预编 码矩阵并反馈 PMI,所述预编码矩阵的集合构成一个用户设备特定的码本而 不是一个小区或者系统特定的码本。 小区或者系统特定的码本为小区或者系 统内所有用户而设计的预编码矩阵的集合, 用户设备特定的码本是小区或者 系统特定的码本的子集。 因此, 本发明实施例从而能够在不过多增加反馈开 销的条件下提高 CSI反馈精度, 从而提高系统性能。
另夕卜,使用码本结构 \¥ = \\^¥2 ,其中 =(^§ { , 2} , X; = C; ® D;, = 1, 2 , 或者 Wi = X = C ® D , 可以有效支持垂直方向和水平方向的量化, 充分利用了 有源天线系统 AAS 在水平和垂直方向的自由度, 从而提高了反馈精度, MIMO特别是 MU-MIMO性能将得到提升。
而且, 基于子集反馈一个或者多个索引, 用于指示预编码矩阵, 将会充 分利用信道的时间 /频域 /空间的相关性, 从而大大降低反馈的开销。
进一步地, 在上述步骤 301所述接收基站发送的第一参考信号集之前, 还可以包括以下可选的步骤:
接收基站发送的第二参考信号集,其中所述第二参考信号集与一个矩阵 或矩阵集合的子集相关联;
UE基于所接收的第二参考信号集,确定并上报第二索引, 所述第二索引 用于指示第二参考信号集中 UE 首选的天线端口或者天线端口子集或者与 UE首选的天线端口或者天线端口子集相关联的矩阵或者矩阵的子集。
所述第一参考信号集是第二参考信号集的子集或者第二参考信号集是 第一参考信号集的超集;
具体地, 所述第一参考信号集是第二参考信号集的子集(或者等价地, 第二参考信号集是第一参考信号集的超集), 包括: 所述第二参考信号集与 第一参考信号集相同; 或者所述第二参考信号集与第一参考信号集的真子 集, 此时第二参考信号集中包含的参考信号数小于与第一参考信号集中包含 的参考信号数。
进一步地, 基站根据 UE上报的所述第二索引指示的第二参考信号集中 UE首选的天线端口或者天线端口子集对应的参考信号或者参考信号子集作 为第一参考信号集; 或者基站根据 UE上报的所述第二索引指示的与 UE首 选的天线端口或者天线端口子集相关联的矩阵或者矩阵的子集作为第一参 考信号集关联的矩阵或者矩阵的子集。
应注意,本发明实施例对基站基于第二索引的操作不作限制。换句话说, 基站可以参照第二索引作为辅助, 但基站也可以不参照第二索引。
图 4是本发明一个实施例的用户设备的框图。 图 4的用户设备 40包括 接收单元 41、 确定单元 42和发送单元 43。 接收单元 41接收基站发送的第一参考信号集, 其中所述第一参考信号 集与一个用户设备特定的 ( UE-specific )矩阵或矩阵集合相关联。 确定单元 42基于所述第一参考信号集,选择一个预编码矩阵,其中所述预编码矩阵为 所述用户设备特定的矩阵或者矩阵集合的函数。 发送单元 43向所述基站发 送预编码矩阵指示 PMI, 所述 PMI与所选择的预编码矩阵相对应。
本发明实施例的第一参考信号集合关联或者对应于一个用户设备特定 的矩阵或者矩阵集合,所述预编码矩阵是所述用户设备特定的矩阵或者矩阵 集合的函数,使得所述 PMI能够基于所述用户设备特定的矩阵或者矩阵集合 选择预编码矩阵并反馈 PMI,所述预编码矩阵的集合构成一个用户设备特定 的码本而不是一个小区或者系统特定的码本。 小区或者系统特定的码本为小 区或者系统内所有用户而设计的预编码矩阵的集合, 用户设备特定的码本是 小区或者系统特定的码本的子集。 因此, 本发明实施例能够在不过多增加反 馈开销的条件下提高 CSI反馈精度, 从而提高系统性能。
可选地, 作为一个实施例, 所述接收单元 41还用于接收所述基站通知 的所述用户设备特定的矩阵或矩阵集合。
可选地, 作为另一实施例, 所述接收单元, 还用于在接收所述第一参考 信号集之前, 接收基站发送的第二参考信号集, 其中所述第二参考信号集与 一个矩阵或矩阵集合相关联; 所述确定单元, 还用于基于所述第二参考信号 集, 确定第二索引, 所述第二索引用于指示用户设备选择的天线端口或天线 端口子集, 或者与所述用户设备选择的天线端口或天线端口子集相关联的矩 阵或矩阵集合; 所述发送单元, 还用于向所述基站发送所述第二索引; 可选地, 其中所述第一参考信号集是第二参考信号集的子集。
可选地, 与第二参考信号集关联的矩阵或矩阵集合是小区或者系统特定 的。
可选地, 作为另一实施例, 所述接收单元具体用于接收所述基站在不同 的时间发送的所述第二参考信号集的参考信号。 这里, 不同的时间可分别关 联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子集。
可选地, 作为另一实施例, 所述第一参考信号集包括一个或多个参考信 号子集, 所述参考信号子集对应于同极化的天线端口子集, 或者对应于天线 端口阵列中同一方向排列的天线端口子集, 或者对应于位于准同位的天线端 口子集。 可选地, 作为另一实施例, 所述接收单元具体用于接收所述基站在不同 的时间发送的所述第一参考信号集的参考信号。 这里, 不同的时间可分别关 联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子集。
可选地, 作为另一实施例, 所述预编码矩阵 W为两个矩阵 W^P W2的乘 积, w二 u, 其中矩阵\\^为分块对角化矩阵, 所述分块对角化矩阵包含至 少一个分块矩阵,每个所述分块矩阵是与所述用户设备特定的矩阵或者矩阵 集合的函数。
可选地,所述矩阵\¥2用于选择或者加权组合矩阵 W中的列矢量从而构成 矩阵 w。
可选地, 作为另一实施例, 每个所述分块矩阵 X是两个矩阵 C和 D的克 罗内克尔 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所 述用户设备特定的矩阵或者矩阵集合的函数。
可选地, 作为另一实施例, 两个矩阵 C和 D中至少一个矩阵的各列是用 户设备特定的矩阵或者矩阵集合中的矩阵中列矢量的旋转, 即所述矩阵 C的 第 k个列矢量^如式(2 )或者(3 )所示; 或者, 所述矩阵 D的第 /个列矢 量 d,为如式(4 )或者(5 )所示。 其中 Nv、 NH、 Nc和 ND为正整数, &„为 矩阵 A的第 个列矢量,其中矩阵 A为用户设备特定的矩阵或者矩阵集合中 的矩阵。
需要说明的是, 对于 W中对角线上不同位置的分块矩阵 X其对应的矩阵 C或者矩阵 D的列矢量满足(2 ) - ( 5 )并不意味着 \^中对角线上不同位置的 分块矩阵 X具有相同的矩阵 C或者矩阵 D ,相反,对于不同位置的分块矩阵 X 可以具有相同或者不同的矩阵 C或者矩阵1)。
可选地,作为另一实施例, 所述用户设备特定的矩阵或者矩阵集合中的 矩阵是各列为 DFT矢量或者 Hadamard矩阵或者 Householder矩阵的列矢量构 成的矩阵。
可选地, 作为另一实施例, 所述 DFT矢量 a,如式(6 )所示, 其中所述 NC≥N或者 ND≥N。
可选地,作为另一实施例, 所述第一参考信号集至少包含一个参考信号 子集, 所述参考信号子集与所述矩阵 C或者所述矩阵 D的集合相关联。
可选地,作为另一实施例, 所述参考信号子集具有比其它参考信号更长 的发送周期。 图 5是本发明一个实施例的基站的框图。 图 5的基站 50包括发送单元 51、 接收单元 52。
发送单元 51 ,用于向用户设备发送第一参考信号集,其中所述第一参考 信号集与一个用户设备特定的 ( UE-specific )矩阵或矩阵集合相关联; 接收 单元 52,用于接收所述用户设备发送的预编码矩阵指示 PMI,其中所述 PMI 指示用户设备基于所述第一参考信号选择的一个预编码矩阵, 其中所述预编 码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数;
本发明实施例的第一参考信号集合关联或者对应于一个用户设备特定 的矩阵或者矩阵集合,所述预编码矩阵是所述用户设备特定的矩阵或者矩阵 集合的函数,使得用户设备能够基于所述矩阵或者矩阵集合选择预编码矩阵 并反馈 PMI,所述预编码矩阵的集合构成一个用户设备特定的码本而不是一 个小区或者系统特定的码本。 小区或者系统特定的码本为小区或者系统内所 有用户而设计的预编码矩阵的集合,用户设备特定的码本是小区或者系统特 定的码本的子集。 因此, 本发明实施例能够在不过多增加反馈开销的条件下 提高 CSI反馈精度, 从而提高系统性能。
可选地, 基站 50还可以包括获取单元 53, 用于根据所接收的 PMI, 得 到预编码矩阵。
可选地, 作为一个实施例, 所述发送单元 51还用于向所述用户设备通 知所述用户设备特定的矩阵或矩阵集合。
可选地, 作为另一实施例, 所述发送单元 51 , 还用于在向所述用户设备 发送第一参考信号集之前, 向所述用户设备发送第二参考信号集, 其中所述 第二参考信号集与一个矩阵或矩阵集合相关联; 所述接收单元, 还用于接收 所述用户设备基于所述第二参考信号集确定的第二索引, 所述第二索引用于 指示用户设备选择的天线端口或天线端口子集, 或者与所述用户设备选择的 天线端口或天线端口子集相关联的矩阵或矩阵集合;
可选地, 所述第一参考信号集是第二参考信号集的子集。
可选地, 与第二参考信号集关联的矩阵或矩阵集合是小区或者系统特定 的。
可选地, 作为一个实施例, 所述获取单元 53, 还用于基站通过测量上行 物理信道或者上行物理信号, 根据信道互异性, 得到用户设备的信道估计。 基于预定义的准则为用户选择第一参考信号以及用户设备特定的矩阵或者 矩阵集合。 所述上行物理信道可以是物理上行控制信道(Physical Uplink Control Channel, 筒称 PUCCH )或者物理上行共享信道 ( Physical Uplink Shared Channel,筒称 PUSCH );所述物理信号可以是侦听参考信号( Sounding Reference Signal, 筒称 SRS ) 或者其它上行解调参考信号 ( DeModulation Reference signal, 筒称 DMRS )。
可选地, 作为另一实施例, 所述发送单元具体用于在不同的时间向所述 用户设备发送所述第二参考信号集的参考信号。 这里, 不同的时间可分别关 联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子集。
可选地, 作为另一实施例, 所述第一参考信号集包括一个或多个参考信 号子集, 所述参考信号子集对应于同极化的天线端口子集, 或者对应于天线 端口阵列中同一方向排列的天线端口子集, 或者对应于准同位的天线端口子 集。
可选地, 作为另一实施例, 所述发送单元具体用于在不同的时间向所述 用户设备发送所述第一参考信号集的参考信号。 这里, 不同的时间可分别关 联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子集。
可选地, 作为另一实施例, 所述预编码矩阵 W为两个矩阵 W^P W2的乘 积, W = WiW2 , 其中矩阵\\^为分块对角化矩阵, 所述分块对角化矩阵包含至 少一个分块矩阵,每个所述分块矩阵是与所述用户设备特定的矩阵或者矩阵 集合的函数。
可选地,所述矩阵\¥2用于选择或者加权组合矩阵 W中的列矢量从而构成 矩阵 w。
可选地, 作为另一实施例, 每个所述分块矩阵 X是两个矩阵 C和 D的 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设 备特定的矩阵或者矩阵集合的函数。
可选地, 作为另一实施例, 两个矩阵 C和 D中至少一个矩阵的各列是用 户设备特定的矩阵或者矩阵集合中的矩阵中列矢量的旋转, 即所述矩阵 C的 第 k个列矢量^如式(2 )或者(3 )所示或者, 所述矩阵 D的 /个列矢量 d,如 式(4 )或者 (5 )所示, 其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的 第 个列矢量, 其中矩阵 A为用户设备特定的矩阵或者矩阵集合中的矩阵。
需要说明的是, 对于 W中对角线上不同位置的分块矩阵 X其对应的矩阵 C或者矩阵 D的列矢量满足(2 ) - ( 5 )并不意味着 \^中对角线上不同位置的 分块矩阵 X具有相同的矩阵 C或者矩阵 D ,相反,对于不同位置的分块矩阵 X 可以具有相同或者不同的矩阵 C或者矩阵1)。
可选地, 作为另一实施例, 所述用户设备特定的矩阵或者矩阵集合中的 矩阵是各列为 DFT矢量或者 Hadamard矩阵或者 Householder矩阵的列矢量 构成的矩阵。
可选地,作为另一实施例, 所述 DFT矢量 a,如式(6 )所示, 其中所述 NC≥N 或者 ND > N。
可选地,作为另一实施例, 所述第一参考信号集至少包含一个参考信号 子集, 所述参考信号子集与所述矩阵 C或者所述矩阵 D的集合相关联。
可选地,作为另一实施例, 所述参考信号子集具有比其它参考信号更长 的发送周期。
图 6是本发明另一实施例的用户设备的框图。 图 6的用户设备 60包括 接收器 62、 发射器 63、 处理器 64和存储器 65。
接收器 62,用于接收基站发送的第一参考信号集,其中所述第一参考信 号集与一个用户设备特定的 ( UE specific )矩阵或矩阵集合相关联。
存储器 65存储使得处理器 64执行以下操作的指令: 基于所述第一参考 信号集, 选择一个预编码矩阵, 其中所述预编码矩阵为所述用户设备特定的 矩阵或者矩阵集合的函数。
发射器 63, 用于向所述基站发送预编码矩阵指示 PMI, 所述 PMI与所 选择的预编码矩阵相对应。
本发明实施例的第一参考信号集合关联或者对应于一个用户设备特定 的矩阵或者矩阵集合,所述预编码矩阵是所述用户设备特定的矩阵或者矩阵 集合的函数,使得用户设备能够基于所述用户设备特定的矩阵或者矩阵集合 选择预编码矩阵并反馈 PMI,所述预编码矩阵的集合构成一个用户设备特定 的码本而不是一个小区或者系统特定的码本。 小区或者系统特定的码本为小 区或者系统内所有用户而设计的预编码矩阵的集合, 用户设备特定的码本是 小区或者系统特定的码本的子集。 因此, 本发明实施例能够在不过多增加反 馈开销的条件下提高 CSI反馈精度, 从而提高系统性能。
其中, 接收器 62、 发射器 63、 处理器 64和存储器 65可以集成为一个 处理芯片。 或者, 如图 6所示, 接收器 62、 发射器 63、 处理器 64和存储器 65通过总线 66相连。 此外,用户设备 60还可以包括天线 61。处理器 64还可以控制用户设备 60的操作, 处理器 64还可以称为 CPU ( Central Processing Unit, 中央处理 单元)。 存储器 65可以包括只读存储器和随机存取存储器, 并向处理器 64 提供指令和数据。存储器 65的一部分还可以包括非易失性随机存取存储器。 用户设备 60的各个组件通过总线系统 66耦合在一起, 其中总线系统 66除 包括数据总线之外, 还可以包括电源总线、 控制总线和状态信号总线等。 但 是为了清楚说明起见, 在图中将各种总线都标为总线系统 66。
可选地, 作为一个实施例, 所述接收器 62, 还用于接收所述基站通知的 所述用户设备特定的矩阵或矩阵集合。
可选地, 作为另一实施例, 所述接收器 62, 还用于在接收所述第一参考 信号集之前, 接收基站发送的第二参考信号集, 其中所述第二参考信号集与 一个矩阵或矩阵集合相关联; 所述存储器 65还存储使得处理器 64执行以下 操作的指令: 基于所述第二参考信号集, 确定第二索引, 所述第二索引用于 指示用户设备选择的天线端口或天线端口子集, 或者与所述用户设备 60选 择的天线端口或天线端口子集相关联的矩阵或矩阵集合; 所述发射器 63 ,还 用于向所述基站发送所述第二索引;
可选地, 其中所述第一参考信号集是第二参考信号集的子集。
可选地, 作为另一实施例, 所述接收器 62具体用于接收所述基站在不 同的时间发送的所述第二参考信号集的参考信号。 这里, 不同的时间可分别 关联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子 集。
可选地, 作为另一实施例, 所述第一参考信号集包括一个或多个参考信 号子集, 所述参考信号子集对应于同极化的天线端口子集, 或者对应于天线 端口阵列中同一方向排列的天线端口子集, 或者对应于位于准同位的天线端 口子集。
可选地, 作为另一实施例, 所述接收器 62具体用于接收所述基站在不 同的时间发送的所述第一参考信号集的参考信号。 这里, 不同的时间可分别 关联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子 集。
可选地, 作为另一实施例, 所述预编码矩阵 W为两个矩阵 W^P W2的乘 积, W = WiW2 , 其中矩阵\\^为分块对角化矩阵, 所述分块对角化矩阵包含至 少一个分块矩阵,每个所述分块矩阵是与所述用户设备特定的矩阵或者矩阵 集合的函数。
可选地,所述矩阵\¥2用于选择或者加权组合矩阵 W中的列矢量从而构成 矩阵 W。
可选地, 作为另一实施例, 每个所述分块矩阵 X是两个矩阵 C和 D的 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设 备特定的矩阵或者矩阵集合的函数。
可选地, 作为另一实施例, 两个矩阵 C和 D中至少一个矩阵的各列是用 户设备特定的矩阵或者矩阵集合中的矩阵中列矢量的旋转, 即所述矩阵 C的 第 k个列矢量^如式(2 )或者(3 )所示; 或者, 所述矩阵 D的第 /个列矢 量 d,为如式(4 )或者(5 )所示。 其中 Nv、 NH、 Nc和 ND为正整数, &„为 矩阵 A的第 个列矢量,其中矩阵 A为用户设备特定的矩阵或者矩阵集合中 的矩阵。
需要说明的是, 对于 W中对角线上不同位置的分块矩阵 X其对应的矩阵 C或者矩阵 D的列矢量满足(2 ) - ( 5 )并不意味着 \^中对角线上不同位置的 分块矩阵 X具有相同的矩阵 C或者矩阵 D ,相反,对于不同位置的分块矩阵 X 可以具有相同或者不同的矩阵 C或者矩阵1)。
可选地,作为另一实施例, 所述用户设备特定的矩阵或者矩阵集合子集 中的矩阵是各列为 DFT矢量或者 Hadamard矩阵或者 Householder矩阵的列矢 量构成的矩阵。
可选地, 作为另一实施例, 所述 DFT矢量 a,如式(6 )所示, 其中所述 NC≥N或者 ND≥N。
图 7是本发明另一实施例的基站的框图。图 7的基站 70包括发射器 72、 接收器 73、 处理器 74和存储器 75。
发射器 72,用于向用户设备发送第一参考信号集,其中所述第一参考信 号集与一个用户设备特定的 (UE specific )矩阵或矩阵集合相关联。
接收器 73 ,用于接收所述用户设备发送的预编码矩阵指示 PMI,其中所 述 PMI用于指示用户设备基于所述第一参考信号选择的一个预编码矩阵,其 中所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
可选地, 存储器 75可以存储使得处理器 74执行以下操作的指令: 用于 根据所接收的 PMI得到所述预编码矩阵。 本发明实施例的第一参考信号集合关联或者对应于用户设备特定的矩 阵或者矩阵集合, 所述预编码矩阵是所述用户设备特定的矩阵或者矩阵集合 的函数,使得用户设备能够基于所述用户设备特定的矩阵或者矩阵集合选择 预编码矩阵并反馈 PMI,所述预编码矩阵的集合构成一个用户设备特定的码 本而不是一个小区或者系统特定的码本。 小区或者系统特定的码本为小区或 者系统内所有用户而设计的预编码矩阵的集合, 用户设备特定的码本是小区 或者系统特定的码本的子集。 因此, 本发明实施例能够在不过多增加反馈开 销的条件下提高 CSI反馈精度, 从而提高系统性能。
其中, 发射器 72、 接收器 73、 处理器 74和存储器 75可以集成为一个 处理芯片。 或者, 如图 6所示, 发射器 72、 接收器 73、 处理器 74和存储器 75通过总线 76相连。
此外, 基站 70还可以包括天线 71。 处理器 74还可以控制基站 70的操 作, 处理器 74还可以称为 CPU ( Central Processing Unit, 中央处理单元)。 存储器 75可以包括只读存储器和随机存取存储器, 并向处理器 74提供指令 和数据。 存储器 75 的一部分还可以包括非易失性随机存取存储器。 用户设 备 70的各个组件通过总线系统 76耦合在一起, 其中总线系统 76除包括数 据总线之外, 还可以包括电源总线、 控制总线和状态信号总线等。 但是为了 清楚说明起见, 在图中将各种总线都标为总线系统 76。
可选地, 作为一个实施例, 所述发射器 72, 还用于向所述用户设备通知 所述用户设备特定的矩阵或矩阵集合。
可选地, 作为另一实施例, 所述发射器 72还用于在向所述用户设备发 送第一参考信号集之前, 向所述用户设备发送第二参考信号集, 其中所述第 二参考信号集与一个矩阵或矩阵集合相关联; 所述接收器 73,还用于接收所 述用户设备基于所述第二参考信号集确定的第二索引, 所述第二索引用于指 示用户设备选择的天线端口或天线端口子集,或者与所述用户设备选择的天 线端口或天线端口子集相关联的矩阵或矩阵集合;
可选地, 所述第一参考信号集是第二参考信号集的子集。
可选地, 与第二参考信号集关联的矩阵或矩阵集合是小区或者系统特定 的。
可选地, 作为一个实施例, 所述处理器还用于测量上行物理信道或者上 行物理信号, 根据信道互异性, 得到用户设备的信道估计。 基于预定义的准 则为用户选择第一参考信号以及用户设备特定的矩阵或者矩阵集合。所述上 行物理信道可以是物理上行控制信道 ( Physical Uplink Control Channel, 筒 称 PUCCH )或者物理上行共享信道( Physical Uplink Shared Channel, 筒称 PUSCH ); 所述物理信号可以是侦听参考信号 ( Sounding Reference Signal, 筒称 SRS )或者其它上行解调参考信号 (DeModulation Reference signal, 筒 称 DMRS )。
可选地, 作为另一实施例, 所述发射器 72具体用于在不同的时间向所 述用户设备发送所述第二参考信号集的参考信号。 这里, 不同的时间可分别 关联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子 集。
可选地, 作为另一实施例, 所述第一参考信号集包括一个或多个参考信 号子集, 所述参考信号子集对应于同极化的天线端口子集, 或者对应于天线 端口阵列中同一方向排列的天线端口子集, 或者对应于准同位的天线端口子 集。
可选地, 作为另一实施例, 所述发射器 72具体用于在不同的时间向所 述用户设备发送所述第一参考信号集的参考信号。 这里, 不同的时间可分别 关联于相同或者不同的矩阵, 或者分别关联于矩阵集合的相同或者不同子 集。
可选地, 作为另一实施例, 所述预编码矩阵 W为两个矩阵 W^P W2的乘 积, W二 U , 其中矩阵\\^为分块对角化矩阵, 所述分块对角化矩阵包含至 少一个分块矩阵,每个所述分块矩阵是与所述用户设备特定的矩阵或者矩阵 集合的函数。
可选地,所述矩阵\¥2用于选择或者加权组合矩阵 W中的列矢量从而构成 矩阵 W。
可选地, 作为另一实施例, 每个所述分块矩阵 X是两个矩阵 C和 D的 kronecker积, X = C ® D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设 备特定的矩阵或者矩阵集合的函数。
可选地, 作为另一实施例, 两个矩阵 C和 D中至少一个矩阵的各列是用 户设备特定的矩阵或者矩阵集合中的矩阵中列矢量的旋转, 即所述矩阵 C的 第 k个列矢量^如式(2 )或者(3 )所示或者, 所述矩阵 D的 /个列矢量 d,如 式(4 )或者 (5 )所示, 其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的 第 个列矢量, 其中矩阵 A为用户设备特定的矩阵或者矩阵集合中的矩阵。 需要说明的是, 对于 W中对角线上不同位置的分块矩阵 X其对应的矩阵 C或者矩阵 D的列矢量满足(2 ) - ( 5 )并不意味着 \^中对角线上不同位置的 分块矩阵 X具有相同的矩阵 C或者矩阵 D ,相反,对于不同位置的分块矩阵 X 可以具有相同或者不同的矩阵 C或者矩阵1)。
可选地, 作为另一实施例, 所述用户设备特定的矩阵或者矩阵集合中的 矩阵是各列为 DFT矢量或者 Hadamard矩阵或者 Householder矩阵的列矢量 构成的矩阵。
可选地, 作为另一实施例, 所述 DFT矢量 a,如式(6 )所示, 其中所述 NC≥N或者 ND≥N。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变 化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种确定预编码矩阵指示的方法, 其特征在于, 包括:
接收基站发送的第一参考信号集, 其中所述第一参考信号集与一个用户 设备特定的矩阵或矩阵集合相关联;
基于所述第一参考信号集, 选择一个预编码矩阵, 其中所述预编码矩阵 为所述用户设备特定的矩阵或者矩阵集合的函数;
向所述基站发送预编码矩阵指示 PMI, 所述 PMI与所选择的预编码矩 阵相对应。
2、 如权利要求 1所述的方法, 其特征在于, 所述用户设备特定的矩阵 或矩阵集合由基站通知给用户设备。
3、 如权利要求 1所述的方法, 其特征在于, 所述第一参考信号集包括 一个或多个参考信号子集, 所述参考信号子集对应于同极化的天线端口子 集, 或者对应于天线端口阵列中同一方向排列的天线端口子集, 或者对应于 位于准同位的天线端口子集。
4、 如权利要求 1-3任一项所述的方法, 其特征在于, 所述预编码矩阵 为所述用户设备特定的矩阵或者矩阵集合的函数, 包括:
所述预编码矩阵 w为两个矩阵 w和 W2的乘积, W = W:W2,其中矩阵 为 分块对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵 X , 每个所述 分块矩阵是与所述用户设备特定的矩阵或者矩阵集合的函数。
5、 如权利要求 4所述的方法, 其特征在于, 每个所述分块矩阵 X是两 个矩阵 C和 D的克罗内克尔 kronecker积, X = C ®D , 所述两个矩阵 C和 D中 至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
6、 如权利要求 5所述的方法, 其特征在于, 所述两个矩阵 C和 D中至少 一个矩阵为所述用户设备特定的矩阵或者矩阵集合的函数, 包括:
所述矩阵 C的第 k个列矢量 为
ck = diag
Figure imgf000047_0001
,···, ej2"NvlNc | am ,
或者
ck = diag {l, ,···, e] Nvl2-l)lNc , , ej2^ ,···, 2 / J &m 或者, 矩阵 D的第 /个列矢量 d,为 或者
d, = diag {l, ej2^ ,···, e^(wH/21)/ , e]<L , e^ e ΰ, · · ·, e ,。 J ^
其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 矩阵 A为 用户设备特定的矩阵或者矩阵集合中的矩阵, 和 A为相移。
7、 如权利要求 1-6任一项所述的方法, 其特征在于, 所述用户设备特定 的矩阵或者矩阵集合中的矩阵是各列为离散傅立叶变换 DFT矢量或者哈达 马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列矢量构成的矩阵。
8、 如权利要求 7所述的方法, 其特征在于, 所述用户设备特定的矩阵 或者矩阵集合中的矩阵是各列为离散傅立叶变换 DFT矢量,包括:所述 DFT 矢量 a,满足
N e N … e N 其中 []T为矩阵转置, Μ、 Ν为正整数, 并且 NC≥N或者 ND≥N。
9、 如权利要求 5-8任一项所述的方法, 其特征在于, 所述第一参考信号 集至少包含一个参考信号子集, 所述参考信号子集与所述矩阵 C或者所述矩 阵 D的集合相关联。
10、 如权利要求 9所述的方法, 其特征在于, 所述参考信号子集具有比 其它参考信号更长的发送周期。
11、 一种确定预编码矩阵指示的方法, 其特征在于, 包括:
向用户设备发送第一参考信号集, 其中所述第一参考信号集与一个用户 设备特定的矩阵或矩阵集合相关联;
接收所述用户设备发送的预编码矩阵指示 PMI, 其中所述 PMI用于指 示用户设备基于所述第一参考信号选择的一个预编码矩阵, 其中所述预编码 矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
12、 如权利要求 11 所述的方法, 其特征在于, 所述用户设备特定的矩 阵或矩阵集合由基站通知给用户设备。
13、 如权利要求 11 所述的方法, 其特征在于, 所述第一参考信号集包 括一个或多个参考信号子集, 所述参考信号子集对应于同极化的天线端口子 集, 或者对应于天线端口阵列中同一方向排列的天线端口子集, 或者对应于 准同位的天线端口子集。
14、 如权利要求 11-13任一项所述的方法, 其特征在于, 所述预编码矩 阵为所述用户设备特定的矩阵或者矩阵集合的函数, 包括:
所述预编码矩阵 w为两个矩阵 w和 W2的乘积, W = W:W2,其中矩阵 为 分块对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分 块矩阵是所述用户设备特定的矩阵或者矩阵集合中的矩阵的函数。
15、 如权利要求 14所述的方法, 其特征在于, 每个所述分块矩阵 X是 两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ® D ,所述两个矩阵 C和 D中 至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
16、 如权利要求 15所述的方法, 其特征在于, 所述两个矩阵 C和 D中至 少一个矩阵为所述用户设备特定的矩阵或者矩阵集合的函数, 包括:
所述矩阵 C的第 k个列矢量 (^为
ck = diag ,···, ej2"NvlNc
Figure imgf000049_0001
| am ,
或者
ck = diag {l, ej2"/Nc ,···, el2jl Nvl2-1)lNc , βΆ , βΆ ej2^ ,···, βΆ <N } &m 或者, 矩阵 D的第 /个列矢量 d,为
d,= g{l, y wD}am 或者
d, = diag {l, β]2πΐΝ- ,···, e^(wH/21)/ , , , · · ·, J a
其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 其中矩阵 A 为用户设备特定的矩阵或者矩阵集合中的矩阵, 和 为相移。
17、 如权利要求 11-16任一项所述的方法, 其特征在于, 所述用户设备 特定的矩阵或者矩阵集合子集中的矩阵是各列为离散傅立叶变换 DFT 矢量 或者哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列矢量构成的 矩阵。
18、 如权利要求 17所述的方法, 其特征在于, 所述用户设备特定的矩 阵或者矩阵集合子集中的矩阵各列为离散傅立叶变换 DFT 矢量, 包括: 所 述 DFT矢量 a,满足
'~ e ~ ■■■ e N 其中 []T为矩阵转置, M、 N为正整数, 并且 NC≥N或者 ND≥N。
19、 如权利要求 15-18任一项所述的方法, 其特征在于, 所述第一参考 信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩阵 C或者所 述矩阵 D的集合相关联。
20、 如权利要求 19所述的方法, 其特征在于, 所述参考信号子集具有比 其它参考信号更长的发送周期。
21、 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收基站发送的第一参考信号集, 其中所述第一参考信 号集与一个用户设备特定的矩阵或矩阵集合相关联;
确定单元, 用于基于所述第一参考信号集, 选择一个预编码矩阵, 其中 所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数;
发送单元, 用于向所述基站发送预编码矩阵指示 PMI, 所述 PMI与所 选择的预编码矩阵相对应。
22、 如权利要求 21所述的用户设备, 其特征在于, 所述接收单元, 还 用于接收所述基站通知的所述用户设备特定的矩阵或矩阵集合。
23、 如权利要求 21所述的用户设备, 其特征在于, 所述第一参考信号 集包括一个或多个参考信号子集, 所述参考信号子集对应于同极化的天线端 口子集, 或者对应于天线端口阵列中同一方向排列的天线端口子集, 或者对 应于位于准同位的天线端口子集。
24、 如权利要求 21-23任一项所述的用户设备, 其特征在于,
所述预编码矩阵 W为两个矩阵 W和 W2的乘积, W = W:W2,其中矩阵 W为 分块对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分 块矩阵是与所述用户设备特定的矩阵或者矩阵集合的函数。
25、如权利要求 24所述的用户设备, 其特征在于,每个所述分块矩阵 X 是两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ®D , 所述两个矩阵 C和 D中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
26、 如权利要求 25所述的用户设备, 其特征在于, 所述两个矩阵 C和 D 中至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合的函数, 包括: 所 或者
Figure imgf000050_0001
或者 矩阵 D的第 /个列矢量 为 或者
d, = diag {l, ej2^ ,···, e^(wH/21)/ , e]<L , e^ e ΰ, · · ·, e ,。 J ^
其中 Nv、 NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 其中矩阵 A 为用户设备特定的矩阵或者矩阵集合中的矩阵, 和 为相移。
27、 如权利要求 21-26任一项所述的用户设备, 其特征在于, 所述用户 设备特定的矩阵或者矩阵集合子集中的矩阵是各列为离散傅立叶变换 DFT 矢量或者哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列矢量构 成的矩阵。
28、 如权利要求 27所述的用户设备, 其特征在于, 所述 DFT矢量 a,满 足
Figure imgf000051_0001
其中 []T为矩阵转置, Μ、 Ν为正整数, 并且 NC≥N或者 ND≥N。
29、 如权利要求 25-28任一项所述的用户设备, 其特征在于, 所述第一 参考信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩阵 C或 者所述矩阵 D的集合相关联。
30、 如权利要求 29所述的用户设备, 其特征在于, 所述参考信号子集具 有比其它参考信号更长的发送周期。
31、 一种基站, 其特征在于, 包括:
发送单元, 用于向用户设备发送第一参考信号集, 其中所述第一参考信 号集与一个用户设备特定的矩阵或矩阵集合相关联;
接收单元, 用于接收所述用户设备发送的预编码矩阵指示 PMI, 其中所 述 PMI用于指示用户设备基于所述第一参考信号选择的一个预编码矩阵,其 中所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
32、 如权利要求 31所述的基站, 其特征在于, 所述发送单元, 还用于 向所述用户设备通知所述用户设备特定的矩阵或矩阵集合。
33、 如权利要求 31所述的基站, 其特征在于, 所述第一参考信号集包 括一个或多个参考信号子集, 所述参考信号子集对应于同极化的天线端口子 集, 或者对应于天线端口阵列中同一方向排列的天线端口子集, 或者对应于 准同位的天线端口子集。
34、 如权利要求 31-33任一项所述的基站, 其特征在于, 所述预编码矩阵 w为两个矩阵 w和 W2的乘积, W = W:W2,其中矩阵 为 分块对角化矩阵, 所述分块对角化矩阵包含至少一个分块矩阵, 每个所述分 块矩阵是与所述用户设备特定的矩阵或者矩阵集合的函数。
35、 如权利要求 34所述的基站, 其特征在于, 每个所述分块矩阵 X是 两个矩阵 C和 D的克罗内克尔 kronecker积, X = C ® D ,所述两个矩阵 C和 D中 至少一个矩阵为所述用户设备特定的矩阵或者矩阵集合的函数。
36、 如权利要求 35所述的基站, 其特征在于, 所述两个矩阵 C和 D中至 少一个矩阵为所述用户设备特定的矩阵或者矩阵集合的函数, 包括:
所述矩阵 C的第 k个列矢量 为
ck = diag {l,ej2"/Nc , - - -, em/Nc } am ,
或者
ck = diag {l, ,· · ·, e] Nvl2-l)lNc , , ej2^ ,···, 2 / J &m 或者, 矩阵 D的第 /个列矢量 d,为
= diag{ …, edN。、&m
或者
d, = diag {l, ^ e'2^2-1^ , e1^ e H、l J ^
其中 Nv NH、 Nc和 ND为正整数, am为矩阵 A的第 个列矢量, 其中矩阵 A 为用户设备特定的矩阵或者矩阵集合中的矩阵, 和 为相移。
37、 如权利要求 31-36任一项所述的基站, 其特征在于, 所述用户设备 特定的矩阵或者矩阵集合中的矩阵是各列为离散傅立叶变换 DFT 矢量或者 哈达马 Hadamard矩阵或者豪斯荷尔德 Householder矩阵的列矢量构成的矩 阵。
38、 如权利要求 37所述的基站, 其特征在于, 所述用户设备特定的矩 阵或者矩阵集合中的矩阵各列为离散傅立叶变换 DFT矢量,包括,所述 DFT 矢量 a,满足
N e N … e N 其中 []T为矩阵转置, Μ Ν为正整数, 并且 NC≥N或者 ND≥N
39、 如权利要求 35-38任一项所述的基站, 其特征在于, 所述第一参考 信号集至少包含一个参考信号子集, 所述参考信号子集与所述矩阵 C或者所 述矩阵 D的集合相关联。
40、 如权利要求 39所述的基站, 其特征在于, 所述参考信号子集具有比 其它参考信号更长的发送周期。
41、 一种用户设备, 其特征在于, 包括:
接收器, 用于接收基站发送的第一参考信号集, 其中所述第一参考信号 集与一个用户设备特定的矩阵或矩阵集合相关联;
处理器, 用于基于所述第一参考信号集, 选择一个预编码矩阵, 其中所 述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合的函数;
发射器, 用于向所述基站发送预编码矩阵指示 PMI, 所述 PMI与所选 择的预编码矩阵相对应。
42、 一种基站, 其特征在于, 包括:
发射器, 用于向用户设备发送第一参考信号集, 其中所述第一参考信号 集与一个用户设备特定的矩阵或矩阵集合相关联;
接收器, 用于接收所述用户设备发送的预编码矩阵指示 PMI, 其中所述 PMI用于指示用户设备基于所述第一参考信号选择的一个预编码矩阵,其中 所述预编码矩阵为所述用户设备特定的矩阵或者矩阵集合子集的函数。
PCT/CN2013/075486 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和基站 WO2014179990A1 (zh)

Priority Applications (20)

Application Number Priority Date Filing Date Title
EP19186667.2A EP3641148B1 (en) 2013-05-10 2013-05-10 Method for determining precoding matrix indicator, user equipment, and base station
ES13883972T ES2756338T3 (es) 2013-05-10 2013-05-10 Método para determinar un indicador de matriz de precodificación, equipo de usuario y estación base
CN201910638072.1A CN110460361B (zh) 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和基站
EP13883972.5A EP2988430B1 (en) 2013-05-10 2013-05-10 Method for determining precoding matrix indicator, user equipment and base station
CN201380073755.8A CN105075138B (zh) 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和基站
CN202010741465.8A CN112039566B (zh) 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和基站
CN201910624545.2A CN110336597B (zh) 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和存储介质
KR1020157034668A KR101955679B1 (ko) 2013-05-10 2013-05-10 프리코딩 행렬 지시자를 결정하는 방법, 사용자 장비 및 기지국
EP20200157.4A EP3836413B1 (en) 2013-05-10 2013-05-10 Method for determining precoding matrix indicator, user equipment, and base station
EP22180177.2A EP4135210A1 (en) 2013-05-10 2013-05-10 Method for determining precoding matrix indicator, user equipment, and base station
KR1020197006252A KR102071440B1 (ko) 2013-05-10 2013-05-10 프리코딩 행렬 지시자를 결정하는 방법, 사용자 장비 및 기지국
PCT/CN2013/075486 WO2014179990A1 (zh) 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和基站
CN202010749255.3A CN112003638A (zh) 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和基站
US14/936,092 US9967008B2 (en) 2013-05-10 2015-11-09 Method for determining precoding matrix indicator, user equipment, and base station
US15/950,820 US10141990B2 (en) 2013-05-10 2018-04-11 Method for determining precoding matrix indicator, user equipment, and base station
US15/951,153 US10181882B2 (en) 2013-05-10 2018-04-11 Method for determining precoding matrix indicator, user equipment, and base station
US16/107,653 US10263674B2 (en) 2013-05-10 2018-08-21 Method for determining precoding matrix indicator, user equipment, and base station
US16/233,444 US10523291B2 (en) 2013-05-10 2018-12-27 Method for determining precoding matrix indicator, user equipment, and base station
US16/697,789 US10735064B2 (en) 2013-05-10 2019-11-27 Method for determining precoding matrix indicator, user equipment, and base station
US16/931,622 US11101853B2 (en) 2013-05-10 2020-07-17 Method for determining precoding matrix indicator, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075486 WO2014179990A1 (zh) 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/936,092 Continuation US9967008B2 (en) 2013-05-10 2015-11-09 Method for determining precoding matrix indicator, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2014179990A1 true WO2014179990A1 (zh) 2014-11-13

Family

ID=51866651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075486 WO2014179990A1 (zh) 2013-05-10 2013-05-10 确定预编码矩阵指示的方法、用户设备和基站

Country Status (6)

Country Link
US (7) US9967008B2 (zh)
EP (4) EP3641148B1 (zh)
KR (2) KR102071440B1 (zh)
CN (5) CN110336597B (zh)
ES (1) ES2756338T3 (zh)
WO (1) WO2014179990A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224996B2 (en) 2014-04-10 2019-03-05 Huawei Technologies Co., Ltd Method for reporting channel state information user equipment, and base station
US10491340B2 (en) 2015-01-30 2019-11-26 Huawei Technologies Co., Ltd. Feedback information transmission method in communications system and apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210405B (zh) 2014-03-06 2021-01-29 华为技术有限公司 报告信道状态信息的方法、用户设备和基站
US9716534B2 (en) * 2014-08-25 2017-07-25 Sony Corporation Base station and massive MIMO communication method
US10659126B2 (en) * 2015-03-13 2020-05-19 Lg Electronics Inc. Method for feeding back CSI information in wireless communication system and device therefor
US10530432B2 (en) * 2015-05-25 2020-01-07 Sony Corporation Wireless communication device, terminal device, and method
EP3304995B1 (en) * 2015-06-05 2020-03-18 Telefonaktiebolaget LM Ericsson (PUBL) First communication device, second communication device and methods therein for sending and decoding, respectively, downlink information
CN109151969B (zh) * 2017-06-16 2022-04-05 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
CN111133819B (zh) 2017-08-10 2023-08-11 苹果公司 用于新空口的预占指示
WO2019148399A1 (zh) * 2018-01-31 2019-08-08 华为技术有限公司 上报信道状态信息csi的方法和装置
US10404339B1 (en) 2018-08-09 2019-09-03 At&T Intellectual Property I, L.P. Precoding matrix indicator determination in wireless communication systems
CN111628807A (zh) * 2019-02-28 2020-09-04 英国电讯有限公司 Mimo系统中的信道估计
KR20210012080A (ko) 2019-07-23 2021-02-03 삼성전자주식회사 다중 사용자 다중 안테나 통신 시스템의 프리코더 생성 방법 및 프리코더 생성 장치
AU2020375220B2 (en) * 2019-10-29 2023-12-21 Nokia Technologies Oy Mapping of windowed FD basis to a combinatorial indicator for PMI reporting and usage
KR20220033743A (ko) 2020-09-10 2022-03-17 이재경 휴대폰에서 전화번호 입력 또는 전화번호가 있는 이미지를 촬영하면,실시간으로 촬영된 이미지 사진내 전화번호를 판독하여 매장에서 판매하는 상품을 주문, 주문예약 및 결제 또는 배달주문을 할 수 있는 처리방법.
CN114726421A (zh) * 2021-01-05 2022-07-08 中国移动通信有限公司研究院 信道反馈方法、信息传输方法及设备
US11533199B2 (en) * 2021-03-01 2022-12-20 At&T Intellectual Property I, L.P. Method and system for uplink beam optimization and calibration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096708A1 (en) * 2008-01-30 2009-08-06 Lg Electronics Inc. Method of transmitting precoding information in multiple antenna system
CN102082637A (zh) * 2010-09-16 2011-06-01 大唐移动通信设备有限公司 一种码本子集约束的处理方法及设备
CN102111197A (zh) * 2009-12-28 2011-06-29 电信科学技术研究院 预编码矩阵索引信息上报方法和设备

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8588326B2 (en) 2004-07-07 2013-11-19 Apple Inc. System and method for mapping symbols for MIMO transmission
KR20080076683A (ko) * 2007-02-14 2008-08-20 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
CN103560818B (zh) * 2007-02-14 2017-06-16 Lg电子株式会社 使用基于相移的预编码的数据传输和接收方法以及支持该方法的收发机
US7764746B2 (en) 2008-08-19 2010-07-27 Samsung Electronics Co., Ltd. User terminal and base station using adapted codebook according to polarization
CN101686079A (zh) 2008-09-25 2010-03-31 三星电子株式会社 网络mimo系统及其信令处理方法
US8737507B2 (en) * 2008-11-03 2014-05-27 Telefonaktiebolaget L M Ericsson (Publ) Method for transmitting of reference signals and determination of precoding matrices for multi-antenna transmission
US8391392B2 (en) 2009-01-05 2013-03-05 Marvell World Trade Ltd. Precoding codebooks for MIMO communication systems
CN101771444B (zh) 2009-01-06 2014-01-29 电信科学技术研究院 多天线系统中参考信号的设置方法和基站
KR20100136888A (ko) 2009-06-19 2010-12-29 삼성전자주식회사 다중 입출력 시스템에서 코드북을 이용한 통신 방법 및 이를 위한 장치
CN101635612B (zh) 2009-08-18 2014-12-10 中兴通讯股份有限公司 多输入多输出系统的预编码码本构造方法和装置
US9102509B2 (en) * 2009-09-25 2015-08-11 Ecolab Inc. Make-up dispense in a mass based dispensing system
US9667378B2 (en) 2009-10-01 2017-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Multi-granular feedback reporting and feedback processing for precoding in telecommunications
US8873650B2 (en) 2009-10-12 2014-10-28 Motorola Mobility Llc Configurable spatial channel information feedback in wireless communication system
US9031008B2 (en) * 2009-10-30 2015-05-12 Samsung Electronics Co., Ltd. Methods and apparatus for multi-user MIMO transmissions in wireless communication systems
PT2522094E (pt) 2010-01-08 2015-07-17 Huawei Tech Co Ltd Reporte de informação de estado de canal
CN102088340B (zh) 2010-01-11 2013-04-17 电信科学技术研究院 一种多天线系统发送、接收信息的方法及装置
BRPI1106098A2 (pt) 2010-01-12 2017-06-13 Zte Usa Inc métodos e sistema para retorno de informações do estado do canal espacial baseado em um produto kronecker
CN102130752B (zh) 2010-01-16 2013-04-24 华为技术有限公司 获取预编码矩阵指示以及预编码矩阵的方法和装置
KR101605326B1 (ko) 2010-02-26 2016-04-01 엘지전자 주식회사 신호 송수신 방법 및, 그를 위한 기지국 및 사용자기기
KR101276855B1 (ko) 2010-03-08 2013-06-18 엘지전자 주식회사 프리코딩 행렬 정보 전송방법 및 사용자기기와, 프리코딩 행렬 구성방법 및 기지국
KR101253197B1 (ko) 2010-03-26 2013-04-10 엘지전자 주식회사 참조신호 수신 방법 및 사용자기기, 참조신호 전송 방법 및 기지국
CN102714647B (zh) 2010-04-06 2015-03-11 诺基亚公司 用于多粒度反馈的码本设计的方法和装置
US8472547B2 (en) 2010-04-07 2013-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Parameterized codebook with subset restrictions for use with precoding MIMO transmissions
BR112012025243A2 (pt) * 2010-04-07 2016-06-21 Alcatel Lucent método e aparelho para pré-codificação e retorno de informações
CN104980204B (zh) 2010-04-08 2018-07-17 Lg电子株式会社 在支持多天线的无线通信系统中使用码本的信号传输方法和装置
KR101817724B1 (ko) * 2010-04-30 2018-02-21 삼성전자주식회사 각 리포팅 모드에 대응하는 코드북을 사용하는 다중 입출력 통신 시스템
US8848817B2 (en) 2010-04-30 2014-09-30 Texas Instruments Incorporated Transmission modes and signaling for uplink MIMO support or single TB dual-layer transmission in LTE uplink
US9887754B2 (en) 2010-05-04 2018-02-06 Qualcomm Incorporated Method and apparatus for optimizing power distribution between symbols
US8509338B2 (en) 2010-05-05 2013-08-13 Motorola Mobility Llc Method and precoder information feedback in multi-antenna wireless communication systems
ES2513466T3 (es) * 2010-05-07 2014-10-27 Huawei Technologies Co., Ltd. Método y sistema para una adaptación de tasa de realimentación operativa cuantificada en un sistema de comunicación
EP2571178B1 (en) 2010-05-12 2020-01-15 LG Electronics Inc. Method for performing channel interleaving in a multi-antenna wireless communication system, and apparatus for same
TWI492561B (zh) 2010-06-22 2015-07-11 Htc Corp 用於多輸入多輸出系統之無線通訊方法及其相關多輸入多輸出系統及接收器
CN102299775B (zh) 2010-06-24 2013-12-04 上海贝尔股份有限公司 一种预编码矩阵的选择方法和装置
EP2590338B1 (en) 2010-07-02 2020-03-11 LG Electronics Inc. Method and apparatus for transmitting signals using codebooks in a wireless communication system that supports multiple antennas
US20120039402A1 (en) * 2010-08-10 2012-02-16 Samsung Electronics Co. Ltd. Multiple input multiple output communication system using at least two codebooks
US8982978B2 (en) 2010-08-23 2015-03-17 Lg Electronics Inc. Method and apparatus for transceiving a precoded signal in a multiple antenna supported wireless communication system
BR112013004549B1 (pt) * 2010-08-26 2021-06-08 Huawei Technologies Co., Ltd método e sistema para pré-codificação, equipamento de usuário, transmissor e meio legível por computador
US8693421B2 (en) * 2010-09-02 2014-04-08 Texas Instruments Incorporated Downlink 8 TX codebook sub-sampling for CSI feedback
CN101969366B (zh) * 2010-09-26 2012-11-14 华中科技大学 用于8发射天线mimo系统的预编码方法
EP3352380B1 (en) 2010-10-04 2019-08-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving codebook subset restriction bitmap
CN102624496B (zh) * 2011-01-30 2015-03-11 华为技术有限公司 预编码处理方法、基站和通信系统
CN102075274B (zh) 2011-01-31 2016-09-28 中兴通讯股份有限公司 一种测量参考信号的多天线参数的配置方法及装置
US9426703B2 (en) * 2011-02-11 2016-08-23 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
US9005992B2 (en) 2011-03-18 2015-04-14 Postech Academy-Industry Foundation Immobilizing fusion protein for effective and oriented immobilization of antibody on surfaces
CN102122983B (zh) 2011-04-18 2014-08-06 电信科学技术研究院 一种码本的生成、信息的发送、反馈方法及设备
US8781018B2 (en) * 2011-04-25 2014-07-15 Texas Instruments Incorporated Six transmit antenna codebook design
US20130010880A1 (en) 2011-07-05 2013-01-10 Renesas Mobile Corporation Feedback Framework for MIMO Operation in Heterogeneous Communication Network
US8929473B2 (en) 2011-07-28 2015-01-06 Samsung Electronics Co., Ltd. Combining baseband processing and radio frequency beam steering in wireless communication systems
CN102932112B (zh) 2011-08-11 2015-11-25 华为技术有限公司 一种多天线传输的方法及装置
CN102938662B (zh) 2011-08-15 2015-09-16 上海贝尔股份有限公司 用于3d天线配置的码本设计方法
CN102938688B (zh) 2011-08-15 2015-05-27 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN103002497A (zh) 2011-09-08 2013-03-27 华为技术有限公司 基于aas的信息交互方法、系统、ue及基站
WO2013068915A2 (en) 2011-11-07 2013-05-16 Marvell World Trade Ltd. Precoding feedback for cross-polarized antennas with magnitude information
EP2820773B1 (en) * 2012-03-02 2017-12-27 Telefonaktiebolaget LM Ericsson (publ) Radio base station and method therein for transforming a data transmission signal
US9059878B2 (en) 2012-03-30 2015-06-16 Nokia Solutions And Networks Oy Codebook feedback method for per-user elevation beamforming
US8913682B2 (en) 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
CN103621000B9 (zh) 2012-06-14 2017-07-07 华为技术有限公司 确定预编码矩阵指示的方法、用户设备、基站演进节点
EP3334077B1 (en) 2012-07-02 2019-08-28 Huawei Technologies Co., Ltd. Method, user equipment and base station for determining precoding matrix indicator
US9214996B2 (en) 2012-07-06 2015-12-15 Lg Electronics Inc. Method of receiving or transmitting downlink signal in wireless communication system and device for performing the method
CN103684657A (zh) 2012-09-03 2014-03-26 夏普株式会社 预编码矩阵构造和索引值反馈方法及相关通信设备
TWI617148B (zh) 2012-09-28 2018-03-01 內數位專利控股公司 用於報告回饋的無線發射/接收單元及方法
US8976884B2 (en) 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US8971437B2 (en) * 2012-12-20 2015-03-03 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US9281881B2 (en) 2013-02-12 2016-03-08 Texas Instruments Incorporated 4TX codebook enhancement in LTE
US20140301492A1 (en) * 2013-03-08 2014-10-09 Samsung Electronics Co., Ltd. Precoding matrix codebook design for advanced wireless communications systems
CN105453085B (zh) 2013-07-02 2021-02-02 康维达无线有限责任公司 语义发布和发现的机制

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096708A1 (en) * 2008-01-30 2009-08-06 Lg Electronics Inc. Method of transmitting precoding information in multiple antenna system
CN102111197A (zh) * 2009-12-28 2011-06-29 电信科学技术研究院 预编码矩阵索引信息上报方法和设备
CN102082637A (zh) * 2010-09-16 2011-06-01 大唐移动通信设备有限公司 一种码本子集约束的处理方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT ET AL.: "CQI/PMI reporting modes on PUCCH for two-stage feedback (RI-104397)", 3GPP TSG RAN WG1 MEETING #62 TDOC R1-104397, 27 August 2010 (2010-08-27), XP050450178 *
CATT: "PMI/RI/CQI reporting for LTE-Av(RI-102056)", 3GPP TSG RAN WG1 MEETING #60BIS R1-102056, 16 April 2010 (2010-04-16), XP050419386 *
See also references of EP2988430A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224996B2 (en) 2014-04-10 2019-03-05 Huawei Technologies Co., Ltd Method for reporting channel state information user equipment, and base station
US10587325B2 (en) 2014-04-10 2020-03-10 Huawei Technologies Co., Ltd. Method for reporting channel state information, user equipment, and base station
US10491340B2 (en) 2015-01-30 2019-11-26 Huawei Technologies Co., Ltd. Feedback information transmission method in communications system and apparatus

Also Published As

Publication number Publication date
EP3641148A1 (en) 2020-04-22
CN105075138A (zh) 2015-11-18
KR20160005752A (ko) 2016-01-15
KR20190025757A (ko) 2019-03-11
US20200099425A1 (en) 2020-03-26
US20180234143A1 (en) 2018-08-16
EP2988430A1 (en) 2016-02-24
US20180359008A1 (en) 2018-12-13
US10523291B2 (en) 2019-12-31
US20160065278A1 (en) 2016-03-03
US10735064B2 (en) 2020-08-04
US20180241447A1 (en) 2018-08-23
US9967008B2 (en) 2018-05-08
KR101955679B1 (ko) 2019-03-07
ES2756338T3 (es) 2020-04-27
EP2988430A4 (en) 2016-05-11
US10141990B2 (en) 2018-11-27
EP3641148B1 (en) 2020-12-30
US11101853B2 (en) 2021-08-24
CN110336597A (zh) 2019-10-15
US20200350965A1 (en) 2020-11-05
US10263674B2 (en) 2019-04-16
CN110336597B (zh) 2020-07-07
EP3836413A1 (en) 2021-06-16
US20190140710A1 (en) 2019-05-09
CN110460361B (zh) 2020-06-19
KR102071440B1 (ko) 2020-01-30
EP2988430B1 (en) 2019-09-11
EP3836413B1 (en) 2022-07-27
CN110460361A (zh) 2019-11-15
CN112039566B (zh) 2022-07-29
US10181882B2 (en) 2019-01-15
CN112003638A (zh) 2020-11-27
CN105075138B (zh) 2020-09-08
EP4135210A1 (en) 2023-02-15
CN112039566A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2014179990A1 (zh) 确定预编码矩阵指示的方法、用户设备和基站
CN107148790B (zh) 用于波束成形信道状态参考信号的系统和方法
CN108616299B (zh) 确定预编码矩阵指示的方法、用户设备和基站
JP6388348B2 (ja) パイロット信号伝送方法、基地局、およびユーザ装置
JP6118423B2 (ja) チャネル状態情報をフィードバックする方法、ユーザ装置及び基地局
JP6108250B2 (ja) チャネル状態情報を報告および受信する方法およびデバイス
US11863271B2 (en) Reporting of coefficients for channel state information
WO2015042855A1 (zh) 通信方法、基站和用户设备
CN109391305B (zh) 一种通信处理方法及装置
WO2017167156A1 (zh) Dmrs的发送方法及装置
CN107733498B (zh) 用于基于DMRS的TxD传输的端口映射的方法和网络设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073755.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013883972

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157034668

Country of ref document: KR

Kind code of ref document: A