WO2016050197A1 - 一种fd-mimo通信中的csi反馈的ue、基站中的方法和设备 - Google Patents

一种fd-mimo通信中的csi反馈的ue、基站中的方法和设备 Download PDF

Info

Publication number
WO2016050197A1
WO2016050197A1 PCT/CN2015/091016 CN2015091016W WO2016050197A1 WO 2016050197 A1 WO2016050197 A1 WO 2016050197A1 CN 2015091016 W CN2015091016 W CN 2015091016W WO 2016050197 A1 WO2016050197 A1 WO 2016050197A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
pmi
csi
base station
target
Prior art date
Application number
PCT/CN2015/091016
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2016050197A1 publication Critical patent/WO2016050197A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to a channel information feedback scheme in the field of mobile communication technologies, and more particularly to CSI (Channel Status Information) in a mobile communication system using FD (Full Dimension) MIMO (Multiple Input Multiple Output) technology. , channel status information) feedback scheme.
  • CSI Channel Status Information
  • FD Full Dimension
  • MIMO Multiple Input Multiple Output
  • the UE User Equipment
  • the implicit CSI includes information such as a PMI (Precoding Matrix Indicator) and a CQI (Channel Quality Indicator).
  • the system side obtains the MIMO downlink channel parameters through the implicit CSI fed back by the UE.
  • FIG. 1 is a CSI-RS pattern in a PRBP (Physical Resource Block Pair) based on a normal CP (Cyclic Prefix) in an existing LTE system, and simultaneously indicates CRS and DMRS (Demodulation Reference Signal). , demodulation reference signal), one of the small squares is the smallest resource unit of LTE - RE (Resource Element).
  • the slashed RE can be used to send CSI-RS.
  • the LTE system uses the concept of a port to define RS resources: one RS port may be mapped to one physical antenna, or it may be that multiple physical antennas are combined to form a virtual antenna.
  • LTE defines the number of four CSI-RS ports: 1, 2, 4, 8.
  • the implicit CSI is applicable to the FDD (Frequency Duplex Division) system and the TDD (Time Duplex Division) system.
  • the UE sends the uplink SRS, and the system side obtains the uplink channel CSI by demodulating the SRS, and then obtains the downlink CSI according to the link symmetry.
  • This method is mainly applicable to TDD systems.
  • the CSI in LTE is divided into two types from the feedback period: periodic CSI and aperiodic CSI.
  • the former is transmitted on the PUCCH, and the latter is transmitted on the PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • Massive MIMO has recently become a research hotspot.
  • a typical feature of a Massive MIMO system is to obtain a series of gains by increasing the number of antenna array elements to a larger value.
  • the system capacity theoretically increases with the number of antennas; the coherent superposition of the transmit antenna signals reduces the transmit power. and many more.
  • 3GPP R (Release, version) 12 has developed a 3D (Dimension) MIMO channel model.
  • FD-MIMO was approved as a research topic of 3GPP R13.
  • Massive MIMO One of the challenges faced by FD-MIMO is how to ensure that the base station equipment accurately obtains downlink CSI.
  • the main research on Massive MIMO is based on TDD system, that is, using SRS and link symmetry is the system side to obtain downlink CSI.
  • SRS such as FDD is difficult to adopt, RF link asymmetry, SRS pilot pollution, SRS resources are limited, etc.
  • implicit CSI may still play an important role in Massive MIMO transmission.
  • FD-MIMO if the UE directly feeds back the CSI for all physical antennas, the resulting air interface overhead is almost unacceptable when the number of antennas is large.
  • the present invention proposes a CSI feedback method and apparatus in an FD MIMO system.
  • the invention discloses a method in a UE for CSI feedback in FD-MIMO communication, which comprises the following steps:
  • Step A Receiving a downlink reference signal at the first RS resource and the second RS resource
  • Step B Determining a target RS resource, the target RS resource being a first RS resource or a second RS resource
  • Step C Feed back the first PMI, the reference RS of the first PMI is the target RS resource.
  • the first RS resource includes N1 RS ports, and the second RS resource includes N2 RSs. Port, the N1 and the N2 are both positive integers greater than one.
  • the reference RS of the first PMI is the target RS resource, and the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the first RS resource and the second RS resource are located in the same CSI subframe set.
  • Q1 PMIs in the first index set there are Q1 PMIs in the first index set, Q2 PMIs in the second index set, Q1 and Q2 are both positive integers, and the sum of Q1 and Q2 is a positive integer of 2. Power.
  • the Q1 is equal to the Q2.
  • the element value in the first index set is 0-(Q1-1), and the element value in the second index set is Q1-(Q1+Q2-1).
  • the combined codebook, the first index set and the second index set are configured by higher layer signaling.
  • the pattern of the RS port in the subframe is a pattern of the CSI-RS port in the subframe.
  • the UE performs channel estimation according to the reference RS to obtain corresponding channel parameters, thereby determining a corresponding PMI.
  • the essence of the above method is that the UE can independently select the RS resource corresponding to the fed PMI, and can feed back the most effective downlink CSI by using the given uplink transmission resource.
  • the first RS resource and the second RS resource respectively correspond to the antenna array in the horizontal direction and the antenna array in the vertical direction.
  • step B The specific implementation of the step B is implementation-dependent, that is, determined by the UE itself.
  • the UE compares the first RS resource based first PMI and the second RS resource based second PMI, and the UE receives the latest received first RS resource and second RS resource. Determining that the RS resource corresponding to the less accurate one of the first PMI and the second PMI is the target RS resource.
  • the N1 and the N2 are both 4, and the sub-codebook corresponding to the first index set (that is, the codebook composed of the codeword corresponding to the index in the first index set) is 4Tx in LTE (transmit antenna)
  • the codebook space of the port, the subcodebook corresponding to the second index set is a codebook space of 4Tx in LTE.
  • the N1 and the N2 are both 8, and the sub-codebook corresponding to the first index set is It is a codebook space of 8Tx long-term PMI (first PMI) in LTE, and the sub-codebook corresponding to the second index set is a codebook space of 8Tx long-term PMI in LTE.
  • the N1 and the N2 are both 4, and the subcodebook corresponding to the first index set is a codebook space of the enhanced 4Tx (transmit antenna port) in the LTE R11, and the subcodebook corresponding to the second index set. It is the codebook space of 8Tx long-term PMI in LTE.
  • the N1 is equal to the N2.
  • the step A comprises the following steps:
  • Step A0 The receiving high layer signaling determines a subcodebook corresponding to each of the first index set and the second index set.
  • the high layer signaling indicates that all or part of the codewords in the first codebook are used as the subcodebook corresponding to the first index set, and all or part of the codewords in the second codebook are used as the second index set.
  • the first codebook and the second codebook are predetermined.
  • the mapping relationship between the index in the index set and the codeword in the subcodebook is predetermined
  • the high layer signaling is RRC (Radio Resource Control) layer signaling.
  • the high layer signaling is cell common signaling.
  • the first PMI is determined by the UE under the assumption that the base station adopts the second PMI.
  • the second PMI is that the reference RS that is the last feedback of the UE is the periodic CSI of the default RS resource, and the first PMI and the second PMI occupy the same PUCCH (Physical Uplink Control Channel) resource index.
  • the second PMI is that the reference RS that the UE last feedback is the PMI of the default RS resource.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first PMI and the second PMI are for the same CSI reference resource.
  • the CSI reported by the UE is for a specific time-frequency resource, and the specific time-frequency resource is a CSI reference resource.
  • the specific description of the CSI reference resource refers to the definition in TS36.213.
  • the second PMI is a periodic CSI, ie the second PMI is transmitted on the PUCCH.
  • the first PMI and the second PMI are PUCCH transmissions in different subframes, but both occupy the same intra-frame resource - identified by the PUCCH resource index.
  • the transmission format of the first PMI and the second PMI is one of PUCCH formats ⁇ 2, 2a, 2b ⁇ , and the PUCCH resource index is indicated by higher layer signaling.
  • PUCCH resource index Specific about For a description of the PUCCH resource index, refer to TS36.211.
  • the essence of the foregoing aspect is that the PMI for the first RS resource and the second RS resource share the same PUCCH resource index, and the UE dynamically selects the reference RS of the currently fed PMI.
  • the above aspect can reduce air interface resource overhead compared to assigning independent PUCCH resource indexes for PMI feedback for the first RS resource and the second RS resource.
  • the foregoing aspect can reduce the computational complexity of the UE while reducing the number of bits of the PMI.
  • the step A further includes the following steps:
  • the step C includes the following steps:
  • a (Aperiodic)-CSI is transmitted on the PUSCH (Physical Uplink Shared Channel).
  • the reference RS of the A-CSI is one of a first RS resource and a second RS resource, and the reference RS of the A-CSI is indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ RI, PMI, CQI ⁇ .
  • the PUSCH is scheduled by the uplink scheduling DCI.
  • the uplink scheduling DCI is one of DCI formats ⁇ 0, 4 ⁇ .
  • the cell information of the A-CSI is configured by a CSI request bit in the uplink scheduling DCI according to an LTE method.
  • the step C further includes the following steps:
  • the first CQI is determined under the condition that the PMI in the PMI set is assumed to be adopted by the base station, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reported PMI set includes a first PMI and a second PMI.
  • the target RS resource is the first RS resource; if the first test CQI is less than the second test CQI, the target RS resource is the second RS resource; if the first test CQI is equal to The second test CQI, the target RS resource is any one of the first RS resource or the second RS resource.
  • the step C further includes the following steps:
  • the reporting PMI set includes a third PMI, and the third PMI is determined under the condition that the UE assumes that both the first PMI and the second PMI are adopted by the base station.
  • the reference RS of the third PMI is the first RS resource and the second RS resource.
  • the reference RS of the third PMI is the target RS resource.
  • the first PMI is determined according to a periodic RI of the target RS resource that is last feedback of the UE, or the first PMI is based on a last feedback of the UE.
  • the reference RS is determined by the RI of the target RS resource.
  • the number of row vectors of the precoding matrix corresponding to the first PMI is the number of RS ports of the target RS resource.
  • the number of column vectors of the precoding matrix corresponding to the first PMI is equal to the first oversampling factor multiplied by the periodic RI of the target RS resource according to the latest feedback of the UE, the first oversampling The factor is a positive integer and varies with the periodicity RI.
  • the number of column vectors of the precoding matrix corresponding to the first PMI is equal to the first oversampling factor multiplied by the RI according to which the UE last feedback is the RI of the target RS resource, and the first oversampling factor is positive.
  • the second PMI is determined according to the periodic RI of the default RS resource that the UE last feedback is, or the second PMI is based on the reference RS that the UE last feedback The RI of the default RS resource is determined.
  • the invention discloses a method in a base station for CSI feedback in FD-MIMO communication, which comprises the following steps:
  • Step A transmitting a downlink reference signal in the first RS resource and the second RS resource
  • Step B Receive a first PMI, the reference RS of the first PMI is a target RS resource, and the target RS resource is a first RS resource or a second RS resource
  • the first RS resource includes N1 RS ports, and the second RS resource includes N2 RSs. Port, the N1 and the N2 are both positive integers greater than one.
  • the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the first PMI belongs to the first index set or the second index set.
  • the first RS resource and the second RS resource are located in the same CSI subframe set.
  • the pattern of the RS port in the subframe is a pattern of the CSI-RS port in the subframe.
  • the base station recovers the relative phase between the antenna ports of the downlink channel according to the first PMI and the second PMI.
  • the second PMI is the PMI of the transmitting UE from the first PMI that the base station received last time and the reference RS is the PMI of the RS resource other than the target RS resource in the ⁇ first RS resource, the second RS resource ⁇ .
  • the N1 is one of ⁇ 1, 2, 4, 8 ⁇
  • the N2 is one of ⁇ 1, 2, 4, 8 ⁇ .
  • the first RS resource occupies a set of time, frequency, and code domain resources of the N1 CSI-RS ports
  • the second RS resource occupies a set of time, frequency, and code domain resources of the N2 CSI-RS ports.
  • the patterns of the first RS resource and the second RS resource in one subframe are respectively a pattern of CSI-RSs corresponding to a group of CSI-RS configurations in LTE in one subframe.
  • the CSI-RS configuration refers to Table 6.10.5.2-1 in TS36.211.
  • the step A comprises the following steps:
  • Step A0 Transmit high layer signaling indicating a subcodebook corresponding to each of the first index set and the second index set.
  • the downlink channel parameter is determined by the base station adopting a first PMI and a second PMI.
  • the second PMI is that the reference RS that the base station receives the last time is the periodic CSI of the default RS resource, and the first PMI and the second PMI occupy the same PUCCH resource index, or the second PMI is the last feedback of the UE.
  • the reference RS is the PMI of the default RS resource.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first PMI and the second PMI are transmitted by the same UE.
  • the step A further includes the following steps:
  • Step A1 Send an uplink scheduling DCI, where the uplink scheduling DCI includes CSI scheduling bits.
  • the step B further includes the following steps:
  • Step B0 Receive A-CSI on the PUSCH.
  • the reference RS of the A-CSI is one of a first RS resource and a second RS resource, and the reference RS of the A-CSI is indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ RI, PMI, CQI ⁇ .
  • the step B further includes the following steps:
  • the first CQI is determined under the condition that the transmitting UE assumes that the PMIs in the PMI set are all adopted by the base station, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reported PMI set includes a first PMI and a second PMI.
  • the base station recovers the amplitude of the downlink channel according to the first CQI, and recovers the relative phase between the antenna ports of the downlink channel according to the first PMI and the second PMI.
  • the step B further includes the following steps:
  • the reporting PMI set includes a third PMI, and the third PMI is determined under the condition that the UE assumes that both the first PMI and the second PMI are adopted by the base station.
  • the reference RS of the third PMI is the first RS resource and the second RS resource.
  • the number of column vectors of the precoding matrix corresponding to the first PMI is determined according to a periodicity RI that the reference RS received by the base station is the target RS resource, or the first PMI.
  • the number of column vectors of the corresponding precoding matrix is determined according to the RI that the base station received last time is the RI of the target RS resource.
  • the RI and the first PMI are transmitted by the same UE.
  • the invention discloses a user equipment, and the user equipment comprises:
  • the first module is configured to receive a downlink reference signal in the first RS resource and the second RS resource
  • a second module configured to determine a target RS resource, where the target RS resource is a first RS resource or a second RS resource
  • a third module for feeding back the first PMI, the reference RS of the first PMI is the target RS Resources.
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the N1 and the N2 are both positive integers greater than 1.
  • the reference RS of the first PMI is the target RS resource
  • the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the foregoing user equipment is characterized in that the first PMI is determined by the UE under the assumption that the base station adopts the second PMI.
  • the second PMI is that the reference RS that the UE lastly feeds back is the periodic CSI of the default RS resource, and the first PMI and the second PMI occupy the same PUCCH resource index, or the second PMI is the last feedback of the UE.
  • the reference RS is the PMI of the default RS resource.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the foregoing user equipment is characterized in that the first module is further configured to receive, by the high layer signaling, a subcodebook corresponding to each of the first index set and the second index set.
  • the foregoing user equipment is characterized in that the first module is further configured to receive an uplink scheduling DCI, where the uplink scheduling DCI includes a CSI scheduling bit.
  • the third module is also used to send A-CSI on the PUSCH.
  • the reference RS of the A-CSI is one of a first RS resource and a second RS resource, and the reference RS of the A-CSI is indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ RI, PMI, CQI ⁇ .
  • the invention discloses a base station device, and the base station device comprises:
  • the first module is configured to send a downlink reference signal in the first RS resource and the second RS resource
  • the second module is configured to receive the first PMI, where the reference RS of the first PMI is a target RS resource, where the target RS resource is the first RS resource or the second RS resource
  • the third module is used to determine downlink channel parameters.
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the N1 and the N2 are both positive integers greater than 1.
  • the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the foregoing base station device is characterized in that the downlink channel parameter is determined by the base station adopting a first PMI and a second PMI.
  • the second PMI is that the reference RS that the base station receives the last time is the periodic CSI of the default RS resource, and the first PMI and the second PMI occupy the same PUCCH resource index, or the second PMI is the last feedback of the UE.
  • the reference RS is the PMI of the default RS resource.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first PMI and the second PMI are transmitted by the same UE.
  • the foregoing base station device is characterized in that the first module is further configured to send a high-level signaling to indicate a sub-codebook corresponding to each of the first index set and the second index set.
  • the foregoing base station device is characterized in that the first module is further configured to send an uplink scheduling DCI, where the uplink scheduling DCI includes a CSI scheduling bit.
  • the second module is also for receiving A-CSI on the PUSCH.
  • the reference RS of the A-CSI is one of a first RS resource and a second RS resource, and the reference RS of the A-CSI is indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ RI, PMI, CQI ⁇ .
  • the present invention discloses a method and apparatus for CSI feedback for the problem that the CSI fed back by the UE in the FD MIMO system occupies excessive air interface overhead.
  • the UE autonomously selects a group of RS resources from the two sets of RS resources as the reference RS, and the UE obtains and feeds back the PMI according to the reference RS.
  • the method of the invention enables the UE to use the limited air interface resources to feed back the most effective PMI information, which saves the overhead of the air interface resource or improves the feedback efficiency of the PMI.
  • FIG. 1 shows an example of a downlink RS pattern of an existing LTE system
  • FIG. 2 shows a flow chart of CSI feedback in accordance with one embodiment of the present invention
  • FIG. 3 illustrates a pattern of a first RS resource and a second RS resource within a PRBP, in accordance with an embodiment of the present invention
  • FIG. 4 is a diagram showing a mapping of a 4 ⁇ 4 cross-polarized antenna array to an RS port on a base station side according to an embodiment of the present invention
  • FIG. 5 is a diagram showing a mapping of a 4 ⁇ 8 vertically polarized antenna array to an RS port on a base station side according to an embodiment of the present invention
  • FIG. 6 shows a structural block diagram of a processing device for use in a UE according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing the structure of a processing device used in a base station according to an embodiment of the present invention.
  • Embodiment 1 is a flow chart of CSI feedback, as shown in FIG.
  • one cell maintained by the base station E1 is a serving cell of the UE U2.
  • the steps within the box identified by F0 are optional steps
  • the steps within the box identified by F1 are optional steps.
  • step S11 the downlink reference signal is transmitted in the first RS resource and the second RS resource; the first PMI is received in step S12; and the downlink channel parameter is determined in step S13.
  • step S21 the downlink reference signal is received in the first RS resource and the second RS resource; in step S22, the target RS resource is determined, where the target RS resource is the first RS resource or the second RS resource. In step S23, the first PMI is fed back.
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • both N1 and N2 are positive integers greater than 1.
  • the reference RS of the first PMI is the target RS resource
  • the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the base station E1 transmits an uplink scheduling DCI in step S110; and receives A-CSI on the PUSCH in step S120.
  • UE U2 receives the uplink scheduling DCI in step S210; transmits A-CSI on the PUSCH in step S230.
  • the reference RS of the A-CSI is one of a first RS resource and a second RS resource, and the reference RS of the A-CSI is indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ RI, PMI, CQI ⁇ .
  • the base station E1 sends a high-level signaling common to the cell in step S10 to indicate a sub-codebook corresponding to each of the first index set and the second index set.
  • the UE U2 receives the high layer signaling in step S20 to determine a subcodebook corresponding to each of the first index set and the second index set.
  • the number of codewords included in the subcodebook corresponding to the first RS resource may not be equal to the number of codewords included in the subcodebook corresponding to the second RS resource, for example, if the first RS resource corresponds to the vertical direction.
  • the base station E1 may be the second index set.
  • the corresponding subcodebook is configured with more codewords.
  • the first index set there are Q1 PMIs in the first index set, Q2 PMIs in the second index set, Q1 and Q2 are both positive integers, and the sum of the Q1 and the Q2 Is a positive integer power of 2.
  • the element values in the first index set are 0 to (Q1-1), and the element values in the second index set are Q1 to (Q1+Q2-1).
  • the pattern of the RS port in the subframe is a pattern of the CSI-RS port in the subframe.
  • the first PMI is determined by the UE U2 under the assumption that the base station E1 adopts the second PMI.
  • the second PMI is that the reference RS that the UE U2 feeds back last time is the periodic CSI of the default RS resource, and the first PMI and the second PMI occupy the same PUCCH resource index.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first PMI is determined by the UE U2 on the assumption that the base station E1 adopts the second PMI.
  • the second PMI is the PMI that the UE RS is most recently fed back with reference to the default RS resource.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first PMI and the second PMI occupy the same PUCCH resource index.
  • the UE U2 feeds back the first CQI in step S23, and the base station E1 receives the first CQI in step S23.
  • the first CQI is calculated by the UE U2 on the condition that the PMI in the PMI set is adopted by the base station E1, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reported PMI set includes a first PMI and the second PMI described above.
  • Embodiment 2 is a pattern of the first RS resource and the second RS resource in the PRBP, as shown in FIG. 3, wherein the RE identified by the number x corresponds to the RS port x, and the x is a positive integer of 1 to 12, and the time domain Two REs on adjacent identical subcarriers adopt an OCC (Orthogonal Covering Code).
  • the first RS resource and the second RS resource respectively reuse the CSI-RS corresponding to one CSI-RS configuration in the LTE in the subframe, and the first RS resource includes the RS port ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ , the second RS resource includes the RS port ⁇ 9, 10, 11, 12 ⁇ .
  • the RS port corresponds to a time, frequency, and code domain resource of one CSI-RS port in LTE.
  • Embodiment 3 is a map of a 4 ⁇ 4 cross-polarized antenna array to an RS port configured on the base station side, as shown in FIG. 4 .
  • a small square represents a physical antenna, and a number therein indicates an RS port index corresponding to the physical antenna.
  • four transmit antennas in the first polarization direction of the same row are mapped to the same RS port by means of antenna virtualization (ie, four transmit antennas respectively transmit the RS sequence of the same RS port through phase rotation).
  • antenna virtualization ie, four transmit antennas respectively transmit the RS sequence of the same RS port through phase rotation.
  • a virtual antenna is formed on the receiver side).
  • four transmit antennas in the second polarization direction of the same column are mapped to the same RS port by precoding.
  • the base station first sends a downlink reference signal to the UE in the first RS resource and the second RS resource; the UE then determines the target RS resource, where the target RS resource is the first RS resource or the second RS resource; the UE then The first PMI, the third PMI and the first CQI are fed back to the base station; the base station finally determines the downlink channel parameters.
  • the first RS resource includes an RS port ⁇ 1, 2, 3, 4 ⁇
  • the second RS resource includes an RS port ⁇ 5, 6, 7, 8 ⁇ .
  • the target RS resource is a first RS resource or a second RS resource.
  • the reference RS of the first PMI is the target RS resource, and the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the first PMI is determined by the UE under the assumption that the base station adopts the second PMI.
  • the second PMI is that the reference RS that the UE last feedback is the periodic CSI of the default RS resource and the first PMI and the second PMI occupy the same PUCCH resource.
  • the source index, or the second PMI is the PMI of the default RS resource that the UE recently reported back to.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first CQI is calculated on the condition that the UE reports that the PMI in the PMI set is adopted by the base station, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reported PMI set includes ⁇ first PMI, second PMI, third PMI ⁇ .
  • the sub-codebook corresponding to the first index set is a codebook space corresponding to the long-term PMI at 8Tx in LTE
  • the PMI value corresponding to the first PMI is
  • the subcodebook corresponding to the first index set is a codebook space corresponding to the long-term PMI in 8Tx in LTE
  • the PMI value corresponding to the second PMI is
  • the codebook space of the third PMI is a codebook space of 2Tx in LTE
  • the PMI value corresponding to the third PMI is The base station first uses the Kronecker Product operation to obtain the precoding matrix of the 2-dimensional array antenna. Reflecting the phase information of the downlink channel of the 32 antennas to the UE, the base station then determines the amplitude a of the downlink channel by using the first CQI lookup table, and the base station finally determines that the downlink channel is
  • b 1 (the number of column vectors of the precoding matrix corresponding to the first PMI) is a product of the first oversampling factor and the first RI, and the first RI is the reference RS of the last feedback of the UE. Is the periodic RI of the target RS resource.
  • b 2 (the number of column vectors of the precoding matrix corresponding to the second PMI) is a product of the second oversampling factor and the second RI, and the second RI is the reference RS that is the last feedback according to the UE is the default RS resource Periodic RI.
  • b 3 is the product of the first RI and the second RI.
  • the first oversampling factor may vary with the first RI
  • the second oversampling factor may vary with the second RI
  • diag ⁇ Z1, Z2 ⁇ identifies the diagonal matrix, where the upper left submatrix is Z1 and the lower right submatrix is Z2, other elements are 0.
  • Embodiment 4 is a map of a 4 ⁇ 8 vertically polarized antenna array to an RS port configured on the base station side, as shown in FIG. 5 .
  • a small square represents a physical antenna, and a number thereof indicates an RS port index corresponding to the physical antenna (an RS antenna sequence in which one physical antenna transmits two RS ports).
  • the four transmit antennas of the same column are mapped to the same RS port-RS port ⁇ 1-8 ⁇ by antenna virtualization.
  • the four transmit antennas in the same row are mapped to the same RS port-RS port ⁇ 9-12 ⁇ by antenna virtualization.
  • the base station first sends a downlink reference signal to the UE in the first RS resource and the second RS resource; the UE then determines the target RS resource, where the target RS resource is the first RS resource or the second RS resource; the UE then feeds back the first PMI to Base station; the base station finally determines the downlink channel parameters.
  • the first RS resource includes an RS port ⁇ 1-8 ⁇
  • the second RS resource includes an RS port ⁇ 9, 10, 11, 12 ⁇ .
  • the reference RS of the first PMI is the target RS resource
  • the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the first index set includes Q1 indexes
  • the second index set includes Q2 indexes
  • Q1 and Q2 are positive integers greater than 1
  • Q1 is greater than Q2
  • Q1 is added to Q2.
  • a positive integer power equal to 2.
  • Embodiment 5 is a structural block diagram of a processing device for use in a UE, as shown in FIG.
  • the processing device 300 in the UE is mainly composed of a first receiving module 301, a first determining module 302 and a first transmitting module 303.
  • the first receiving module 301 is configured to receive the downlink reference signal in the first RS resource and the second RS resource, where the first determining module 302 is configured to determine the target RS resource, where the target RS resource is the first RS resource or the second RS resource.
  • the first sending module 303 is configured to feed back the first PMI, and the reference RS of the first PMI is the target RS resource.
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the N1 and the N2 are both positive integers greater than 1.
  • the reference RS of the first PMI is the target RS resource
  • the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the first PMI is determined by the UE under the assumption that the base station adopts the second PMI.
  • the second PMI is that the reference RS that the UE most recently feeds back is the periodic CSI of the default RS resource and the first PMI and the second PMI occupy the same PUCCH resource index.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first receiving module 301 is further configured to receive a high-level letter.
  • a subcodebook corresponding to each of the first index set and the second index set is determined.
  • the first receiving module 301 is further configured to receive an uplink scheduling DCI, where the uplink scheduling DCI includes a CSI scheduling bit.
  • the first sending module 303 is further configured to send the A-CSI on the PUSCH.
  • the reference RS of the A-CSI is one of a first RS resource and a second RS resource, and the reference RS of the A-CSI is indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ RI, PMI, CQI ⁇ .
  • the patterns of the first RS resource and the second RS resource in one subframe are respectively a pattern of CSI-RSs corresponding to a group of CSI-RS configurations in LTE in one subframe.
  • Embodiment 6 is a structural block diagram of a processing device used in a base station (eNB), as shown in FIG.
  • the processing device 400 in the eNB is composed of a second transmitting module 401, a second receiving module 402, and a second determining module 403.
  • the second sending module 401 is configured to send the downlink reference signal in the first RS resource and the second RS resource; the second receiving module 402 is configured to receive the first PMI, where the reference RS of the first PMI is the target RS resource, and the target RS resource Is the first RS resource or the second RS resource; the second determining module 403 is configured to determine the downlink channel parameter.
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • both N1 and N2 are positive integers greater than 1.
  • the first PMI is a periodic CSI.
  • the codebook space of the first PMI is a combined codebook, and each codeword in the combined codebook corresponds to a unique PMI.
  • the reference RS is a PMI corresponding to the codeword of the first RS resource to form a first index set
  • the reference RS is a PMI corresponding to the codeword of the second RS resource to form a second index set.
  • the downlink channel parameter is determined by the base station adopting a first PMI and a second PMI.
  • the second PMI is that the reference RS that the base station receives most recently is the periodic CSI of the default RS resource, and the first PMI and the second PMI occupy the same PUCCH resource index.
  • the default RS resource is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first PMI and the second PMI are transmitted by the same UE.
  • the N1 is one of ⁇ 1, 2, 4, 8 ⁇
  • the N2 is one of ⁇ 1, 2, 4, 8 ⁇ .
  • the first RS resource occupies a set of time, frequency, and code domain resources of the N1 CSI-RS ports
  • the second RS resource occupies a set of time, frequency, and code domain resources of the N2 CSI-RS ports.
  • the second sending module 401 is further configured to send the high-level signaling to indicate a sub-codebook corresponding to each of the first index set and the second index set.
  • the second sending module 401 is further configured to send an uplink scheduling DCI, where the uplink scheduling DCI includes a CSI scheduling bit.
  • the second receiving module 402 is further configured to receive the A-CSI on the PUSCH.
  • the reference RS of the A-CSI is one of a first RS resource and a second RS resource, and the reference RS of the A-CSI is indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ RI, PMI, CQI ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种FD-MIMO通信中的CSI反馈的UE、基站中的方法和设备。UE在步骤一中在第一RS资源和第二RS资源接收下行参考信号;在步骤二中确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;在步骤三中反馈第一PMI,第一PMI的参考RS是所述目标RS资源。其中,第一PMI的参考RS是所述目标RS资源,第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。通过使用本发明中提供的技术方案,UE利用有限的空口资源反馈最有效的CI信息,节省了空口资源的开销或者提高了CSI的反馈效率。

Description

一种FD-MIMO通信中的CSI反馈的UE、基站中的方法和设备 技术领域
本发明涉及移动通信技术领域中信道信息反馈的方案,特别是涉及采用了FD(Full Dimension,全维度)MIMO(Multiple Input Multiple Output,多输入输出)技术的移动通信系统中的CSI(Channel Status Information,信道状态信息)反馈方案。
背景技术
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long Term Evolution,长期演进)系统中,MIMO信道的CSI反馈主要有两种方式
●反馈隐式CSI
UE(User Equipment,用户设备)通过检测CRS(Cell specific Reference Signal,小区特定的参考信号)或者是CSI-RS(CSI Reference Signal,信道状态指示参考信号)得到CIR(Channel Impulse Response,信道冲激响应)并映射为隐式CSI。隐式CSI包括PMI(Precoding Matrix Indicator,预编码矩阵指示),CQI(Channel Quality Indicator,信道质量指示)等信息。系统侧通过UE反馈的隐式CSI获得MIMO下行信道参数。
附图1是一个现有LTE系统中基于正常CP(Cyclic Prefix,循环前缀)的在PRBP(Physical Resource Block Pair,物理资源块)内CSI-RS图案-同时标示出了CRS和DMRS(Demodulation Reference Signal,解调参考信号),其中一个小方格是LTE的最小资源单位-RE(Resource Element,资源粒子)。斜线标示的RE可以用于发送CSI-RS。LTE系统采用端口的概念定义RS资源:一个RS端口可能映射到一根物理天线,也有可能是多根物理天线通过合并叠加形成一根虚拟的天线。LTE定义了4种CSI-RS端口数量:1,2,4,8。
隐式CSI适用于FDD(Frequency Duplex Division,频分双工)系统和TDD(Time Duplex Division,时分双工)系统。
●反馈上行SRS(Sounding Reference Signal,侦听参考信号)
UE发送上行SRS,系统侧通过解调SRS获得上行信道CSI,再根据链路对称性获得下行CSI。该方法主要适用于TDD系统。
LTE中的CSI从反馈周期来说分为两种:周期性(Periodic)CSI和非周期性(Aperiodic)CSI。前者在PUCCH上传输,后者在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上传输。
作为一种新的蜂窝网天线架构,Massive(大规模)MIMO近来成为一个研究热点。Massive MIMO系统的典型特点是通过增加天线阵列单元的数量到较大的值从而获得一系列增益,例如,系统容量理论上随着天线数量的增加而持续增加;发射天线信号的相干叠加降低发射功率等等。3GPP R(Release,版本)12制定了3D(Dimension,维)MIMO信道模型。在RAN(Radio Access Network,无线接入网)#65次会议上,FD-MIMO被批准为3GPP R13的研究课题。FD-MIMO研究最多达到64个物理天线的场景。
FD-MIMO所面临的一个挑战是如何确保基站设备准确的获得下行CSI。目前关于Massive MIMO主要的研究是基于TDD系统,即利用SRS和链路对称性是系统侧获得下行CSI。考虑到SRS的局限性(例如FDD很难采用,射频链路的非对称性,SRS导频污染,SRS资源受限等),隐式CSI在Massive MIMO传输中可能依然扮演重要角色。对于FD-MIMO,如果UE直接反馈针对所有物理天线的CSI,所带来的空口开销在天线数量较多时几乎是不可接受的。
针对上述问题,本发明提出了一种FD MIMO系统中的CSI反馈方法和装置。
发明内容
本发明公开了一种FD-MIMO通信中的CSI反馈的UE中的方法,其中,包括如下步骤:
-步骤A.在第一RS资源和第二RS资源接收下行参考信号
-步骤B.确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
-步骤C.反馈第一PMI,第一PMI的参考RS是所述目标RS资源。
其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS 端口,所述N1和所述N2都是大于1的正整数。第一PMI的参考RS是所述目标RS资源,第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
作为一个实施例,第一RS资源和第二RS资源位于相同的CSI子帧集(CSI subframe set)。作为一个实施例,第一RS资源和第二RS资源中有且仅有一个共享的RS端口。
作为一个实施例,第一索引集合中有Q1个PMI,第二索引集合中有Q2个PMI,所述Q1和所述Q2都是正整数,所述Q1和所述Q2的和是2的正整数次幂。作为上述实施例的一个子实施例,所述Q1等于所述Q2。作为上述实施例的又一个子实施例,第一索引集合中的元素值为0-(Q1-1),第二索引集合中的元素值为Q1-(Q1+Q2-1)。
作为一个实施例,所述组合码本,第一索引集合以及第二索引集合是由高层信令配置的。作为一个实施例,所述RS端口在子帧内的图案是CSI-RS端口在子帧内的图案。
所述UE根据参考RS进行信道估计获得相应的信道参数,进而确定相应的PMI。上述方法的本质是UE能够自主选择反馈的PMI所对应的RS资源,能够利用给定的上行传输资源反馈最有效的下行CSI。作为一个实施例,第一RS资源和第二RS资源分别对应水平方向的天线阵列和垂直方向的天线阵列。
所述步骤B的具体实施是实现相关的即由所述UE自行确定。作为一个实施例,所述UE比较最近一次反馈的基于第一RS资源的一号PMI和基于第二RS资源的二号PMI,所述UE根据最新接收到的第一RS资源和第二RS资源判断所述一号PMI和所述二号PMI中较不准确的一项所对应的RS资源就是所述目标RS资源。
作为一个实施例,所述N1和所述N2均为4,第一索引集合对应的子码本(即第一索引集合中的索引对应的码字组成的码本)是LTE中4Tx(发送天线端口)的码本空间,第二索引集合对应的子码本(即第二索引集合中的索引对应的码字组成的码本)是LTE中4Tx的码本空间。作为一个实施例,所述N1和所述N2均为8,第一索引集合对应的子码本 是LTE中8Tx的长期PMI(first PMI)的码本空间,第二索引集合对应的子码本是LTE中8Tx的长期PMI的码本空间。作为一个实施利,所述N1和所述N2均为4,第一索引集合对应的子码本是LTE R11中增强4Tx(发送天线端口)的码本空间,第二索引集合对应的子码本是LTE中8Tx的长期PMI的码本空间。
作为一个实施例,所述N1等于所述N2。
具体的,根据本发明的一个方面,所述步骤A包括如下步骤:
-步骤A0.接收高层信令确定第一索引集合和第二索引集合各自对应的子码本。
作为一个实施例,所述高层信令指示第一码本中的全部或者部分码字作为第一索引集合对应的子码本,指示第二码本中的全部或者部分码字作为第二索引集合对应的子码本。第一码本和第二码本是预确定的。所述索引集合中的索引和所述子码本中的码字的映射关系是预确定的
作为一个实施例,所述高层信令是RRC(Radio Resource Control,无线资源管理)层信令。
作为一个实施利,所述高层信令是小区公共信令。
具体的,根据本发明的一个方面,第一PMI是所述UE在假定基站采纳了第二PMI的条件下确定的。其中,第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH(Physical Uplink Control Channel,物理上行控制信道)资源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。
第一PMI和第二PMI是针对同一个CSI参考资源。UE上报的CSI针对特定时频资源的无线信道,所述特定的时频资源即CSI参考资源。具体的关于CSI参考资源的描述参考TS36.213中的定义。第二PMI是周期性CSI,即第二PMI在PUCCH上传输。第一PMI和第二PMI在不同子帧内的PUCCH传输,然而二者占用相同的帧内资源-由PUCCH资源索引标识。
作为一个实施例,第一PMI和第二PMI的传输格式是PUCCH格式{2,2a,2b}中的一种,所述PUCCH资源索引由高层信令指示。具体的关于 PUCCH资源索引的描述参考TS36.211。
上述方面的本质是:针对第一RS资源和第二RS资源的PMI共享相同的PUCCH资源索引,UE动态选择当前反馈的PMI的参考RS。相比为第一RS资源和第二RS资源分配独立的用于PMI反馈的PUCCH资源索引,上述方面能够减少空口资源开销。而相比针对第一RS资源和第二RS资源反馈一个联合PMI,上述方面能够减少UE的计算复杂度,同时降低PMI的比特数。
具体的,根据本发明的一个方面,所述步骤A还包括如下步骤:
-步骤A1.接收上行调度DCI(Downlink Control Information,下行控制信息),所述上行调度DCI中包括CSI调度比特。
所述步骤C包括如下步骤:
-步骤C0.在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上发送A(Aperiodic,非周期)-CSI。
其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示。所述A-CSI包括{RI,PMI,CQI}中的至少一个。
所述PUSCH由所述上行调度DCI调度。作为一个实施例,所述上行调度DCI是DCI格式{0,4}中的一个。作为一个实施例,所述A-CSI的小区信息由所述上行调度DCI中的CSI请求比特按照LTE的方法配置。
具体的,根据本发明的一个方面,所述步骤C还包括如下步骤:
-步骤C1.反馈第一CQI。
其中,第一CQI是在所述UE假定上报PMI集合中的PMI都被基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报PMI集合包括第一PMI和第二PMI。
作为所述步骤B的一个实施例:
-所述UE根据第一RS资源确定针对CSI参考资源的第一测试PMI,所述UE假定基站采用第一测试PMI和第二测试PMI对应的PMI值计算出第一测试CQI,第二测试PMI是所述UE最近一次反馈的根据第二RS资源确定的PMI。所述UE根据第二RS资源确定针对所述CSI参考资源的第三测试PMI,所述UE假定基站采用第三测试PMI和第四测试PMI对应的PMI值计算出第二测试CQI,第四测试PMI是所述UE最近一次反馈 的根据第一RS资源确定的PMI。如果第一测试CQI大于第二测试CQI,所述目标RS资源是第一RS资源;如果第一测试CQI小于第二测试CQI,所述目标RS资源是第二RS资源;如果第一测试CQI等于第二测试CQI,所述目标RS资源是第一RS资源或者第二RS资源中的任意一个。
具体的,根据本发明的上述方面,所述步骤C还包括如下步骤:
-步骤C2.反馈第三PMI。
其中,所述上报PMI集合包括第三PMI,第三PMI是在所述UE在假定第一PMI和第二PMI都被基站采纳的条件下被确定的。
作为一个实施例,第三PMI的参考RS是第一RS资源和第二RS资源。
作为一个实施例,第三PMI的参考RS是所述目标RS资源。
具体的,根据本发明的一个方面,第一PMI是根据所述UE最近一次反馈的参考RS是所述目标RS资源的周期性RI确定的,或者第一PMI是根据所述UE最近一次反馈的参考RS是所述目标RS资源的RI确定的。
第一PMI对应的预编码矩阵的行向量数是所述目标RS资源的RS端口数。作为一个实施例,第一PMI对应的预编码矩阵的列向量数等于第一过采样因子乘以根据所述UE最近一次反馈的参考RS是所述目标RS资源的周期性RI,第一过采样因子是正整数且随所述周期性RI变化。作为一个实施例,第一PMI对应的预编码矩阵的列向量数等于第一过采样因子乘以根据所述UE最近一次反馈的参考RS是所述目标RS资源的RI,第一过采样因子是正整数且随所述周期性RI变化。作为一个实施例,第二PMI是根据所述UE最近一次反馈的参考RS是所述缺省RS资源的周期性RI确定的,或者第二PMI是根据所述UE最近一次反馈的参考RS是所述缺省RS资源的RI确定的。
本发明公开了一种FD-MIMO通信中的CSI反馈的基站中的方法,其中,包括如下步骤:
-步骤A.在第一RS资源和第二RS资源发送下行参考信号
-步骤B.接收第一PMI,第一PMI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
-步骤C.确定下行信道参数。
其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS 端口,所述N1和所述N2都是大于1的正整数。第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
第一PMI属于第一索引集合或者第二索引集合。作为一个实施例,第一RS资源和第二RS资源位于相同的CSI子帧集。作为一个实施例,第一RS资源和第二RS资源中有且仅有一个共享的RS端口。作为一个实施例,所述RS端口在子帧内的图案是CSI-RS端口在子帧内的图案。
作为所述步骤C的一个实施例,所述基站根据第一PMI和第二PMI恢复出下行信道的天线端口之间的相对相位。第二PMI是所述基站最近一次接收的来自第一PMI的发送UE的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的PMI。
作为一个实施例,所述N1是{1,2,4,8}中的一个,所述N2是{1,2,4,8}中的一个。第一RS资源占用一组所述N1个CSI-RS端口的时、频、码域资源,第二RS资源占用一组所述N2个CSI-RS端口的时、频、码域资源。
作为一个实施例,第一RS资源和第二RS资源在一个子帧内的图案分别是LTE中的一组CSI-RS配置所对应的CSI-RS在一个子帧内的图案。所述CSI-RS配置参考TS36.211中的表格6.10.5.2-1。本实施例的优点是能够尽量重用LTE的信道估计算法。
具体的,根据本发明的一个方面,所述步骤A包括如下步骤:
-步骤A0.发送高层信令指示第一索引集合和第二索引集合各自对应的子码本。
具体的,根据本发明的一个方面,所述下行信道参数是所述基站采纳第一PMI和第二PMI确定的。其中,第二PMI是所述基站最近一次接收的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。第一PMI和第二PMI由同一个UE发送。
具体的,根据本发明的一个方面,所述步骤A还包括如下步骤:
-步骤A1.发送上行调度DCI,所述上行调度DCI中包括CSI调度比特。
所述步骤B还包括如下步骤:
-步骤B0.在PUSCH上接收A-CSI。
其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示。所述A-CSI包括{RI,PMI,CQI}中的至少一个。
具体的,根据本发明的一个方面,所述步骤B还包括如下步骤:
-步骤B1.接收第一CQI。
其中,第一CQI是在发送UE假定上报PMI集合中的PMI都被基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报PMI集合包括第一PMI和第二PMI。
作为所述步骤C的一个实施例,所述基站根据第一CQI恢复出下行信道的幅度,根据第一PMI和第二PMI恢复出下行信道的天线端口之间的相对相位。
具体的,根据本发明的一个方面,所述步骤B还包括如下步骤:
-步骤B2.反馈第三PMI。
其中,所述上报PMI集合包括第三PMI,第三PMI是在所述UE在假定第一PMI和第二PMI都被基站采纳的条件下被确定的。第三PMI的参考RS是第一RS资源和第二RS资源。
具体的,根据本发明的一个方面,第一PMI对应的预编码矩阵的列向量数是根据所述基站最近一次接收的参考RS是所述目标RS资源的周期性RI确定的,或者第一PMI对应的预编码矩阵的列向量数是根据所述基站最近一次接收的参考RS是所述目标RS资源的RI确定的。所述RI和第一PMI由同一个UE发送。
本发明公开了一种用户设备,该用户设备包括:
第一模块:用于在第一RS资源和第二RS资源接收下行参考信号
第二模块:用于确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
第三模块:用于反馈第一PMI,第一PMI的参考RS是所述目标RS 资源。
其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数。第一PMI的参考RS是所述目标RS资源,第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
作为一个实施例,上述用户设备的特征在于,第一PMI是所述UE在假定基站采纳了第二PMI的条件下确定的。其中,第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。
作为一个实施例,上述用户设备的特征在于,第一模块还用于接收高层信令确定第一索引集合和第二索引集合各自对应的子码本。
作为一个实施例,上述用户设备的特征在于,第一模块还用于接收上行调度DCI,所述上行调度DCI中包括CSI调度比特。第三模块还用于在PUSCH上发送A-CSI。其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示。所述A-CSI包括{RI,PMI,CQI}中的至少一个。
本发明公开了一种基站设备,该基站设备包括:
第一模块:用于在第一RS资源和第二RS资源发送下行参考信号
第二模块:用于接收第一PMI,第一PMI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
第三模块:用于确定下行信道参数。
其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数。第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
作为一个实施例,上述基站设备的特征在于,所述下行信道参数是所述基站采纳第一PMI和第二PMI确定的。其中,第二PMI是所述基站最近一次接收的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。第一PMI和第二PMI由同一个UE发送。
作为一个实施例,上述基站设备的特征在于,第一模块还用于发送高层信令指示第一索引集合和第二索引集合各自对应的子码本。
作为一个实施例,上述基站设备的特征在于,第一模块还用于发送上行调度DCI,所述上行调度DCI中包括CSI调度比特。第二模块还用于在PUSCH上接收A-CSI。其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示。所述A-CSI包括{RI,PMI,CQI}中的至少一个。
针对FD MIMO系统中UE所反馈的CSI占用过多的空口开销这一问题,本发明公开了一种CSI反馈的方法和装置。根据本发明的方法,UE自主从两组RS资源中选择一组RS资源作为参考RS,UE根据所述参考RS获得并反馈PMI。本发明的方法使得UE利用有限的空口资源反馈最有效的PMI信息,节省了空口资源的开销或者提高了PMI的反馈效率。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了现有LTE系统的下行RS图案的一个示例;
图2示出了根据本发明的一个实施例的CSI反馈的流程图;
图3示出了根据本发明的一个实施例的第一RS资源和第二RS资源在PRBP内的图案;
图4示出了根据本发明的一个实施例的基站侧的4X4交叉极化天线阵到RS端口的映射图;
图5示出了根据本发明的一个实施例的基站侧的4X8垂直极化天线阵到RS端口的映射图;
图6示出了根据本发明的一个实施例的用于UE中的处理装置的结构框图;
图7示出了根据本发明的一个实施例的用于基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和子实施例中的特征可以任意相互组合。
实施例1
实施例1是CSI反馈的流程图,如附图2所示。附图2中,基站E1维持的一个小区是UE U2的服务小区。附图2中,F0标识的方框内的步骤是可选步骤,F1标识的方框内的步骤是可选步骤。
对于基站E1,在步骤S11中,在第一RS资源和第二RS资源发送下行参考信号;在步骤S12中接收第一PMI;在步骤S13中确定下行信道参数。
对于UE U2,在步骤S21中,在第一RS资源和第二RS资源接收下行参考信号;在步骤S22中,确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;在步骤S23中,反馈第一PMI。
实施例1中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数。第一PMI的参考RS是所述目标RS资源,第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
作为实施例1的子实施例1,基站E1在步骤S110中发送上行调度DCI;在步骤S120中在PUSCH上接收A-CSI。UE U2在步骤S210中接收上行调度DCI;在步骤S230中在PUSCH上发送A-CSI。其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示。所述A-CSI包括{RI,PMI,CQI}中的至少一个。
作为实施例1的子实施例2,基站E1在步骤S10中发送小区公共的高层信令指示第一索引集合和第二索引集合各自对应的子码本。UE U2在步骤S20中接收所述高层信令确定第一索引集合和第二索引集合各自对应的子码本。
所述子实施例2中,第一RS资源对应的子码本中包括的码字数可能不等于第二RS资源对应的子码本中包括的码字数,例如如果第一RS资源对应垂直方向的多个虚拟天线,第二RS资源对应水平方向的多个虚拟天线,并且所述N1小于所述N2,为了确保在水平方向和垂直方向有类似的空间解析度,基站E1可能为第二索引集合对应的子码本配置更多的码字。
作为实施例1的子实施例3,第一索引集合中有Q1个PMI,第二索引集合中有Q2个PMI,所述Q1和所述Q2都是正整数,所述Q1和所述Q2的和是2的正整数次幂。第一索引集合中的元素值为0至(Q1-1),第二索引集合中的元素值为Q1至(Q1+Q2-1)。
作为实施例1的子实施例4,所述RS端口在子帧内的图案是CSI-RS端口在子帧内的图案。
作为实施例1的子实施例5,第一PMI是UE U2在假定基站E1采纳了第二PMI的条件下确定的。其中,第二PMI是UE U2最近一次反馈的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。
作为实施例1的子实施例6,第一PMI是UE U2在假定基站E1采纳了第二PMI的条件下确定的。其中,第二PMI是UE U2最近一次反馈的参考RS是缺省RS资源的PMI。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。第一PMI和第二PMI占用相同的PUCCH资源索引。
作为实施例1的子实施例7,UE U2在步骤S23中反馈第一CQI,基站E1在步骤S23中接收第一CQI。其中,第一CQI是UE U2假定上报PMI集合中的PMI都被基站E1采纳的条件下被计算出来的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报PMI集合包括第一PMI和上述第二PMI。
实施例2
实施例2是第一RS资源和第二RS资源在PRBP内的图案,如附图3所示,其中数字x标识的RE对应RS端口x,所述x是1至12的正整数,时域相邻的相同子载波上的两个RE采用OCC(Orthogonal Covering Code,正交覆盖码)。附图3中,第一RS资源和第二RS资源在子帧内分别重用LTE中的一个CSI-RS配置对应的CSI-RS-第一RS资源包括RS端口{1,2,3,4,5,6,7,8},第二RS资源包括RS端口{9,10,11,12}。所述RS端口对应LTE中的一个CSI-RS端口的时、频、码域资源。
实施例3
实施例3是基站侧配置的4X4交叉极化天线阵到RS端口的映射图,如附图4所示。附图4中,一个小方格表示一个物理天线,其中的数字表示该物理天线对应的RS端口索引。
如附图4所示,同一行的第一极化方向的4根发送天线采用天线虚拟化的方式映射到同一个RS端口(即4根发送天线分别发送同一个RS端口的RS序列经过相位旋转以后的信号,在接收机侧形成一根虚拟天线)。类似的,同一列的第二极化方向的4根发送天线采用预编码的方式映射到同一个RS端口。
实施例3中,基站首先在第一RS资源和第二RS资源发送下行参考信号给UE;UE然后确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;UE然后反馈第一PMI,第三PMI和第一CQI到基站;基站最后确定下行信道参数。
实施例3中,第一RS资源包括RS端口{1,2,3,4},第二RS资源包括RS端口{5,6,7,8}。所述目标RS资源是第一RS资源或者是第二RS资源。第一PMI的参考RS是所述目标RS资源,第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。第一PMI是所述UE在假定基站采纳了第二PMI的条件下确定的。第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资 源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。第一CQI是UE假定上报PMI集合中的PMI都被基站采纳的条件下被计算出来的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报PMI集合包括{第一PMI,第二PMI,第三PMI}。
作为实施例3的子实施例1,第一索引集合对应的子码本是LTE中8Tx时长期PMI对应的码本空间,第一PMI对应的PMI值是
Figure PCTCN2015091016-appb-000001
第一索引集合对应的子码本是LTE中8Tx时长期PMI对应的码本空间,第二PMI对应的PMI值是
Figure PCTCN2015091016-appb-000002
第三PMI的码本空间是LTE中2Tx的码本空间,第三PMI对应的PMI值是
Figure PCTCN2015091016-appb-000003
基站首先利用克罗内克积(Kronecker Product)运算得到2维阵列天线的预编码矩阵
Figure PCTCN2015091016-appb-000004
Figure PCTCN2015091016-appb-000005
反映了32根天线到UE的下行信道的相位信息,基站然后利用第一CQI查表确定所述下行信道的幅度a,基站最后确定所述下行信道为
Figure PCTCN2015091016-appb-000006
所述子实施例1中,b1(第一PMI对应的预编码矩阵的列向量数)是第一过采样因子和第一RI的乘积,第一RI是所述UE最近一次反馈的参考RS是所述目标RS资源的周期性RI。b2(第二PMI对应的预编码矩阵的列向量数)是第二过采样因子和第二RI的乘积,第二RI是根据所述UE最近一次反馈的参考RS是所述缺省RS资源的周期性RI。b3是第一RI和第二RI的乘积。第一过采样因子可能随着第一RI变化,第二过采样因子可能随着第二RI变化,diag{Z1,Z2}标识对角线矩阵,其中左上角子矩阵是Z1,右下角子矩阵是Z2,其他元素为0。
实施例4
实施例4是基站侧配置的4X8垂直极化天线阵到RS端口的映射图,如附图5所示。附图5中,一个小方格表示一个物理天线,其中的数字表示该物理天线对应的RS端口索引(一根物理天线发送两个RS端口的RS序列)。
如附图5所示,同一列的4根发送天线采用天线虚拟化的方式映射到同一个RS端口-RS端口{1-8}。类似的,同一行的4根发送天线采用天线虚拟化的方式映射到同一个RS端口-RS端口{9-12}。
基站首先在第一RS资源和第二RS资源发送下行参考信号给UE;UE然后确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;UE然后反馈第一PMI到基站;基站最后确定下行信道参数。
实施例4中,第一RS资源包括RS端口{1-8},第二RS资源包括RS端口{9,10,11,12}。第一PMI的参考RS是所述目标RS资源,第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
作为实施例4的子实施例1,第一索引集合中包括Q1个索引,第二索引集合中包括Q2个索引,Q1和Q2都是大于1的正整数,Q1大于Q2,Q1加上Q2的和等于2的正整数次幂。
实施例5
实施例5是用于UE中的处理装置的结构框图,如附图6所示。附图6中,UE中的处理装置300主要由第一接收模块301,第一确定模块302和第一发送模块303构成。
第一接收模块301用于在第一RS资源和第二RS资源接收下行参考信号;第一确定模块302用于确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;第一发送模块303用于反馈第一PMI,第一PMI的参考RS是所述目标RS资源。
实施例5中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数。第一PMI的参考RS是所述目标RS资源,第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。第一PMI是所述UE在假定基站采纳了第二PMI的条件下确定的。第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。
作为实施例5的子实施例1,第一接收模块301还用于接收高层信 令确定第一索引集合和第二索引集合各自对应的子码本。
作为实施例5的子实施例2,第一接收模块301还用于接收上行调度DCI,所述上行调度DCI中包括CSI调度比特。第一发送模块303还用于在PUSCH上发送A-CSI。其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示。所述A-CSI包括{RI,PMI,CQI}中的至少一个。
作为实施例5的子实施例3,第一RS资源和第二RS资源在一个子帧内的图案分别是LTE中的一组CSI-RS配置所对应的CSI-RS在一个子帧内的图案。
实施例6
实施例6是用于基站(eNB)中的处理装置的结构框图,如附图7所示。附图7中,eNB中的处理装置400由第二发送模块401,第二接收模块402和第二确定模块403构成。
第二发送模块401用于在第一RS资源和第二RS资源发送下行参考信号;第二接收模块402用于接收第一PMI,第一PMI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;第二确定模块403用于确定下行信道参数。
实施例6中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数。第一PMI是周期性CSI。第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI。所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。所述下行信道参数是所述基站采纳第一PMI和第二PMI确定的。第二PMI是所述基站最近一次接收的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引。所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。第一PMI和第二PMI由同一个UE发送。
作为实施例6的子实施例1,所述N1是{1,2,4,8}中的一个,所述N2是{1,2,4,8}中的一个。第一RS资源占用一组所述N1个CSI-RS端口的时、频、码域资源,第二RS资源占用一组所述N2个CSI-RS端口的时、频、码域资源。
作为实施例6的子实施例2,第二发送模块401还用于发送高层信令指示第一索引集合和第二索引集合各自对应的子码本。
作为实施例6的子实施例3,第二发送模块401还用于发送上行调度DCI,所述上行调度DCI中包括CSI调度比特。第二接收模块402还用于在PUSCH上接收A-CSI。其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示。所述A-CSI包括{RI,PMI,CQI}中的至少一个。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种FD-MIMO通信中的CSI反馈的UE中的方法,其中,包括如下步骤:
    -步骤A.在第一RS资源和第二RS资源接收下行参考信号
    -步骤B.确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
    -步骤C.反馈第一PMI,第一PMI的参考RS是所述目标RS资源;
    其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数;第一PMI是周期性CSI;第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI;所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
  2. 根据权利要求1所述的FD-MIMO通信中的CSI反馈的UE中的方法,其特征在于,所述步骤A包括如下步骤:
    -步骤A0.接收高层信令确定第一索引集合和第二索引集合各自对应的子码本。
  3. 根据权利要求1或2所述的FD-MIMO通信中的CSI反馈的UE中的方法,其特征在于,第一PMI是UE在假定基站采纳了第二PMI的条件下确定的;其中,第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI;所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。
  4. 根据权利要求1-3中任一项所述的FD-MIMO通信中的CSI反馈的UE中的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.接收上行调度DCI,所述上行调度DCI中包括CSI调度比特;
    所述步骤C包括如下步骤:
    -步骤C0.在PUSCH上发送A-CSI;
    其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示;所述A-CSI包括 {RI,PMI,CQI}中的至少一个。
  5. 根据权利要求3所述的FD-MIMO通信中的CSI反馈的UE中的方法,其特征在于,所述步骤C还包括如下步骤:
    -步骤C1.反馈第一CQI;
    其中,第一CQI是在所述UE假定上报PMI集合中的PMI都被基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源;所述上报PMI集合包括第一PMI和第二PMI。
  6. 根据权利要求5所述的FD-MIMO通信中的CSI反馈的UE中的方法,其特征在于,所述步骤C还包括如下步骤:
    -步骤C2.反馈第三PMI;
    其中,所述上报PMI集合包括第三PMI,第三PMI是在所述UE在假定第一PMI和第二PMI都被基站采纳的条件下被确定的。
  7. 根据权利要求1-6中任一项所述的FD-MIMO通信中的CSI反馈的UE中的方法,其特征在于,第一PMI是根据UE最近一次反馈的参考RS是所述目标RS资源的周期性RI确定的,或者第一PMI是根据所述UE最近一次反馈的参考RS是所述目标RS资源的RI确定的。
  8. 一种FD-MIMO通信中的CSI反馈的基站中的方法,其中,包括如下步骤:
    -步骤A.在第一RS资源和第二RS资源发送下行参考信号
    -步骤B.接收第一PMI,第一PMI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
    -步骤C.确定下行信道参数;
    其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数;第一PMI是周期性CSI;第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI;所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
  9. 根据权利要求8所述的FD-MIMO通信中的CSI反馈的基站中的方法,其特征在于,所述步骤A包括如下步骤:
    -步骤A0.发送高层信令指示第一索引集合和第二索引集合各自对 应的子码本。
  10. 根据权利要求8或9所述的FD-MIMO通信中的CSI反馈的基站中的方法,其特征在于,所述下行信道参数是所述基站采纳第一PMI和第二PMI确定的;其中,第二PMI是所述基站最近一次接收的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI;所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源;第一PMI和第二PMI由同一个UE发送。
  11. 根据权利要求8-10中任一项所述的FD-MIMO通信中的CSI反馈的基站中的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.发送上行调度DCI,所述上行调度DCI中包括CSI调度比特;
    所述步骤B包括如下步骤:
    -步骤B0.在PUSCH上接收A-CSI;
    其中,所述A-CSI的参考RS是第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS由所述CSI调度比特指示;所述A-CSI包括{RI,PMI,CQI}中的至少一个。
  12. 根据权利要求10所述的FD-MIMO通信中的CSI反馈的基站中的方法,其特征在于,所述步骤B还包括如下步骤:
    -步骤B1.接收第一CQI;
    其中,第一CQI是在发送UE假定上报PMI集合中的PMI都被基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源;所述上报PMI集合包括第一PMI和第二PMI。
  13. 根据权利要求12所述的FD-MIMO通信中的CSI反馈的基站中的方法,其特征在于,所述步骤B还包括如下步骤:
    -步骤B2.反馈第三PMI;
    其中,所述上报PMI集合包括第三PMI,第三PMI是在所述UE在假定第一PMI和第二PMI都被基站采纳的条件下被确定的;第三PMI的参考RS是第一RS资源和第二RS资源。
  14. 根据权利要求8-13中任一项所述的FD-MIMO通信中的CSI反馈的基站中的方法,其特征在于,第一PMI是根据所述基站最近一次接 收的参考RS是所述目标RS资源的周期性RI确定的,或者第一PMI是根据所述基站最近一次接收的参考RS是所述目标RS资源的RI确定的;所述RI和第一PMI由同一个UE发送。
  15. 一种用户设备,其特征在于,该用户设备包括:
    第一模块:用于在第一RS资源和第二RS资源接收下行参考信号
    第二模块:用于确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
    第三模块:用于反馈第一PMI,第一PMI的参考RS是所述目标RS资源。
    其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数;第一PMI的参考RS是所述目标RS资源,第一PMI是周期性CSI;第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI;所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI组成第二索引集合。
  16. 根据权利要求15所述的用户设备,其特征在于,第一PMI是所述UE在假定基站采纳了第二PMI的条件下确定的;其中,第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI;所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源。
  17. 一种基站设备,其特征在于,该基站设备包括:
    第一模块:用于在第一RS资源和第二RS资源发送下行参考信号
    第二模块:用于接收第一PMI,第一PMI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
    第三模块:用于确定下行信道参数;
    其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1和所述N2都是大于1的正整数;第一PMI是周期性CSI;第一PMI的码本空间是组合码本,所述组合码本中的每一个码字对应一个唯一的PMI;所述组合码本中,参考RS是第一RS资源的码字所对应的PMI组成第一索引集合,参考RS是第二RS资源的码字所对应的PMI 组成第二索引集合。
  18. 根据权利要求17所述的基站设备,其特征在于,所述下行信道参数是所述基站采纳第一PMI和第二PMI确定的;其中,第二PMI是所述基站最近一次接收的参考RS是缺省RS资源的周期性CSI且第一PMI和第二PMI占用相同的PUCCH资源索引,或者第二PMI是所述UE最近一次反馈的参考RS是缺省RS资源的PMI;所述缺省RS资源是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源;第一PMI和第二PMI由同一个UE发送。
PCT/CN2015/091016 2014-10-04 2015-09-29 一种fd-mimo通信中的csi反馈的ue、基站中的方法和设备 WO2016050197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410522932.2A CN105530075B (zh) 2014-10-04 2014-10-04 一种fd-mimo通信中的csi反馈方法和装置
CN201410522932.2 2014-10-04

Publications (1)

Publication Number Publication Date
WO2016050197A1 true WO2016050197A1 (zh) 2016-04-07

Family

ID=55629441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091016 WO2016050197A1 (zh) 2014-10-04 2015-09-29 一种fd-mimo通信中的csi反馈的ue、基站中的方法和设备

Country Status (2)

Country Link
CN (1) CN105530075B (zh)
WO (1) WO2016050197A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392115A (zh) * 2017-08-10 2019-02-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111769861A (zh) * 2018-05-09 2020-10-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10812231B2 (en) * 2016-03-18 2020-10-20 Qualcomm Incorporated Enhanced coordinated multipoint operation
CN111585627A (zh) * 2016-06-22 2020-08-25 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107733476B (zh) * 2016-08-12 2021-06-22 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
US11082176B2 (en) 2016-11-04 2021-08-03 Futurewei Technologies, Inc. System and method for transmitting a sub-space selection
CN114244407A (zh) 2017-03-18 2022-03-25 上海朗桦通信技术有限公司 一种基站、用户设备中的用于多天线传输的方法和装置
CN108631837B (zh) * 2017-03-24 2021-06-01 华为技术有限公司 信息的传输方法和设备
CN111446994B (zh) * 2017-04-18 2024-05-14 Oppo广东移动通信有限公司 一种用于多天线传输的用户设备、基站中的方法和装置
CN111431682B (zh) * 2019-01-10 2022-02-08 华为技术有限公司 通信方法、通信装置及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079149A1 (en) * 2012-09-20 2014-03-20 Samsung Electronics Co., Ltd. Feedback method and apparatus for use in mobile communication system
US20140192917A1 (en) * 2013-01-08 2014-07-10 Samsung Electronics Co., Ltd. Channel State Information Feedback Design in Advanced Wireless Communication Systems

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111197B (zh) * 2009-12-28 2014-03-12 电信科学技术研究院 预编码矩阵索引信息上报方法和设备
CN102223212B (zh) * 2010-04-16 2014-06-25 电信科学技术研究院 预编码矩阵索引上报方法和设备
CN102237968B (zh) * 2011-08-16 2013-11-06 电信科学技术研究院 一种信道状态信息的传输方法和设备
WO2013187669A1 (en) * 2012-06-11 2013-12-19 Samsung Electronics Co., Ltd. Channel state information transmission/reception method and apparatus for use in wireless communication system
KR101972945B1 (ko) * 2012-09-18 2019-04-29 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
KR101988285B1 (ko) * 2012-09-20 2019-06-12 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
US20140301492A1 (en) * 2013-03-08 2014-10-09 Samsung Electronics Co., Ltd. Precoding matrix codebook design for advanced wireless communications systems
US10193665B2 (en) * 2013-03-21 2019-01-29 Texas Instruments Incorporated Reference signal for 3D MIMO in wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079149A1 (en) * 2012-09-20 2014-03-20 Samsung Electronics Co., Ltd. Feedback method and apparatus for use in mobile communication system
US20140192917A1 (en) * 2013-01-08 2014-07-10 Samsung Electronics Co., Ltd. Channel State Information Feedback Design in Advanced Wireless Communication Systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392115A (zh) * 2017-08-10 2019-02-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109392115B (zh) * 2017-08-10 2022-12-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111769861A (zh) * 2018-05-09 2020-10-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111769861B (zh) * 2018-05-09 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
CN105530075B (zh) 2019-05-17
CN105530075A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
US11063648B2 (en) Methods and apparatus for feeding back and receiving channel state information, and device and storage medium
WO2016050197A1 (zh) 一种fd-mimo通信中的csi反馈的ue、基站中的方法和设备
US11349537B2 (en) Codebook subset restriction for full-dimension MIMO
US9961582B2 (en) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
RU2636057C2 (ru) Способ и устройство для приема и передачи информации о состоянии канала в системе беспроводной связи
JP6212121B2 (ja) 無線通信システムにおけるアンテナ仮想化方法及び装置
CN110212958B (zh) 一种移动通信系统中的信道信息反馈方法和装置
US11245449B2 (en) Network node, wireless device and methods thereby to indicate a first set of antenna ports and a second set of antenna ports
US20230268970A1 (en) Smaller sub-band size for PMI than for CQI
EP3681054A1 (en) Multi-antenna transmission method, terminal and base station
CN113328772A (zh) 用于信道状态信息参考信号(csi-rs)的方法和装置
EP3332487A1 (en) Methods and systems for csi-rs port selection for csi-reporting
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
WO2012155523A1 (zh) 非周期的信道状态信息的处理方法、装置及系统
WO2009037580A2 (en) Providing space division multiple access in a wireless network
CN112042147A (zh) 具有多个假设的信道状态信息(csi)反馈
WO2016045527A1 (zh) 一种ue、基站中的3d mimo通信方法和设备
US9973245B2 (en) Large-scale MIMO communication method and device in base station and UE
WO2013038609A1 (en) Channel state information feedback method and user equipment
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2017133520A1 (zh) 信息的发送、接收方法及装置
WO2024027506A1 (zh) 一种通信传输处理方法、装置及通信设备
WO2020026004A1 (en) Adaptive co-phasing for beamforming using co-phasing matrices for wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.08.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15847166

Country of ref document: EP

Kind code of ref document: A1