WO2017133520A1 - 信息的发送、接收方法及装置 - Google Patents

信息的发送、接收方法及装置 Download PDF

Info

Publication number
WO2017133520A1
WO2017133520A1 PCT/CN2017/072064 CN2017072064W WO2017133520A1 WO 2017133520 A1 WO2017133520 A1 WO 2017133520A1 CN 2017072064 W CN2017072064 W CN 2017072064W WO 2017133520 A1 WO2017133520 A1 WO 2017133520A1
Authority
WO
WIPO (PCT)
Prior art keywords
reg
prb pairs
information
regs
dividing
Prior art date
Application number
PCT/CN2017/072064
Other languages
English (en)
French (fr)
Inventor
肖华华
陈艺戬
李儒岳
鲁照华
吴昊
蔡剑兴
王瑜新
李永
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017133520A1 publication Critical patent/WO2017133520A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of communications, and in particular to a method and an apparatus for transmitting and receiving information.
  • the transmitting end and the receiving end generally use multiple antennas to transmit and receive to obtain a higher rate.
  • MIMO multiple-input-multiple-output
  • One principle of multiple-input-multiple-output (MIMO) technology is to use some characteristics of the channel to form a multi-layer transmission of matching channel characteristics, thereby effectively improving system performance without increasing bandwidth and A significant performance improvement on the basis of power is a very promising technology that is widely used in current systems.
  • transmission mode 3 is open-loop spatial multiplexing or open-loop MIMO technology
  • transmission mode 4 is closed-loop spatial multiplexing
  • transmission mode 5 is multi-user MIMO
  • transmission mode 6 is closed-loop spatial multiplexing of single data streams.
  • transmission mode 7 and 8 respectively, single-stream and dual-stream beamforming, and transmission mode 9 supports spatial multiplexing of up to 8 layers, and can realize adaptive switching of user and multi-user, adaptive switching of data layer number. Supports open-loop MIMO and closed-loop MIMO modes.
  • PMI Precoding Matrix Indicator
  • LTE/LTE A mainly to adapt to the channel characteristics of different users and the receiving capabilities of users. For example, for a user with one receiving antenna, it can only use MIMO technology with 1 multiplex layer. For users with faster channel changes, open-loop MIMO technology can be considered. This is because when the user moves faster, the channel The change is faster.
  • the precoding information of the closed-loop spatial multiplexing feedback cannot accurately and timely reflect the downlink channel information in the next feedback period of the base station, which may result in performance degradation.
  • the open-loop spatial multiplexing technique has better robustness because it does not need to feed back precoding information.
  • Table 1 Codebook for transmission on antenna ports ⁇ 0,1,2,3 ⁇ .
  • Table 2 large-delay cyclic delay diversity.
  • Open-loop precoding can be expressed as shown in equation (1):
  • y (j) (i) represents the received data of the jth receiving port on the carrier i
  • x (k) (i) represents the transmitted data on the i th carrier of the kth data layer
  • P is the number of receiving ports
  • v is the number of layers for data transmission. Since CRS supports up to 4 ports, TM3 does not support more than 4 ports.
  • transport mode 9 and transmission mode 10 are defined. It can be used for open-loop MIMO based on Demodulation Reference Signal (DMRS), but the granularity of precoding is at least one physical resource block (Physical Resource Block Group, PRB for short). In FDD system, More than one PRB is based on the Physical Resource Block Group (PRBG) level, and the number of PRBs included in one PRBG is shown in Table 3.
  • PRBG Physical Resource Block Group
  • the REs included in the PRBG use the same precoding, and the precoding used between the PRBGs may be different.
  • the open coding MIMO transmission can be realized by dynamically changing the precoding weight between the PRBGs.
  • the embodiment of the invention provides a method and a device for transmitting and receiving information, so as to at least solve the problem that the performance of the open-loop MIMO in the related art is degraded due to excessive precoding granularity.
  • a method for transmitting information includes: dividing M physical resource block PRB pairs into K resource unit groups REG; and using independent precoding transmission on the K REGs respectively Information, M and K are positive integers, and M is less than K.
  • dividing the M PRB pairs into K REGs including at least one of: dividing the M PRB pairs into K REGs according to cyclic prefix information of the subframes of the M PRB pairs; Decoding the M PRB pairs into K REGs according to the subframe type information of the M subframes in which the PRB pairs are located; dividing the M PRB pairs into K REGs according to the channel state information; according to the physical of the physical downlink control channel
  • the control format indication channel PCFICH information divides the M PRB pairs into K REGs; divides the M PRB pairs into K REGs according to slot index information; and divides the M PRB pairs into channels according to system bandwidth size information.
  • K REGs dividing the M PRB pairs into K REGs according to transmission bandwidth size information; dividing the M PRB pairs into K REGs according to a feedback mode; dividing the M PRB pairs into according to a transmission mode K REGs; dividing the M PRB pairs into K REGs according to PMI disabling; dividing the M PRB pairs into K REGs according to a CSI feedback category.
  • the subframe type information includes: DwPTS of the TDD special subframe. Type information and/or normal subframe type information, the DwPTS type information being determined by special subframe configuration signaling.
  • the K is transmitted through higher layer signaling or physical layer signaling.
  • the REG granularity feedback channel state information enabling information is transmitted through high layer signaling or physical layer signaling.
  • dividing the M PRB pairs into K REGs includes: dividing consecutive REs into one REG; or dividing the discrete REs into one REG.
  • the information comprises: data and enhanced control channel information.
  • the REG includes: a set of REs corresponding to the M1 subcarriers of the N1 OFDM/OFDMA symbols, where N1 is smaller than the number of symbols of the M PRB pairs where the REG is located, and M1 is smaller than the M PRB pairs where the REG is located.
  • Sub-load The number of waves.
  • a method for receiving information includes: receiving information transmitted by M PRB pairs of M physical resource blocks; and dividing the M PRB pairs into K resource unit groups REG, wherein the M, K are positive integers, and M is less than K; respectively, using the demodulation reference pilot DMRS for channel estimation and/or detecting information on the REG, respectively, on the K REGs .
  • dividing the M PRB pairs into K resource unit groups REG including at least one of: dividing the M PRB pairs into K REGs according to cyclic prefix information of the received subframe; Subframe type information of the received subframe divides the M PRB pairs into K REGs; according to the received channel state information, the M PRB pairs are divided into K REGs; according to the received physical downlink control channel
  • the physical control format indication channel PCFICH information divides the M PRB pairs into K REGs; divides the M PRB pairs into K REGs according to slot index information; and the M PRBs according to received system bandwidth size information Dividing into K REGs; dividing the M PRB pairs into K REGs according to received transmission bandwidth size information; dividing the M PRB pairs into K REGs according to a feedback mode;
  • the PRB pairs are divided into K REGs; the M PRB pairs are divided into K REGs according to PMI disabling; the M PRB pairs are divided into K REGs according to CSI feedback categories
  • the subframe type information includes DwPTS type information of the TDD special subframe and/or normal.
  • the DwPTS type information is determined by special subframe configuration signaling.
  • the REG granularity feedback channel state information enabling information is transmitted by using the received high layer signaling or physical layer signaling; and the channel state information enabling information is used according to the REG granularity to determine whether the channel state feedback channel state is determined according to a conventional method. information.
  • dividing the M PRB pairs into K resource unit groups REG includes: dividing consecutive REs into one REG; or dividing the discrete REs into one REG.
  • the information includes: data and control channel information.
  • the REG includes: a set of N1 OFDM/OFDMA symbols and a resource unit RE corresponding to the M1 subcarriers, where N1 is smaller than the number of symbols of the M PRB pairs in which the REG is located, and M1 is smaller than M of the REGs. The number of subcarriers of the PRB pair.
  • an apparatus for transmitting information includes: a first dividing module configured to divide M physical resource blocks M PRB pairs into K resource unit groups REG; a transmission module, setting To use independent precoding transmission information on the K REGs, respectively, the M and the K are positive integers, and M is less than K.
  • the first dividing module includes at least one of the following: the first dividing unit is configured to divide the M PRB pairs into K REGs according to cyclic prefix information of the subframe where the M PRB pairs are located ; second division unit, setting The M PRB pairs are divided into K REGs according to the subframe type information of the subframes of the M PRB pairs; the third dividing unit is configured to divide the M PRB pairs into K according to channel state information.
  • a fourth dividing unit configured to divide the M PRB pairs into K REGs according to physical control format indication channel PCFICH information of the physical downlink control channel; and the fifth dividing unit is configured to: according to the slot index information
  • the M PRB pairs are divided into K REGs
  • the sixth dividing unit is configured to divide the M PRB pairs into K REGs according to system bandwidth size information
  • the seventh dividing unit is configured to: according to the transmission bandwidth size information
  • the M PRB pairs are divided into K REGs
  • the eighth dividing unit is configured to divide the M PRB pairs into K REGs according to a feedback mode
  • the ninth dividing unit is configured to set the M PRB pairs according to the transmission mode Dividing into K REGs
  • a tenth dividing unit configured to divide the M PRB pairs into K REGs according to PMI disabling
  • the eleventh dividing unit is configured to divide the M PRB pairs into according to a CSI feedback category K REG.
  • a receiving module configured to receive information transmitted by M physical resource block PRB pairs, and a second dividing module configured to divide the M PRB pairs into K a resource unit group REG, the M and the K are positive integers, and M is less than K; and the processing module is configured to independently use the demodulation reference pilot DMRS for channel estimation and the REG on the K REGs Information detection on.
  • the second dividing module includes at least one of the following: a twelfth dividing unit, configured to divide the M PRB pairs into K REGs according to cyclic prefix information of the received subframe; a third dividing unit, configured to divide the M PRB pairs into K REGs according to subframe type information of the received subframe; and the fourteenth dividing unit is configured to indicate the M PRBs according to the received channel state information
  • the pair is divided into K REGs;
  • the fifteenth dividing unit is configured to divide the M PRB pairs into K REGs according to the physical control format indication channel PCFICH information of the received physical downlink control channel;
  • the sixteenth dividing unit setting The M PRB pairs are divided into K REGs according to the slot index information;
  • the seventeenth dividing unit is configured to divide the M PRB pairs into K REGs according to the received system bandwidth size information; a unit, configured to divide the M PRB pairs into K REGs according to the received transmission bandwidth size information;
  • the nineteenth dividing unit is
  • the granularity of precoding in open loop MIMO is at least
  • the transmitting end divides the M PRB pairs into K REGs, and uses independent precoding transmission information on the K REGs to separately divide the precoding granularity, and solves the related art.
  • Open-loop MIMO has the effect of improving the performance of open-loop MIMO due to the problem of performance degradation due to excessive precoding granularity.
  • FIG. 1 is a flowchart of a method of transmitting information according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method of receiving information according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of an apparatus for transmitting information according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of an apparatus for receiving information according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a PRB area in a normal cyclic prefix subframe according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a PRB area in an extended cyclic prefix subframe according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a ⁇ 3, 4, 8 ⁇ PRB region configured in a normal cyclic prefix subframe according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a ⁇ 1, 2, 6, 7 ⁇ PRB region configured in an extended cyclic prefix subframe according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for sending information according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 dividing the M physical resource block PRB pairs into K resource unit groups REG, M and K are positive integers, and M is less than K;
  • step S104 independent precoding transmission information is used on each of the K REGs.
  • the M PRB pairs are divided into K REGs, and the independent precoding transmission information is separately used on the K REGs.
  • the smaller division of the precoding granularity solves the problem that the performance of the open-loop MIMO in the related art is degraded due to the excessive precoding granularity, thereby achieving the effect of improving the performance of the open-loop MIMO.
  • step S102 at least one of the following may be included:
  • the M PRB pairs are divided into K REGs according to the cyclic prefix information of the M subframes of the Ms, wherein the cyclic prefix information of the subframe includes: normal cyclic prefix subframe information and an extended cyclic prefix subframe;
  • the M PRB pairs are divided into K REGs according to the subframe type information of the M subframes in which the M subframes are located, where the subframe type information includes a DwPTS type that is a normal subframe type and a TDD special subframe;
  • the M PRB pairs into K REGs are dividing the M PRB pairs into K REGs according to channel state information, where the channel state information includes a channel rank/data transmission layer number;
  • the physical control format indication channel of the physical downlink control channel (Physical Control Format Indicator)
  • the information of the CHF and the PCFICH is divided into K REGs.
  • the value of CFI is CFI+1, and the value of CFI is 1 ⁇ 3.
  • the M PRB pairs are divided into K REGs according to a feedback mode, wherein the feedback modes include, but are not limited to, periodic feedback modes Mode 1-0, Mode 1-1, Mode 2-0, Mode 2-1, and aperiodic feedback.
  • Dividing the M PRB pairs into K REGs according to a transmission mode including but not limited to TM1, TM2, TM3, TM4, TM5, TM6, TM7, TM9, TM10;
  • the M PRB pairs are divided into K REGs according to a CSI feedback category, where the CSI feedback categories include, but are not limited to, Class A, Class B.
  • the subframe type information includes DwPTS type information of the TDD special subframe. And/or normal subframe type information, DwPTS type information may be determined by special subframe configuration signaling.
  • K may be transmitted through high layer signaling or physical layer signaling, where K is used for the division of M PRB pairs received by the receiving end according to K.
  • the REG granularity feedback channel state information enabling information may be transmitted through high layer signaling or physical layer signaling, where the REG granularity feedback channel state information enabling information includes enabling and disabling.
  • Class information where the REG granularity feedback channel state information enabling information is calculated based on the REG granularity and feedback channel state information when enabled, otherwise the channel state information is fed back according to the granularity specified by the conventional method.
  • dividing the M PRB pairs into K REGs includes: dividing consecutive REs into one REG; or dividing the discrete REs into one REG.
  • the REG may be in the form of: REs in the REG are continuous, or the REs in the REG are discrete.
  • the M PRB pairs are divided into K REGs, and the divided attributes may include an RE form that divides the REG, a granularity of the REG, and a number K of the divided REGs.
  • the transmitted information may include: data and control channel information.
  • the REG may include: a set of REs corresponding to the M1 subcarriers of the N1 OFDM/OFDMA symbols, where N1 is smaller than the number of symbols of the M PRB pairs in which the REG is located, and M1 is smaller than the REG. The number of subcarriers of M PRB pairs.
  • FIG. 2 is a flowchart of a method for receiving information according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 receiving information transmitted by M PRB pairs
  • Step S204 dividing M PRB pairs into K REGs, where M, K are positive integers, and M is less than K;
  • Step S206 using DMRS for channel estimation and/or detecting information on the REG independently on the K REGs.
  • the receiving end divides the received M PRB pairs into K REGs, and uses independent ones on the K REGs respectively.
  • the DMRS performs channel estimation and/or information detection, and performs smaller division of the demodulation granularity of the PRB pair, and solves the problem that the performance of the open-loop MIMO in the related art is degraded due to the excessive precoding granularity, thereby achieving the improvement of the open-loop MIMO. Performance effect.
  • step S204 may include at least one of the following:
  • the M PRB pairs into K REGs Decoding the M PRB pairs into K REGs according to the cyclic prefix information of the received subframe, where the cyclic prefix information of the subframe includes normal cyclic prefix subframe information and extended cyclic prefix subframe information;
  • the M PRB pairs into K REGs according to the subframe type information of the received subframe, where the subframe type information includes a normal subframe type and a DwPTS type of the TDD special subframe;
  • the channel state information indication includes a channel rank/data transmission layer number
  • the MPU pairs are divided into K REGs according to the physical control format indication channel PCFICH information of the received physical downlink control channel, where the PCFICH information is CFI when the bandwidth is greater than 10 PRBs, and is taken when the bandwidth is less than 10 PRBs.
  • the value is CFI+1, where CFI is 1 to 3;
  • the M PRB pairs are divided into K REGs according to the feedback mode, wherein the feedback modes include but are not limited to the periodic feedback modes Mode 1-0, Mode 1-1, Mode 2-0, Mode 2-1, and aperiodic feedback mode Mode. 2-0, Mode 3-1, Mode 3-1, Mode 3-2;
  • Dividing M PRB pairs into K REGs according to a transmission mode where the transmission modes include but are not limited to TM1, TM2, TM3, TM4, TM5, TM6, TM7, TM9, TM10;
  • the M PRB pairs are divided into K REGs according to a CSI feedback category, and the CSI feedback categories may include, but are not limited to, Class A, Class B.
  • the subframe type information may include DwPTS type information of the TDD special subframe and/or Or normal subframe type information, DwPTS type information is determined by special subframe configuration signaling.
  • the REG granularity feedback channel state information enabling information may be received by the received high layer signaling or physical layer signaling, where the REG granularity feedback channel state information enabling information includes enabling and disabling There are two kinds of information, wherein the REG granularity feedback channel state information enable information is calculated based on the REG granularity calculation and feedback channel state information, otherwise the granularity feedback channel state information according to the conventional method is received; according to the received REG granularity feedback The channel state information enabling information determines whether the channel state information is fed back according to the granularity specified by the conventional method.
  • the number of REGs may be determined according to the received high layer signaling or the physical layer precoding granularity parameter configuration signaling; or may be configured according to the precoding granularity parameters agreed by the transmitting end and the receiving end.
  • the default value determines the number K of REGs.
  • dividing the M PRB pairs into K resource unit groups REG may include: dividing consecutive REs into one REG; or dividing the discrete REs into one REG.
  • the received information may include: data and control channel information.
  • the REG may include: a set of N1 OFDM/OFDMA symbols and resource elements RE corresponding to the M1 subcarriers, where N1 is smaller than the number of symbols of the M PRB pairs in which the REG is located, and M1 is smaller than REG. The number of subcarriers of the M PRB pairs.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a device for transmitting and receiving information is provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of an apparatus for transmitting information according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes a first dividing module 32 and a transmitting module 34, which will be described below.
  • the first dividing module 32 is configured to divide the M PRB pairs into K REGs; the transmitting module 34 is connected to the first dividing module 32, and is configured to separately use independent precoding transmission information on the K REGs, where the M And K is a positive integer, and M is less than K.
  • the first dividing module 32 may include at least one of the following: a first dividing unit, The M PRB pairs are divided into K REGs according to the cyclic prefix information of the subframes of the M PRB pairs; the second dividing unit is set to set the M PRB pairs according to the subframe type information of the subframes of the M PRB pairs. Dividing into K REGs; the third dividing unit is configured to divide the M PRB pairs into K REGs according to the channel state information; and the fourth dividing unit is configured to indicate the channel PCFICH information according to the physical control format of the physical downlink control channel.
  • the PRB pairs are divided into K REGs; the fifth dividing unit is configured to divide the M PRB pairs into K REGs according to the slot index information; and the sixth dividing unit is configured to divide the M PRB pairs into according to the system bandwidth size information.
  • the dividing unit is configured to divide the M PRB pairs into K REGs according to the transmission mode; the tenth dividing unit is configured to divide the M PRB pairs into K REGs according to the PMI disabling; the eleventh dividing unit is set to be based on the CSI Feedback category will M PRB pairs Into the K REG.
  • the apparatus includes a receiving module 42, a second dividing module 44, and a processing module 46, which will be described below.
  • the receiving module 42 is configured to receive information transmitted by the M PRB pairs;
  • the second dividing module 44 is connected to the receiving module 42 and configured to divide the M PRB pairs into K REGs, where M and K are positive integers, and M Less than K;
  • the processing module 46 is coupled to the second partitioning module 44, configured to independently use the DMRS for channel estimation and/or for information detection on the REG on the K REGs.
  • the second dividing module may include at least one of the following: a twelfth dividing unit, configured to divide the M PRB pairs into K REGs according to the cyclic prefix information of the received subframe; a thirteenth dividing unit, configured to divide the M PRB pairs into K REGs according to the subframe type information of the received subframe; and the fourteenth dividing unit is configured to divide the M PRB pairs according to the received channel state information indication Forming K REGs; the fifteenth dividing unit is configured to divide the M PRB pairs into K REGs according to the physical control format indication channel PCFICH information of the received physical downlink control channel; the sixteenth dividing unit is set to be based on the slot index The information divides the M PRB pairs into K REGs; the seventeenth dividing unit is configured to divide the M PRB pairs into K REGs according to the received system bandwidth size information; the eighteenth dividing unit is set to receive according to the received transmission The bandwidth size information divides the M PRB pairs into K REGs according to
  • the transmitting end includes, but is not limited to, various wireless communication devices such as a macro base station, a micro base station, and a wireless access point.
  • the receiving end includes but is not limited to: data card, mobile phone, notebook computer, personal computer, tablet computer, personal digital assistant, Bluetooth and other receiving devices.
  • the receiving end includes but is not limited to the number of data transmission layers, the number of data transmission streams, the number of data streams, the number of data layers, the channel Rank, RI, rank, and the like.
  • the receiving end includes, but is not limited to, various wireless communication devices such as a macro base station, a micro base station, and a wireless access point.
  • the sender includes but is not limited to: data card, mobile phone, laptop, personal computer, tablet, personal digital assistant Various receiving devices such as Bluetooth and Bluetooth.
  • the transmitting end includes, but is not limited to, the number of data transmission layers, the number of data transmission streams, the number of data streams, the number of data layers, the channel Rank, RI, rank, and the like.
  • Embodiment 1 Segmentation of REG based on subframe-based cyclic prefix information
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs (ie, system bandwidth), and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource unit groups G1, G2, ..., GK, each group including M1, M2, ..., MK REs, and one RE in the same PRB pair belongs to and It belongs to only one REG group, which means that the REs of any two different REG groups are different.
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each of the K REGs may be consecutive REs, or may be discrete REs in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers. .
  • the transmitting end divides each PRB pair in the transmission resource into K resource unit groups REG according to the cyclic prefix information of the subframe, and the cyclic prefix information of the subframe includes a normal cyclic prefix subframe and an extended cyclic prefix subframe.
  • a downlink control signal includes a partitioning method under 10 OFDM symbols as follows:
  • the PRB is divided into three REGs, wherein 12 subcarriers are occupied in the frequency domain, and the OFDM symbol of the data region is indexed from 10 to 13 in the time domain. It is divided into three sets C1, C2, and C3, which respectively correspond to three REGs, for example, an RE of the OFDM symbol index l belonging to C1 is one REG, a RE belonging to C2 is one REG, and a RE belonging to C3 is one REG, They are G1, G2, and G3.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the time domain frequency domain joint division when the carrier index k is S1, the RE of the symbol index l is C1 in the time domain is 1 REG, the RE whose symbol index l is C2 is one REG, and the symbol index l is a RE of C3.
  • REG in the carrier index k is S2
  • the RE in the time domain with the symbol index l being C1 is 1 REG
  • the RE with the symbol index l being C2 is one REG
  • the symbol index l is one REG of C3.
  • the time domain is divided into 3 is exemplified, and similarly available for division into other K values.
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the symbol index corresponding to C1 is l0 ⁇ l1
  • the symbol index corresponding to C2 is l1+1 ⁇ l2
  • the symbol index corresponding to C3 is l2+1 ⁇ L-1, where L is the total number of symbols included in the PRB pair.
  • the value is 14, where l1 is less than l2, and preferably, their values are such that the number of elements of the set C1 and C2, C3 is the greatest difference.
  • the PRB is divided into two REGs, wherein 12 subcarriers are occupied in the frequency domain, and the OFDM symbol of the data region is indexed from 2 to 11 in the time domain.
  • the RE is divided into two REGs, for example, the RE corresponding to the OFDM symbol index l is l0 to l1 is one REG, and the RE corresponding to l1+1 to 11 is one REG, which are G1 and G2, respectively.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the carrier index k is S1
  • the RE corresponding to the symbol index l in the time domain is l0 to l1 is 1 REG
  • the RE corresponding to l1+1 to 11 is one REG
  • the index k is S2, and the RE corresponding to the symbol index l in the time domain is l0 to l1, and the RE corresponding to l1+1 to 11 is one REG.
  • the time domain is divided into 2
  • similarly available for division into other K values for the case of subcarrier dispersion
  • the same can be obtained.
  • the subcarrier is divided into two sets S1 and S2, S1 corresponds to the subcarrier of the odd index, and S2 corresponds to the subcarrier of the even set, and l1 is greater than l0, for example, the value is 6.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data sent by the transmitting end and the cyclic prefix information indication of the subframe, and divides the PRB pair into K REG groups according to the cyclic prefix information of the subframe, and the method of dividing is the same as the method described above on the sending end. It is no longer exhaustive here.
  • the transmitting end may transmit the K value to the receiving end through the high layer precoding granularity parameter configuration signaling or the physical layer precoding granularity signaling, and the receiving end may also configure signaling or physical according to the received high layer precoding granularity parameter.
  • the layer precoding granularity parameter configuration signaling or the default configuration determines the number K of REGs, and does not merely determine the number K of REGs according to the cyclic prefix information of the subframe.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • REG granularity feedback channel state information enabling information carried in high layer or physical layer signaling, if the information is If the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, and the granularity feedback channel state information corresponding to the feedback mode configured by the transmitting end.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 2 divides REG based on subframe type information
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource element groups (REG) G1, G2, ..., GK, each group including M1, M2, ..., MK REs, and the same PRB.
  • REG resource element groups
  • One RE in the pair belongs to and belongs to only one REG group, that is to say, the REs of any two different REG groups are different.
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • a downlink control signal includes a partitioning method under 10 OFDM symbols as follows:
  • the PRB is divided into three REGs, wherein 12 subcarriers are occupied in the frequency domain, and the OFDM symbols with the data regions indexed from 10 to 13 are divided into three sets C1 in the time domain.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the time domain frequency domain joint division when the carrier index k is S1, the RE of the symbol index l is C1 in the time domain is 1 REG, the RE whose symbol index l is C2 is one REG, and the symbol index l is a RE of C3.
  • the RE with the symbol index l being C1 in the time domain is 1 REG
  • the RE with the symbol index l being C2 is one REG
  • the symbol index l is one REG of C3.
  • the time domain is divided into 3
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the symbol index corresponding to C1 is l0 ⁇ l1
  • the symbol index corresponding to C2 is l1+1 ⁇ l2
  • the symbol index corresponding to C3 is l2+1 ⁇ L-1, where L is the total number of symbols included in the PRB pair. , here the value is 14.
  • the TDD-Config->specialSubframePatterns field of the high layer signaling is used.
  • the number of each corresponding DwPTS is shown in Table 4.
  • the RE corresponding to the C1 symbol is a REG
  • the RE corresponding to the C2 symbol is a REG, which are respectively G1 and G2.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the carrier index k is S1
  • the RE of the symbol index l belonging to C1 in the time domain is 1 REG
  • l is an REG belonging to C1
  • the carrier index k is S2.
  • the RE of the symbol index l belonging to C1 is 1 REG
  • the RE belonging to C1 is one REG.
  • only the case where the time domain is divided into 2 is exemplified, and similarly available for division into other K values.
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data and the subframe type information indication sent by the sending end, and divides the PRB pair into K REG groups according to the subframe type information indication, and the dividing method is the same as the method described in the sending end, and is not repeated here. .
  • the transmitting end may transmit the K value to the receiving end through the high layer precoding granularity parameter configuration signaling or the physical layer precoding granularity signaling, and the receiving end may also configure signaling or physical according to the received high layer precoding granularity parameter.
  • the layer precoding granularity parameter configuration signaling or the default configuration determines the number K of REGs, and does not merely determine the number K of REGs based on the subframe type information indication.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 3 Dividing REG based on channel state information
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource element groups (REG) G1, G2, ..., GK, each group including M1, M2, ..., MK REs, and the same PRB.
  • REG resource element groups
  • One RE in the pair belongs to and belongs to only one REG group, that is to say, the REs of any two different REG groups are different.
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • the transmitting end divides each PRB pair in the transmission resource into K resource unit groups REG according to channel state information, and the channel state information includes a data layer number or a channel rank.
  • a downlink control signal includes a partitioning method under 10 OFDM symbols as follows:
  • the number of data layers or the channel rank of the channel is smaller than L1, for example, the value of L1 is 3, and the PRB is divided into three REGs, wherein 12 subcarriers are occupied in the frequency domain, and the time domain is
  • the OFDM symbols with the data regions indexed from 10 to 13 are divided into three sets C1, C2, and C3, respectively corresponding to three REGs, such as an OFDM symbol index l, the RE belonging to C1 is 1 REG, and l belongs to the RE of C2.
  • the RE belonging to C3 is a REG, which is G1, G2, and G3, respectively.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the time domain frequency domain joint division when the carrier index k is S1, the RE of the symbol index l is C1 in the time domain is 1 REG, the RE whose symbol index l is C2 is one REG, and the symbol index l is a RE of C3.
  • the RE with the symbol index l being C1 in the time domain is 1 REG
  • the RE with the symbol index l being C2 is one REG
  • the symbol index l is one REG of C3.
  • the time domain is divided into 3
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the symbol index corresponding to C1 is l0 ⁇ l1
  • the symbol index corresponding to C2 is l1+1 ⁇ l2
  • the symbol index corresponding to C3 is l2+1 ⁇ L-1, where L is the total number of symbols included in the PRB pair.
  • the value is 14, where l1 is less than l2, and preferably, their values are such that the number of elements of the set C1 and C2, C3 is the greatest difference.
  • the REG is divided in the frequency domain, for example, the carrier index k is divided into two sets S1 and S2, The S1 is 0 to 5, and the S2 is 6 to 11.
  • the RE corresponding to the carrier index set S1 is divided into one REG, and the RE corresponding to the carrier index set S2 is one REG.
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the REG can also be divided by symbols in the time domain, similar to the manners of Embodiment 1 and Embodiment 2.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data and channel state information indication sent by the transmitting end, and divides the PRB pair into K REG groups according to the channel state information indication, and the method of dividing the same is the same as the method described in the above sending end, and is not repeated here.
  • the transmitting end may transmit the K value to the receiving end through the high layer precoding granularity parameter configuration signaling or the physical layer precoding granularity signaling, and the receiving end may also configure signaling or physical according to the received high layer precoding granularity parameter.
  • the layer precoding granularity parameter configuration signaling or the default configuration determines the number K of REGs, and does not merely determine the number K of REGs based on the channel state information indication.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 4 divides REG based on PCFICH information
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource element groups (Resource Element Group, REG).
  • REG Resource Element Group
  • G1, G2, ..., GK each group includes M1, M2, ..., MK REs, and one RE in the same PRB pair belongs to and belongs to only one REG group, that is, any two different REG groups The RE is different.
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • a method for dividing the REG is as follows:
  • the PRB is divided into three REGs, wherein 12 subcarriers are occupied in the frequency domain, and the OFDM symbols with the data region index of 2-13 are divided into time domains.
  • REGs for example, an RE with an OFDM symbol index of 1 to 5 is 1 REG, a RE with a value of 6 to 9 is one REG, and a RE with a value of 10 to 13 is a REG, which are G1, G2, and G3, respectively.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the carrier index k is S1
  • the RE with the symbol index l of 2 to 5 in the time domain is 1 REG
  • the RE with l to 6 to 9 is one REG
  • l is 10 to 13.
  • RE REG when the carrier index k is S2, the RE with the symbol index l of 2 to 5 in the time domain is 1 REG
  • the RE with l is 6 to 9 is one REG
  • the RE with 10 to 13 is one REG.
  • subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the PRB is divided into three REGs, wherein 12 subcarriers are occupied in the frequency domain, and the OFDM symbols with the data region index of 3 to 13 are divided into time domains.
  • an RE with an OFDM symbol index of 3 to 5 is one REG
  • a RE with a value of 6 to 9 is one REG
  • a RE with a value of 10 to 13 is a REG, which are G1, G2, and G3, respectively.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the time domain frequency domain joint division when the carrier index k is S1, the RE with the symbol index l of 3 to 5 in the time domain is 1 REG, and the RE with l to 6 to 9 is one REG, and l is 10 to 13.
  • RE REG when the carrier index k is S2, the RE with the symbol index l of 3 to 5 in the time domain is 1 REG, the RE with l is 6-9 is one REG, and the RE with 10 to 13 is one REG.
  • subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the transmitting end separately allocates one precoding matrix P1, P2, ... PK in each of the divided K REGs, and
  • the receiving end receives the data sent by the transmitting end and the PCFICH, and divides the PRB pair into K REG groups according to the CFI of the PCFICH.
  • the method of dividing is the same as that described in the above sending end, and is not repeated here.
  • the transmitting end may transmit the K value to the receiving end through the high layer precoding granularity parameter configuration signaling or the physical layer precoding granularity signaling, and the receiving end may also configure signaling or physical according to the received high layer precoding granularity parameter.
  • the layer precoding granularity parameter configuration signaling or the default configuration determines the number K of REGs, and not only the number K of REGs according to the CFI of the PCFICH.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 5 divides REG based on slot index information
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and according to the estimated letter.
  • the channel estimates and data detects and demodulates the channel of the data region. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource unit groups REG G1, G2, ..., GK, each group including M1, M2, ..., MK REs, and one RE in the same PRB pair belongs to And only belong to one REG group, that is to say, the REs of any two different REG groups are different.
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • the transmitting end divides each PRB pair in the transmission resource into K resource unit groups REG according to the slot index information, and the transmitting end can obtain which subframes in the LTE/LTE A frame have the primary synchronization signal according to the slot index information.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PSS is transmitted on the third OFDM symbol of subframe 1 and subframe 6; and SSS is in the sub-frame.
  • the last symbol of frame 0 and subframe 5 is transmitted.
  • a downlink control signal includes a partitioning method under 10 OFDM symbols as follows:
  • the PRB is divided into three REGs, wherein 12 subcarriers are allocated in the frequency domain, and the OFDM symbols whose data regions are indexed from 10 to 13 are divided into three sets C1, C2, and C3, respectively, corresponding to three REGs, for example, the OFDM symbol index l belongs to C1.
  • the RE is 1 REG
  • the RE belonging to C2 is a REG
  • the RE belonging to C3 is a REG, which are G1, G2, and G3, respectively.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the time domain frequency domain joint division when the carrier index k is S1, the RE of the symbol index l is C1 in the time domain is 1 REG, the RE whose symbol index l is C2 is one REG, and the symbol index l is a RE of C3.
  • the RE with the symbol index l being C1 in the time domain is 1 REG
  • the RE with the symbol index l being C2 is one REG
  • the symbol index l is one REG of C3.
  • the time domain is divided into 3
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the symbol index corresponding to C1 is l0 ⁇ l1
  • the symbol index corresponding to C2 is l1+1 ⁇ l2
  • the symbol index corresponding to C3 is l2+1 ⁇ L-1, where L is the total number of symbols included in the PRB pair.
  • the value is 14, where l1 is less than l2, and preferably, their values are such that the number of elements of the set C1 and C2, C3 is the greatest difference.
  • the OFDM symbol is divided into two sets C1 and C2
  • the PRB divides the area into two REGs, wherein the frequency domain occupies 12 subcarriers, and the time domain has the symbol index l of the data area corresponding to the RE in the set C1 as one REG, and the symbol index l corresponds to the set C2.
  • RE is a REG, which is G1 and G2 respectively.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the carrier index k is S1
  • the RE of the symbol index l belonging to C1 in the time domain is 1 REG
  • l is an REG belonging to C1
  • the carrier index k is S2.
  • the RE of the symbol index l belonging to C1 is 1 REG
  • the RE belonging to C1 is one REG.
  • only the case where the time domain is divided into 2 is exemplified, and similarly available for division into other K values.
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the division of the C1 and C2 sets differs depending on the system and the slot index.
  • the slot index is 2 or 3 (corresponding to subframe 1), or 10 and 11 (corresponding to subframe 6)
  • the third symbol of slot 2 and slot 10 near the center carrier frequency.
  • the six PRB pairs have a PSS signal.
  • the subframe is a special subframe.
  • the value of l1 is such that the number of elements of C1 and C2 is the largest difference, and l0 is CFI or CFI+1, here L is the number of symbols of the PRB pair, and the value is 8 to 12.
  • the CFI is the number of symbols in the control area, and the value is 1 to 3.
  • the slot index in the TDD system is 0 or 1 (corresponding to subframe 0), or 8 and 9 (corresponding to subframe 5), in the last symbol of slot 1 and slot 9, 6 near the center carrier frequency.
  • the PRB pair there is an SSS signal.
  • the symbol index corresponding to C1 is l0 ⁇ l1
  • the symbol index corresponding to C2 is l1+1 ⁇ L-2.
  • the value of l1 is such that the number of elements of C1 and C2 is the greatest difference, and l0 is CFI or CFI+1.
  • the slot index is 0 or 1 (corresponding to subframe 0), or 8 and 9 (corresponding to subframe 5)
  • One symbol is PSS
  • the second last symbol is SSS.
  • the number of symbols is L (for example, 12 or 14)
  • the symbol index corresponding to C1 is l0 ⁇ l1
  • the symbol index corresponding to C2 is l1+1 ⁇ L.
  • the value of l1 is such that the number of elements of C1 and C2 is the greatest difference
  • l0 is CFI or CFI+1.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data sent by the sending end and the slot index information, and divides the PRB pair into K REG groups according to the slot index information, and the dividing method is the same as the method described in the above sending end, and is not described here.
  • the transmitting end may transmit the K value to the receiving end through the high layer precoding granularity parameter configuration signaling or the physical layer precoding granularity signaling, and the receiving end may also configure signaling or physical according to the received high layer precoding granularity parameter.
  • the layer precoding granularity parameter configuration signaling or the default configuration determines the number K of REGs, and not only the number K of REGs is determined based on the slot index information.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 6 divides REG based on system bandwidth size information
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource element groups (REG) G1, G2, ..., GK, each group including M1, M2, ..., MK REs, and the same PRB.
  • REG resource element groups
  • One RE in the pair belongs to and belongs to only one REG group, that is to say, the REs of any two different REG groups are different.
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • the transmitting end divides each PRB pair in the transmission resource into K resource unit groups REG according to the system bandwidth size information, and the system bandwidth size information affects the size of the downlink control symbol area, when the bandwidth is greater than 10 PRB pairs
  • a method of dividing REG is as follows:
  • the system bandwidth is greater than 10 PRB pairs, and the PRB is divided into three REGs, wherein 12 subcarriers are occupied in the frequency domain, and the index of the data region is l0-13 in the time domain.
  • the OFDM symbols are divided into three sets C1, C2, and C3, respectively corresponding to three REGs, for example, an RE of the OFDM symbol index l belonging to C1 is one REG, a RE belonging to C2 is one REG, and a RE belonging to C3 is One REG, G1, G2, and G3.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the time domain frequency domain joint division when the carrier index k is S1, the RE of the symbol index l is C1 in the time domain is 1 REG, the RE whose symbol index l is C2 is one REG, and the symbol index l is a RE of C3.
  • the RE with the symbol index l being C1 in the time domain is 1 REG
  • the RE with the symbol index l being C2 is one REG
  • the symbol index l is one REG of C3.
  • the time domain is divided into 3
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the symbol index corresponding to C1 is l0 ⁇ l1
  • the symbol index corresponding to C2 is l1+1 ⁇ l2
  • the symbol index corresponding to C3 is l2+1 ⁇ L-1, where L is the total number of symbols included in the PRB pair.
  • the value is 14, where l1 is less than l2.
  • their values are such that the number of elements of the set C1 and C2, C3 is the greatest difference, where l0 is CFI.
  • the system bandwidth is less than or equal to 10 PRB pairs.
  • the number of symbols in the downlink control region is CFI+1
  • the PRB is divided into three REGs, wherein 12 in the frequency domain.
  • the carrier, and the OFDM symbols whose data regions are indexed from 10 to 13 are divided into three sets C1, C2, and C3, respectively, corresponding to three REGs, for example, an RE of the OFDM symbol index l belonging to C1 is one REG, l
  • the RE belonging to C2 is a REG
  • the RE belonging to C3 is a REG, which are G1, G2, and G3.
  • the REG can be divided in the frequency domain.
  • the carrier index k is divided into two sets S1 and S2, where S1 is 0-5, and S2 is 6-11, then the RE corresponding to the carrier index set S1 is divided into one REG.
  • the RE corresponding to the carrier index set S2 is one REG.
  • the time domain frequency domain joint division when the carrier index k is S1, the RE of the symbol index l is C1 in the time domain is 1 REG, the RE whose symbol index l is C2 is one REG, and the symbol index l is a RE of C3.
  • the RE with the symbol index l being C1 in the time domain is 1 REG
  • the RE with the symbol index l being C2 is one REG
  • the symbol index l is one REG of C3.
  • the time domain is divided into 3
  • the case of subcarrier dispersion can also be similarly obtained, for example, dividing the subcarrier into two sets S1 and S2, S1 corresponding to the subcarrier of the odd index, and S2 corresponding to the subcarrier of the even set.
  • the symbol index corresponding to C1 is l0 ⁇ l1
  • the symbol index corresponding to C2 is l1+1 ⁇ l2
  • the symbol index corresponding to C3 is l2+1 ⁇ L-1, where L is the total number of symbols included in the PRB pair.
  • the value is 14, where l1 is less than l2.
  • their values are such that the number of elements of the set C1 and C2, C3 is the largest difference, and l0 is CFI+1.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data sent by the transmitting end and the system bandwidth size information indication, and divides the PRB pair into K REG groups according to the system bandwidth size information indication, and the dividing method is the same as the method described above on the sending end, and is not tired here. Said.
  • the transmitting end may transmit the K value to the receiving end through the high layer precoding granularity parameter configuration signaling or the physical layer precoding granularity signaling, and the receiving end may also configure signaling or physical according to the received high layer precoding granularity parameter.
  • the layer precoding granularity parameter configuration signaling or the default configuration determines the number K of REGs, and does not merely determine the number K of REGs according to the system bandwidth size information indication.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 7 divides REG based on transmission bandwidth size information
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and The symbols of CFI+1 ⁇ Ns are used to transmit physical downlink data.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource unit groups REG G1, G2, ..., GK, each group including M1, M2, ..., MK REs, and one RE in the same PRB pair belongs to And only belong to one REG group, that is to say, the REs of any two different REG groups are different.
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • the transmitting end determines the value of K according to the size of the transmission bandwidth.
  • the transmitting end needs to divide one PRB into K i REGs.
  • the transmitting end determines the number of Ks of the PRB to be divided into K shares according to the number of RBs of the transmitted data, and then divides the PRB pair into K shares, or may further according to the cyclic prefix of the subframe according to the methods of Embodiments 1 to 6. At least one of information, subframe type information, subframe type information, channel state information, physical control format indication channel PCFICH information of the physical downlink control channel, slot index information, system bandwidth size information, etc., the PRB pair is divided, Divided into K REGs.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data sent by the transmitting end and the system bandwidth size information indication, and divides the PRB pair into K REG groups according to the transmission bandwidth size information indication, and the dividing method is the same as the method described above on the sending end, and is not tired here. Said.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • REG granularity feedback channel state information enabling information carried in high layer or physical layer signaling, if the information is If the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, and the granularity feedback channel state information corresponding to the feedback mode configured by the transmitting end.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 8 divides REG based on feedback mode
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the feedback mode is exemplified by periodic feedback (Physical Uplink Control Channe, PUCCH) and non-periodic feedback (Physical Uplink Shared Channe, PUSCH) in LTE/LTE A, where
  • the feedback mode refers to a combination of CSI (CQI/PMI/RI) feedback, including subband feedback and wideband feedback or selection of M subband feedbacks, including periodic feedback and aperiodic feedback.
  • the aperiodic feedback is transmitted in the PUSCH, including the modes shown in Table 5.
  • the periodic feedback mode refers to a mode that is fed back periodically in the PUCCH, which includes the modes as shown in Table 6.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource element groups (REG) G1, G2, ..., GK, each group including M1, M2, ..., MK REs, and the same PRB.
  • REG resource element groups
  • One RE in the pair belongs to and belongs to only one REG group, that is to say, the REs of any two different REG groups are different.
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • the transmitting end determines the value of K according to the feedback mode.
  • K2 is generally greater than 1, and the PRB pair needs to be divided into multiple REGs to transmit data.
  • the transmitting end divides the PRB into K shares according to the transmission mode to determine the number of Ks of the REBs according to the transmission mode, or may further convert the cyclic prefix information according to the subframe according to the methods of Embodiments 1 to 6. At least one of sub-frame type information, sub-frame type information, channel state information, physical control format indication channel PCFICH information, slot index information, system bandwidth size information, etc. of the physical downlink control channel divides the PRB into K REG.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data sent by the transmitting end and the feedback feedback mode information indication, and divides the PRB pair into K REG groups according to the feedback mode information indication, and the method of dividing the same is the same as the method described above on the sending end, and the description is not repeated here. .
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 9 divides REG based on transmission mode
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the transmission mode includes a transmission mode (TM mode), TM1 to TM10 in LTE/LTE A, where TM 1 is a single antenna port transmission (using port 0), and is applied to a single antenna.
  • TM 2 is a transmit diversity mode, which is suitable for the case where the cell edge channel condition is relatively complicated and the interference is large, and can also be used for the case where the UE moves at a high speed. Use 2 or 4 antenna ports. Transmit diversity is the default multi-antenna transmission mode. It increases data SINR by transmitting the same data on different antennas, making transmission more reliable.
  • TM 3 is an open-loop space division multiplexing of large delay diversity, suitable for scenarios where the UE moves at high speed; 2 or 4 antenna ports are used.
  • TM 4 is a closed-loop spatial multiplexing, suitable for occasions with good channel conditions, for providing higher data transmission rates; using 2 or 4 antenna ports.
  • TM 5 is a MU-MIMO transmission mode, mainly used to increase the capacity of a cell; a 2 or 4 antenna port is used.
  • TM 6 is the transmission of Rank 1, mainly for the case of cell edge; using 2 or 4 antenna ports.
  • TM 7 is a single stream The beam shaping is mainly applied to the UE at the edge of the cell, which can effectively resist interference and only uses port 5.
  • TM 8 is a dual stream beamforming that can be used for UEs at the cell edge as well as for other scenarios.
  • Port 7 and port 8 are used, and each port corresponds to one UE-specific reference signal, and the two reference signals are distinguished by two orthogonal OCC (orthogonal cover codes). Under space division multiplexing, these 2 OCCs and corresponding reference signals are used for the transmission of these 2 layers.
  • TM 9 supports up to 8 layers of transmission, primarily to increase data transfer rates. Use port 7 to 14.
  • TM 10 is a mode that supports COMP.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource element groups (REG) G1, G2, ..., GK, and each group includes M1, M 2, ..., MK REs, and the same
  • REG resource element groups
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • the transmitting end determines the value of K according to the transmission mode.
  • the transmitting end determines the number of Ks of the PRB pair into the REG according to the transmission mode and the method determined above, and then divides the PRB pair into K shares, or may further according to the method according to Embodiments 1 to 6 according to the loop of the subframe. At least one of prefix information, subframe type information, subframe type information, channel state information, physical control format indication channel PCFICH information of the physical downlink control channel, slot index information, system bandwidth size information, etc. , divided into K REGs.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data and the transmission mode information indication sent by the transmitting end, and indicates the PRB pair according to the transmission mode information indication. It is divided into K REG groups, and the division method is the same as that described in the above sending end, and will not be described here.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 10 divides REG based on feedback type
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the feedback type refers to the category of measurement and feedback of channel information, and there are two types: Class A and Class B, respectively.
  • Class A The base station sends a CSI-RS, which is generally a non-precoded pilot.
  • the UE directly performs channel measurement and CSI quantization based on the CSI-RS pilot to obtain RI/PMI/CQI.
  • the content is fed back on the PUCCH or PUSCH, and the feedback content is more, including the beam direction of the broadband.
  • Class B The CSI-RS transmitted by the base station is generally a pre-coded pilot.
  • the UE may need to select the pre-coded pilot first. Selecting, or precoding the resource set selection of the pilot, or port group selection, and then performing quantitative feedback of the channel information based on the selected subset, including subset selection information, and the RI corresponding to the selected CSI-RS measurement resource subset /PMI/CQI information;
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource element groups (REG) G1, G2, ..., GK, and each group includes M1, M 2, ..., MK REs, and the same
  • REG resource element groups
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be REs that are temporally consecutive, or REs that are discrete in time, may be REs on consecutive subcarriers in the frequency domain, or may be REs on discrete carriers.
  • the PRB pair is divided into K shares, or may be further according to the cyclic prefix information of the subframe, the subframe type information according to the methods of Embodiments 1-6. At least one of the subframe type information, the channel state information, the physical control format indication channel PCFICH information of the physical downlink control channel, the slot index information, and the system bandwidth size information divides the PRB pair into K REGs.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data and the feedback category information indication sent by the sending end, and divides the PRB pair into K REG groups according to the feedback category information, and the method of dividing the same is the same as the method described above on the sending end, and is not described here.
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • Embodiment 11 divides REG based on PMI disable
  • the number of antennas/ports/array elements configured by each transmitting end is Nt
  • the number of antennas/ports/array elements configured at the receiving end is Nr
  • Nt is greater than A positive integer of 1 and Nr is a positive integer greater than zero.
  • the bandwidth used by the system is Nb PRB pairs, and each PRB pair is a set S of resource elements RE including Nc subcarriers and Ns OFDM/OFDMA symbols, which includes M REs.
  • the 168 REs in the PRB pair the RE corresponding to the CFI symbol is used to transmit the downlink physical control channel PDCCH, and the symbols of CFI+1 to Ns are used to transmit the physical downlink data.
  • the precoding matrix index disabling refers to whether the UE reports the precoding index of the MIMO when reporting the CSI in the MIMO system, for example, in the open loop space.
  • the UE does not need to feed back the PMI, so that PMI disabling can be enabled, thereby saving feedback overhead.
  • the transmitting end transmits data to the receiving end in the Nb1 PRB pair, and transmits the demodulation reference pilot DMRS, and the user performs channel estimation by using the DMRS, and estimates and data the channel of the data area according to the estimated channel. Detection, demodulation. This process is described in detail as follows:
  • the sender divides the REs in each PRB pair into K resource element groups (REG) G1, G2, ..., GK, and each group includes M1, M 2, ..., MK REs, and the same
  • REG resource element groups
  • M1, M2, ..., MK herein may be equal, for example equal to M0/K REs, where M0 is the number of REs used to transmit data, and K may be 2, 3, 4, 6,8 and so on.
  • the REs in each REG of the K REGs may be temporally consecutive REs, or may be discrete in time.
  • the RE may be an RE on a continuous subcarrier in the frequency domain or an RE on a discrete carrier.
  • the transmitting end determines the value of K according to PMI disabling.
  • the PRB pair is divided into K REGs.
  • the transmitting end divides the PRB pair into the number K of REGs, the PRB pair is divided into K shares, or may be further according to the cyclic prefix of the subframe according to the methods of Embodiments 1 to 6. At least one of information, subframe type information, subframe type information, channel state information, physical control format indication channel PCFICH information of the physical downlink control channel, slot index information, system bandwidth size information, etc., the PRB pair is divided, Divided into K REGs.
  • the transmitting end separately allocates one precoding matrix P1, P2, . . . PK in each of the divided RE REGs, and processes the modulated data in the i th REG with precoding Pi and then maps to the transmitting antenna and sends it to the transmitting antenna.
  • the receiving end receives the data sent by the transmitting end and the PMI disabling information indication, and divides the PRB pair into K REG groups according to the PMI disabling information indication, and the method of dividing is the same as the method described above on the sending end, and is not repeated here. .
  • the receiving end performs channel estimation on the RE in the i-th REG group Gi, and performs data detection on the data carried by the RE in the REG according to the estimated channel, and demodulates to obtain data in the REG.
  • the transmitting end may transmit the REG granularity feedback channel state information enabling information to notify the user whether to perform channel state information feedback based on the granularity of the REG by using the high layer signaling or the physical layer signaling, and the receiving end receives the transmitting end.
  • the REG granularity feedback channel state information enabling information carried in the high layer or the physical layer signaling. If the information is enabled, and the REG-based granularity feedback channel state information is required, the user feeds back the channel state information based on the granularity of the REG, otherwise press The granularity feedback channel state information corresponding to the feedback mode configured by the sender.
  • the data transmitted by the transmitting end in the REG may be ePDCCH, or other pre-coded information, and the processing procedure is the same as the data transmission process in the embodiment, and is not described here.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • S21 Receive information transmitted by M PRB pairs.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor executes the above S11-S12 according to the stored program code in the storage medium.
  • the processor executes the above S21-S23 according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信息的发送、接收方法及装置,其中,该信息的发送方法包括:将M个PRB对划分为K个REG;在K个REG上分别使用独立的预编码传输信息。通过本发明,在相关技术中开环MIMO中预编码的粒度至少是一个PRB对的情况下,将M个PRB对划分为K个REG,并在K个REG上分别使用独立的预编码传输信息,对预编码粒度进行更小的划分,解决了相关技术中开环MIMO由于预编码粒度过大导致性能下降的问题,进而达到了提高开环MIMO性能的效果。

Description

信息的发送、接收方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种信息的发送、接收方法及装置。
背景技术
无线通信系统中,发送端和接收端一般会采用多根天线发送和接收来获取更高的速率。多输入多输出(multiple-input-multiple-output,简称为MIMO)技术的一个原理是利用信道的一些特征来形成匹配信道特征的多层传输,从而能够有效的提升系统性能,在不增加带宽和功率的基础上就获得显著的性能提升,是一个非常有前景的技术,在目前的系统中广泛应用。比如在长期演进(Long Term Evolution,简称为LTE)和其增强版本(即增强的长期演进(Long Term Evolution-Advanced,简称为LTE A)系统中有多种多天线技术传输的模式,传输模式2为空频分集,传输模式3为开环空间复用或称为开环MIMO技术,传输模式4为闭环空间复用,传输模式5为多用户MIMO,传输模式6为单数据流的闭环空间复用,传输模式7和8分别为单流和双流波束赋形,而传输模式9支持最大8层的空间复用,并能实现当用户和多用户的自适应切换,数据层数的自适应切换,支持开环MIMO和闭环MIMO模式。
在这些传输模式中,有的需要用户反馈预编码矩阵指示符(Precoding Matrix Indicator,简称为PMI),称为闭环MIMO技术,有的不需要反馈预编码矩阵指示符(Precoding Matrix Indicator,简称为PMI),称为开环MIMO技术。LTE/LTE A中定义这些传输模式,主要是为了适应不同用户的信道特征以及用户的接收能力。比如对于1根接收天线的用户它只能使用复用层数为1的MIMO技术,信道变化比较快的用户,可以考虑使用开环的MIMO技术,这是因为用户移动速度比较快时,信道的改变比较快,在反馈周期内,闭环空间复用反馈的预编码信息并不能准确及时的反应基站下一个反馈周期内下行信道信息,从而会导致性能的下降。而开环空间复用技术由于不需要反馈预编码信息,具有更好的鲁棒性。
LTE/LTE A的早期版本比如Release 8/Release 9采用基于小区公共参考信号(Cell-specific Reference Signal,简称为CRS)的开环MIMO,它是利用TM3来实现的,而且解调主要考虑利用CRS的方法进行解调。以4天线为例,Release 8TM3使用了表1中的码字进行预编码,并用到了表2中的Large Delay CDD的技术。
表1:Codebook for transmission on antenna ports{0,1,2,3}.
Figure PCTCN2017072064-appb-000001
表2:large-delay cyclic delay diversity.
Figure PCTCN2017072064-appb-000002
第i载波上的资源单元(Resource elements,简称为RE)使用的预编码为W(i)=Ck
Figure PCTCN2017072064-appb-000003
C1,C2,C3,C4分别对应Index为12,13,14和15的码字。
开环预编码可表示为公式(1)所示:
Figure PCTCN2017072064-appb-000004
这里,y(j)(i)表示第j个接收端口在载波i上的接收数据,而x(k)(i)表示第k个数据层上第i个载波上的发送数据,j=0,…,P-1,k=0,…,v-1,P为接收端口个数,v为数据发送的层数。由于CRS最大支持4端口,所以TM3不支持大于4端口的情况。
随着基站配置的发送端口越来越多,支持更多端口的开环MIMO技术也需要被支持,在LTE/LTE A的release 10以及以后的版本中,定义了传输模式9和传输模式10,它可以基于解调参考导频(Demodulation Reference Signal,简称为DMRS)做开环MIMO的,但预编码的粒度至少是一个物理资源块(Physical Resource Block Group,简称为PRB),在FDD系统里是大于一个PRB的,是基于物理资源块组(Physical Resource Block Group,PRBG)级别的,一个PRBG包含的PRB的个数表3所示。
表3
Figure PCTCN2017072064-appb-000005
PRBG内包含的RE使用的预编码相同,PRBG间使用的预编码可以不同。在移动速度较 快基站不能准确的获取信道方向信息时,可以通过灵活的在PRBG间动态改变预编码权值,实现开环MIMO传输。LTE中一个PRBG包含12*N个子载波,N>=1,所以预编码的粒度一般来说大于等于12个载波,由于预编码的粒度比较大,会造成了开环MIMO技术性能不能充分发挥的问题,尤其是在分配PRB资源较少时这种现象会更加明显,为了提高开环MIMO的性能,需要支持更小的预编码粒度。
针对相关技术中开环MIMO由于预编码粒度过大导致性能下降的问题,目前尚未提出解决方案。
发明内容
本发明实施例提供了一种信息的发送、接收方法及装置,以至少解决相关技术中开环MIMO由于预编码粒度过大导致性能下降的问题。
根据本发明的一个实施例,提供了一种信息的发送方法,包括:将M个物理资源块PRB对划分为K个资源单元组REG;在所述K个REG上分别使用独立的预编码传输信息,M和K为正整数,且M小于K。
可选地,将M个PRB对划分为K个REG,包括以下至少之一:根据所述M个PRB对所在子帧的循环前缀信息将所述M个PRB对划分成K个REG;根据所述M个PRB对所在子帧的子帧类型信息将所述M个PRB对划分成K个REG;根据信道状态信息将所述M个PRB对划分成K个REG;根据物理下行控制信道的物理控制格式指示信道PCFICH信息将所述M个PRB对划分成K个REG;根据slot索引信息将所述M个PRB对划分成K个REG;根据系统带宽大小信息将所述M个PRB对划分成K个REG;根据传输带宽大小信息将所述M个PRB对划分成K个REG;根据反馈模式将所述M个PRB对划分成K个REG;根据传输模式将所述M个PRB对划分成K个REG;根据PMI disabling将所述M个PRB对划分成K个REG;根据CSI反馈类别将所述M个PRB对划分成K个REG。
可选地,在根据所述M个PRB对所在子帧的子帧类型信息将所述M个PRB对划分成K个REG的情况下,所述子帧类型信息包括:TDD特殊子帧的DwPTS类型信息和/或正常子帧类型信息,所述DwPTS类型信息由特殊子帧配置信令确定。
可选地,通过高层信令或者物理层信令传输所述K。
可选地,通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息。
可选地,将M个PRB对划分为K个REG包括:将连续的RE划分至一个REG中;或者,将离散的RE划分至一个REG中。
可选地,所述信息包括:数据和增强控制信道信息。
可选地,所述REG包括:N1个OFDM/OFDMA符号与M1个子载波对应的RE的集合其中,N1小于REG所在的M个PRB对的符号个数,M1小于REG所在的M个PRB对的子载 波个数。
根据本发明的另一个实施例,还提供了一种信息的接收方法,包括:接收通过M个物理资源块M个PRB对传输的信息;将所述M个PRB对划分为K个资源单元组REG,其中,所述M,K为正整数,且M小于K;在所述K个REG上分别独立地使用解调参考导频DMRS进行信道估计和/或对所述REG上的信息进行检测。
可选地,将所述M个PRB对划分为K个资源单元组REG,包括以下至少之一:根据接收的子帧的循环前缀信息指示将所述M个PRB对划分成K个REG;根据接收的子帧的子帧类型信息将所述M个PRB对划分成K个REG;根据接收的信道状态信息指示将所述M个PRB对划分成K个REG;根据接收的物理下行控制信道的物理控制格式指示信道PCFICH信息将所述M个PRB对划分成K个REG;根据slot索引信息将所述M个PRB对划分成K个REG;根据接收的系统带宽大小信息将所述M个PRB对划分成K个REG;根据接收的传输带宽大小信息将所述M个PRB对划分成K个REG;根据反馈模式将所述M个PRB对划分成K个REG;根据传输模式将所述M个PRB对划分成K个REG;根据PMI disabling将所述M个PRB对划分成K个REG;根据CSI反馈类别将所述M个PRB对划分成K个REG。
可选地,在根据接收的子帧的子帧类型信息将所述M个PRB对划分成K个REG的情况下,所述子帧类型信息包括TDD特殊子帧的DwPTS类型信息和/或正常子帧类型信息,所述DwPTS类型信息由特殊子帧配置信令确定。
可选地,通过接收的高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息;根据所述REG粒度反馈信道状态信息使能信息判断是否按照传统的方法规定的粒度反馈信道状态信息。
可选地,根据接收的高层信令或者物理层预编码粒度参数配置信令确定REG的个数K;或者,根据发送端和接收端约定的预编码粒度参数配置的默认值确定REG的个数K。
可选地,将所述M个PRB对划分为K个资源单元组REG包括:将连续的RE划分至一个REG中;或者,将离散的RE划分至一个REG中。
可选地,所述信息包括:数据和控制信道信息。
可选地,所述REG包括:N1个OFDM/OFDMA符号与M1个子载波对应的资源单元RE的集合,其中,N1小于REG所在的M个PRB对的符号个数,M1小于REG所在的M个PRB对的子载波个数。
根据本发明的另一实施例,提供了一种信息的发送装置,包括:第一划分模块,设置为将M个物理资源块M个PRB对划分为K个资源单元组REG;传输模块,设置为在所述K个REG上分别使用独立的预编码传输信息,所述M和所述K为正整数,且M小于K。
可选地,所述第一划分模块,包括以下至少之一:第一划分单元,设置为根据所述M个PRB对所在子帧的循环前缀信息将所述M个PRB对划分成K个REG;第二划分单元,设置 为根据所述M个PRB对所在子帧的子帧类型信息将所述M个PRB对划分成K个REG;第三划分单元,设置为根据信道状态信息将所述M个PRB对划分成K个REG;第四划分单元,设置为根据物理下行控制信道的物理控制格式指示信道PCFICH信息将所述M个PRB对划分成K个REG;第五划分单元,设置为根据slot索引信息将所述M个PRB对划分成K个REG;第六划分单元,设置为根据系统带宽大小信息将所述M个PRB对划分成K个REG;第七划分单元,设置为根据传输带宽大小信息将所述M个PRB对划分成K个REG;第八划分单元,设置为根据反馈模式将所述M个PRB对划分成K个REG;第九划分单元,设置为根据传输模式将所述M个PRB对划分成K个REG;第十划分单元,设置为根据PMI disabling将所述M个PRB对划分成K个REG;第十一划分单元,设置为根据CSI反馈类别将所述M个PRB对划分成K个REG。
根据本发明的另一个实施例,还提供了一种接收模块,设置为接收通过M个物理资源块PRB对传输的信息;第二划分模块,设置为将所述M个PRB对划分为K个资源单元组REG,所述M和所述K为正整数,且M小于K;处理模块,设置为在所述K个REG上分别独立地使用解调参考导频DMRS进行信道估计和所述REG上的信息检测。
可选地,所述第二划分模块,包括以下至少之一:第十二划分单元,设置为根据接收的子帧的循环前缀信息指示将所述M个PRB对划分成K个REG;第十三划分单元,设置为根据接收的子帧的子帧类型信息将所述M个PRB对划分成K个REG;第十四划分单元,设置为根据接收的信道状态信息指示将所述M个PRB对划分成K个REG;第十五划分单元,设置为根据接收的物理下行控制信道的物理控制格式指示信道PCFICH信息将所述M个PRB对划分成K个REG;第十六划分单元,设置为根据slot索引信息将所述M个PRB对划分成K个REG;第十七划分单元,设置为根据接收的系统带宽大小信息将所述M个PRB对划分成K个REG;第十八划分单元,设置为根据接收的传输带宽大小信息将所述M个PRB对划分成K个REG;第十九划分单元,设置为根据反馈模式将所述M个PRB对划分成K个REG;第二十划分单元,设置为根据传输模式将所述M个PRB对划分成K个REG;第二十一划分单元,设置为根据PMI disabling将所述M个PRB对划分成K个REG;第二十二划分单元,设置为根据CSI反馈类别将所述M个PRB对划分成K个REG。
通过本发明的实施例,采用将M个PRB对划分为K个REG,并在K个REG上分别使用独立的预编码传输信息的方法,在相关技术中开环MIMO中预编码的粒度至少是一个PRB对的情况下,发送端将M个PRB对划分为K个REG,并在K个REG上分别使用独立的预编码传输信息,对预编码粒度进行更小的划分,解决了相关技术中开环MIMO由于预编码粒度过大导致性能下降的问题,进而达到了提高开环MIMO性能的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明设置为解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的信息的发送方法的流程图;
图2是根据本发明实施例的信息的接收方法的流程图;
图3是根据本发明实施例的信息的发送装置的结构框图;
图4是根据本发明实施例的信息的接收装置的结构框图;
图5是根据本发明实施例的正常循环前缀子帧下PRB区域示意图;
图6是根据本发明实施例的扩展循环前缀子帧下PRB区域示意图;
图7是根据本发明实施例的正常循环前缀子帧下配置{3,4,8}PRB区域示意图;
图8是根据本发明实施例的扩展循环前缀子帧下配置{1,2,6,7}PRB区域示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种信息的发送方法,图1是根据本发明实施例的信息的发送方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,将M个物理资源块PRB对划分为K个资源单元组REG,M和K为正整数,且M小于K;
步骤S104,在K个REG上分别使用独立的预编码传输信息。
通过上述步骤,在相关技术中开环MIMO中预编码的粒度至少是一个PRB对的情况下,将M个PRB对划分为K个REG,并在K个REG上分别使用独立的预编码传输信息,对预编码粒度进行更小的划分,解决了相关技术中开环MIMO由于预编码粒度过大导致性能下降的问题,进而达到了提高开环MIMO性能的效果。
在上述步骤S102中,可以包括以下至少之一:
根据M个PRB对所在子帧的循环前缀信息将M个PRB对划分成K个REG,其中,子帧的循环前缀信息包括:正常循环前缀子帧信息和扩展循环前缀子帧;
根据M个PRB对所在子帧的子帧类型信息将M个PRB对划分成K个REG,其中,子帧类型信息包括为正常子帧类型和TDD特殊子帧的DwPTS类型;
根据信道状态信息将所述M个PRB对划分成K个REG,其中,信道状态信息包括信道秩/数据发送层数;
根据物理下行控制信道的物理控制格式指示信道(Physical Control Format Indicator  CHannel,简称为PCFICH)信息将所述M个PRB对划分成K个REG,其中,PCFICH信息在带宽大于10个PRB时取值为控制格式指示(Control Format Indicator,简称为CFI),在带宽小于10个PRB时取值为CFI+1,其中CFI的取值为1~3;
根据slot索引信息将所述M个PRB对划分成K个REG;
根据系统带宽大小信息将所述M个PRB对划分成K个REG;
根据传输带宽大小信息将所述M个PRB对划分成K个REG;
根据反馈模式将所述M个PRB对划分成K个REG,其中,反馈模式包括但不限于周期反馈模式Mode 1-0,Mode 1-1,Mode 2-0,Mode 2-1和非周期反馈模式Mode 2-0,Mode 3-1,Mode 3-1,Mode 3-2;
根据传输模式将所述M个PRB对划分成K个REG,传输模式包括但不限于TM1,TM2,TM3,TM4,TM5,TM6,TM7,TM9,TM10;
根据PMI disabling将所述M个PRB对划分成K个REG;
根据CSI反馈类别将所述M个PRB对划分成K个REG,其中,CSI反馈类别包括但不限于Class A,Class B。
在一个可选的实施例中,在根据M个PRB对所在子帧的子帧类型信息将M个PRB对划分成K个REG的情况下,子帧类型信息包括TDD特殊子帧的DwPTS类型信息和/或正常子帧类型信息,DwPTS类型信息可以由特殊子帧配置信令确定。
在一个可选的实施例中,可以通过高层信令或者物理层信令传输K,其中,K用于接收端根据K进行接收的M个PRB对的划分。
在一个可选的实施例中,可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息,其中,该REG粒度反馈信道状态信息使能信息包括使能和去使能两类信息,其中,REG粒度反馈信道状态信息使能信息为使能时基于REG粒度计算和反馈信道状态信息,否则按传统的方法规定的粒度反馈信道状态信息。
在一个可选的实施例中,将M个PRB对划分为K个REG包括:将连续的RE划分至一个REG中;或者,将离散的RE划分至一个REG中。在该可选的实施例中,划分REG的形式可以为:REG里的RE是连续的,或者,REG里的RE是离散的。
将M个PRB对划分成K个REG,划分的属性可以包括划分REG的RE形式,划分REG的粒度和划分REG的个数K。
在一个可选的实施例中,传输的信息可以包括:数据和控制信道信息。
在一个可选的实施例中,REG可以包括:N1个OFDM/OFDMA符号与M1个子载波对应的RE的集合,其中,N1小于REG所在的M个PRB对的符号个数,M1小于REG所在的M个PRB对的子载波个数。
在本实施例中提供了一种信息的接收方法,图2是根据本发明实施例的信息的接收方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,接收通过M个PRB对传输的信息;
步骤S204,将M个PRB对划分为K个REG,其中,M,K为正整数,且M小于K;
步骤S206,在K个REG上分别独立地使用DMRS进行信道估计和/或对REG上的信息进行检测。
通过上述步骤,在相关技术中开环MIMO中预编码的粒度至少是一个PRB对的情况下,接收端将接收的M个PRB对划分为K个REG,并在K个REG上分别使用独立的DMRS进行信道估计和/或信息检测,对PRB对的解调粒度进行更小的划分,解决了相关技术中开环MIMO由于预编码粒度过大导致性能下降的问题,进而达到了提高开环MIMO性能的效果。
在一个可选的实施例中,上述步骤S204可以包括以下至少之一:
根据接收的子帧的循环前缀信息指示将M个PRB对划分成K个REG,其中,子帧的循环前缀信息包括正常循环前缀子帧信息和扩展循环前缀子帧信息;
根据接收的子帧的子帧类型信息将M个PRB对划分成K个REG,其中,子帧类型信息包括正常子帧类型和TDD特殊子帧的DwPTS类型;
根据接收的信道状态信息指示将M个PRB对划分成K个REG,其中,信道状态信息指示包括信道秩/数据发送层数;
根据接收的物理下行控制信道的物理控制格式指示信道PCFICH信息将M个PRB对划分成K个REG,其中,PCFICH信息在带宽大于10个PRB时取值为CFI,在带宽小于10个PRB时取值为CFI+1,其中CFI的取值为1~3;
根据slot索引信息将M个PRB对划分成K个REG;
根据接收的系统带宽大小信息将M个PRB对划分成K个REG;
根据接收的传输带宽大小信息将M个PRB对划分成K个REG
根据反馈模式将M个PRB对划分成K个REG,其中,反馈模式包括但不限于周期反馈模式Mode 1-0,Mode 1-1,Mode 2-0,Mode 2-1和非周期反馈模式Mode 2-0,Mode 3-1,Mode 3-1,Mode 3-2;
根据传输模式将M个PRB对划分成K个REG,其中,传输模式包括但不限于TM1,TM2,TM3,TM4,TM5,TM6,TM7,TM9,TM10;
根据PMI disabling将所述M个PRB对划分成K个REG;
根据CSI反馈类别将所述M个PRB对划分成K个REG,CSI反馈类别可以包括但不限于Class A,Class B。
在一个可选的实施例中,在根据接收的子帧的子帧类型信息将M个PRB对划分成K个REG的情况下,子帧类型信息可以包括TDD特殊子帧的DwPTS类型信息和/或正常子帧类型信息,DwPTS类型信息由特殊子帧配置信令确定。
在一个可选的实施例中,可以通过接收的高层信令或者物理层信令接收REG粒度反馈信道状态信息使能信息,其中,该REG粒度反馈信道状态信息使能信息包括使能和去使能两种信息,其中,REG粒度反馈信道状态信息使能信息为使能时基于REG粒度计算和反馈信道状态信息,否则按传统的方法规定的粒度反馈信道状态信息;根据接收到的REG粒度反馈信道状态信息使能信息判断是否按照传统的方法规定的粒度反馈信道状态信息。
在一个可选的实施例中,可以根据接收的高层信令或者物理层预编码粒度参数配置信令确定REG的个数K;或者,也可以根据发送端和接收端约定的预编码粒度参数配置的默认值确定REG的个数K。
在一个可选的实施例中,将M个PRB对划分为K个资源单元组REG可以包括:将连续的RE划分至一个REG中;或者,将离散的RE划分至一个REG中。
在一个可选的实施例中,接收的信息可以包括:数据和控制信道信息。
在一个可选的实施例中,REG可以包括:N1个OFDM/OFDMA符号与M1个子载波对应的资源单元RE的集合,其中,N1小于REG所在的M个PRB对的符号个数,M1小于REG所在的M个PRB对的子载波个数。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种信息的发送及接收装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的信息的发送装置的结构框图,如图3所示,该装置包括第一划分模块32和传输模块34,下面对该装置进行说明。
第一划分模块32,设置为将M个PRB对划分为K个REG;传输模块34,连接至第一划分模块32,设置为在K个REG上分别使用独立的预编码传输信息,所述M和所述K为正整数,且M小于K。
在一个可选的实施例中,第一划分模块32,可以包括以下至少之一:第一划分单元,设 置为根据M个PRB对所在子帧的循环前缀信息将M个PRB对划分成K个REG;第二划分单元,设置为根据M个PRB对所在子帧的子帧类型信息将M个PRB对划分成K个REG;第三划分单元,设置为根据信道状态信息将M个PRB对划分成K个REG;第四划分单元,设置为根据物理下行控制信道的物理控制格式指示信道PCFICH信息将M个PRB对划分成K个REG;第五划分单元,设置为根据slot索引信息将M个PRB对划分成K个REG;第六划分单元,设置为根据系统带宽大小信息将M个PRB对划分成K个REG;第七划分单元,设置为根据传输带宽大小信息将M个PRB对划分成K个REG;第八划分单元,设置为根据反馈模式将M个PRB对划分成K个REG;第九划分单元,设置为根据传输模式将M个PRB对划分成K个REG;第十划分单元,设置为根据PMI disabling将M个PRB对划分成K个REG;第十一划分单元,设置为根据CSI反馈类别将M个PRB对划分成K个REG。
图4是根据本发明实施例的信息的接收装置的结构框图,如图4所示,该装置包括接收模块42、第二划分模块44和处理模块46,下面对该装置进行说明。
接收模块42,设置为接收通过M个PRB对传输的信息;第二划分模块44,连接至接收模块42,设置为将M个PRB对划分为K个REG,M和K为正整数,且M小于K;处理模块46,连接至第二划分模块44,设置为在K个REG上分别独立地使用DMRS进行信道估计和/或在REG上进行信息检测。
在一个可选的实施例中,第二划分模块,可以包括以下至少之一:第十二划分单元,设置为根据接收的子帧的循环前缀信息指示将M个PRB对划分成K个REG;第十三划分单元,设置为根据接收的子帧的子帧类型信息将M个PRB对划分成K个REG;第十四划分单元,设置为根据接收的信道状态信息指示将M个PRB对划分成K个REG;第十五划分单元,设置为根据接收的物理下行控制信道的物理控制格式指示信道PCFICH信息将M个PRB对划分成K个REG;第十六划分单元,设置为根据slot索引信息将M个PRB对划分成K个REG;第十七划分单元,设置为根据接收的系统带宽大小信息将M个PRB对划分成K个REG;第十八划分单元,设置为根据接收的传输带宽大小信息将M个PRB对划分成K个REG;第十九划分单元,设置为根据反馈模式将M个PRB对划分成K个REG;第二十划分单元,设置为根据传输模式将M个PRB对划分成K个REG;第二十一划分单元,设置为根据PMI disabling将M个PRB对划分成K个REG;第二十二划分单元,设置为根据CSI反馈类别将M个PRB对划分成K个REG。
下面,结合具体实施环境,对本发明的信息的发送、接收方法及装置进行说明。
在本发明实施例里,在下行链路中,发送端包括但不限于:宏基站、微基站、无线接入点等各种无线通信设备。接收端包括但不限于:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙等各种接收设备。接收端包括但不限于数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank、RI、秩等概念。
在上行链路中,接收端包括但不限于:宏基站、微基站、无线接入点等各种无线通信设备。发送端包括但不限于:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助 理、蓝牙等各种接收设备。发送端包括但不限于数据传输层个数、数据传输流个数、数据流个数、数据层个数、信道Rank、RI、秩等概念。
实施例1:基于子帧的循环前缀信息划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对(即系统带宽),每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG中的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据子帧的循环前缀信息将传输资源里的每个PRB对划分成K个资源单元组REG,所述子帧的循环前缀信息包括正常循环前缀子帧和扩展循环前缀子帧。比如下行控制信号包括l0个OFDM符号下的一种划分方法如下:
在正常循环前缀子帧下,如图5所示,将PRB对区域划分成3个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为l0~13的OFDM符号分成三个集合C1,C2,和C3,分别对应3个REG,将比如OFDM符号索引l属于C1的RE为1个REG,l属于C2的RE为一个REG,l属于C3的RE为一个REG,分别为G1,G2,和G3。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG,在载波索引k为S2 上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG。这里只是例举了时域上划分成3的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。这里,C1对应的符号索引为l0~l1,C2对应的符号索引为l1+1~l2,C3对应的符号索引为l2+1~L-1,其中L为PRB对包含的总的符号个数,这里取值为14,,这里l1小于l2,优选地,它们的取值使得集合C1和C2,C3的元素个数最大差一个。
在扩展循环前缀子帧下,如图6所示,将PRB对区域划分成2个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为2~11的OFDM符号分成2个REG,比如OFDM符号索引l为l0~l1对应的RE为1个REG,l为l1+1~11对应的RE为一个REG,分别为G1,G2。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为l0~l1对应的RE为1个REG,l为l1+1~11对应的RE为一个REG;在载波索引k为S2上,时域上符号索引l为l0~l1对应的RE为1个REG,l为l1+1~11对应的RE为一个REG。这里只是例举了时域上划分成2的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波,l1大于l0,比如取值为6。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和子帧的循环前缀信息指示,并根据子帧的循环前缀信息指示将PRB对对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
需要说明的是,发送端可以通过高层预编码粒度参数配置信令或者物理层预编码粒度信令将K值传输给接收端,接收端也可以根据接收的高层预编码粒度参数配置信令或者物理层预编码粒度参数配置信令或者默认的配置确定REG的个数K,而不仅仅根据子帧的循环前缀信息指示确定REG的个数K。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使 能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例2基于子帧类型信息划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组(Resource Element Group,REG)G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据子帧类型信息将传输资源里的每个PRB对划分成K个资源单元组REG,所述子帧类型信息包括正常子帧和TDD特殊子帧的DwPTS。比如下行控制信号包括l0个OFDM符号下的一种划分方法如下:
在正常循环前缀的正常子帧,将PRB对区域划分成3个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为l0~13的OFDM符号分成三个集合C1,C2,和C3,分别对应3个REG,将比如OFDM符号索引l属于C1的RE为1个REG,l属于C2的RE为 一个REG,l属于C3的RE为一个REG,分别为G1,G2,和G3。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG,在载波索引k为S2上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG。这里只是例举了时域上划分成3的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。这里,C1对应的符号索引为l0~l1,C2对应的符号索引为l1+1~l2,C3对应的符号索引为l2+1~L-1,其中L为PRB对包含的总的符号个数,这里取值为14。
在正常循环前缀的特殊子帧DwPTS下,由于特殊子帧类型有9种,通过高层信令的TDD-Config->specialSubframePatterns字段来设置的。每种对应的DwPTS个数如表4所示。
表4
Figure PCTCN2017072064-appb-000006
其中配置{3,4,8}的OFDM符号有11个以上,它们对应的帧结构如图7所示,而配置{1,2,6,7}的OFDM符号有9个以上,它们对应的帧结构如图8所示。
将PRB对区域划分成2个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为2~L的OFDM符号分成2个集合C1和C2,比如OFDM符号索引l为l0~l1为C1,l为l1+1~L-1为C2,其中l1=ceil((L-l0)/2),ceil为上取整数的函数。其中C1符号对应的RE为一个REG,C2符号对应的RE为一个REG,分别为G1,G2。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l属于C1的RE为1个REG,l为属于C1的RE为一个REG;在载波索引k为S2上,时域上符号索引l属于C1的RE为1个REG,l为属于C1的RE为一个REG。这里只是例举了时域上划分成2的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和子帧类型信息指示,并根据子帧类型信息指示将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
需要说明的是,发送端可以通过高层预编码粒度参数配置信令或者物理层预编码粒度信令将K值传输给接收端,接收端也可以根据接收的高层预编码粒度参数配置信令或者物理层预编码粒度参数配置信令或者默认的配置确定REG的个数K,而不仅仅根据子帧类型信息指示确定REG的个数K。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例3:基于信道状态信息划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组(Resource Element Group,REG)G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据信道状态信息将传输资源里的每个PRB对划分成K个资源单元组REG,所述信道状态信息包括数据层数或者信道秩。比如下行控制信号包括l0个OFDM符号下的一种划分方法如下:
在正常循环前缀子帧下且信道的数据层数或者信道秩小于L1,比如L1取值为3等,将PRB对区域划分成3个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为l0~13的OFDM符号分成三个集合C1,C2,和C3,分别对应3个REG,将比如OFDM符号索引l属于C1的RE为1个REG,l属于C2的RE为一个REG,l属于C3的RE为一个REG,分别为G1,G2,和G3。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG,在载波索引k为S2上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG。这里只是例举了时域上划分成3的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。这里,C1对应的符号索引为l0~l1,C2对应的符号索引为l1+1~l2,C3对应的符号索引为l2+1~L-1,其中L为PRB对包含的总的符号个数,这里取值为14,这里l1小于l2,优选地,它们的取值使得集合C1和C2,C3的元素个数最大差一个。
在正常循环前缀子帧下且信道的数据层数或者信道秩大于等于L1,比如L1取值为3等,在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。当然,这里也可以在时域上按符号划分REG,类似实施例1和实施例2的方式。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和信道状态信息指示,并根据信道状态信息指示将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
需要说明的是,发送端可以通过高层预编码粒度参数配置信令或者物理层预编码粒度信令将K值传输给接收端,接收端也可以根据接收的高层预编码粒度参数配置信令或者物理层预编码粒度参数配置信令或者默认的配置确定REG的个数K,而不仅仅根据信道状态信息指示确定REG的个数K。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例4基于PCFICH信息划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组(Resource Element Group,REG) G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据物理下行控制信道的物理控制格式指示信道信息将传输资源里的每个PRB对划分成K个资源单元组REG,所述PCFICH携带的信息为CFI取值为CFI=1,2,3,在带宽大于10个PRB对时对应的控制符号的个数为CFI,否则为CFI+1。比如在下行传输带宽大于10个PRB对时,REG的一种划分方法如下:
在正常循环前缀的正常帧下,CFI=2,将PRB对区域划分成3个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为2~13的OFDM符号分成3个REG,比如OFDM符号索引l为2~5的RE为1个REG,l为6~9的RE为一个REG,l为10~13的RE一个REG,分别为G1,G2,和G3,每个里有48个RE。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为2~5的RE为1个REG,l为6~9的RE为一个REG,l为10~13的RE一个REG,在载波索引k为S2上,时域上符号索引l为2~5的RE为1个REG,l为6~9的RE为一个REG,l为10~13的RE一个REG。这里只是例举了时域上划分成3的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。
在正常循环前缀的正常帧下,CFI=3,将PRB对区域划分成3个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为3~13的OFDM符号分成3个REG,比如OFDM符号索引l为3~5的RE为1个REG,l为6~9的RE为一个REG,l为10~13的RE一个REG,分别为G1,G2,和G3,每个里有36,48,48个RE。即第一个REG的RE个数比其它两REG的个数少。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为3~5的RE为1个REG,l为6~9的RE为一个REG,l为10~13的RE一个REG,在载波索引k为S2上,时域上符号索引l为3~5的RE为1个REG,l为6~9的RE为一个REG,l为10~13的RE一个REG。这里只是例举了时域上划分成3的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并 且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和PCFICH,并根据PCFICH的CFI将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
需要说明的是,发送端可以通过高层预编码粒度参数配置信令或者物理层预编码粒度信令将K值传输给接收端,接收端也可以根据接收的高层预编码粒度参数配置信令或者物理层预编码粒度参数配置信令或者默认的配置确定REG的个数K,而不仅仅根据PCFICH的CFI确定REG的个数K。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例5基于slot索引信息划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信 道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组REG G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据slot索引信息将传输资源里的每个PRB对划分成K个资源单元组REG,发送端根据所述slot索引信息可以得到LTE/LTE A帧下的哪些子帧有主同步信号(Primary Synchronization Signal,简称为PSS)和辅同步信号(Secondary Synchronization Signal,简称为SSS),比如在TDD系统里,PSS在子帧1和子帧6的第三个OFDM符号上发送;而SSS在子帧0和子帧5的最后一个符号发送,在FDD系统里,PSS在子帧0和子帧5的第一个slot的最后一个OFDM符号上发送;SSS与PSS在同一子帧同一slot上发送,但SSS位于倒数第二个OFDM符号上,比PSS提前一个OFDM符号。比如下行控制信号包括l0个OFDM符号下的一种划分方法如下:
在正常循环前缀的正常帧下,根据TDD还是FDD系统以及slot索引确定有没有携带PSS或者SSS信息,对于没有携带PSS或者SSS的PRB的情况,其中,将PRB对区域划分成3个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为l0~13的OFDM符号分成三个集合C1,C2,和C3,分别对应3个REG,将比如OFDM符号索引l属于C1的RE为1个REG,l属于C2的RE为一个REG,l属于C3的RE为一个REG,分别为G1,G2,和G3。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG,在载波索引k为S2上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG。这里只是例举了时域上划分成3的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。这里,C1对应的符号索引为l0~l1,C2对应的符号索引为l1+1~l2,C3对应的符号索引为l2+1~L-1,其中L为PRB对包含的总的符号个数,这里取值为14,这里l1小于l2,优选地,它们的取值使得集合C1和C2,C3的元素个数最大差一个。
在正常循环前缀的正常帧下,根据TDD还是FDD系统以及slot索引确定有没有携带PSS或者SSS信息,如果携带了PSS或者SSS信息,将OFDM符号分成2个集合C1和C2,将 PRB对区域划分成2个REG,其中,频域上占12个子载波,而时域上将数据区域的符号索引l在集合C1里对应的RE为一个REG,符号索引l在集合C2里对应的RE为一个REG,分别为G1,G2。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l属于C1的RE为1个REG,l为属于C1的RE为一个REG;在载波索引k为S2上,时域上符号索引l属于C1的RE为1个REG,l为属于C1的RE为一个REG。这里只是例举了时域上划分成2的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。
这里C1和C2集合的划分根据系统的不同和slot索引的不同而有一些区别。比如在TDD系统里,对于slot索引为2或3时(对应子帧1),或者10和11(对应子帧6),在slot 2和slot 10的第三个符号里,中心载频附近的6个PRB对,有PSS信号,而此时,该子帧为特殊子帧,对于不同的子帧类型配置,有不同的DwPTS符号个数。假设符号个数为L个。那么C1包括的符号索引为l0~l1,C2的载波索引包括l1+1~L-1,l1的取值使得C1和C2的元素个数最大差1个,l0为CFI或者CFI+1,这里,L为PRB对的符号个数,取值为8~12,CFI为控制区域的符号个数,取值为1~3。而在TDD系统里的slot索引为0或1时(对应子帧0),或者8和9(对应子帧5),在slot 1和slot 9的最后一个符号里,中心载频附近的6个PRB对,有SSS信号,那么此时,假设符号个数为L(比如为12或者14),那么C1对应的符号索引为l0~l1,C2对应的符号索引为l1+1~L-2,其中,l1的取值使得C1和C2的元素个数最大差1个,l0为CFI或者CFI+1。在FDD系统中,同样的,slot索引为0或1时(对应子帧0),或者8和9(对应子帧5)时,中心载频附近的6个PRB对的第一slot的倒数第一个符号为PSS,倒数第二个符号为SSS,假设符号个数为L(比如为12或者14),那么C1对应的符号索引为l0~l1,C2对应的符号索引为l1+1~L-3,其中,l1的取值使得C1和C2的元素个数最大差1个,l0为CFI或者CFI+1。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和slot索引信息,并根据slot索引信息将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
需要说明的是,发送端可以通过高层预编码粒度参数配置信令或者物理层预编码粒度信令将K值传输给接收端,接收端也可以根据接收的高层预编码粒度参数配置信令或者物理层预编码粒度参数配置信令或者默认的配置确定REG的个数K,而不仅仅根据slot索引信息确定REG的个数K。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例6基于系统带宽大小信息划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组(Resource Element Group,REG)G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据系统带宽大小信息将传输资源里的每个PRB对划分成K个资源单元组REG,所述系统带宽大小信息会影响下行控制符号区域的大小,在带宽大于10个PRB对时对应的控制符号的个数为CFI,否则为CFI+1,其中CFI为PCFICH携带的信息,取值为CFI=1,2,3。比如REG的一种划分方法如下:
在正常循环前缀的正常帧下,系统带宽大于10个PRB对,将PRB对区域划分成3个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为l0~13的OFDM符号分成三个集合C1,C2,和C3,分别对应3个REG,将比如OFDM符号索引l属于C1的RE为1个REG,l属于C2的RE为一个REG,l属于C3的RE为一个REG,分别为G1,G2,和G3。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG,在载波索引k为S2上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG。这里只是例举了时域上划分成3的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。这里,C1对应的符号索引为l0~l1,C2对应的符号索引为l1+1~l2,C3对应的符号索引为l2+1~L-1,其中L为PRB对包含的总的符号个数,这里取值为14,,这里l1小于l2,优选地,它们的取值使得集合C1和C2,C3的元素个数最大差一个,其中l0为CFI。
在正常循环前缀的正常帧下,系统带宽小于等于10个PRB对,这时下行控制区域的符号个数为CFI+1,将PRB对区域划分成3个REG,其中,频域上占12个子载波,而时域上将数据区域的索引为l0~13的OFDM符号分成三个集合C1,C2,和C3,分别对应3个REG,将比如OFDM符号索引l属于C1的RE为1个REG,l属于C2的RE为一个REG,l属于C3的RE为一个REG,分别为G1,G2,和G3。当然也可以在频域上进行REG的划分,比如载波索引k划分成两个集合S1和S2,其中S1为0~5,S2为6~11,那么载波索引集合S1对应的RE划分为一个REG,载波索引集合S2对应的RE为一个REG。或者时域频域联合划分,在载波索引k为S1上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG,在载波索引k为S2上,时域上符号索引l为C1的RE为1个REG,符号索引l为C2的RE为一个REG,符号索引l为C3的RE一个REG。这里只是例举了时域上划分成3的情况,对于划分成其它K值,类似的可以得到。对于子载波离散的情况也可以类似得到,比如将子载波分成两个集合S1和S2,S1对应奇数索引的子载波,S2对应偶数集合的子载波。这里,C1对应的符号索引为l0~l1,C2对应的符号索引为l1+1~l2,C3对应的符号索引为l2+1~L-1,其中L为PRB对包含的总的符号个数,这里取值为14,,这里l1小于l2,优选地,它们的取值使得集合C1和C2,C3的元素个数最大差一个这里,l0为CFI+1。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里 i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和系统带宽大小信息指示,并根据系统带宽大小信息指示将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
需要说明的是,发送端可以通过高层预编码粒度参数配置信令或者物理层预编码粒度信令将K值传输给接收端,接收端也可以根据接收的高层预编码粒度参数配置信令或者物理层预编码粒度参数配置信令或者默认的配置确定REG的个数K,而不仅仅根据系统带宽大小信息指示确定REG的个数K。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例7基于传输带宽大小信息划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而 CFI+1~Ns的符号用来传输物理下行数据。在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组REG G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据传输带宽大小来确定K的取值。将传输带宽分成T个集合Si,它包括的RB个数NRB取值范围为ti-1+1≤NRB≤ti,它对应的K的取值为Ki,其中,ti为递增的整数,且t0=0,i=1,…,T。那么当发送端传输的带宽的RB个数属于集合Si时,发送端需要将一个PRB分成Ki个REG。
发送端根据传输数据的RB个数确定将PRB对划分成REG的个数K后,将PRB对划分成K份,或者可以可以根据实施例1~6的方法进一步地地根据子帧的循环前缀信息,子帧类型信息,子帧类型信息,信道状态信息,物理下行控制信道的物理控制格式指示信道PCFICH信息,slot索引信息,系统带宽大小信息等信息中的至少一种对PRB对进行划分,划分成K个REG。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和系统带宽大小信息指示,并根据传输带宽大小信息指示将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使 能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例8基于反馈模式划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。
在本实施例里,反馈模式以LTE/LTE A里的周期反馈(物理上行控制信道Physical Uplink Control Channe,PUCCH)和非周期反馈(物理上行共享信道,Physical Uplink Shared Channe,PUSCH)为例,其中,反馈模式(feedback mode)是指CSI(CQI/PMI/RI)反馈的指令组合,包括子带反馈和宽带反馈或者选择M个子带反馈等包括周期反馈和非周期反馈。其中,非周期反馈在PUSCH里传输,包括如表5所示的模式。
表5
Figure PCTCN2017072064-appb-000007
周期反馈模式是指在周期地在PUCCH里反馈的模式,它包括如表6所示的模式。
表6
Figure PCTCN2017072064-appb-000008
在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组(Resource Element Group,REG)G1,G2,…,GK,每个组里包括M1,M2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据反馈模式确定K的取值。在反馈模式为需要反馈PMI的模式中,比如PUCCH的Mode 1-1,Mode 2-1,PUSCH的Mode 3-1,Mode 1-2,Mode2-2,Mode3-2中,确定K=K1,在不需要反馈PMI的模式中,比如,PUCCH的Mode 1-0,Mode 2-0,PUSCH的Mode 2-0,Mode 3-0模式中,确定K=K2,则K2>K1,一般来说,K1=1,即在需要反馈PMI的模式中,不对PBR划分REG。而在不需要反馈PMI的反馈模式中,K2一般大于1,需要将PRB对划分成多个REG来传输数据。在反馈模式为Mode 1-0的时候,K取值为K21,Mode 2-0的时候,K取值为K22,PUSCH的Mode 3-0时,K的取值为K23,那么一般有K21<=K22<=K23。
发送端根据上述的方法,依据传输模式确定将PRB划分成REG的个数K后,将PRB划分成K份,或者可以可以根据实施例1~6的方法进一步地地根据子帧的循环前缀信息,子帧类型信息,子帧类型信息,信道状态信息,物理下行控制信道的物理控制格式指示信道PCFICH信息,slot索引信息,系统带宽大小信息等信息中的至少一种对PRB进行划分,划分成K个REG。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和反馈反馈模式信息指示,并根据反馈模式信息指示将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例里,当K=1时,是不需要将PRB对划分成多个REG的,发送端和接收端的处理方面跟传统的流程是一致的。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例9基于传输模式划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。
在本实施例里,传输模式包括LTE/LTE A中的传输模式(Transmission Mode,简称为TM模式),TM1~TM10,其中,TM 1为单天线端口传输(使用port 0),应用于单天线传输的场合。TM 2为发射分集模式,适用于小区边缘信道情况比较复杂,干扰较大的情况,也可用于UE高速移动的情况。使用2或4天线端口。发射分集是默认的多天线传输模式。它通过在不同的天线上发送相同的数据实现数据冗余,从而提高SINR,使得传输更加可靠。TM 3为大延迟分集的开环空分复用,适合UE高速移动的场景;使用2或4天线端口。TM 4为闭环空间复用,适合信道条件较好的场合,用于提供较高的数据传输速率;使用2或4个天线端口。TM 5为MU-MIMO传输模式,主要用来提高小区的容量;使用2或4天线端口。TM 6为Rank 1的传输,主要适用于小区边缘的情况;使用2或4天线端口。TM 7为单流波 束赋形,主要适用于小区边缘的UE,能够有效对抗干扰,只使用port 5。TM 8为双流波束赋形,可用于小区边缘的UE,也可用于其它场景。使用port 7和port 8,每个port对应一个UE特定的参考信号,这2个参考信号通过2个正交的OCC(orthogonal cover code)区分。在空分复用下,这2个OCC和对应的参考信号被用于这2层的传输。TM 9为支持最多8层的传输,主要是为了提高数据传输速率。使用port 7~14。TM 10是支持COMP的一种模式。
在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组(Resource Element Group,REG)G1,G2,…,GK,每个组里包括M1,M 2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据传输模式来确定K的取值。在传输模式为TM1~TM8是确定K的取值为K1,在TM9和TM10的时候确定K的取值为K2,那么有K1<=K2,且一般来说K1为1,即在TM1~TM8中不需要将PRB对划分成多个REG,而在传输模式为TM9和TM10时,如果是PMI disabling使能的,即不需要反馈,即使用开环MIMO,确定其K=K21,在PMI disabling不使能时,确定K=K22,则有K21>K22,其一般来说K22为1,即在需要反馈PMI的闭环MIMO,不需要将PRB对划分成多个REG。
发送端根据传输模式和以上确定的方法确定将PRB对划分成REG的个数K后,将PRB对划分成K份,或者可以可以根据实施例1~6的方法进一步地地根据子帧的循环前缀信息,子帧类型信息,子帧类型信息,信道状态信息,物理下行控制信道的物理控制格式指示信道PCFICH信息,slot索引信息,系统带宽大小信息等信息中的至少一种对PRB对进行划分,划分成K个REG。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和传输模式信息指示,并根据传输模式信息指示将PRB对 划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例里,当K=1时,是不需要将PRB对划分成多个REG的,发送端和接收端的处理方面跟传统的流程是一致的。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例10基于反馈类型划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。
在本实施例里,反馈类型是指信道信息的测量和反馈的类别,有两种:分别为Class A和Class B。
Class A:基站发送CSI-RS,一般为非预编码导频,UE基于该CSI-RS导频直接进行信道测量及CSI量化,得到RI/PMI/CQI。将这些内容在PUCCH或PUSCH上进行反馈,反馈内容较多,包括了宽带的波束方向
Class B:基站发送的CSI-RS,一般为预编码导频,UE可能需要先进行预编码导频的选 择,或预编码导频的resource set选择,或端口组选择,然后再基于选择的子集进行信道信息的量化反馈,包括子集选择信息,以及选择的CSI-RS测量资源子集对应的RI/PMI/CQI信息;
在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组(Resource Element Group,REG)G1,G2,…,GK,每个组里包括M1,M 2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据反馈类别来确定划分REG的个数K,其中在Class A中,确定K=K1,而在ClassB中,确定K=K2,那么一般有K2>K1,且K1一般为1。
发送端根据反馈类别以及上述的方法确定K的值后,将PRB对划分成K份,或者可以可以根据实施例1~6的方法进一步地地根据子帧的循环前缀信息,子帧类型信息,子帧类型信息,信道状态信息,物理下行控制信道的物理控制格式指示信道PCFICH信息,slot索引信息,系统带宽大小信息等信息中的至少一种对PRB对进行划分,划分成K个REG。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和反馈类别信息指示,并根据反馈类别信息指示将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例里,当K=1时,是不需要将PRB对划分成多个REG的,发送端和接收端的处理方面跟传统的流程是一致的。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
实施例11基于PMI disable划分REG
在一个包括至少一个发送端和至少一个接收端的系统里,每个发送端配置的天线/端口/阵元数目为Nt,而接收端配置的天线/端口/阵元数目为Nr,这里Nt为大于1的正整数,Nr为大于0的正整数。系统使用的带宽为Nb个PRB对,每个PRB对是包括Nc个子载波和Ns个OFDM/OFDMA符号的资源单元RE的集合S,它包括M个RE。比如在正常循环前缀下,15K载波间距的情况下,LTE/LTE A的PRB对包括Nc=12个子载波,Ns=14个OFDM符号的一个区域,包括168个RE,在扩展循环前缀子帧或者TDD特殊子帧下,OFDM符号的个数取值可能不同,不同载波间距下的子载波个数不同,但不影响本实施例方法的应用。在这个PRB对内的168个RE里,有CFI个符号对应的RE用来传输下行物理控制信道PDCCH,而CFI+1~Ns的符号用来传输物理下行数据。
在本实施例里,预编码矩阵索引disabling(Precoding Matrix Indicator disabling,简称为PMI disabling)是指在多输入多输出系统里,UE在上报CSI时是否上报MIMO的预编码索引,比如在开环空间复用,空间分集,或者TDD利用上行信道互易来获得下行信道的场景中,或者反馈模式为X-0的场景中不需要UE反馈PMI,从而可以进行PMI disabling使能,从而节省反馈开销。
在本实施例里,发送端在Nb1个PRB对里对接收端传输数据,并且发送解调参考导频DMRS,用户用DMRS进行信道估计,并根据估计的信道对数据区域的信道进行估计和数据检测,解调。这个过程具体描述如下:
对于发送端来说:
发送端将每个PRB对里的RE分成K个资源单元组(Resource Element Group,REG)G1,G2,…,GK,每个组里包括M1,M 2,…,MK个RE,且同一个PRB对里的一个RE属于且仅属于一个REG组,也就是说任何两个不同的REG组的RE是不同的。
优选地,这里的M1,M2,…,MK可以是相等的,比如等于M0/K个RE,其中,M0为用来传输数据的RE个数,K的取值可以为2,3,4,6,8等。
这里,K个REG的每个REG里的RE可以是时间上连续的RE,也可以是时间上离散的 RE,可以是频域上连续子载波上的RE,也可以是离散载波上的RE。
这里,发送端根据PMI disabling确定K的取值。在PMI disabling去使能时,确定K=K1,在PMI disabling使能时,确定K=K2,且在传输模式为TM9或者TM10时,K2>K1,且一般来说K1=1,即不需要将PRB对划分成K个REG。
发送端根据PMI disabling和上述的方法确定将PRB对划分成REG的个数K后,将PRB对划分成K份,或者可以可以根据实施例1~6的方法进一步地地根据子帧的循环前缀信息,子帧类型信息,子帧类型信息,信道状态信息,物理下行控制信道的物理控制格式指示信道PCFICH信息,slot索引信息,系统带宽大小信息等信息中的至少一种对PRB对进行划分,划分成K个REG。
发送端在划分的K个REG里,每个REG里独立配置一个预编码矩阵P1,P2,…PK,并且将第i个REG里的调制数据用预编码Pi进行处理后映射到发送天线发送给接收端,这里i=1,…,K。
接收端侧的处理:
接收端接收发送端发送的数据和PMI disabling信息指示,并根据传PMI disabling信息指示将PRB对划分成K个REG组,其划分的方法跟上面发送端所述的方法一样,这里不再累述。
接收端对第i个REG组Gi里的RE进行信道估计,并根据估计的信道对REG里的RE携带的数据进行数据检测,解调以获得该REG里的数据。其中信道估计是基于DMRS进行估计的,且所述的DMRS的预编码也是和REG里使用的预编码相同,为Pi,i=1,…,K。
在本实施例中,进一步地,发送端可以通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息告诉用户是否基于REG的粒度进行信道状态信息反馈,接收端接收发送端在高层或者物理层信令中携带的REG粒度反馈信道状态信息使能信息,如果该信息是使能的,要求基于REG的粒度反馈信道状态信息,则用户基于REG的粒度反馈信道状态信息,否则按发送端配置的反馈模式对应的粒度反馈信道状态信息。
在本实施例里,当K=1时,是不需要将PRB对划分成多个REG的,发送端和接收端的处理方面跟传统的流程是一致的。
在本实施例中,发送端在REG里传输的可以是数据也可以是ePDCCH,或者其它经过预编码处理后的信息,其处理过程与实施例里数据传输的过程一致,这里不再累述。
需要说明的是,本实施例是对一个PRB对划分K个REG组的情况,对于将M个PRB对划分成K个REG组的情况同样适用,只是在实施例里将1个PRB对改成M个PRB对,频域上12个载波变成M*12个载波,并对M*12个载波进行分组和REG划分。这里不再累述。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S11,将M个物理资源块PRB对划分为K个资源单元组REG,M和K为正整数,且M小于K;
S12,在K个REG上分别使用独立的预编码传输信息。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S21,接收通过M个PRB对传输的信息;
S22,将PRB对划分为K个REG,其中,M,K为正整数,且M小于K;
S23,在K个REG上分别独立地使用DMRS进行信道估计和/或对REG上的信息进行检测。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述S11-S12。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述S21-S23。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种信息的发送方法,包括:
    将M个物理资源块PRB对划分为K个资源单元组REG;
    在所述K个REG上分别使用独立的预编码传输信息,所述M和所述K为正整数,且M小于K。
  2. 根据权利要求1所述的方法,其中,将M个PRB对划分为K个REG,包括以下至少之一:
    根据所述M个PRB对所在子帧的循环前缀信息将所述M个PRB对划分成K个REG;
    根据所述M个PRB对所在子帧的子帧类型信息将所述M个PRB对划分成K个REG;
    根据信道状态信息将所述M个PRB对划分成K个REG;
    根据物理下行控制信道的物理控制格式指示信道PCFICH信息将所述M个PRB对划分成K个REG;
    根据slot索引信息将所述M个PRB对划分成K个REG;
    根据系统带宽大小信息将所述M个PRB对划分成K个REG;
    根据传输带宽大小信息将所述M个PRB对划分成K个REG;
    根据反馈模式将所述M个PRB对划分成K个REG;
    根据传输模式将所述M个PRB对划分成K个REG;
    根据PMI disabling将所述M个PRB对划分成K个REG;
    根据CSI反馈类别将所述M个PRB对划分成K个REG。
  3. 根据权利要求2所述的方法,其中,根据所述M个PRB对所在子帧的子帧类型信息将所述M个PRB对划分成K个REG的情况下,所述子帧类型信息包括:TDD特殊子帧的DwPTS类型信息和/或正常子帧类型信息,所述DwPTS类型信息由特殊子帧配置信令确定。
  4. 根据权利要求1所述的方法,其中,还包括:
    通过高层信令或者物理层信令传输所述K。
  5. 根据权利要求1所述的方法,其中,还包括:
    通过高层信令或者物理层信令传输REG粒度反馈信道状态信息使能信息。
  6. 根据权利要求1所述的方法,其中,将所述M个PRB对划分为K个REG包括:
    将连续的RE划分至一个REG中;或者,
    将离散的RE划分至一个REG中。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述信息包括:数据和/或控制信道信息。
  8. 根据权利要求1至6中任一项所述的方法,其中,所述REG包括:N1个OFDM/OFDMA符号与M1个子载波对应的RE的集合,其中,N1小于REG所在的M个PRB对的符号个数,M1小于REG所在的M个PRB对的子载波个数。
  9. 一种信息的接收方法,包括:
    接收M个物理资源块PRB对传输的信息;
    将所述M个PRB对划分为K个资源单元组REG,其中,所述M,所述K为正整数,且M小于K;
    在所述K个REG上分别独立地使用解调参考导频进行信道估计和/或对所述REG上的信息进行检测。
  10. 根据权利要求9所述的方法,其中,将所述M个PRB对划分为K个资源单元组REG,包括以下至少之一:
    根据接收的子帧的循环前缀信息指示将所述M个PRB对划分成K个REG;
    根据接收的子帧的子帧类型信息将所述M个PRB对划分成K个REG;
    根据接收的信道状态信息指示将所述M个PRB对划分成K个REG;
    根据接收的物理下行控制信道的物理控制格式指示信道PCFICH信息将所述M个PRB对划分成K个REG;
    根据slot索引信息将所述M个PRB对划分成K个REG;
    根据接收的系统带宽大小信息将所述M个PRB对划分成K个REG;
    根据接收的传输带宽大小信息将所述M个PRB对划分成K个REG
    根据反馈模式将所述M个PRB对划分成K个REG;
    根据传输模式将所述M个PRB对划分成K个REG;
    根据PMI disabling将所述M个PRB对划分成K个REG;
    根据CSI反馈类别将所述M个PRB对划分成K个REG。
  11. 根据权利要求10所述的方法,其中,在根据接收的子帧的子帧类型信息将所述M个PRB对划分成K个REG的情况下,所述子帧类型信息包括TDD特殊子帧的DwPTS类型信息和/或正常子帧类型信息,所述DwPTS类型信息由特殊子帧配置信令确定。
  12. 根据权利要求9所述的方法,其中,还包括:
    通过接收的高层信令或者物理层信令接收REG粒度反馈信道状态信息使能信息;
    根据所述REG粒度反馈信道状态信息使能信息判断是否按照传统的方法规定的粒度反馈信道状态信息。
  13. 根据权利要求9所述的方法,其中,还包括:
    根据接收的高层信令或者物理层预编码粒度参数配置信令确定REG的个数K;或者,
    根据发送端和接收端约定的预编码粒度参数配置的默认值确定REG的个数K。
  14. 根据权利要求9所述的方法,其中,将所述PRB对划分为K个资源单元组REG包括:
    将连续的RE划分至一个REG中;或者,
    将离散的RE划分至一个REG中。
  15. 根据权利要求10至14中任一项所述的方法,其中,所述信息包括:数据和/或控制信道信息。
  16. 根据权利要求10至14中任一项所述的方法,其中,所述REG包括:N1个OFDM/OFDMA符号与M1个子载波对应的资源单元RE的集合,其中,N1小于REG所在的PRB对的符号个数,M1小于REG所在的PRB对的子载波个数。
  17. 一种信息的发送装置,包括:
    第一划分模块,设置为将M个物理资源块PRB对划分为K个资源单元组REG;
    传输模块,设置为在所述K个REG上分别使用独立的预编码传输信息,所述M和所述K为正整数,且M小于K。
  18. 根据权利要求17所述的装置,其中,所述第一划分模块,包括以下至少之一:
    第一划分单元,设置为根据所述M个PRB对所在子帧的循环前缀信息将所述M个PRB对划分成K个REG;
    第二划分单元,设置为根据所述M个PRB对所在子帧的子帧类型信息将所述M个PRB对划分成K个REG;
    第三划分单元,设置为根据信道状态信息将所述M个PRB对划分成K个REG;
    第四划分单元,设置为根据物理下行控制信道的物理控制格式指示信道PCFICH信息将所述M个PRB对划分成K个REG;
    第五划分单元,设置为根据slot索引信息将所述M个PRB对划分成K个REG;
    第六划分单元,设置为根据系统带宽大小信息将所述M个PRB对划分成K个REG;
    第七划分单元,设置为根据传输带宽大小信息将所述M个PRB对划分成K个REG;
    第八划分单元,设置为根据反馈模式将所述M个PRB对划分成K个REG;
    第九划分单元,设置为根据传输模式将所述M个PRB对划分成K个REG;
    第十划分单元,设置为根据PMI disabling将所述M个PRB对划分成K个REG;
    第十一划分单元,设置为根据CSI反馈类别将所述M个PRB对划分成K个REG。
  19. 一种信息的接收装置,包括:
    接收模块,设置为接收M个物理资源块PRB对传输的信息;
    第二划分模块,设置为将所述M个PRB对划分为K个资源单元组REG,所述M和所述K为正整数,且M小于K;
    处理模块,设置为在所述K个REG上分别独立地使用解调参考导频进行信道估计和/或在所述REG上进行信息检测。
  20. 根据权利要求19所述的装置,其中,所述第二划分模块,包括以下至少之一:
    第十二划分单元,设置为根据接收的子帧的循环前缀信息指示将所述M个PRB对划分成K个REG;
    第十三划分单元,设置为根据接收的子帧的子帧类型信息将所述M个PRB对划分成K个REG;
    第十四划分单元,设置为根据接收的信道状态信息指示将所述M个PRB对划分成K个REG;
    第十五划分单元,设置为根据接收的物理下行控制信道的物理控制格式指示信道PCFICH信息将所述M个PRB对划分成K个REG;
    第十六划分单元,设置为根据slot索引信息将所述M个PRB对划分成K个REG;
    第十七划分单元,设置为根据接收的系统带宽大小信息将所述M个PRB对划分成K个REG;
    第十八划分单元,设置为根据接收的传输带宽大小信息将所述M个PRB对划分成K个REG;
    第十九划分单元,设置为根据反馈模式将所述M个PRB对划分成K个REG;
    第二十划分单元,设置为根据传输模式将所述M个PRB对划分成K个REG;
    第二十一划分单元,设置为根据PMI disabling将所述M个PRB对划分成K个REG;
    第二十二划分单元,设置为根据CSI反馈类别将所述M个PRB对划分成K个REG。
PCT/CN2017/072064 2016-02-05 2017-01-22 信息的发送、接收方法及装置 WO2017133520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610082242.9A CN107046456B (zh) 2016-02-05 2016-02-05 信息的发送、接收方法及装置
CN201610082242.9 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017133520A1 true WO2017133520A1 (zh) 2017-08-10

Family

ID=59500056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072064 WO2017133520A1 (zh) 2016-02-05 2017-01-22 信息的发送、接收方法及装置

Country Status (2)

Country Link
CN (1) CN107046456B (zh)
WO (1) WO2017133520A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365380A (zh) * 2018-04-10 2019-10-22 成都华为技术有限公司 数据传输的方法、通信装置及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071475A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 上行信道的传输方法、终端、基站及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036386A (zh) * 2009-09-29 2011-04-27 中兴通讯股份有限公司 Lte-a系统及其中继链路的物理下行控制信道的资源分配方法
US8548514B2 (en) * 2010-08-11 2013-10-01 Lg-Ericsson Co., Ltd. Method for resource element group downsizing of R-PDCCH and mobile telecommunication system for the same
CN104272642A (zh) * 2012-03-19 2015-01-07 瑞典爱立信有限公司 增强型控制信道中的资源聚合

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111197B (zh) * 2009-12-28 2014-03-12 电信科学技术研究院 预编码矩阵索引信息上报方法和设备
US20120282936A1 (en) * 2011-05-02 2012-11-08 Research In Motion Limited Methods of PDCCH Capacity Enhancement in LTE Systems
US9313747B2 (en) * 2011-07-01 2016-04-12 Intel Corporation Structured codebook for uniform circular array (UCA)
CN104065461B (zh) * 2013-03-22 2017-08-25 华为技术有限公司 信号发送方法和信号发送设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036386A (zh) * 2009-09-29 2011-04-27 中兴通讯股份有限公司 Lte-a系统及其中继链路的物理下行控制信道的资源分配方法
US8548514B2 (en) * 2010-08-11 2013-10-01 Lg-Ericsson Co., Ltd. Method for resource element group downsizing of R-PDCCH and mobile telecommunication system for the same
CN104272642A (zh) * 2012-03-19 2015-01-07 瑞典爱立信有限公司 增强型控制信道中的资源聚合

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365380A (zh) * 2018-04-10 2019-10-22 成都华为技术有限公司 数据传输的方法、通信装置及系统

Also Published As

Publication number Publication date
CN107046456B (zh) 2021-01-26
CN107046456A (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
US11705950B2 (en) Method and apparatus for resource-based CSI acquisition in advanced wireless communication systems
US11082097B2 (en) Method and apparatus for enabling uplink MIMO
US11811702B2 (en) System and method for flexible channel state information-reference signal transmission
US10298307B2 (en) Method and apparatus for channel state information reference signal (CSI-RS)
US11239950B2 (en) Method for configuring channel state information reporting band and communications apparatus
CN113346935B (zh) 用于码本设计和信令的方法和装置
US11538568B2 (en) Methods and systems for CSI-RS port selection for CSI-reporting
JP6983774B2 (ja) 減少されたフィードバックmimoのための方法及び装置
CN107113040B (zh) 用于预编码信道状态信息参考信号的方法和装置
JP6411367B2 (ja) アドバンスト無線通信システムにおけるチャンネル状態情報フィードバック設計
US20230170946A1 (en) Method and apparatus to enable segmented csi reporting in wireless communication systems
JP2019532564A (ja) ダウンリンク及びアップリンクチャネル状態情報を獲得するための方法及び装置
US9660784B2 (en) Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission CoMP
US20230179381A1 (en) Method and apparatus for uplink control information transmission and reception
US20190222354A1 (en) Method for configuring channel state information reporting band and communications apparatus
WO2016050197A1 (zh) 一种fd-mimo通信中的csi反馈的ue、基站中的方法和设备
US11445396B2 (en) Channel measurement method and apparatus
WO2017167156A1 (zh) Dmrs的发送方法及装置
KR20180129875A (ko) 업링크 mimo를 가능하게 하기 위한 방법 및 장치
US20190296815A1 (en) Method and apparatus for high capacity access
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
WO2018126831A1 (zh) 参数取值的确定、配置方法及装置、终端及基站
KR20200005542A (ko) 채널 상태 정보 기준 신호(csi-rs)를 위한 방법 및 장치
WO2017133688A1 (zh) 信息的传输、接收方法及装置
WO2017133520A1 (zh) 信息的发送、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746840

Country of ref document: EP

Kind code of ref document: A1