WO2017133688A1 - 信息的传输、接收方法及装置 - Google Patents

信息的传输、接收方法及装置 Download PDF

Info

Publication number
WO2017133688A1
WO2017133688A1 PCT/CN2017/072895 CN2017072895W WO2017133688A1 WO 2017133688 A1 WO2017133688 A1 WO 2017133688A1 CN 2017072895 W CN2017072895 W CN 2017072895W WO 2017133688 A1 WO2017133688 A1 WO 2017133688A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reg
dmrs
regs
port
Prior art date
Application number
PCT/CN2017/072895
Other languages
English (en)
French (fr)
Inventor
肖华华
陈艺戬
李儒岳
鲁照华
吴昊
蔡剑兴
王瑜新
李永
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017133688A1 publication Critical patent/WO2017133688A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users

Definitions

  • the present invention relates to the field of communications, and in particular to a method and an apparatus for transmitting and receiving information.
  • the transmitting end and the receiving end generally use multiple antennas to transmit and receive to obtain a higher rate.
  • MIMO multiple-input-multiple-output
  • One principle of multiple-input-multiple-output (MIMO) technology is to use some characteristics of the channel to form a multi-layer transmission of matching channel characteristics, so that it can be obtained without increasing bandwidth and power. Significant performance improvements are widely used in current systems.
  • transmission mode 3 is open-loop spatial multiplexing or open-loop MIMO technology
  • transmission mode 4 is closed-loop spatial multiplexing
  • transmission mode 5 is multi-user MIMO
  • transmission mode 6 is closed-loop spatial multiplexing of single data streams.
  • transmission mode 7 and 8 respectively, single-stream and dual-stream beamforming
  • transmission mode 9 supports spatial multiplexing of up to 8 layers, and can realize adaptive switching of user and multi-user, adaptive switching of data layer number. Supports open-loop MIMO and closed-loop MIMO modes.
  • PMI Precoding Matrix Indicator
  • LTE/LTE A mainly to adapt to the channel characteristics of different users and the receiving capabilities of users. For example, for a user with one receiving antenna, it can only use MIMO technology with 1 multiplex layer. For users with faster channel changes, open-loop MIMO technology can be considered. This is because when the user moves faster, the channel The change is faster.
  • the precoding information of the closed-loop spatial multiplexing feedback cannot accurately and timely reflect the downlink channel information in the next feedback period of the base station, which may result in performance degradation.
  • the open-loop spatial multiplexing technique has better robustness because it does not need to feed back precoding information.
  • open-loop MIMO technology supporting more ports also needs to be supported.
  • transport mode 9 and transmission mode 10 are defined. It can be used for open-loop MIMO based on Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • the base station since the terminal does not feed back precoding information, the base station has no a priori information to determine the downlink matching precoding to transmit data, thereby degrading performance due to inaccurate precoding, especially in Based on the open-loop precoding of multiple PRB granularities, once the selected precoding is not good, it is easy to cause the entire data block to fail to transmit.
  • One way is to use one physical resource block (Physical Resource Block, PRB for short).
  • Physical Resource Block Physical Resource Block, PRB for short.
  • PRB Physical Resource Block
  • REG Resource Element Group
  • each REG uses one precoding independently, which can be effective Traversing different codewords to improve system performance.
  • the REG described herein is a set of resource units RE including N OFDM/OFDMA symbols and M subcarriers, and REs in the set resource unit group are in the same PRB pair, and REs in the REG may be continuous. It can also be discrete.
  • the DMRS uses only the same precoding function in the same PRB pair.
  • the DMRS supports up to 8 ports, respectively port ⁇ 7, 8, and 9. 10,10,11,12,13,14 ⁇ . Each port occupies 12 resource elements (RE elements).
  • the precoding used by each REG may be They are all different, which may result in the channel estimated by DMRS not well reflecting the transmission data or the channel of the ePDCCH REG, resulting in degradation of performance.
  • the embodiments of the present invention provide a method and a device for transmitting and receiving information, so as to at least solve the technical problem that the channel estimation performance is low due to the use of the same precoding in the DMRS in the same PRB pair in the related art.
  • a method for transmitting information includes: dividing M demodulation reference signal DMRS ports into K DMRS port groups, where K, the M is a positive integer, and K is less than or equal to M. Separate precoding transmission DMRS is used on each of the DMRS port groups.
  • the method before the dividing the M DMRS ports into the K DMRS port groups, the method further includes: determining the M, the K, and a channel rank N, where the N is a positive integer.
  • determining the M, the K, and the channel rank N includes: determining the K according to the N, the M; or determining the N according to the K, the M; or Determining the M according to the K and the N; wherein K*N ⁇ M.
  • each DMRS port in the DMRS port group includes 12 resource units RE.
  • the value of the K is determined by the number of REGs divided by the REs used to transmit information on the PRB pair where the M DMRS ports are located.
  • the method further includes: dividing the REs for transmitting information on the PRB pair where the M DMRS ports are located into K REGs, and using independent precoding transmission information on the K REGs.
  • the information transmitted in each of the REGs includes: data and/or control channel information.
  • each of the K DMRS port groups, and each of the DMRS port groups The same precoding is used for each of the corresponding K REGs.
  • the channel rank N includes at least one of the following: a number of data transmission layers, a number of data transmission streams, a number of data streams, a number of data layers, a channel Rank, a rank, a number of control channel transmission layers, and a control.
  • a method for receiving information includes: receiving DMRSs of M demodulation reference signals DMRS ports, and dividing the M demodulation reference signal DMRS ports into K DMRS port groups; Channel estimation and/or information demodulation is performed independently using DMRS on each of the DMRS port groups, M and K being positive integers and K being less than or equal to M.
  • the method before the dividing the M DMRS ports into the K DMRS port groups, the method further includes: determining the M, the K, and the received channel rank N, where the N is A positive integer.
  • determining the M, the K, and the received channel rank N includes: determining the K according to the N, the M; or determining the N according to the K and the M Or, according to the K, the N, determining the M; wherein, K*N ⁇ M.
  • demodulating information transmitted on the REG corresponding to the DMRS port group by using the received DMRS on each of the DMRS port groups including: on each of the received DMRS port groups
  • the DMRS independently performs channel estimation; and uses the estimated channel to perform information demodulation on information transmitted on the REG corresponding to the DMRS port group.
  • each DMRS port in the DMRS port group includes 12 resource units RE.
  • the value of the K is determined by the number of resource unit groups REG divided by the RE for transmitting information on the PRB pair where the M DMRS ports are located.
  • the information transmitted in the REG includes: data and/or control channel information.
  • performing information demodulation independently by using the DMRS on each of the DMRS port groups includes: each of the K DMRS port groups, and each of the K REGs The REG corresponding to the DMRS port group performs information demodulation.
  • the channel rank N includes at least one of the following: a number of data transmission layers, a number of data transmission streams, a number of data streams, a number of data layers, a channel Rank, a rank, a number of control channel transmission layers, and a control channel transmission.
  • a method for transmitting information includes: determining a number K of a first REG and a number P of a second REG in a physical resource block PRB pair, where the K, The P is a positive integer and K ⁇ P; Transmitting first information in the K first REGs and transmitting second information in the P second REGs.
  • the first information includes: data and/or control channel information
  • the second information includes: pilot information
  • the method further includes: dividing the physical resource block PRB into Said K first REGs and/or said P second REGs.
  • the first REG is a resource unit RE group in the PRB pair for transmitting the first information
  • the second REG is used in the PRB pair to transmit the second information.
  • Resource unit RE group is a resource unit RE group in the PRB pair for transmitting the first information
  • the second REG is used in the PRB pair to transmit the second information.
  • the i th the second REG R i includes r i REs, and the L i DMRS ports jointly use the r i REs, where i, r i , and L i are positive integers, and 1 ⁇ i ⁇ P.
  • the L i L, wherein the L is determined by a channel rank N, L, N, and i are positive integers and 1 ⁇ i ⁇ P.
  • the r R/P, where R is the total number of REs transmitting the DMRS in the PRB pair, and the R is a positive integer;
  • N is greater than 2
  • the r is 12/P.
  • the channel rank N includes at least one of the following: a number of data transmission layers, a number of data transmission streams, a number of data streams, a number of data layers, a channel Rank, a rank, a number of control channel transmission layers, and a control.
  • a method for receiving information includes: receiving first information transmitted by K first REGs of a physical resource block PRB pair and second transmission by P second REGs Information, wherein the K and the P are positive integers, and K ⁇ P; channel estimation is performed independently on the second information on the P second REGs, and on the K first REGs The first information is used for information demodulation.
  • the demodulating the first information corresponding to the second information by using the second information independently includes separately performing channel estimation by using the second information, respectively; And estimating, by the estimated channel, channels corresponding to the K first REGs, and performing data information demodulation on the first information.
  • the first information includes: data and/or control channel information
  • the second information includes: pilot information
  • an information transmission apparatus including: a first dividing module, configured to divide M demodulation reference signal DMRS ports into K DMRS port groups, where K, the M is A positive integer; a first transmission module configured to use a separate precoding transmission DMRS on each of the DMRS port groups.
  • an apparatus for receiving information includes: a second dividing module configured to receive DMRSs of M demodulation reference signals DMRS ports, and divide the M demodulation reference signals DMRS ports into K DMRS port groups; a first demodulation module configured to independently perform channel estimation and/or information demodulation using DMRS on each of said DMRS port groups, M and K being positive integers, and K being less than or equal to M.
  • an information transmission apparatus including: a determining module, configured to determine a number K of a first REG and a number P of a second REG of a physical resource block PRB pair, where Said K, said P is a positive integer and K ⁇ P; the second transmission module is arranged to transmit the first information in the K first REGs and to transmit the second information in the P second REGs.
  • an apparatus for receiving information includes: a receiving module, configured to receive first information transmitted by K first REGs of a physical resource block PRB pair and transmit by P second REGs Second message, Wherein the K and the P are positive integers, and K ⁇ P; the second demodulation module is configured to independently perform channel estimation on the second information on the P second REGs, and perform the channel estimation on the K The first information on the first REG performs information demodulation.
  • the M demodulation reference signal DMRS ports are divided into K DMRS port groups, K and M are positive integers and K is less than or equal to M; and independent precoding transmission DMRS is used on each DMRS port group.
  • the method comprises dividing the M DMRS ports into K DMRS port groups, and using independent precoding transmission DMRS on each DMRS port group, which solves the problem that the same precoding is used by the DMRS in the same PRB pair. The technical problem of low channel estimation performance, and thus the effect of improving the performance of the DMRS estimated channel.
  • FIG. 1 is a first flowchart of a method for transmitting information according to an embodiment of the present invention
  • FIG. 2 is a flowchart 1 of a method for receiving information according to an embodiment of the present invention
  • FIG. 3 is a second flowchart of a method for transmitting information according to an embodiment of the present invention.
  • FIG. 4 is a second flowchart of a method for receiving information according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram 1 of an information transmission apparatus according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram 1 of an apparatus for receiving information according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram 2 of an information transmission apparatus according to an embodiment of the present invention.
  • FIG. 8 is a second structural block diagram of an apparatus for receiving information according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a frame structure of 12 DMRSs according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a frame structure of 24 DMRSs according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of dividing a first REG into 2, 3, 4, and 6 parts according to an alternative embodiment of the present invention.
  • FIG. 15 is a first correspondence relationship between a second REG and a first REG according to an alternative embodiment of the present invention.
  • FIG. 16 is a second correspondence relationship between a second REG and a first REG according to an alternative embodiment of the present invention.
  • FIG. 1 is a flowchart 1 of a method for transmitting information according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 dividing M DMRS ports into K DMRS port groups, K and M are positive integers, and K is less than or equal to M;
  • Step S104 using independent precoding transmission DMRS on each DMRS port group.
  • the transmitting end divides the M DMRS ports into K DMRS port groups, and uses independent precoding to transmit DMRS on each DMRS port group, which solves the same precoding of the DMRS in the same PRB pair.
  • the method may further include: the sender determines M, K, and the channel rank N, where N is a positive integer.
  • K may be determined according to N, M; or, N may be determined according to K, M; or, M may be determined according to K, N; wherein K*N ⁇ M.
  • the transmitting end determines the number K of REGs according to the channel rank N and the number of DMRS ports M, and divides the M DMRS ports P1, P2, . . . , PM into K DMRS port groups S1, S2, . . . , SK, each.
  • the DMRS port group uses an independent precoding transmission demodulation reference pilot signal DMRS for demodulation of information transmitted on the REG corresponding to the port group.
  • the transmitting end determines that the channel rank is N according to the number of the REG and the number M of the DMRS ports, and divides the M DMRS ports P1, P2, . . . , PM into K DMRS port groups S1, S2, . . . , SK, Each DMRS port group uses an independent precoding transmission demodulation reference pilot signal DMRS for demodulation of information transmitted on the REG corresponding to the port group.
  • Each DMRS port P1, P2, . . . , PM in the DMRS port group may include 12 resource units RE.
  • the value of K may be determined by the number of REGs allocated by the REs used to transmit information on the PRB pair where the M DMRS ports are located.
  • the method further includes: dividing the RE for transmitting information on the PRB pair where the M DMRS ports are located into K REGs, and using independent precoding transmission information on the K REGs.
  • the information may include: data and/or control channel information.
  • the same precoding may be used for each DMRS port group of the K DMRS port groups and the REG corresponding to each DMRS port group of the K REGs.
  • the channel rank N may include at least one of the following: a number of data transmission layers, a number of data transmission streams, a number of data streams, a number of data layers, a channel Rank, a rank, a number of control channel transmission layers, and a control channel transmission stream.
  • FIG. 2 is a flowchart 1 of a method for receiving information according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 receiving DMRSs of M demodulation reference signals DMRS ports, and dividing M demodulation reference signal DMRS ports into K DMRS port groups;
  • step S204 channel estimation and/or information demodulation is performed independently by using DMRS on each DMRS port group, and M and K are positive integers, and K is less than or equal to M.
  • the received M DMRS ports are divided into K DMRS port groups, and channel estimation and/or information demodulation is performed independently by using DMRS on each DMRS port group, where M and K are positive integers.
  • K is less than or equal to M, which solves the technical problem that the DMRS in the same PRB pair uses the same precoding and has low channel estimation performance, thereby achieving the effect of improving the performance of the DMRS estimation channel at the receiving end.
  • the method may further include: determining M, K, and the received channel rank N, where N is a positive integer.
  • K may be determined according to N, M; or, N may be determined according to K, M; or, M may be determined according to K, N; wherein K*N ⁇ M.
  • the receiving end may determine the number K of REGs according to the received channel rank N information and the received M DMRS port information, and divide the M DMRS ports P1, P2, . . . , PM into K DMRS port groups S1, S2, ..., SK, independently performing channel estimation on the received demodulation reference pilot signal DMRS of each DMRS port group, and using the channel group estimated by the port group to detect information transmitted on the REG corresponding to the port group.
  • the receiving end may determine that the channel rank is N according to the number of REGs and the received M DMRS port information, and divide the M DMRS ports P1, P2, ..., PM into K DMRS port groups S1, S2, ... And performing signal estimation on the received DMRS port demodulation reference pilot signal DMRS, and using the channel group estimated by the port group to detect information transmitted on the REG corresponding to the port group.
  • the receiving end may determine the received M DMRS port information according to the number K of the REG and the channel rank N, and divide the M DMRS ports P1, P2, ..., PM into K DMRS port groups S1, S2, ... And performing signal estimation on the received DMRS port demodulation reference pilot signal DMRS, and using the channel group estimated by the port group to detect information transmitted on the REG corresponding to the port group.
  • Each DMRS port P1, P2, . . . , PM in the DMRS port group may include 12 resource units RE.
  • the value of K is determined by the number of resource element groups REG divided by the REs used to transmit information on the PRB pair where the M DMRS ports are located.
  • the value of K may be equal to the number of REGs allocated on the transmission resource where the M DMRS ports are located.
  • the method before step S204, further includes: receiving information transmitted on a PRB pair where the M DMRS ports are located, and transmitting the information on the PRB pair where the M DMRS ports are located.
  • the RE is divided into K REGs.
  • the information transmitted on the REG may include: data and/or control channel information.
  • the information demodulation by using the DMRS on each of the DMRS port groups in step S204 may include: each DMRS port group in the K DMRS port groups, in the K REGs. Information demodulation is performed on the REG corresponding to each DMRS port group.
  • the channel rank N may include at least one of the following: a number of data transmission layers, a number of data transmission streams, a number of data streams, a number of data layers, a channel Rank, a rank, a number of control channel transmission layers, and a control channel transmission stream.
  • FIG. 3 is a second flowchart of a method for transmitting information according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 determining the number K of the first REG and the number P of the second REG in the PRB pair, where K and P are positive integers and K ⁇ P;
  • Step S304 transmitting the first information in the K first REGs and transmitting the second information in the P second REGs.
  • the second information is transmitted by using the P second REGs in one PRB pair, that is, the P pieces of second information and the K first information may be included in the PRB pair, and the same PRB pair is solved.
  • the DMRS uses the same precoding to cause technical problems with low channel estimation performance, thereby achieving the effect of improving the performance of the DMRS estimation channel at the receiving end.
  • the first information may include: data and/or control channel information
  • the second information may include: pilot information
  • the step S304 may be implemented by: separately transmitting the first information by using the independent precoding in the K first REGs, and using the independent pre-preparing respectively in the P second REGs. Code transmission Two information.
  • the information is transmitted in the K first REGs and the P second REGs by independent precoding, respectively, further improving the performance of the open loop MIMO.
  • the method before step S304, further includes: dividing the physical resource block PRB into K first REGs and/or P second REGs.
  • the first REG is a resource unit RE group for transmitting the first information in the PRB pair
  • the second REG is a resource unit RE group for transmitting the second information in the PRB pair.
  • the i-th second REG R i may include one R & lt REs i, and L i DMRS ports have commonly used the i-th R & lt REs, wherein, i, i, and R & lt L i is a positive integer, and 1 ⁇ i ⁇ P.
  • L i L, where L is determined by the channel rank N, L, N and i are positive integers and 1 ⁇ i ⁇ P.
  • the number of the first REG, the number P of the second REG, and the number of REs included in the second REG are r.
  • the number of first REGs K, the number of second REGs, and the number of REs included in the second REG are r.
  • the number of first REGs K the number of second REGs, and the number of REs included in the second REG
  • the number of first REGs K, the number of second REGs, and the number of REs included in the second REG are r
  • the channel rank N may include at least one of the following: a number of data transmission layers, a number of data transmission streams, a number of data streams, a number of data layers, a channel Rank, a rank, a number of control channel transmission layers, and a control channel transmission stream.
  • FIG. 4 is a second flowchart of a method for receiving information according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 receiving the first information transmitted by the K first REGs of the physical resource block PRB pair and the second information transmitted by the P second REGs, where K and P are positive integers, and K is greater than or equal to P;
  • Step S404 performing channel estimation independently on the second information on the P second REGs, and performing information demodulation on the first information on the K first REGs.
  • the second information of the P second REG transmissions and the K first information are received in the PRB pair, that is, the K first information and the P second information may be included in the PRB, and the same
  • the technical problem of low channel estimation performance caused by the same precoding of the DMRS in one PRB pair achieves the effect of improving the performance of the DMRS estimation channel at the receiving end.
  • step S404 may include: the receiving end separately performs channel estimation by using the second information, and respectively estimating the corresponding K first REG channels by using the estimated channel, and Information demodulation is performed on the first information.
  • the first information may include: data and/or control channel information
  • the second information may include: pilot information
  • the receiving end may receive the first information transmitted by the K first REGs D1, . . . , DK of the same PRB pair from the same transmitting end, and the second information transmitted by the P second REGs R1, . . . , RP,
  • the channel is estimated by using the second information transmitted by the P second REGs R1, . . . , RP, and the channels of the K first REGs are estimated by using the estimated channel, and the first information transmitted by the first REG is subjected to data detection.
  • K and P are positive integers and K is greater than or equal to P.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • an information transmission and receiving device is further provided, which is used to implement the above embodiments and preferences.
  • the embodiments have not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a block diagram showing the structure of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes a first division module 52 and a first transmission module 54, which will be described below.
  • the first dividing module 52 is configured to divide the M DMRS ports into K DMRS port groups, where K and M are positive integers, and K is less than or equal to M.
  • the first transmission module 54 is connected to the first dividing module 52 and is set to be in each Independent precoding transmission DMRS is used on DMRS port groups.
  • FIG. 6 is a block diagram showing the structure of an apparatus for receiving information according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes a second dividing module 62 and a first demodulating module 64, which will be described below.
  • the second dividing module 62 is configured to receive the DMRSs of the M demodulation reference signals DMRS ports, and divide the M demodulation reference signals DMRS ports into K DMRS port groups; the first demodulation module 64 is connected to the second dividing module 62. , configured to independently perform channel estimation and/or information demodulation using DMRS on each DMRS port group, M and K being positive integers, and K being less than or equal to M.
  • FIG. 7 is a block diagram showing the structure of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes a determination module 72 and a second transmission module 74, which will be described below.
  • the determining module 72 is configured to determine the number K of the first REG and the number P of the second REG in the physical resource block PRB pair, where K and P are positive integers and K ⁇ P; and the second transmission module 74 is connected to The determining module 72 is configured to transmit the first information in the K first REGs and the second information in the P second REGs.
  • FIG. 8 is a block diagram showing the structure of an apparatus for receiving information according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes a receiving module 82 and a second demodulating module 84, which will be described below.
  • the receiving module 82 is configured to receive the first information transmitted by the K first REGs of the physical resource block PRB pair and the second information transmitted by the P second REGs, where K and P are positive integers, and K is greater than or equal to
  • the second demodulation module 84 is connected to the receiving module 82, configured to independently perform channel estimation on the second information on the P second REGs, and perform information demodulation on the first information on the K first REGs. .
  • the transmitting end in the downlink includes, but is not limited to, various wireless communication devices such as a macro base station, a micro base station, and a wireless access point.
  • the receiving end includes but is not limited to: various wireless communication devices such as a data card, a mobile phone, a notebook computer, a personal computer, a tablet computer, a personal digital assistant, and Bluetooth.
  • the transmitting end includes, but is not limited to, various wireless communication devices such as a data card, a mobile phone, a notebook computer, a personal computer, a tablet computer, a personal digital assistant, and Bluetooth.
  • the receiving end includes, but is not limited to, various wireless communication devices such as a macro base station, a micro base station, and a wireless access point.
  • the channel rank N may include at least one of the following: the number of data transmission layers, the number of data transmission streams, the number of data streams, the number of data layers, the channel Rank, the rank, the number of control channel transmission layers, and the number of control channel transmission streams. , the number of control channel streams, The number of control channel layers, the number of transport layers, the number of transport streams, the number of streams, the number of layers, and the number of precoded columns.
  • the transmitting end uses Nb PRBs to transmit data or ePDCCH, pilot information to a user serving it.
  • Each PRB pair is a set S of resource elements RE comprising Nc subcarriers and Ns OFDM/OFDMA symbols, which includes Nc*Ns REs. All PRs of each PRB transmission data or ePDCCH are divided into K REGs, where K is a positive integer greater than 1, each REG group contains several REs in the same PRB, and REs in different REG groups are not repeated of.
  • the transmitting end uses the open loop MIMO format of the transmission mode 9 or the transmission mode 10, and the K REGs are sent to the user after using the independent precoding action.
  • the transmitting end divides the M ports of the demodulation reference pilot into K groups, respectively, and configures independent precoding to be sent to the receiving end.
  • the user receives the reference pilot signals of the M DMRS ports, and divides the M ports into K groups, respectively. Perform channel estimation.
  • one DMRS group is associated with one REG group, without loss of generality, the k-th DMRS port and the k-th group REG are associated, that is, the user uses the k-th DMRS port for channel estimation, and obtains the kth with the estimated channel.
  • Embodiment 1 Determining the number of port groups K according to the channel rank N and the number of ports M
  • the transmitting end simultaneously divides M DMRS ports P1, P2, ..., PM into K DMRS port groups S1, S2, ..., SK.
  • the frame structure of LTE/LTE A is used to describe the values of various parameters.
  • M is 2, and port 7 and port 8 are orthogonally covered.
  • Port 7 and REG1 use precoding C1, port 8 and REG2 use precoding C2.
  • Receiving end Receive the DMRS signals of port 2 and port 8 of the two ports, and use it to estimate the channel, estimate the channel of REG1 by using the channel estimated by port7, and perform data detection, estimate the channel of REG2 by using the channel estimated by port8, and perform data detection.
  • C1 and C2 are precoding matrices of Nt*1.
  • M is 4, and the corresponding ports are port 7 and port 8, port 9 and port 10, where port 7 and port 8 share 12 DMRS REs by OCC.
  • port 9 and port 10 share 12 DMRS REs by OCC, according to the size of N, discuss in two cases
  • the receiving end receives the port port 7 to port 10 and uses it to perform channel estimation, respectively obtains channels of REG1 to REG4, and performs data detection on the REG by using the estimated channel, where C1 to C4 are precoding matrices of Nt*1.
  • the receiving end receives the DMRS signals of the M ports and uses it to estimate the channel.
  • the channels of REG1 data layers 1 and 2 respectively estimated by port7 and port8 are subjected to data detection; the channels of REG2 data layers 1 and 2 respectively estimated by port 9 and port 10 are subjected to data detection, where C1 and C2 are Nt *2 precoding matrix.
  • port number of port7 to port 10 is only one type of embodiment, and other port numbers, such as port1 to port 4, may be used, and the steps of the operation are similar, and are not mentioned here.
  • the data transmitted in the REG is data
  • the enhanced downlink control channel ePDCCH information may also be transmitted.
  • the process and the flow are the same as the method of transmitting the data, as long as the transmission data is changed to the ePDCCH. It is no longer exhaustive here.
  • Embodiment 2 Determine the channel rank N according to the number K of the REGs and the number of ports M
  • REG G1, G2, ..., GK each group includes M1, M2, ..., MK REs, and one RE in the same PRB belongs to and belongs to only one REG group.
  • the transmitting end simultaneously divides M DMRS ports P1, P2, ..., PM into K DMRS port groups S1, S2, ..., SK.
  • the frame structure of LTE/LTE A is used to describe the values of various parameters.
  • M is 2, and port 7 and port 8 are orthogonally covered.
  • Port 7 and REG1 use precoding C1, port 8 and REG2 use precoding C2.
  • the receiving end receives the DMRS signals of port 2 and port 8 of the two ports, and uses it to estimate the channel, estimates the channel of REG1 by using the channel estimated by port7, performs data detection, estimates the channel of REG2 by using the channel estimated by port 8, and performs data. Detection, where C1 and C2 are precoding matrices of Nt*1.
  • M is 4, and the corresponding ports are port 7 and port 8, port 9 and port 10, where port 7 and port 8 share 12 DMRS REs by OCC.
  • port 9 and port 10 share 12 DMRS REs by OCC, according to the size of N, discussed in two cases:
  • the receiving end receives the port port 7 to port 10 and uses it to perform channel estimation, respectively obtains channels of REG1 to REG4, and performs data detection on the REG by using the estimated channel, where C1 to C4 are precoding matrices of Nt*1.
  • DMRS Downlink Reference Signal
  • the receiving end receives the DMRS signals of the M ports and uses it to estimate the channel.
  • the channels of REG1 data layers 1 and 2 respectively estimated by port7 and port8 are subjected to data detection; the channels of REG2 data layers 1 and 2 respectively estimated by port 9 and port 10 are subjected to data detection, where C1 and C2 are Nt *2 precoding matrix.
  • port number of port7 to port 10 is only one type of embodiment, and other port numbers, such as port1 to port 4, may be used, and the steps of the operation are similar, and are not mentioned here.
  • the data transmitted in the REG is data
  • the enhanced downlink control channel ePDCCH information may also be transmitted.
  • the process and the flow are the same as the method of transmitting the data, as long as the transmission data is changed to the ePDCCH. It is no longer exhaustive here.
  • Embodiment 3 Determine the number of ports M according to the number K of REGs and the channel rank N
  • REG G1, G2, ..., GK each group includes M1, M2, ..., MK REs, and one RE in the same PRB belongs to and belongs to only one REG group.
  • the transmitting end simultaneously divides M DMRS ports P1, P2, ..., PM into K DMRS port groups S1, S2, ..., SK.
  • the DMRS is also divided into two groups, and the number of data layers transmitted is one.
  • Port7 and REG1 use precoding C1, port 8 and REG2 using precoding C2.
  • the receiving end receives the DMRS signals of the two ports port 7 and port 8, and uses it to estimate the channel, estimates the channel of REG1 by using the channel estimated by port7, performs data detection, estimates the channel of REG2 by using the channel estimated by port8, and performs data detection.
  • C1 and C2 are precoding matrices of Nt*1.
  • the receiving end receives the port port 7 to port 10 and uses it to perform channel estimation, respectively obtains channels of REG1 to REG4, and performs data detection on the REG by using the estimated channel, where C1 to C4 are precoding matrices of Nt*1.
  • the receiving end receives the DMRS signals of the M ports and uses it to estimate the channel.
  • the channels of REG1 data layers 1 and 2 respectively estimated by port7 and port8 are subjected to data detection; the channels of REG2 data layers 1 and 2 respectively estimated by port 9 and port 10 are subjected to data detection, where C1 and C2 are Nt *2 precoding matrix.
  • port number of port7 to port 10 is only one type of embodiment, and other port numbers, such as port1 to port 4, may be used, and the steps of the operation are similar, and are not mentioned here.
  • the data transmitted in the REG is data
  • the enhanced downlink control channel ePDCCH information may also be transmitted.
  • the process and the flow are the same as the method of transmitting the data, as long as the transmission data is changed to the ePDCCH. It is no longer exhaustive here.
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the transmitting end uses Nb PRBs to transmit data or ePDCCH, pilot signals to a user serving it.
  • Each PRB pair is a set S of resource elements RE comprising Nc subcarriers and Ns OFDM/OFDMA symbols, which includes Nc*Ns REs. All REs of the transmission data or ePDCCH in each PRB pair are divided into K first REGs D1, . . .
  • each first REG group contains several REs in the same PRB, and the REs in different REG groups are not repeated.
  • the transmitting end uses the open loop MIMO format of the transmission mode 9 or the transmission mode 10, and the K first REGs are transmitted to the user by using independent precoding.
  • the receiving end receives the transmission data or the information on the RE of the ePDCCH, and divides the transmission data or the RE of the ePDCCH into K first REG groups like the transmitting end.
  • the receiving end receives the reference pilot signals on the R DMRS REs in the same PRB, and divides them into P second REGs like the transmitting end, and the ith second REG of the second REG includes r i DMRSs.
  • Channel estimation is performed independently for each REG of each of the received P second REGs or each DMRS port of each REG, and the estimated channel is channel-estimated for the K first REGs, and the channel estimated for the REG is used
  • the data transmitted on the first REG or the ePDCCH is detected and demodulated.
  • Embodiment 4 determining the number of REs of the second REG according to the number K of the first REG and the number P of the second REG, and the case of the airspace sub-port
  • Each first REG uses independent precoding to process the data or ePDCCH and transmit it to the receiving end.
  • the transmitting end needs to use R DMRS REs to transmit the DMRS, and divide the R DMRS REs into P second REGs R1, ..., RP, a special special division second.
  • the data on the D1 is precoded by the precoding P1 and transmitted to the receiving end.
  • the DMRS signal on the first port of the second REG is preprocessed by P1 and sent to the receiving end.
  • the receiving end receives the data of the two first REGs and the DMRS signals on the two DMRS ports, and independently performs channel estimation on the demodulated reference pilot signal DMRS of the received k-th DMRS port group, and uses the estimated channel as the kth.
  • the data transmitted in the REG is data
  • the enhanced downlink control channel ePDCCH information, the process and the flow thereof can also be transmitted.
  • the procedure is the same as the method of transmitting data, as long as the transmission data is changed to ePDCCH. It is no longer exhaustive here.
  • Embodiment 5 determining the number of REs of the second REG according to the number K of the first REG and the number P of the second REG, and the case of the time-frequency split port
  • each PRB of the transmitted data into K first REGs D1, . . . , DK, as shown in FIG. 11, A, B, C, and D, and divides the first REG.
  • K 2, 3, 4, 6, of course, there are other similar division methods, not to mention one example here.
  • Each first REG uses independent precoding to process the data or ePDCCH and transmit it to the receiving end.
  • the transmitting end needs to use R DMRS REs to transmit the DMRS, and divide the R DMRS REs into P second REGs R1, ..., RP, as shown in Figures 12-14.
  • R DMRS REs to transmit the DMRS
  • P second REGs R1, ..., RP as shown in Figures 12-14.
  • Dividing P second REGs so that the receiving end estimates channels according to the DMRS information on the received P second REGs to demodulate data of K REGs, where K and P are positive integers greater than 1, and K is greater than Equal to P.
  • the number of DMRS REs is 12, corresponding to port 7 and port 8 of LTE/LTE A, the two ports share the r REs by way of OCC, and each port uses r REs of the REGs in which the REGs are located. That is, there are a total of P group port7 and port8.
  • the ports of the second REG of different groups may also be renumbered, and a total of P*L ports are formed.
  • the number of DMRS REs is 24, the number of DMRSs included in each REG group is 24/P REs when N is less than 3, and there are 2 ports in each REG group, or LTE/LTE A port. 7 or port 8, the two ports share the r REs in an OCC manner, or are port 9 or port 10 of LTE/LTE A, and the two ports share the r REs by way of OCC.
  • Each port is only in the RE of the REG, and there are a total of P group port 7/port 8 or port 9/port 10; of course, the ports of the P second REGs can be renumbered, for a total of 2P ports.
  • N is greater than 2
  • the four ports share the r/2 REs, or ports 9, 10, 12, 14 by OCC.
  • the four ports share the r/2 REs in the OCC mode.
  • Ns refer to the DMRS numbers of LTE/LTE A, and the ports only use the corresponding 12/P REs in the REG.
  • the transmitting end pre-codes the data of the first REG D i of the i-th group by using the pre-coding P i and transmits the data to the user, and pre-codes the DMRS signal of the i-th second REG R i by P i and transmits the data to the receiving end.
  • P i is a matrix of Nt*N columns, and Nt is the number of transmitting antennas/array/ports.
  • port number of port7 to port 14 is only one of the embodiments, and other port numbers may be used.
  • steps of port1 to port 7 are similar, and this is not an example.
  • the i-th second REG corresponds to the demodulation pilot signal of the i-th first REG, which is only one of the embodiments, as shown in FIG. 15(A). There may be other correspondences as shown in FIG. 16(A), and the i-th second REG corresponds to the demodulation pilot signal of the P-i+1th first REG, which is not mentioned here.
  • the data transmitted in the REG is data
  • the enhanced downlink control channel ePDCCH information may also be transmitted.
  • the process and the flow are the same as the method of transmitting the data, as long as the transmission data is changed to the ePDCCH. It is no longer exhaustive here.
  • Embodiment 6 Determine the number of REs of the second REG according to the number K of the first REG and the number P of the second REG. In the case of the time-frequency + air-space sub-port, there are only 12 DMRS REs in one PRB.
  • Each first REG uses independent precoding to process the data or ePDCCH and transmit it to the receiving end.
  • the transmitting end needs to use R DMRS REs to transmit the DMRS, and divide the R DMRS REs into P second REGs R1, ..., RP, as shown in Figures 12-14.
  • R DMRS REs to transmit the DMRS
  • P second REGs R1, ..., RP as shown in Figures 12-14.
  • Dividing P second REGs so that the receiving end estimates channels according to the DMRS information on the received P second REGs to demodulate data of K REGs, where K and P are positive integers greater than 1, and K is greater than Equal to P.
  • each RE group of the second REG includes equal RE numbers
  • the number of DMRS REs is 12
  • the two ports share the r REs by way of OCC, and each port uses r REs of the REG, that is, there are a total of P groups port7 and port8.
  • the ports of the second REG of different groups may also be renumbered, and a total of P*2 ports are formed.
  • the transmitting end pre-codes the data of the first REG D i of the i-th group by using the pre-coding P i and transmits the data to the user, and uses the j-th column of P i to the i-th second REG R i
  • the DMRS signals on the jth DMRS ports are precoded and transmitted to the receiving end
  • P i is a matrix of Nt*2 columns
  • Nt is the number of transmitting antennas/array/ports.
  • the value of P includes, but is not limited to, 2, 3, 4, 6, and the number of REs corresponding to each REG is 12/P. , including the following values:
  • the receiving end receives the data transmitted by the K first REGs and the DMRS signals transmitted by the P second REGs.
  • the channel of the j-th layer data on the i-th first REG is estimated by using the DMRS signal on the corresponding RE of the j-th port of the i-th second REG, and data is detected.
  • K P
  • the value of P includes, but is not limited to, 2, 3, 4, 6, corresponding to each REG.
  • the RE number is 12/P. It includes the following values:
  • port number of port7 to port 14 is only one of the embodiments, and other port numbers may be used.
  • steps of port1 to port 7 are similar, and this is not an example.
  • B) in FIG. 15 is that the first port and the second port of the i-th second REG group R i correspond to the 2i-1 first REG D2i-1 and
  • (B) in FIG. 16 is the first port and the second port of the P-i+1 second REG group RP-i+1 and the K-2i-1 first REG D2i-1 and the 2i-1 first REG D2i correspond to and provide channel estimation and data demodulation.
  • the data transmitted in the REG is data
  • the enhanced downlink control channel ePDCCH information may also be transmitted.
  • the process and the flow are the same as the method of transmitting the data, as long as the transmission data is changed to the ePDCCH. It is no longer exhaustive here.
  • Embodiment 7 determining the number of REs of the second REG according to the number K of the first REG and the number P of the second REG, and the case of the time-frequency + air-space sub-port, only 24 DMRS REs in one PRB
  • each PRB of the transmitted data into K first REGs D1, . . . , DK, as shown in FIG. 11, A, B, C, and D, and divides the first REG.
  • K 2, 3, 4, 6, of course, there are other similar division methods, not to mention one example here.
  • Each first REG uses independent precoding to process the data or ePDCCH and transmit it to the receiving end.
  • the transmitting end needs to use R DMRS REs to transmit the DMRS, and divide the R DMRS REs into P second REGs R1, ..., RP, as shown in Figures 12-14.
  • R DMRS REs to transmit the DMRS
  • P second REGs R1, ..., RP as shown in Figures 12-14.
  • Dividing P second REGs so that the receiving end estimates channels according to the DMRS information on the received P second REGs to demodulate data of K REGs, where K and P are positive integers greater than 1, and K is greater than Equal to P.
  • each RE group of the second REG includes an equal number of REs
  • the number of DMRS REs is 24
  • N the number of DMRSs included in each REG group
  • each REG group has 2 ports, either LTE/LTE A port 7 or port 8, and the two ports pass
  • the RCC shares the r REs, which are either port 9 or port 10 of LTE/LTE A.
  • the two ports share the r REs by means of OCC, and each port is only in the REG where it is located.
  • the four ports share the r/2 REs, or ports 9, 10, 12, and 14 through OCC.
  • the four ports share the r/2 REs in the OCC mode.
  • Ns refer to the DMRS numbers of LTE/LTE A, and the ports only use the corresponding 12/P REs in the REG.
  • K 2P
  • the value of P includes, but is not limited to, the number of REs of each REG corresponding to 2, 4, 6, 8, 12 is 24/P, that is, includes the following values:
  • the transmitting end pre-codes the data of the first REG D i of the i-th group by using the pre-coding P i and transmits the data to the user, and uses the j-th column of P i to the i-th second REG R i
  • the DMRS signal on the jth DMRS port is precoded and transmitted to the receiving end
  • P i is a matrix of Nt*2 columns
  • Nt is the number of transmitting antennas/array/ports.
  • the value of P includes, but is not limited to, 4, 6, 8, 12, and the corresponding RE number of each REG is 24/P. , including the following values:
  • the transmitting end pre-codes the data of the first REG D i of the i-th group by using the pre-coding P i and transmits the data to the user, and uses the j-th column of P i to the ith second REG R
  • the DMRS signal on the jth DMRS port of i is precoded and transmitted to the receiving end
  • P i is a matrix of Nt*N columns
  • Nt is the number of transmitting antennas/array/ports.
  • the value of P includes, but is not limited to, 2, 3, 4, 6, and the number of REs corresponding to each REG. It is 12/P, which includes the following values:
  • the transmitting end pre-codes the data of the first REG D i of the i-th group by using the pre-coding P i and transmits the data to the user, and uses the j-th column of P i to the ith second REG R i
  • the DMRS signal on the jth DMRS port is precoded and transmitted to the receiving end
  • P i is a matrix of Nt*N columns
  • Nt is the number of transmitting antennas/array/ports.
  • K P
  • the value of P includes, but is not limited to, a value of 3
  • the receiving end receives the data transmitted by the K first REGs and the DMRS signals transmitted by the P second REGs.
  • the value of P includes, but is not limited to, 2, 4, 6, 8, 12, and the corresponding RE number of each REG is 12/P. It includes the following values:
  • the channel of the j-th layer data on the i-th first REG is estimated by using the DMRS signal on the corresponding RE of the j-th port of the i-th second REG, and data is detected.
  • the value of P includes, but is not limited to, 4, 6, 8, 12, and the number of REs corresponding to each REG is 24/P. . It includes the following values:
  • the channel of the j-th layer data on the i-th first REG is estimated by using the DMRS signal on the corresponding RE of the j-th port of the i-th second REG, and data is detected.
  • port number of port7 to port 14 is only one of the embodiments, and other port numbers may be used.
  • steps of port1 to port 7 are similar, and this is not an example.
  • B) in FIG. 15 is that the first port and the second port of the i-th second REG group R i correspond to the 2i-1 first REG D2i-1 and
  • (B) in FIG. 16 is the first port and the second port of the P-i+1 second REG group RP-i+1 and the K-2i-1 first REG D2i-1 and the 2i-1 first REG D2i correspond to and provide channel estimation and data demodulation.
  • the data transmitted in the REG is data
  • the enhanced downlink control channel ePDCCH information may also be transmitted.
  • the process and the flow are the same as the method of transmitting the data, as long as the transmission data is changed to the ePDCCH. It is no longer exhaustive here.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • S21 Receive DMRSs of M demodulation reference signals DMRS ports, and divide M demodulation reference signal DMRS ports into K DMRS port groups;
  • S22 Perform channel estimation and/or information demodulation independently by using DMRS on each DMRS port group, where M and K are positive integers, and K is less than or equal to M.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor executes the above S11-S12 according to the stored program code in the storage medium.
  • the processor executes the above S21-S22 according to the stored program code in the storage medium.
  • the processor executes the above S31-S32 according to the stored program code in the storage medium.
  • the processor executes the above S41-S42 according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or make multiple modules or steps into a single The integrated circuit module is implemented. Thus, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信息的传输、接收方法及装置,其中,一种信息的传输方法包括:将M个解调参考信号DMRS端口分成K个DMRS端口组,K、M为正整数且K小于等于M;在每个DMRS端口组上使用独立的预编码传输DMRS。通过本发明,将M个DMRS端口划分为K个DMRS端口组,并在每个DMRS端口组上使用独立的预编码传输DMRS,解决了同一个PRB对中的DMRS使用相同的预编码而导致的其信道估计性能低的技术问题,进而达到了提高DMRS估计信道的性能的效果。

Description

信息的传输、接收方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种信息的传输、接收方法及装置。
背景技术
无线通信系统中,发送端和接收端一般会采用多根天线发送和接收来获取更高的速率。多输入多输出(multiple-input-multiple-output,简称为MIMO)技术的一个原理是利用信道的一些特征来形成匹配信道特征的多层传输,从而能在不增加带宽和功率的基础上就获得显著的性能提升,在目前的系统中广泛应用。比如在长期演进(Long Term Evolution,简称为LTE)和其增强版本(增强型长期演进(Long Term Evolution-Advanced,简称为LTE A))系统中有多种多天线技术传输的模式,传输模式2为空频分集,传输模式3为开环空间复用或称为开环MIMO技术,传输模式4为闭环空间复用,传输模式5为多用户MIMO,传输模式6为单数据流的闭环空间复用,传输模式7和8分别为单流和双流波束赋形,而传输模式9支持最大8层的空间复用,并能实现当用户和多用户的自适应切换,数据层数的自适应切换,支持开环MIMO和闭环MIMO模式。
在这些传输模式中,有的需要用户反馈预编码矩阵指示符(Precoding Matrix Indicator,简称为PMI),称为闭环MIMO技术,有的不需要反馈PMI,称为开环MIMO技术。LTE/LTE A中定义这些传输模式,主要是为了适应不同用户的信道特征以及用户的接收能力。比如对于1根接收天线的用户它只能使用复用层数为1的MIMO技术,信道变化比较快的用户,可以考虑使用开环的MIMO技术,这是因为用户移动速度比较快时,信道的改变比较快,在反馈周期内,闭环空间复用反馈的预编码信息并不能准确及时的反映基站下一个反馈周期内下行信道信息,从而会导致性能的下降。而开环空间复用技术由于不需要反馈预编码信息,具有更好的鲁棒性。
LTE/LTE A的早期版本比如Release 8/Release 9采用基于小区公共参考信号(Cell-specific Reference Signal,简称为CRS)的开环MIMO,它是利用TM3来实现的,而且解调主要考虑利用CRS的方法进行解调。由于CRS最大支持4端口,所以TM3不支持大于4端口的情况。
随着基站配置的发送端口越来越多,支持更多端口的开环MIMO技术也需要被支持,在LTE/LTE A的release 10以及以后的版本中,定义了传输模式9和传输模式10,它可以基于解调参考信号(Demodulation Reference Signal,简称为DMRS)做开环MIMO的。在基于DMRS的开环MIMO中,由于终端不会反馈预编码信息,所以基站没有先验的信息来确定于下行匹配的预编码来传输数据,从而由于预编码不准确导致性能下降,特别是在基于多个PRB粒度的开环预编码情况,一旦选择的预编码不好,则容易造成整个数据块的传输失败,一种办法就是将一个是将物理资源块(Physical Resource Block,简称为PRB)划分成多个资源单元组(Resource Element Group,简称为REG),每个REG使用独立使用一个预编码,从而能有效 地遍历不同的码字从而提高系统的性能。这里所述的所述REG为包括N个OFDM/OFDMA符号与M个子载波对应的资源单元RE的集合,集合资源单元组里的RE在同一个PRB对内,REG里的RE可以是连续的,也可以是离散的。
在相关技术中,DMRS在同一个PRB对中只用同一个预编码作用,在LTE/LTE A的release10~release 13版本里,DMRS最多支持8个端口,分别为port{7,8,9,10,10,11,12,13,14}。每个port分别占住12个资源单元(Resource Element,简称为RE)。
由于同一个PRB对中的DMRS使用相同的预编码,而传输数据或增强下行控制信道(enhance Physical Downlink Control Channel,简称为ePDCCH)区域划分了K个不同的REG,每个REG使用的预编码可能都不同,从而会导致用DMRS估计的信道不能很好地体现传输数据或者ePDCCH REG的信道,从而导致性能的下降。
针对相关技术中同一个PRB对中的DMRS使用相同的预编码而导致的其信道估计性能低的技术问题,目前尚未提出解决方案。
发明内容
本发明实施例提供了一种信息的传输、接收方法及装置,以至少解决相关技术中同一个PRB对中的DMRS使用相同的预编码而导致的其信道估计性能低的技术问题。
根据本发明的一个实施例,提供了一种信息的传输方法,包括:将M个解调参考信号DMRS端口分成K个DMRS端口组,所述K、所述M为正整数,K小于等于M;在每个所述DMRS端口组上使用独立的预编码传输DMRS。
可选地,在将所述M个DMRS端口分成所述K个DMRS端口组之前,还包括:确定所述M、所述K,以及信道秩N,其中,所述N为正整数。
可选地,确定所述M、所述K,以及信道秩N包括:根据所述N、所述M,确定所述K;或者,根据所述K、所述M,确定所述N;或者,根据所述K、所述N,确定所述M;其中,K*N≤M。
可选地,当所述N=1或者所述N=2时,M=N*K。
可选地,所述DMRS端口组中的每个DMRS端口,包括12个资源单元RE。
可选地,所述K的值由所述M个DMRS端口所在的PRB对上用于传输信息的RE所划分的REG个数确定。
可选地,还包括:将所述M个DMRS端口所在的PRB对上的用于传输信息的RE分成K个REG,并在所述的K个REG上使用独立的预编码传输信息。
可选地,每个所述REG中传输的信息包括:数据和/或控制信道信息。
可选地,所述K个DMRS端口组中的每个DMRS端口组,和与所述每个DMRS端口组 对应的所述K个REG中的每个REG,使用相同的预编码。
可选地,所述信道秩N包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。
根据本发明的另一个实施例,提出了一种信息的接收方法,包括:接收M个解调参考信号DMRS端口的DMRS,将所述M个解调参考信号DMRS端口分成K个DMRS端口组;利用每个所述DMRS端口组上的DMRS独立地进行信道估计和/或信息解调,M和K为正整数,K小于等于M。
可选地,在将所述M个DMRS端口分成所述K个DMRS端口组之前,所述方法还包括:确定所述M、所述K,以及接收的信道秩N,其中,所述N为正整数。
可选地,确定所述M、所述K,以及接收的信道秩N包括:根据所述N、所述M,确定所述K;或者,根据所述K、所述M,确定所述N;或者,根据所述K、所述N,确定所述M;其中,K*N≤M。
可选地,当所述N=1或者所述N=2时,M=N*K。
可选地,利用接收的每个所述DMRS端口组上的DMRS,分别对与所述DMRS端口组对应的REG上传输的信息进行解调,包括:对接收的每个所述DMRS端口组上的DMRS,独立地进行信道的估计;利用估计的所述信道,对与所述DMRS端口组对应的REG上传输的信息进行信息解调。
可选地,所述DMRS端口组中的每个DMRS端口,包括12个资源单元RE。
可选地,所述K的值由所述M个DMRS端口所在的PRB对上用于传输信息的RE划分的资源单元组REG个数确定。
可选地,接收所述M个DMRS端口所在的PRB对上传输的信息,将所述M个DMRS端口所在的PRB对上的用于传输所述信息的RE划分成K个REG。
可选地,所述REG中传输的信息包括:数据和/或控制信道信息。
可选地,利用每个所述DMRS端口组上的DMRS独立地进行信息解调包括:所述K个DMRS端口组中的每个DMRS端口组,对所述K个REG中与每个所述DMRS端口组对应的REG,进行信息解调。
可选地,信道秩N包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。
根据本发明的另一个实施例,还提供了一种信息的传输方法,包括:确定物理资源块PRB对中第一REG的个数K和第二REG的个数P,其中,所述K、所述P为正整数且K≥P;在 K个所述第一REG中传输第一信息,以及在P个所述第二REG中传输第二信息。
可选地,所述第一信息包括:数据和/或控制信道信息,所述第二信息包括:导频信息。
可选地,在K个所述第一REG中传输第一信息,以及在P个所述第二REG中传输第二信息之前,所述方法还包括:将所述物理资源块PRB划分成所述K个第一REG和/或所述P个第二REG。
可选地,所述第一REG为所述PRB对中的用于传输所述第一信息的资源单元RE组,所述第二REG为所述PRB对里的用于传输所述第二信息的资源单元RE组。
可选地,第i个所述第二REG Ri包括ri个RE,且有Li个DMRS端口共同使用所述ri个RE,其中,i、ri和Li为正整数,且1≤i≤P。
可选地,所述Li=L,其中,所述L由信道秩N确定,L、N和i为正整数且1≤i≤P。
可选地,在所述N=1或者2时,所述L=2;在所述N大于2时,所述L=N。
可选地,所述第一REG个数K,第二REG个数P和每个第二REG的DMRS端口个数L满足关系K*N=P*L。
可选地,在所述N=1时,K=2P,其中,所述N=1,P=1时,K=2;所述N>1时,K=P。
可选地,第i个第二REG Ri包含的RE个数ri=r,其中,所述r由信道秩N确定,且r和i为正整数,1≤i≤P。
可选地,在所述N=1或者2时,所述r=R/P,其中,R为所述PRB对里传输DMRS的RE的总个数,所述R为正整数;在所述N大于2时,所述r=12/P。
可选地,在所述N=1时,且所述PRB对中用于传输DMRS的总RE个数为12时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r的取值包括以下组合:K=2,P=1,r=12,或者K=4,P=2,r=6,或者K=6,P=3,r=4,或者K=8,P=4,r=3,或者K=12,P=6,r=2;或者,
在所述N=2时,且所述PRB对中用于传输DMRS的总RE个数为12时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=12/P的取值包括以下组合:K=2,P=2,r=6,或者K=3,P=3,r=4,或者K=4,P=4,r=3,或者K=6,P=6,r=2;或者,
在所述N=1时,且所述PRB对中用于传输DMRS的总RE个数为24时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=24/P的取值包括以下组合:K=4,P=2,r=12,或者K=8,P=4,r=6,或者K=12,P=6,r=4,或者K=16,P=8,r=3,或者K=24,P=12,r=2;或者,
在所述N=2时,且所述PRB对中用于传输DMRS的总RE个数为24时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=24/P的取值包括以下组合: K=4,P=4,r=6,或者K=6,P=6,r=4,或者K=8,P=8,r=3,或者K=12,P=12,r=2;或者,
在所述N=3或者4时,且所述PRB对中用于传输DMRS的总RE个数为24时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=12/P的取值包括以下组合:K=2,P=2,r=6,或者K=3,P=3,r=4,或者K=4,P=4,r=3,或者K=6,P=6,r=2;或者,
在所述N>4时,且所述PRB对中用于传输DMRS的总RE个数为24时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=12/P的取值包括以下组合:K=3,P=3,r=4。
可选地,所述信道秩N包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。
根据本发明的另一个实施例,还提供了一种信息的接收方法,包括:接收物理资源块PRB对的K个第一REG所传输的第一信息和P个第二REG所传输的第二信息,其中,所述K和所述P为正整数,并且K≥P;对所述P个第二REG上的第二信息独立地进行信道估计,并对所述K个第一REG上的第一信息进行信息解调。
可选地,分别独立地利用所述第二信息,对与所述第二信息对应的所述第一信息进行解调包括:分别利用所述第二信息,独立地进行信道的估计;分别利用估计后的所述信道,估计相对应的所述K个第一REG的信道,并对所述第一信息进行数据信息解调。
可选地,所述第一信息包括:数据和/或控制信道信息,所述第二信息包括:导频信息。
根据本发明的一个实施例,提供了一种信息的传输装置,包括:第一划分模块,设置为将M个解调参考信号DMRS端口分成K个DMRS端口组,所述K、所述M为正整数;第一传输模块,设置为在每个所述DMRS端口组上使用独立的预编码传输DMRS。
根据本发明的另一个方面,提供了一种信息的接收装置,包括:第二划分模块,设置为接收M个解调参考信号DMRS端口的DMRS,将所述M个解调参考信号DMRS端口分成K个DMRS端口组;第一解调模块,设置为利用每个所述DMRS端口组上的DMRS独立地进行信道估计和/或信息解调,M和K为正整数,K小于等于M。
根据本发明的另一个方面,提供了一种信息的传输装置,包括:确定模块,设置为确定物理资源块PRB对中第一REG的个数K和第二REG的个数P,其中,所述K、所述P为正整数且K≥P;第二传输模块,设置为在K个所述第一REG中传输第一信息,以及在P个所述第二REG中传输第二信息。
根据本发明的另一个方面,提供了一种信息的接收装置,包括:接收模块,设置为接收物理资源块PRB对的K个第一REG所传输的第一信息和P个第二REG所传输的第二信息, 其中,所述K和所述P为正整数,并且K≥P;第二解调模块,设置为对所述P个第二REG上的第二信息独立地进行信道估计,并对所述K个第一REG上的第一信息进行信息解调。
通过本发明上述实施例,采用将M个解调参考信号DMRS端口分成K个DMRS端口组,K、M为正整数且K小于等于M;在每个DMRS端口组上使用独立的预编码传输DMRS的方法,将M个DMRS端口划分为K个DMRS端口组,并在每个DMRS端口组上使用独立的预编码传输DMRS,解决了同一个PRB对中的DMRS使用相同的预编码而导致的其信道估计性能低的技术问题,进而达到了提高DMRS估计信道的性能的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的信息的传输方法的流程图一;
图2是根据本发明实施例的信息的接收方法的流程图一;
图3是根据本发明实施例的信息的传输方法的流程图二;
图4是根据本发明实施例的信息的接收方法的流程图二;
图5是根据本发明实施例的信息的传输装置的结构框图一;
图6是根据本发明实施例的信息的接收装置的结构框图一;
图7是根据本发明实施例的信息的传输装置的结构框图二;
图8是根据本发明实施例的信息的接收装置的结构框图二;
图9是根据本发明实施例的有12个DMRS的帧结构的示意图;
图10是根据本发明实施例的有24个DMRS的帧结构的示意图;
图11是根据本发明可选实施例的第一REG划分成2,3,4,6份的示意图;
图12是根据本发明可选实施例的第二REG划分成2,3,4,6份的示意图,R=12;
图13是根据本发明可选实施例的第二REG划分成2,3,4,6份的示意图,R=24;
图14是根据本发明可选实施例的第二REG划分成4,6,8,12份的示意图,R=24;
图15是根据本发明可选实施例的第二REG和第一REG的对应关系一;
图16是根据本发明可选实施例的第二REG和第一REG的对应关系二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种信息的传输方法,图1是根据本发明实施例的信息的传输方法的流程图一,如图1所示,该流程包括如下步骤:
步骤S102,将M个DMRS端口分成K个DMRS端口组,K、M为正整数,K小于等于M;
步骤S104,在每个DMRS端口组上使用独立的预编码传输DMRS。
通过上述步骤,发送端将M个DMRS端口划分为K个DMRS端口组,并在每个DMRS端口组上使用独立的预编码传输DMRS,解决了同一个PRB对中的DMRS使用相同的预编码而导致的其信道估计性能低的技术问题,进而达到了提高DMRS估计信道的性能的效果。
在一个可选的实施例中,在步骤S102之前,还可以包括:发送端确定M、K,以及信道秩N,其中,N为正整数。
在实施过程中,可以根据N、M,确定K;或者,可以根据K、M,确定N;或者,可以根据K、N,确定M;其中,K*N≤M。
例如,发送端根据信道秩N和DMRS端口个数M确定REG的个数K,并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,每个DMRS端口组使用独立的预编码传输解调参考导频信号DMRS用于与所述端口组对应的REG上传输的信息进行解调。其中,K,M和N为正整数,且K*N<=M。
或者,发送端根据REG的个数K和DMRS端口个数M,确定信道秩为N,并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,每个DMRS端口组使用独立的预编码传输解调参考导频信号DMRS用于与所述端口组对应的REG上传输的信息进行解调。其中,K,M和N为正整数,且K*N<=M。
或者,发送端根据REG的个数K,以及信道秩N,确定需要配置的DMRS端口个数M,并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,每个DMRS端口组使用独立的预编码传输解调参考导频信号DMRS用于与所述端口组对应的REG上传输的信息进行解调,其中,K,M和N为正整数,且K*N<=M。
在一个可选的实施例中,当传输的数据层数或者信道秩N=1或者N=2时,M=N*K。
其中,DMRS端口组中的每个DMRS端口P1,P2,…,PM,可以包括12个资源单元RE。
其中,K的值可以由M个DMRS端口所在的PRB对上用于传输信息的RE所划分的REG个数来确定。
在步骤S102之前或之后,还可以包括:将M个DMRS端口所在的PRB对上的用于传输信息的RE划分成K个REG,并在的K个REG上使用独立的预编码传输信息。
其中,该信息可以包括:数据和/或控制信道信息。
其中,K个DMRS端口组中的每个DMRS端口组,和K个REG中与每个DMRS端口组对应的REG,可以使用相同的预编码。
其中,信道秩N可以包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。
在本实施例中提供了一种信息的接收方法,图2是根据本发明实施例的信息的接收方法的流程图一,如图2所示,该流程包括如下步骤:
步骤S202,接收M个解调参考信号DMRS端口的DMRS,将M个解调参考信号DMRS端口分成K个DMRS端口组;
步骤S204,利用每个DMRS端口组上的DMRS独立地进行信道估计和/或信息解调,M和K为正整数,K小于等于M。
通过上述步骤,将接收的M个DMRS端口划分为K个DMRS端口组,并利用每个DMRS端口组上的DMRS独立地进行信道估计和/或信息解调,其中,M和K为正整数,K小于等于M,解决了同一个PRB对中的DMRS使用相同的预编码而导致的其信道估计性能低的技术问题,进而达到了提高接收端DMRS估计信道的性能的效果。
在上述步骤S202之前,还可以包括:确定M、K,以及接收的信道秩N,其中,N为正整数。
在实施过程中,可以根据N、M,确定K;或者,可以根据K、M,确定N;或者,可以根据K、N,确定M;其中,K*N≤M。
例如,接收端可以根据接收的信道秩N信息和接收的M个DMRS端口信息确定REG的个数K,并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,对接收的每个DMRS端口组的解调参考导频信号DMRS独立地进行信道估,用所述端口组估计的信道对与所述端口组对应的REG上传输的信息进行检测。其中,K,M和N为正整数,且K*N<=M。
或者,接收端可以根据REG的个数K和接收的M个DMRS端口信息,确定信道秩为N,并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,对接收的每个DMRS端口解调参考导频信号DMRS独立地进行信道估,用所述端口组估计的信道对与所述端口组对应的REG上传输的信息进行检测。其中,K,M和N为正整数,且K*N<=M。
或者,接收端可以根据REG的个数K和信道秩为N,确定接收的M个DMRS端口信息,并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,对接收的每个DMRS端口解调参考导频信号DMRS独立地进行信道估,用所述端口组估计的信道对与所述端口组对应的REG上传输的信息进行检测。其中,K,M和N为正整数,且K*N<=M。
在一个可选的实施例中,当信道秩N=1或者N=2时,M=N*K。
其中,DMRS端口组中的每个DMRS端口P1,P2,…,PM,可以包括12个资源单元RE。
在一个可选的实施例中,K的值由M个DMRS端口所在的PRB对上用于传输信息的RE所划分的资源单元组REG个数确定。
例如,K的值可以与M个DMRS端口所在的传输资源上划分的REG个数相等。
在一个可选的实施例中,在步骤S204之前,还可以包括:接收M个DMRS端口所在的PRB对上传输的信息,并将M个DMRS端口所在的PRB对上的用于传输该信息的RE划分成K个REG。
其中,在REG上传输的信息可以包括:数据和/或控制信道信息。
在一个可选的实施例中,步骤S204中利用每个所述DMRS端口组上的DMRS独立地进行信息解调可以包括:K个DMRS端口组中的每个DMRS端口组,对K个REG中与该每个DMRS端口组对应的REG,进行信息解调。
其中,信道秩N可以包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。
在本实施例中还提供了一种信息的传输方法,图3是根据本发明实施例的信息的传输方法的流程图二,如图3所示,该流程包括如下步骤:
步骤S302,确定PRB对中第一REG的个数K和第二REG的个数P,其中,K、P为正整数且K≥P;
步骤S304,在K个第一REG中传输第一信息,以及在P个第二REG中传输第二信息。
通过上述步骤,在一个PRB对中利用P个第二REG传输第二信息,也即,在PRB对中可以包含P个第二信息,及K个第一信息,解决了同一个PRB对中的DMRS使用相同的预编码而导致的其信道估计性能低的技术问题,进而达到了提高接收端DMRS估计信道的性能的效果。
其中,第一信息可以包括:数据和/或控制信道信息,第二信息可以包括:导频信息。
在一个可选的实施例中,步骤S304可以采取如下方法实现,包括:在K个第一REG中分别利用独立的预编码传输第一信息,以及在P个第二REG中分别利用独立的预编码传输第 二信息。在该可选的实施例中,利用独立的预编码分别在K个第一REG和P个第二REG中传输信息,进一步提高了开环MIMO的性能。
在一个可选的实施例中,在步骤S304之前,还可以包括:将物理资源块PRB划分成K个第一REG和/或P个第二REG。
其中,第一REG为PRB对中的用于传输第一信息的资源单元RE组,第二REG为PRB对里的用于传输第二信息的资源单元RE组。
其中,第i个第二REG Ri可以包括ri个RE,且有Li个DMRS端口共同使用所述ri个RE,其中,i、ri和Li为正整数,且1≤i≤P。
在一个可选的实施例中,Li=L,其中,L由信道秩N确定,L、N和i为正整数且1≤i≤P。
在一个可选实施例中,在信道秩N=1或者2时,L=2;在N大于2时,L=N。
其中,第一REG个数K,第二REG个数P和每个第二REG的DMRS端口个数L满足关系:K*N=P*L。
在一个可选的实施例中,在N=1时,K=2P,其中,N=1,P=1时,K=2;N>1时,K=P。
其中,第i个第二REG Ri包含的RE个数ri=r,其中,r由信道秩N确定,且r和i为正整数,1≤i≤P。
在一个可选的实施例中,在N=1或者2时,r=R/P,其中,R为PRB对中传输DMRS的RE的总个数,R为正整数;在N大于2时,r=12/P。
例如,在N=1时,且PRB对中用于传输DMRS的总RE个数为12时,第一REG个数K、第二REG的个数P、第二REG包含的RE个数r的取值包括以下组合:K=2,P=1,r=12,或者K=4,P=2,r=6,或者K=6,P=3,r=4,或者K=8,P=4,r=3,或者K=12,P=6,r=2;
又例如,在N=2时,且PRB对中用于传输DMRS的总RE个数为12时,第一REG个数K、第二REG的个数P、第二REG包含的RE个数r=12/P的取值包括以下组合:K=2,P=2,r=6,或者K=3,P=3,r=4,或者K=4,P=4,r=3,或者K=6,P=6,r=2;
又例如,在N=1时,且PRB对中用于传输DMRS的总RE个数为24时,第一REG个数K、第二REG的个数P、第二REG包含的RE个数r=24/P的取值包括以下组合:K=4,P=2,r=12,或者K=8,P=4,r=6,或者K=12,P=6,r=4,或者K=16,P=8,r=3,或者K=24,P=12,r=2;
又例如,在N=2时,且PRB对中用于传输DMRS的总RE个数为24时,第一REG个数K、第二REG的个数P、第二REG包含的RE个数r=24/P的取值包括以下组合:K=4,P=4,r=6,或者K=6,P=6,r=4,或者K=8,P=8,r=3,或者K=12,P=12,r=2;
又例如,在N=3或者4时,且PRB对中用于传输DMRS的总RE个数为24时,第一REG 个数K、第二REG的个数P、第二REG包含的RE个数r=12/P的取值包括以下组合:K=2,P=2,r=6,或者K=3,P=3,r=4,或者K=4,P=4,r=3,或者K=6,P=6,r=2;
又例如,在N>4时,且PRB对中用于传输DMRS的总RE个数为24时,第一REG个数K、第二REG的个数P、第二REG包含的RE个数r=12/P的取值包括以下组合:K=3,P=3,r=4。
其中,信道秩N可以包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。
在本实施例中还提供了一种信息的接收方法,图4是根据本发明实施例的信息的接收方法的流程图二,如图4所示,该流程包括如下步骤:
步骤S402,接收物理资源块PRB对的K个第一REG所传输的第一信息和P个第二REG所传输的第二信息,其中,K和P为正整数,并且K大于等于P;
步骤S404,对P个第二REG上的第二信息独立地进行信道估计,并对K个第一REG上的第一信息进行信息解调。
通过上述步骤,在PRB对中接收P个第二REG传输的第二信息,及K个第一信息,也即,在PRB中可以包括K个第一信息和P个第二信息,解决了同一个PRB对中的DMRS使用相同的预编码而导致的其信道估计性能低的技术问题,进而达到了提高接收端DMRS估计信道的性能的效果。
在一个可选的实施例中,步骤S404可以包括:接收端分别利用第二信息,独立地进行信道的估计;再分别利用估计后的信道,估计相对应的K个第一REG的信道,并对第一信息进行信息解调。
其中,第一信息可以包括:数据和/或控制信道信息,第二信息可以包括:导频信息。
例如,接收端可以接收来自同一个发送端的同一个PRB对的K个第一REG D1,…,DK所传输的第一信息和P个第二REG R1,…,RP所传输的第二信息,用P个第二REG R1,…,RP所传输的第二信息估计信道,并用估计的信道估计述K个第一REG的信道,并对第一REG所传输的第一信息进行数据检测。其中,K和P为正整数,并且K大于等于P。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种信息的传输及接收装置,该装置用于实现上述实施例及优选 实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的信息的传输装置的结构框图一,如图5所示,该装置包括第一划分模块52和第一传输模块54,下面对该装置进行说明。
第一划分模块52,设置为将M个DMRS端口分成K个DMRS端口组,K、M为正整数,K小于等于M;第一传输模块54,连接至第一划分模块52,设置为在每个DMRS端口组上使用独立的预编码传输DMRS。
图6是根据本发明实施例的信息的接收装置的结构框图一,如图6所示,该装置包括第二划分模块62和第一解调模块64,下面对该装置进行说明。
第二划分模块62,设置为接收M个解调参考信号DMRS端口的DMRS,将M个解调参考信号DMRS端口分成K个DMRS端口组;第一解调模块64,连接至第二划分模块62,设置为利用每个DMRS端口组上的DMRS独立地进行信道估计和/或信息解调,M和K为正整数,K小于等于M。
图7是根据本发明实施例的信息的传输装置的结构框图二,如图7所示,该装置包括确定模块72和第二传输模块74,下面对该装置进行说明。
确定模块72,设置为确定物理资源块PRB对中第一REG的个数K和第二REG的个数P,其中,K、P为正整数且K≥P;第二传输模块74,连接至确定模块72,设置为在K个第一REG中传输第一信息,以及在P个第二REG中传输第二信息。
图8是根据本发明实施例的信息的接收装置的结构框图二,如图8所示,该装置包括接收模块82和第二解调模块84,下面对该装置进行说明。
接收模块82,设置为接收物理资源块PRB对的K个第一REG所传输的第一信息和P个第二REG所传输的第二信息,其中,K和P为正整数,并且K大于等于P;第二解调模块84,连接至接收模块82,设置为对P个第二REG上的第二信息独立地进行信道估计,并对K个第一REG上的第一信息进行信息解调。
下面,结合具体的实施环境对本发明实施例的信息的传输、接收方法及装置进行说明。
在本发明各实施例中,在下行链路里发送端包括但不限于:宏基站、微基站、无线接入点等各种无线通信设备。接收端包括但不限于:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙等各种无线通信设备。在上行链路里,发送端包括但不限于:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙等各种无线通信设备。接收端包括但不限于:宏基站、微基站、无线接入点等各种无线通信设备。
信道秩N可以包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、 控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。为了便于描述,和减小重复描述,我们将实施例1~实施例3所用的发送端,接收端以及一些概念,场景和配置方法描述如下:
在一个包括至少一个发送端和至少一个接收端的系统里,发送端使用Nb个PRB对为其服务的一个用户传输数据或ePDCCH,导频信息。每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括Nc*Ns个RE。将每个PRB传输数据或者ePDCCH的所有RE划分成K个REG,其中K为大于1的正整数,每个REG组包含同一个PRB里的若干个RE,并且不同的REG组里的RE没有重复的。在本实施例里,发送端用传输模式9或者传输模式10的开环MIMO形式,K个REG使用独立的预编码作用后发送给用户。发送端将解调参考导频的M个端口也分成K组,分别配置独立的预编码发送给接收端,用户接收M个DMRS端口的参考导频信号,并将M个端口分成K组,分别进行信道估计。这里,一个DMRS组和一个REG组相关联,不失一般性假设第k组DMRS端口和第k组REG进行关联,即用户用第k组DMRS端口进行信道估计,并用估计的信道得到第k个REG区域的信道估计,并对第k个REG进行数据检测,解调,解码等。
基于上述的描述,我们将给出本发明的一些可选实施例,如实施例1~实施例3所述。
实施例1:根据信道秩N和端口个数M确定端口分组个数K
对于发送端来说:
发送端根据信道秩N,以及分配给接收端的DMRS端口个数M,得到一个PRB里需要分成K个REG,其中,一种确定K的方法为K=M/N。并将每个PRB对里的RE分成K个REG G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB里的一个RE属于且仅属于一个REG组。
发送端同时将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK。使用预编码Ci分别对第k个DMRS端口组Sk和第k个REG组Gk进行预编码,并传输给用户Ci为Nt*N的预编码矩阵,这里,k=1,…,K。这里K,M和N为正整数,且K*N<=M。
接收端根据接收的信道秩N信息和接收的M个DMRS端口的信息,利用N和M确定REG的个数K,一种确定方法为K=M/N。并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,对接收的第k个DMRS端口组的解调参考导频信号DMRS独立地进行信道估,用估计的信道为第k个REG进行数据检测。其中,K,M和N为正整数,且K*N<=M。
下面以LTE/LTE A的帧结构,实际举例说明各类参数的取值,比如,在只有12个RE的DMRS帧结构,如图9,M取值为2,port 7和port8通过正交覆盖码(orthogonal cover codes,简称为OCC)的方式共享12个DMRS RE,传输的数据层数为1,则,分成K=2个REG组,DMRS也分成两组。port 7和REG1使用预编码C1,port 8和REG2使用预编码C2。接收端 接收2个端口port 7和port 8的DMRS信号,并用它估计信道,用port7估计的信道来估计REG1的信道,并进行数据检测,用port8估计的信道来估计REG2的信道,并进行数据检测,其中C1和C2是Nt*1的预编码矩阵。
在只有24个RE的DMRS帧结构,如图10,M取值为4,对应的端口为port 7和port8,port 9和port 10,其中,port7和port8,通过OCC的方式共享12个DMRS RE,port 9和port10,通过OCC的方式共享12个DMRS RE,根据N的大小,分两种情况进行讨论
当信道秩N为1,则分成K=4个REG组,DMRS也分成4组,port 7~port10分别使用预编码C1~C4,REG1~REG4分别使用预编码C1~C4。接收端接收端口port 7~port10并用它进行信道估计,分别得到REG1~REG4的信道,并用估计的信道对REG进行数据检测其中C1~C4是Nt*1的预编码矩阵。
当信道秩N为2,则分成K=2个REG组,DMRS也分成2组,port 7和port 8使用预编码C1,port 9和port 10使用预编码C2,REG1和REG2分别使用预编码C1和C2。接收端接收M个端口的DMRS信号,并用它估计信道。用port7和port8分别估计的REG1数据层1和2的信道,并进行数据检测;用port9和port 10分别估计的REG2数据层1和2的信道,并进行数据检测,这里,C1和C2是Nt*2的预编码矩阵。
这里port7~port 10的port编号只是实施例的一种,也可以使用其它的port编号,比如port1~port 4,操作的步骤类似,这里不一一例举。
这里,REG里传输的是数据,也可以传输增强下行控制信道ePDCCH信息,其过程和流程与传输数据的方式相同,只要将传输数据改成ePDCCH就可以。这里不再累述。
实施例2:根据REG的个数K和端口个数M确定信道秩N
对于发送端来说:
发送端根据REG的个数K,以及分配给接收端的DMRS端口个数M,确定信道秩N,其中一种确定N的方法为N=M/K,并将每个PRB对里的RE分成K个REG G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB里的一个RE属于且仅属于一个REG组。
发送端同时将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK。使用预编码Ci分别对第k个DMRS端口组Sk和第k个REG组Gk进行预编码,并传输给用户Ci为Nt*N的预编码矩阵,这里,k=1,…,K。这里K,M和N为正整数,且K*N<=M。
接收端根据REG的个数K和接收的M个DMRS端口的信息,确定信道秩N,其中一种确定N的方法为N=M/K。并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,对接收的第k个DMRS端口组的解调参考导频信号DMRS独立地进行信道估计,用估计的信道为第k个REG进行数据检测。其中,K,M和N为正整数,且K*N<=M。
下面以LTE/LTE A的帧结构,实际举例说明各类参数的取值,比如,在只有12个RE的DMRS帧结构,如图9,M取值为2,port 7和port8通过正交覆盖码(orthogonal cover codes,OCC)的方式共享12个DMRS RE,分成K=2个REG组,DMRS也分成两组,则传输的数据层数为1。port 7和REG1使用预编码C1,port 8和REG2使用预编码C2。接收端接收2个端口port 7和port 8的DMRS信号,并用它估计信道,用port7估计的信道来估计REG1的信道,并进行数据检测,用port8估计的信道来估计REG2的信道,并进行数据检测,其中C1和C2是Nt*1的预编码矩阵。
在只有24个RE的DMRS帧结构,如图10,M取值为4,对应的端口为port 7和port8,port 9和port 10,其中,port7和port8,通过OCC的方式共享12个DMRS RE,port 9和port10,通过OCC的方式共享12个DMRS RE,根据N的大小,分两种情况进行讨论:
分成K=4个REG组,DMRS也分成4组,则信道秩N=M/K=4/4=1,port 7~port10分别使用预编码C1~C4,REG1~REG4分别使用预编码C1~C4。接收端接收端口port 7~port10并用它进行信道估计,分别得到REG1~REG4的信道,并用估计的信道对REG进行数据检测其中C1~C4是Nt*1的预编码矩阵。
分成K=2个REG组,DMRS也分成2组,则信道秩N=M/K=4/2=2,则port 7和port 8使用预编码C1,port 9和port 10使用预编码C2,REG1和REG2分别使用预编码C1和C2。接收端接收M个端口的DMRS信号,并用它估计信道。用port7和port8分别估计的REG1数据层1和2的信道,并进行数据检测;用port9和port 10分别估计的REG2数据层1和2的信道,并进行数据检测,这里,C1和C2是Nt*2的预编码矩阵。
这里port7~port 10的port编号只是实施例的一种,也可以使用其它的port编号,比如port1~port 4,操作的步骤类似,这里不一一例举。
这里,REG里传输的是数据,也可以传输增强下行控制信道ePDCCH信息,其过程和流程与传输数据的方式相同,只要将传输数据改成ePDCCH就可以。这里不再累述。
实施例3:根据REG的个数K和信道秩N确定端口个数M
对于发送端来说:
发送端根据REG的个数K和信道秩N确定分配给接收端的DMRS端口个数M,确定,其中一种确定M的方法为M=N*K,并将每个PRB对里的RE分成K个REG G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB里的一个RE属于且仅属于一个REG组。
发送端同时将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK。使用预编码Ci分别对第k个DMRS端口组Sk和第k个REG组Gk进行预编码,并传输给用户Ci为Nt*N的预编码矩阵,这里,k=1,…,K。这里K,M和N为正整数,且K*N<=M。
接收端接收REG的个数K和信道秩N,确定DMRS端口的个数M,其中的一种确定方式为M=N*K,并接收M个DMRS端口的信息。并将M个DMRS端口P1,P2,…,PM分成K个DMRS端口组S1,S2,…,SK,对接收的第k个DMRS端口组的解调参考导频信号DMRS独立地进行信道估,用估计的信道为第k个REG进行数据检测。其中,K,M和N为正整数,且K*N<=M。
下面以LTE/LTE A的帧结构,实际举例说明各类参数的取值,比如,在只有12个RE的DMRS帧结构,发送端需要将PRB分成K=2个REG,并且每个REG传输1个数据流,如图9,则需要给这个用户配置M=N*K=2个端口,port 7和port8通过OCC的方式共享12个DMRS RE,发送端将PRB分成分成K=2个REG组,DMRS也分成两组,传输的数据层数为1。port7和REG1使用预编码C1,port 8和REG2使用预编码C2。接收端接收2个端口port 7和port8的DMRS信号,并用它估计信道,用port7估计的信道来估计REG1的信道,并进行数据检测,用port8估计的信道来估计REG2的信道,并进行数据检测,其中C1和C2是Nt*1的预编码矩阵。
在只有24个RE的DMRS帧结构,如图10,发送端需要将PRB分成4个REG,并且每个REG传输N=1个数据流(信道秩N=1),则发送端需要配置M=4个port,对应的端口为port 7和port8,port 9和port 10,其中,port7和port8,通过OCC的方式共享12个DMRS RE,port 9和port10,通过OCC的方式共享12个DMRS RE。发送端将PRB分成K=4个REG组,DMRS也分成4组,每个REG传输的数据层数N=1,port 7~port10分别使用预编码C1~C4,REG1~REG4分别使用预编码C1~C4。接收端接收端口port 7~port10并用它进行信道估计,分别得到REG1~REG4的信道,并用估计的信道对REG进行数据检测其中C1~C4是Nt*1的预编码矩阵。
在只有24个RE的DMRS帧结构,如图10,发送端需要将PRB分成2个REG,并且每个REG传输N=2个数据流(信道秩N=2),则发送端需要配置M=4个port,分成K=2个REG组,DMRS也分成2组,则,传输的数据层数N=2(信道秩N=2),则,port 7和port 8使用预编码C1,port 9和port 10使用预编码C2,REG1和REG2分别使用预编码C1和C2。接收端接收M个端口的DMRS信号,并用它估计信道。用port7和port8分别估计的REG1数据层1和2的信道,并进行数据检测;用port9和port 10分别估计的REG2数据层1和2的信道,并进行数据检测,这里,C1和C2是Nt*2的预编码矩阵。
这里port7~port 10的port编号只是实施例的一种,也可以使用其它的port编号,比如port1~port 4,操作的步骤类似,这里不一一例举。
这里,REG里传输的是数据,也可以传输增强下行控制信道ePDCCH信息,其过程和流程与传输数据的方式相同,只要将传输数据改成ePDCCH就可以。这里不再累述。
为了便于描述,和减小重复描述,我们将实施例4~实施例7所用的发送端,接收端以及一些概念,场景和配置方法描述如下:
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。发送端使用Nb个PRB对为其服务的一个用户传输数据或ePDCCH,导频信号。每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括Nc*Ns个RE。将每个PRB对里传输数据或者ePDCCH的所有RE划分成K个第一REG D1,…,DK。其中K为大于1的正整数,每个第一REG组包含同一个PRB里的若干个RE,并且不同的REG组里的RE没有重复的。在本实施例里,发送端用传输模式9或者传输模式10的开环MIMO形式,K个第一REG使用独立的预编码作用后发送给用户。发送端将传输解调参考导频的R个RE划分成P个第二REG R1,…,RP,其中,第二REG的第i个第二REG包括ri个DMRS RE,包括Li个DMRS端口通过OCC的方式共享这ri个DMRS RE,i=1,…,P。接收端接收传输数据或者ePDCCH的RE上的信息,并把传输数据或者ePDCCH的RE像发送端一样的划分成K个第一REG组。接收端接收同一个PRB里的R个DMRS RE上的参考导频信号,并将像发送端一样将其划分成P个第二REG,第二REG的第i个第二REG包括ri个DMRS RE,包括Li个DMRS端口通过OCC的方式共享这ri个DMRS RE,i=1,…,P。用接收的P个第二REG的每个REG或者每个REG的每个DMRS端口独立地进行信道估计,并将所述估计的信道对K个第一REG进行信道估计,并用对REG估计的信道对第一REG上传输的数据或者ePDCCH进行检测,解调。
基于上述的描述,我们将给出本发明的一些可选实施例,如实施例4~实施例7所述。
实施例4:根据第一REG的个数K和第二REG的个数P确定第二REG的RE个数,空域分port的情况
对于发送端来说:
发送端为了给同一个接收端传输数据,将传输数据的每个PRB分成K个第一REG D1,…,DK,,如图3所示,将第一REG划分成K=2,3,4,6,的一种示意图,当然有其它类似的划分方法,这里不一一例举。每个第一REG使用独立的预编码将数据或者ePDCCH处理后传输给接收端。为了能让接收端解调和检测这些数据,发送端需要使用R个DMRS RE来传输DMRS,并把R个DMRS RE分成P个第二REG R1,…,RP,一种比较特殊的划分第二REG的方法为P=1,即只有一个第二REG,第二REG包括了12个RE,每个REG有2个DMRS port。在信道的秩或者数据发送的层数N=1时,K=2,即第一REG被划分成两个REG D1和D2。用预编码P1对D1上的数据进行预编码处理后传输给接收端,用P1对所述第二REG的第一个port上的DMRS信号预处理后发送给接收端。
接收端接收2个第一REG的数据以及2个DMRS port上的DMRS信号,对接收的第k个DMRS端口组的解调参考导频信号DMRS独立地进行信道估,用估计的信道为第k个第一REG进行数据检测,k=1,2。
这里,REG里传输的是数据,也可以传输增强下行控制信道ePDCCH信息,其过程和流 程与传输数据的方式相同,只要将传输数据改成ePDCCH就可以。这里不再累述。
实施例5:根据第一REG的个数K和第二REG的个数P确定第二REG的RE个数,时频分port的情况
对于发送端来说:
发送端为了给同一个接收端传输数据,将传输数据的每个PRB分成K个第一REG D1,…,DK,,如图11中A、B、C、D所示,将第一REG划分成K=2,3,4,6,的一种示意图,当然有其它类似的划分方法,这里不一一例举。每个第一REG使用独立的预编码将数据或者ePDCCH处理后传输给接收端。为了能让接收端解调和检测这些数据,发送端需要使用R个DMRS RE来传输DMRS,并把R个DMRS RE分成P个第二REG R1,…,RP,如图12~14所示,图12中A、B、C、D分别表示将12个DMRS RE成P=2,3,4,6个第二REG的情况,图13中A、B、C、D分别表示将24个DMRS RE成P=2,3,4,6个第二REG的情况,图14中A、B、C、D分别表示将24个DMRS RE成P=4,6,8,12个第二REG的情况,当然,也有其它的划分方法,这里不再一一描述。划分P个第二REG以便于接收端根据接收的P个第二REG上的DMRS信息估计信道以对K个REG的数据进行解调,其中,K和P为大于1的正整数,并且K大于等于P。第二REG的第i个第二REG包括ri个DMRS RE,包括Li个DMRS端口通过OCC的方式共享这ri个DMRS RE,i=1,…,P。
一种比较特殊的划分第二REG的方法为P=K,即有K个第一REG和K个第二REG,第二REG的每个RE组包括相等的RE个数,为r=12/P,每个REG有L=2个DMRS port。在DMRS RE个数R为12的情况下,对应LTE/LTE A的port7和port8,这两个port通过OCC的方式共享所述的r个RE,且每个port使用了所在REG的r个RE,即总共有P组port7和port8。不同组的第二REG的port也可以重新编号,总共形成P*L个port,比如第i组Ri对应port编号为port(2i-1)和port 2i,i=1,…,P。或者在DMRS RE个数R为24的情况下,每个REG组包括的DMRS个数在N小于3时为24/P个RE,每个REG组有2个port,要么为LTE/LTE A port 7或者port 8,这两个port通过OCC的方式共享所述的r个RE,要么为LTE/LTE A的port 9或者port 10,这两个port通过OCC的方式共享所述的r个RE,且每个port只在所在的REG的RE里,总共有P组port 7/port 8或者port 9/port 10;当然也可以对P个第二REG的port重新进行编号,总共有2P个port,比如第i组Ri对应port编号为port(2i-1)和port 2i,i=1,…,P。在N大于2的情况下,每个第二REG有N个port共享一组RE,比如在N=4的时候,port7和port8通过OCC的方式共享所述REG组的r/2的RE,port9和port10通过OCC的方式共享所述REG组的r/2的RE。比如在N>4时,对应LTE/LTE A的port 7,8,11,13,这4个port通过OCC的方式共享所述r/2个RE,或者port 9,10,12,14,这4个port通过OCC的方式共享所述r/2个RE,其它的N请参考LTE/LTE A的DMRS编号,并且个port只使用了REG内对应的12/P个RE。
发送端使用预编码Pi对第i组的第一REG Di的数据进行预编码后传输给用户,用Pi对第 i个第二REG Ri的DMRS信号进行预编码后传输给接收端,Pi为Nt*N列的一个矩阵,Nt为发送天线/阵子/端口数。在R=12时,其中K=P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P。在R=24时,且N=1时,其中K=P的值包括但不限于取值有4,6,8,12,对应的每个REG的RE数为12/P,在R=24时,且N=2时,其中K=P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P,在N>4时,K=P的值包括但不限于取值有K=P=3,且每个REG的RE个数为4个。
接收端接收K个第一REG所传输的数据以及K个第二REG所传输的DMRS信号,并用第i个第二REG的第j个port的所对应的RE上的DMRS信号估计第i个第一REG上的第j个层的数据的信道,并对其进行数据检测,i=,…,P,j=1,…,N。在R=12时,其中K=P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P。在R=24时,且N=1时,其中K=P的值包括但不限于取值有4,6,8,12,对应的每个REG的RE数为12/P,在R=24时,且N=2时,其中K=P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P,在N>4时,K=P的值包括但不限于取值有K=P=3,且每个REG的RE个数为4个。
这里port7~port 14的port编号只是实施例的一种,也可以使用其它的port编号,比如port1~port 7,操作的步骤类似,这里不一一例举。
这里第i个第二REG对应第i个第一REG的解调导频信号,只是实施例的一种,如图15中(A)所示。也可以有其它的对应关系如图16中(A)所示,第i个第二REG对应第P-i+1个第一REG的解调导频信号,这里不一一例举。
这里,REG里传输的是数据,也可以传输增强下行控制信道ePDCCH信息,其过程和流程与传输数据的方式相同,只要将传输数据改成ePDCCH就可以。这里不再累述。
实施例6:根据第一REG的个数K和第二REG的个数P确定第二REG的RE个数,时频+空域分port的情况,一个PRB里只有12个DMRS RE。
对于发送端来说:
发送端为了给同一个接收端传输数据,将传输数据的每个PRB分成K个第一REG D1,…,DK,如图11中A、B、C、D所示,将第一REG划分成K=2,3,4,6,的一种示意图,当然有其它类似的划分方法,这里不一一例举。每个第一REG使用独立的预编码将数据或者ePDCCH处理后传输给接收端。为了能让接收端解调和检测这些数据,发送端需要使用R个DMRS RE来传输DMRS,并把R个DMRS RE分成P个第二REG R1,…,RP,如图12~14所示,图12中A、B、C、D分别表示将12个DMRS RE成P=2,3,4,6个第二REG的情况,图13中A、B、C、D分别表示将24个DMRS RE成P=2,3,4,6个第二REG的情况,图14中A、B、C、D分别表示将24个DMRS RE成P=4,6,8,12个第二REG的情况,当然,也有其它的划分方法,这里不再一一描述。划分P个第二REG以便于接收端根据接收的P个第二REG上的DMRS信息估计信道以对K个REG的数据进行解调,其中,K和P为大 于1的正整数,并且K大于等于P。第二REG的第i个第二REG包括ri个DMRS RE,包括Li个DMRS端口通过OCC的方式共享这ri个DMRS RE,i=1,…,P。
在这个实施例里,K>=P,即有K个第一REG和P个第二REG,第二REG的每个RE组包括相等的RE个数,在DMRS RE个数R为12的情况下,为r=12/P,每个REG有L=2个DMRS port。对应LTE/LTE A的port7和port8,这两个port通过OCC的方式共享所述的r个RE,且每个port使用了所在REG的r个RE,即总共有P组port7和port8。不同组的第二REG的port也可以重新编号,总共形成P*2个port,比如第i组Ri对应port编号为port(2i-1)和port 2i,i=1,…,P。
在N=1的时候,发送端使用预编码Pi对第i组的第一REG Di的数据进行预编码后传输给用户,i=1,…,K,用P2j-1和P2j分别对第j个第二REG Rj的第一个和第二个DMRS端口上的DMRS信号进行预编码后传输给接收端,Pi为Nt*1列的一个矩阵,Nt为发送天线/阵子/端口数,i=1,…,K,j=1,…,P,这里,K=2P,P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P,即包括如下取值:
P=2,K=4,L=6,或者P=3,K=6,L=4,或者P=4,K=8,L=3,或者P=6,K=12,L=2。
在N=2时,发送端使用预编码Pi对第i组的第一REG Di的数据进行预编码后传输给用户,用Pi的第j列对第i个第二REG Ri的第j个个DMRS端口上的DMRS信号进行预编码后传输给接收端,Pi为Nt*2列的一个矩阵,Nt为发送天线/阵子/端口数。这里,i=1,…,P,j=1,2,K=P,P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P,即包括如下取值:
P=2,K=2,L=6,或者P=3,K=3,L=4,或者P=4,K=4,L=3,或者P=6,K=6,L=2。
接收端接收K个第一REG所传输的数据以及P个第二REG所传输的DMRS信号。在N=1时,用第i个第二REG的第j个port的所对应的RE上的DMRS信号估计第2*i-2+j个第一REG上的数据的信道,并对其进行数据检测,这里,i=1,…,P,j=1,2,K=2P,P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P。即包括如下取值:
P=2,K=4,L=6,或者P=3,K=6,L=4,或者P=4,K=8,L=3,或者P=6,K=12,L=2。
在N=2时,用第i个第二REG的第j个port的所对应的RE上的DMRS信号估计第i个第一REG上的第j层数据的信道,并对其进行数据检测,这里,i=1,…,K,j=1,2,ceil为上取整函数,K=P,P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P。即包括如下取值:
P=2,K=2,L=6,或者P=3,K=3,L=4,或者P=4,K=4,L=3,或者P=6,K=6,L=2。
这里port7~port 14的port编号只是实施例的一种,也可以使用其它的port编号,比如port1~port 7,操作的步骤类似,这里不一一例举。
这里,第一REG的第i组REG和第二REG的第j组REG的对应关系可以是任意的,不 局限于本实施例的对应关系,如图15和图16所示,图15中(A)为K=P且第i个第二REG组Ri与第i个第一REG对应Di,且为止解调。图15中(B)为第i个第二REG组Ri的第一个端口和第二个端口分别与第2i-1个第一REG D2i-1和第2i-1个第一REG D2i对应,且为其提供信道估计和解调。图16中(A)为K=P且第i个第二REG组Ri与第K-i+1个第一REG对应DK-i+1,且为其提供信道估计和数据解调。图16中(B)为第P-i+1个第二REG组RP-i+1的第一个端口和第二个端口分别与第K-2i-1个第一REG D2i-1和第2i-1个第一REG D2i对应,且为其提供信道估计和数据解调。
这里,REG里传输的是数据,也可以传输增强下行控制信道ePDCCH信息,其过程和流程与传输数据的方式相同,只要将传输数据改成ePDCCH就可以。这里不再累述。
实施例7:根据第一REG的个数K和第二REG的个数P确定第二REG的RE个数,,时频+空域分port的情况,一个PRB里只有24个DMRS RE
对于发送端来说:
发送端为了给同一个接收端传输数据,将传输数据的每个PRB分成K个第一REG D1,…,DK,,如图11中A、B、C、D所示,将第一REG划分成K=2,3,4,6,的一种示意图,当然有其它类似的划分方法,这里不一一例举。每个第一REG使用独立的预编码将数据或者ePDCCH处理后传输给接收端。为了能让接收端解调和检测这些数据,发送端需要使用R个DMRS RE来传输DMRS,并把R个DMRS RE分成P个第二REG R1,…,RP,如图12~14所示,图12中A、B、C、D分别表示将12个DMRS RE成P=2,3,4,6个第二REG的情况,图13中A、B、C、D分别表示将24个DMRS RE成P=2,3,4,6个第二REG的情况,图14中A、B、C、D分别表示将24个DMRS RE成P=4,6,8,12个第二REG的情况,当然,也有其它的划分方法,这里不再一一描述。划分P个第二REG以便于接收端根据接收的P个第二REG上的DMRS信息估计信道以对K个REG的数据进行解调,其中,K和P为大于1的正整数,并且K大于等于P。第二REG的第i个第二REG包括ri个DMRS RE,包括Li个DMRS端口通过OCC的方式共享这ri个DMRS RE,i=1,…,P。
在这个实施例里,K>=P,即有K个第一REG和P个第二REG,第二REG的每个RE组包括相等的RE个数r,在DMRS RE个数R为24的情况下,在N小于3时,每个REG组包括的DMRS个数为24/P个RE,每个REG组有2个port,要么为LTE/LTE A port 7或者port8,这两个port通过OCC的方式共享所述的r个RE,要么为LTE/LTE A的port 9或者port 10,这两个port通过OCC的方式共享所述的r个RE,且每个port只在所在的REG的RE里,总共有P组port 7/port 8或者port 9/port 10;当然也可以对P个第二REG的port重新进行编号,总共有2P个port,比如第i组Ri对应port编号为port(2i-1)和port 2i,i=1,…,P。在N大于2的情况下,每个第二REG有N个port共享一组RE,比如在N=4的时候,port7和port8通过OCC的方式共享所述REG组的r/2的RE,port9和port10通过OCC的方式共享所述REG组的r/2的RE。比如在N>4时,对应LTE/LTE A的port 7,8,11,13,这4个port通过OCC 的方式共享所述r/2个RE,或者port 9,10,12,14,这4个port通过OCC的方式共享所述r/2个RE,其它的N请参考LTE/LTE A的DMRS编号,并且个port只使用了REG内对应的12/P个RE。
在N=1的时候,发送端使用预编码Pi对第i组的第一REG Di的数据进行预编码后传输给用户,i=1,…,K,用P2j-1和P2j分别对第j个第二REG Rj的第一个和第二个DMRS端口上的DMRS信号进行预编码后传输给接收端,Pi为Nt*1列的一个矩阵,Nt为发送天线/阵子/端口数,i=1,…,K,j=1,…,P。这里,K=2P,P的值包括但不限于取值有2,4,6,8,12对应的每个REG的RE数为24/P,即包括如下取值:
K=4,P=2,r=12,或者K=8,P=4,r=6,或者K=12,P=6,r=4,或者K=16,P=8,r=3,或者K=24,P=12,r=2。
在N=2时,发送端使用预编码Pi对第i组的第一REG Di的数据进行预编码后传输给用户,用Pi的第j列对第i个第二REG Ri的第j个DMRS端口上的DMRS信号进行预编码后传输给接收端,Pi为Nt*2列的一个矩阵,Nt为发送天线/阵子/端口数。这里,i=1,…,P,j=1,2,K=P,P的值包括但不限于取值有4,6,8,12,对应的每个REG的RE数为24/P,即包括如下取值:
K=4,P=4,r=6,或者K=6,P=6,r=4,或者K=8,P=8,r=3,或者K=12,P=12,r=2。
在N=3或者4时,发送端使用预编码Pi对第i组的第一REG Di的数据进行预编码后传输给用户,用Pi的第j列对第i个第二REG Ri的第j个DMRS端口上的DMRS信号进行预编码后传输给接收端,Pi为Nt*N列的一个矩阵,Nt为发送天线/阵子/端口数。这里,i=1,…,P,j=1,2,…,N,K=P,P的值包括但不限于取值有2,3,4,6,对应的每个REG的RE数为12/P,即包括如下取值:
K=2,P=2,r=6,或者K=3,P=3,r=4,或者K=4,P=4,r=3,或者K=6,P=6,r=2。
在N>4时,发送端使用预编码Pi对第i组的第一REG Di的数据进行预编码后传输给用户,用Pi的第j列对第i个第二REG Ri的第j个DMRS端口上的DMRS信号进行预编码后传输给接收端,Pi为Nt*N列的一个矩阵,Nt为发送天线/阵子/端口数。这里,i=1,…,P,j=1,2,…,N,K=P,P的值包括但不限于取值有3,对应的每个REG的RE数为12/P,即包括如下取值:K=3,P=3,r=4
接收端接收K个第一REG所传输的数据以及P个第二REG所传输的DMRS信号。在N=1时,用第i个第二REG的第j个port的所对应的RE上的DMRS信号估计第2i-2+j个第一REG上的数据的信道,并对其进行数据检测,这里,i=1,…,P,K=2P,P的值包括但不限于取值有2,4,6,8,12,对应的每个REG的RE数为12/P。即包括如下取值:
P=2,K=4,L=6,或者P=3,K=6,L=4,或者P=4,K=8,L=3,或者P=6,K=12,L=2。
在N=2时,用第i个第二REG的第j个port的所对应的RE上的DMRS信号估计第i个第一REG上的第j层数据的信道,并对其进行数据检测,这里,i=1,…,K,j=1,2,K=P,P的值包括但不限于取值有4,6,8,12,对应的每个REG的RE数为24/P。即包括如下取值:
K=4,P=4,r=6,或者K=6,P=6,r=4,或者K=8,P=8,r=3,或者K=12,P=12,r=2。
在N=3,或者4时,用第i个第二REG的第j个port的所对应的RE上的DMRS信号估计第i个第一REG上的第j层数据的信道,并对其进行数据检测,这里,i=1,…,K,j=1,…,N,K=P,P的值包括但不限于取值有2,34,6,对应的每个REG的RE数为12/P。即包括如下取值:
K=2,P=2,r=6,或者K=3,P=3,r=4,或者K=4,P=4,r=3,或者K=6,P=6,r=2。
在N>4时,用第i个第二REG的第j个port的所对应的RE上的DMRS信号估计第i个第一REG上的第j层数据的信道,并对其进行数据检测,这里,i=1,…,K,j=1,…,N,K=P,P的值包括但不限于取值有3,对应的每个REG的RE数为12/P。即包括如下取值:K=3,P=3,r=4。
这里port7~port 14的port编号只是实施例的一种,也可以使用其它的port编号,比如port1~port 7,操作的步骤类似,这里不一一例举。
这里,第一REG的第i组REG和第二REG的第j组REG的对应关系可以是任意的,不局限于本实施例的对应关系,如图15和图16所示,图15中(A)为K=P且第i个第二REG组Ri与第i个第一REG对应Di,且为止解调。图15中(B)为第i个第二REG组Ri的第一个端口和第二个端口分别与第2i-1个第一REG D2i-1和第2i-1个第一REG D2i对应,且为其提供信道估计和解调。图16中(A)为K=P且第i个第二REG组Ri与第K-i+1个第一REG对应DK-i+1,且为其提供信道估计和数据解调。图16中(B)为第P-i+1个第二REG组RP-i+1的第一个端口和第二个端口分别与第K-2i-1个第一REG D2i-1和第2i-1个第一REG D2i对应,且为其提供信道估计和数据解调。
这里,REG里传输的是数据,也可以传输增强下行控制信道ePDCCH信息,其过程和流程与传输数据的方式相同,只要将传输数据改成ePDCCH就可以。这里不再累述。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S11,将M个DMRS端口分成K个DMRS端口组,K、M为正整数,K小于等于M;
S12,在每个DMRS端口组上使用独立的预编码传输DMRS。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S21,接收M个解调参考信号DMRS端口的DMRS,将M个解调参考信号DMRS端口分成K个DMRS端口组;
S22,利用每个DMRS端口组上的DMRS独立地进行信道估计和/或信息解调,M和K为正整数,K小于等于M。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S31,确定PRB对中第一REG的个数K和第二REG的个数P,其中,K、P为正整数且K≥P;
S32,在K个第一REG中传输第一信息,以及在P个第二REG中传输第二信息。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S41,接收物理资源块PRB对的K个第一REG所传输的第一信息和P个第二REG所传输的第二信息,其中,K和P为正整数,并且K大于等于P;
S42,对P个第二REG上的第二信息独立地进行信道估计,并对K个第一REG上的第一信息进行信息解调。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述S11-S12。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述S21-S22。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述S31-S32。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述S41-S42。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个 集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (39)

  1. 一种信息的传输方法,包括:
    将M个解调参考信号DMRS端口分成K个DMRS端口组,所述K、所述M为正整数,K小于等于M;
    在每个所述DMRS端口组上使用独立的预编码传输DMRS。
  2. 根据权利要求1所述的方法,其中,在将所述M个DMRS端口分成所述K个DMRS端口组之前,还包括:
    确定所述M、所述K,以及信道秩N,其中,所述N为正整数。
  3. 根据权利要求2所述的方法,其中,确定所述M、所述K,以及信道秩N包括:
    根据所述N、所述M,确定所述K;或者,根据所述K、所述M,确定所述N;或者,根据所述K、所述N,确定所述M;其中,K*N≤M。
  4. 根据权利要求3所述的方法,其中,当所述N=1或者所述N=2时,M=N*K。
  5. 根据权利要求1所述的方法,其中,所述DMRS端口组中的每个DMRS端口,包括12个资源单元RE。
  6. 根据权利要求1所述的方法,其中,所述K的值由所述M个DMRS端口所在的PRB对上用于传输信息的RE所划分的REG个数确定。
  7. 根据权利要求1或6所述的方法,其中,还包括:
    将所述M个DMRS端口所在的PRB对上的用于传输信息的RE划分成K个REG,并在所述的K个REG上使用独立的预编码传输信息。
  8. 根据权利要求7所述的方法,其中,每个所述REG中传输的信息包括:数据和/或控制信道信息。
  9. 根据权利要求1或7所述的方法,其中,所述K个DMRS端口组中的每个DMRS端口组,和所述K个REG中与所述每个DMRS端口组对应的REG,使用相同的预编码。
  10. 一种信息的接收方法,包括:
    接收M个解调参考信号DMRS端口的DMRS,将所述M个解调参考信号DMRS端口分成K个DMRS端口组;
    利用每个所述DMRS端口组上的DMRS独立地进行信道估计和/或信息解调,M和K为正整数,K小于等于M。
  11. 根据权利要求10所述的方法,其中,在将所述M个DMRS端口分成所述K个DMRS端口组之前,所述方法还包括:
    确定所述M、所述K,以及接收的信道秩N,其中,所述N为正整数。
  12. 根据权利要求11所述的方法,其中,确定所述M、所述K,以及信道秩N包括:
    根据所述N、所述M,确定所述K;或者,根据所述K、所述M,确定所述N;或者,根据所述K、所述N,确定所述M;其中,K*N≤M。
  13. 根据权利要求12所述的方法,其中,当所述N=1或者所述N=2时,M=N*K。
  14. 根据权利要求10所述的方法,其中,所述DMRS端口组中的每个DMRS端口,包括12个资源单元RE。
  15. 根据权利要求10所述的方法,其中,所述K的值由所述M个DMRS端口所在的PRB对上用于传输信息的RE所划分的资源单元组REG个数确定。
  16. 根据权利要求10或15所述的方法,其中,接收所述M个DMRS端口所在的PRB对上传输的信息,将所述M个DMRS端口所在的PRB对上的用于传输所述信息的RE划分成K个REG。
  17. 根据权利要求16所述的方法,其中,所述REG中传输的信息包括:数据和/或控制信道信息。
  18. 根据权利要求10或16所述的方法,其中,利用每个所述DMRS端口组上的DMRS独立地进行信息解调包括:
    所述K个DMRS端口组中的每个DMRS端口组,对所述K个REG中与每个所述DMRS端口组对应的REG,进行信息解调。
  19. 根据权利要求10所述的方法,其中,所述信道秩N包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。
  20. 一种信息的传输方法,包括:
    确定物理资源块PRB对中第一REG的个数K和第二REG的个数P,其中,所述K、所述P为正整数且K≥P;
    在K个所述第一REG中传输第一信息,以及在P个所述第二REG中传输第二信息。
  21. 根据权利要求20所述的方法,其中,所述第一信息包括:数据和/或控制信道信息,所述第二信息包括:导频信息。
  22. 根据权利要求20或21所述的方法,其中,在K个所述第一REG中传输第一信息,以及在P个所述第二REG中传输第二信息,包括:
    在K个所述第一REG中分别利用独立的预编码传输所述第一信息,以及在P个所述 第二REG中分别利用独立的预编码传输第二信息。
  23. 根据权利要求20所述的方法,其中,在K个所述第一REG中传输第一信息,以及在P个所述第二REG中传输第二信息之前,所述方法还包括:
    将所述物理资源块PRB划分成所述K个第一REG和/或所述P个第二REG。
  24. 根据权利要求20所述的方法,其中,所述第一REG为所述PRB对中用于传输所述第一信息的资源单元RE组,所述第二REG为所述PRB对中用于传输所述第二信息的资源单元RE组。
  25. 根据权利要求20所述的方法,其中,第i个所述第二REG Ri包括ri个RE,且有Li个DMRS端口共同使用所述ri个RE,其中,i、ri和Li为正整数,且1≤i≤P。
  26. 根据权利要求25所述的方法,其中,所述Li=L,其中,所述L由信道秩N确定,L、N和i为正整数且1≤i≤P。
  27. 根据权利要求26所述的方法,其中,在所述N=1或者2时,所述L=2;在所述N大于2时,所述L=N。
  28. 根据权利要求26所述的方法,其中,所述第一REG个数K,第二REG个数P和每个第二REG的DMRS端口个数L满足关系:K*N=P*L。
  29. 根据权利要求26所述的方法,其中,在所述N=1时,K=2P,其中,所述N=1,P=1时,
    K=2;所述N>1时,K=P。
  30. 根据权利要求20所述的方法,其中,第i个第二REG Ri包含的RE个数ri=r,其中,所述r由信道秩N确定,且r和i为正整数,1≤i≤P。
  31. 根据权利要求30所述的方法,其中,在所述N=1或者2时,所述r=R/P,其中,R为所述PRB对中传输DMRS的RE的总个数,所述R为正整数;在所述N大于2时,所述r=12/P。
  32. 根据权利要求31所述的方法,其中,
    在所述N=1时,且所述PRB对中用于传输DMRS的总RE个数为12时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r的取值包括以下组合:K=2,P=1,r=12,或者K=4,P=2,r=6,或者K=6,P=3,r=4,或者K=8,P=4,r=3,或者K=12,P=6,r=2;或者,
    在所述N=2时,且所述PRB对中用于传输DMRS的总RE个数为12时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=12/P的取值包括以下组合:K=2,P=2,r=6,或者K=3,P=3,r=4,或者K=4,P=4,r=3,或者K=6,P=6,r=2;或者,
    在所述N=1时,且所述PRB对中用于传输DMRS的总RE个数为24时,所述第一 REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=24/P的取值包括以下组合:K=4,P=2,r=12,或者K=8,P=4,r=6,或者K=12,P=6,r=4,或者K=16,P=8,r=3,或者K=24,P=12,r=2;或者,
    在所述N=2时,且所述PRB对中用于传输DMRS的总RE个数为24时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=24/P的取值包括以下组合:K=4,P=4,r=6,或者K=6,P=6,r=4,或者K=8,P=8,r=3,或者K=12,P=12,r=2;或者,
    在所述N=3或者4时,且所述PRB对中用于传输DMRS的总RE个数为24时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=12/P的取值包括以下组合:K=2,P=2,r=6,或者K=3,P=3,r=4,或者K=4,P=4,r=3,或者K=6,P=6,r=2;或者,
    在所述N>4时,且所述PRB对中用于传输DMRS的总RE个数为24时,所述第一REG个数K、所述第二REG的个数P、所述第二REG包含的RE个数r=12/P的取值包括以下组合:K=3,P=3,r=4。
  33. 根据权利要求26至32中任一项所述的方法,其中,所述信道秩N包括以下至少之一:数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank,秩,控制信道传输层个数、控制信道传输流个数、控制信道流个数、控制信道层个数,传输层个数,传输流个数,流个数,层个数,预编码列数。
  34. 一种信息的接收方法,包括:
    接收物理资源块PRB对的K个第一REG所传输的第一信息和P个第二REG所传输的第二信息,其中,K和P为正整数,并且K≥P;
    对所述P个第二REG上的第二信息独立地进行信道估计,并对所述K个第一REG上的第一信息进行信息解调。
  35. 根据权利要求34所述的方法,其中,所述第一信息包括:数据和/或控制信道信息,所述第二信息包括:导频信息。
  36. 一种信息的传输装置,包括:
    第一划分模块,设置为将M个解调参考信号DMRS端口分成K个DMRS端口组,所述K、所述M为正整数,K小于等于M;
    第一传输模块,设置为在每个所述DMRS端口组上使用独立的预编码传输DMRS。
  37. 一种信息的接收装置,包括:
    第二划分模块,设置为接收M个解调参考信号DMRS端口的DMRS,将所述M个解调参考信号DMRS端口分成K个DMRS端口组;
    第一解调模块,设置为利用每个所述DMRS端口组上的DMRS独立地进行信道估计和/或信息解调,M和K为正整数,K小于等于M。
  38. 一种信息的传输装置,包括:
    确定模块,设置为确定物理资源块PRB对中第一REG的个数K和第二REG的个数P,其中,所述K、所述P为正整数且K≥P;
    第二传输模块,设置为在K个所述第一REG中传输第一信息,以及在P个所述第二REG中传输第二信息。
  39. 一种信息的接收装置,包括:
    接收模块,设置为接收物理资源块PRB对的K个第一REG所传输的第一信息和P个第二REG所传输的第二信息,其中,所述K和所述P为正整数,并且K≥P;
    第二解调模块,设置为对所述P个第二REG上的第二信息独立地进行信道估计,并对所述K个第一REG第一信息进行信息解调。
PCT/CN2017/072895 2016-02-05 2017-02-04 信息的传输、接收方法及装置 WO2017133688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610082890.4A CN107046431B (zh) 2016-02-05 2016-02-05 信息的传输、接收方法及装置
CN201610082890.4 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017133688A1 true WO2017133688A1 (zh) 2017-08-10

Family

ID=59499390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072895 WO2017133688A1 (zh) 2016-02-05 2017-02-04 信息的传输、接收方法及装置

Country Status (2)

Country Link
CN (1) CN107046431B (zh)
WO (1) WO2017133688A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111207A (zh) * 2017-11-10 2018-06-01 北京邮电大学 信息传输方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020029182A1 (zh) * 2018-08-09 2020-02-13 株式会社Ntt都科摩 用于传输参考信号的方法及设备
CN111541526B (zh) * 2019-01-21 2022-02-25 华为技术有限公司 参考信号的传输方法及装置
CN113906703A (zh) 2019-05-31 2022-01-07 高通股份有限公司 用于物理下行链路控制信道的窄带解调参考信号捆绑

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097923A1 (zh) * 2010-02-12 2011-08-18 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN102843325A (zh) * 2011-06-22 2012-12-26 中兴通讯股份有限公司 一种开环mimo系统的参考信号处理方法和系统
CN102857458A (zh) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 导频符号确定方法及装置
CN103944847A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 导频符号承载及处理方法、装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036301B (zh) * 2009-09-29 2015-05-20 中兴通讯股份有限公司 中继链路下行解调参考信号的传输方法、装置及中继系统
CN102469589B (zh) * 2010-11-08 2015-06-03 中兴通讯股份有限公司 用于确定中继链路资源单元组的方法及装置
RU2608773C2 (ru) * 2011-11-16 2017-01-24 Самсунг Электроникс Ко., Лтд. Способ и устройство для передачи информации управления в беспроводных системах связи
CN104113387B (zh) * 2013-04-19 2020-01-14 中兴通讯股份有限公司 同步信号的处理方法、装置及系统、信道估计方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097923A1 (zh) * 2010-02-12 2011-08-18 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN102843325A (zh) * 2011-06-22 2012-12-26 中兴通讯股份有限公司 一种开环mimo系统的参考信号处理方法和系统
CN102857458A (zh) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 导频符号确定方法及装置
CN103944847A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 导频符号承载及处理方法、装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111207A (zh) * 2017-11-10 2018-06-01 北京邮电大学 信息传输方法及装置
CN108111207B (zh) * 2017-11-10 2021-04-23 北京邮电大学 信息传输方法及装置

Also Published As

Publication number Publication date
CN107046431B (zh) 2021-09-03
CN107046431A (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
US10673507B2 (en) Method and apparatus for channel state information reference signal (CSI-RS)
US11538568B2 (en) Methods and systems for CSI-RS port selection for CSI-reporting
KR102158159B1 (ko) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
CN108292941B (zh) 用于减少的反馈mimo的方法和装置
US10448408B2 (en) Method and apparatus for coordinating multi-point transmission in advanced wireless systems
US11211988B2 (en) Method for determining precoding matrix indicator, receiving device, and sending device
US9999073B2 (en) Signaling adapted CSI-RS periodicities in active antenna systems
US20230077065A1 (en) Methods and devices for feeding back and configuring pilot parameters, user terminal and base station
US20170244533A1 (en) Method and apparatus for channel state information (csi) reporting
WO2017167156A1 (zh) Dmrs的发送方法及装置
CN108781105B (zh) 用于信道状态信息(csi)报告的方法和装置
JP2016507951A (ja) チャネル状態情報をフィードバックする方法、ユーザ装置及び基地局
US11888557B2 (en) Method and apparatus for port selection in wireless communication systems
CN113316910A (zh) 用于发信号通知pdsch分集的系统和方法
WO2017133688A1 (zh) 信息的传输、接收方法及装置
US20220407654A1 (en) Cdm8 based csi-rs designs for mimo
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
WO2017133520A1 (zh) 信息的发送、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747008

Country of ref document: EP

Kind code of ref document: A1