WO2016045527A1 - 一种ue、基站中的3d mimo通信方法和设备 - Google Patents

一种ue、基站中的3d mimo通信方法和设备 Download PDF

Info

Publication number
WO2016045527A1
WO2016045527A1 PCT/CN2015/089686 CN2015089686W WO2016045527A1 WO 2016045527 A1 WO2016045527 A1 WO 2016045527A1 CN 2015089686 W CN2015089686 W CN 2015089686W WO 2016045527 A1 WO2016045527 A1 WO 2016045527A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
csi
target
base station
index
Prior art date
Application number
PCT/CN2015/089686
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to US15/513,408 priority Critical patent/US20170310371A1/en
Priority to CA2970957A priority patent/CA2970957A1/en
Priority to EP15845300.1A priority patent/EP3200377A4/en
Publication of WO2016045527A1 publication Critical patent/WO2016045527A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to a channel information feedback scheme in the field of mobile communication technologies, and in particular to a downlink channel information feedback scheme in a mobile communication system using FD (Full Dimension) MIMO (Multiple Input Multiple Output) technology. .
  • FD Full Dimension
  • MIMO Multiple Input Multiple Output
  • the UE User Equipment
  • the implicit CSI includes information such as a PMI (Precoding Matrix Indicator) and a CQI (Channel Quality Indicator).
  • the system side obtains the MIMO downlink channel parameters through the implicit CSI fed back by the UE.
  • FIG. 1 is a CSI-RS pattern in a PRBP (Physical Resource Block Pair) based on a normal CP (Cyclic Prefix) in an existing LTE system, and simultaneously indicates CRS and DMRS (Demodulation Reference Signal). , demodulation reference signal), one of the small squares is the smallest resource unit of LTE - RE (Resource Element).
  • the slashed RE can be used to send CSI-RS.
  • the LTE system uses the concept of a port to define RS resources: one RS port may be mapped to one physical antenna, or it may be that multiple physical antennas are combined to form a virtual antenna.
  • LTE defines the number of four CSI-RS ports: 1, 2, 4, 8.
  • the implicit CSI is applicable to the FDD (Frequency Duplex Division) system and the TDD (Time Duplex Division) system.
  • the UE sends the uplink SRS, and the system side obtains the uplink channel CSI by demodulating the SRS, and then obtains the downlink CSI according to the link symmetry.
  • This method is mainly applicable to TDD systems.
  • Massive MIMO As a new cellular antenna architecture, Massive MIMO has recently become a research hotspot.
  • a typical feature of a Massive MIMO system is to obtain a series of gains by increasing the number of antenna array elements to a larger value. For example, the system capacity theoretically increases with the number of antennas; the coherent superposition of the transmit antenna signals reduces the transmit power. and many more.
  • One of the challenges faced by Massive MIMO is how to ensure that the transmitter accurately obtains CSI-Channel Status Indicator information.
  • Massive MIMO has recently become a research hotspot.
  • a typical feature of a Massive MIMO system is to obtain a series of gains by increasing the number of antenna array elements to a larger value.
  • the system capacity theoretically increases with the number of antennas; the coherent superposition of the transmit antenna signals reduces the transmit power. and many more.
  • 3GPP R (Release, version) 12 has developed a 3D (Dimension) MIMO channel model.
  • FD-MIMO was approved as a research topic of 3GPP R13.
  • Massive MIMO One of the challenges faced by FD-MIMO is how to ensure that the base station equipment accurately obtains downlink CSI.
  • the main research on Massive MIMO is based on TDD system, that is, using SRS and link symmetry is the system side to obtain downlink CSI.
  • SRS such as FDD is difficult to adopt, RF link asymmetry, SRS pilot pollution, SRS resources are limited, etc.
  • implicit CSI may still play an important role in Massive MIMO transmission.
  • FD-MIMO if the UE directly feeds back the CSI for all physical antennas, the resulting air interface overhead is almost unacceptable when the number of antennas is large.
  • the present invention proposes a CSI feedback method and apparatus in an FD MIMO system.
  • the invention discloses a 3D MIMO communication method in a UE, which comprises the following steps:
  • Step A Receiving a downlink reference signal at the first RS resource and the second RS resource
  • Step B Determining a target RS resource, the target RS resource being a first RS resource or a second RS resource
  • Step C Feedback of the first CI (Codebook Index, codebook index) and the first index
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the reference RS of the first CI is the target RS resource
  • the first index indicates the target RS resource, where the N1 is greater than A positive integer of 1, the N2 being a positive integer greater than one.
  • the UE performs channel estimation according to the reference RS to obtain corresponding channel parameters, thereby determining a corresponding CI.
  • the essence of the above method is that the UE can independently select the RS resource corresponding to the fed CI, and can feed back the most effective downlink CSI by using the given uplink transmission resource.
  • the first RS resource and the second RS resource respectively correspond to the antenna array in the horizontal direction and the antenna array in the vertical direction.
  • step B The specific implementation of the step B is implementation-dependent, that is, determined by the UE itself.
  • the UE compares the first RS resource based on the first RS resource and the second RS resource based on the second RS resource, and the UE is based on the newly received first RS resource and the second RS resource. Determining that the RS resource corresponding to the less accurate one of the first CI and the second CI is the target RS resource.
  • the N1 and the N2 are both 4.
  • the codebook space of the first CI is a codebook space of 4Tx (transmit antenna port) in LTE.
  • the N1 and the N2 are both 8.
  • the codebook space of the first CI is a codebook space corresponding to the first PMI in 8Tx in LTE.
  • the N1 is equal to the N2.
  • the first CI and the first index are transmitted in the same PUCCH (Physical Uplink Control Channel) in the same subframe.
  • PUCCH Physical Uplink Control Channel
  • the step C includes the following steps:
  • the first CQI is determined under the condition that the PMI value corresponding to the CI in the CI set is reported to be adopted by the base station, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reporting CI set includes a first CI and a second CI.
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the N1 is 4, and the N2 is 8.
  • the codebook space of the first CI is a 4Tx codebook space in LTE.
  • the codebook space of the second CI is a 4Tx codebook space in LTE.
  • the N1 and the N2 are both 8.
  • the codebook space of the first CI is a codebook space corresponding to the first PMI in 8Tx in LTE, and the codebook space of the second CI is 8Tx in LTE.
  • a first test CI for a CSI reference resource ie, a time-frequency resource associated with the CSI
  • the UE assuming that the base station calculates the PMI value corresponding to the first test CI and the second test CI
  • the first test CQI is obtained, and the second test CI is the CI determined according to the second RS resource that is last feedback of the UE.
  • the UE Determining, by the UE, a third test CI for the CSI reference resource according to the second RS resource, where the UE assumes that the base station calculates the second test CQI by using the PMI value corresponding to the third test CI and the fourth test CI, and the fourth test
  • the CI is the CI determined according to the first RS resource that the UE last feedback. If the first test CQI is greater than the second test CQI, the target RS resource is the first RS resource; if the first test CQI is less than the second test CQI, the target RS resource is the second RS resource; if the first test CQI is equal to The second test CQI, the target RS resource is any one of the first RS resource or the second RS resource.
  • the step A comprises the following steps:
  • the step C further includes the following steps:
  • the CSI scheduling bit indicates one of the first RS resource and the second RS resource, and the reference RS of the A-CSI is the RS resource indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ CI, CQI ⁇ .
  • the PUSCH is scheduled by the uplink scheduling DCI.
  • the uplink scheduling DCI is one of DCI formats ⁇ 0, 4 ⁇ .
  • the cell information of the A-CSI is configured by a CSI request bit in the uplink scheduling DCI according to an LTE method.
  • the step C further includes the following steps:
  • the reporting CI set includes a third CI, where the third CI is determined under the condition that the UE assumes that the PMI values corresponding to the first CI and the second CI are all adopted by the base station.
  • the reference RS of the third CI is the first RS resource and the second RS resource.
  • the reference RS of the third CI is the target RS resource.
  • transmission resources of the first CI and the second CI are orthogonal in time domain (ie, in different subframes).
  • the first CI and the second CI occupy the same PUCCH resource in the subframe.
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the transport PUCCH resource of the first CI and the transport PUCCH resource of the second CI are configured by the same PUCCH-ConfigDedicated IE (Information Element).
  • the first index is 1 bit, and the first index identifies whether the target RS resource is the first RS resource or the second RS resource.
  • the pattern of the RS port in the PRBP is a pattern of a CSI-RS port within the PRBP.
  • the invention discloses a 3D MIMO communication method in a base station, which comprises the following steps:
  • Step A transmitting a downlink reference signal in the first RS resource and the second RS resource
  • Step B Receiving the first CI and the first index
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the N1 is a positive integer greater than 1
  • the N2 is a positive integer greater than 1.
  • the reference RS of the first CI is a target RS resource
  • the target RS resource is a first RS resource or a second RS resource
  • the first index indicates the target RS resource.
  • the base station recovers the relative phase between the antenna ports of the downlink channel according to the first CI and the second CI.
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the N1 is one of ⁇ 1, 2, 4, 8 ⁇
  • the N2 is one of ⁇ 1, 2, 4, 8 ⁇ .
  • the first RS resource occupies the time, frequency, and code domain resources of the N1 CSI-RS ports
  • the second RS resource occupies the time and frequency of the N2 CSI-RS ports. Code domain resources.
  • the step B comprises the following steps:
  • the first CQI is determined under the condition that the PMI value corresponding to the CI in the CI set is reported to be adopted by the base station, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reporting CI set includes a first CI and a second CI.
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the base station recovers the amplitude of the downlink channel according to the first CQI, and recovers the relative phase between the antenna ports of the downlink channel according to the first CI and the second CI.
  • the step A comprises the following steps:
  • Step A1 Send an uplink scheduling DCI, where the uplink scheduling DCI includes CSI scheduling bits.
  • the step B further includes the following steps:
  • the CSI scheduling bit indicates one of the first RS resource and the second RS resource, and the reference RS of the A-CSI is the RS resource indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ CI, CQI ⁇ .
  • the step B further includes the following steps:
  • the reporting CI set includes a third CI, where the third CI is determined under the condition that the UE assumes that the PMI values corresponding to the first CI and the second CI are all adopted by the base station.
  • the N1 and the N2 are both 8.
  • the codebook space of the first CI is a codebook space corresponding to the first PMI in 8Tx in LTE, and the codebook space of the second CI is 8Tx in LTE.
  • transmission resources of the first CI and the second CI are orthogonal in time domain.
  • the first CI and the second CI occupy the same PUCCH resource in the subframe.
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first index is 1 bit
  • the first index And identifying whether the target RS resource is the first RS resource or the second RS resource.
  • the pattern of the RS port in the PRBP is a pattern of a CSI-RS port within the PRBP.
  • the invention discloses a user equipment, and the user equipment comprises:
  • the first module is configured to receive a downlink reference signal in the first RS resource and the second RS resource
  • a second module configured to determine a target RS resource, where the target RS resource is a first RS resource or a second RS resource
  • the third module for feeding back the first CI and the first index
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the reference RS of the first CI is the target RS resource
  • the first index indicates the target RS resource, where the N1 is greater than A positive integer of 1, the N2 being a positive integer greater than one.
  • the transmission resources of the first CI and the second CI are orthogonal in the time domain.
  • the first CI and the second CI occupy the same PUCCH resource in the subframe.
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the first module is further configured to receive an uplink scheduling DCI, where the uplink scheduling DCI includes a CSI scheduling bit.
  • the third module is also used to send A-CSI on the PUSCH.
  • the CSI scheduling bit indicates one of the first RS resource and the second RS resource, and the reference RS of the A-CSI is the RS resource indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ CI, CQI ⁇ .
  • the third module is also used to feed back the first CQI and the third CI.
  • the first CQI is determined under the condition that the PMI value corresponding to the CI in the CI set is reported to be adopted by the base station, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reporting CI set includes a first CI, a second CI, and a third CI.
  • the third CI is determined under the condition that the UE assumes that the PMI values corresponding to the first CI and the second CI are all adopted by the base station.
  • the invention discloses a base station device, and the base station device comprises:
  • the first module is configured to send a downlink reference signal in the first RS resource and the second RS resource
  • the second module is configured to receive the first CI and the first index
  • the third module is used to determine downlink channel parameters
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the N1 is a positive integer greater than 1
  • the N2 is a positive integer greater than 1.
  • the reference RS of the first CI is a target RS resource
  • the target RS resource is a first RS resource or a second RS resource
  • the first index indicates the target RS resource.
  • the transmission resources of the first CI and the second CI are orthogonal in the time domain.
  • the first CI and the second CI occupy the same PUCCH resource in the subframe.
  • the second CI is the last time that the transmitting UE of the first CI and the first index feeds back and the reference RS is the CI of the RS resource other than the target RS resource in the ⁇ first RS resource, the second RS resource ⁇ .
  • the first module is further configured to send an uplink scheduling DCI, where the uplink scheduling DCI includes a CSI scheduling bit.
  • the second module is also used to receive A-CSI on the PUSCH.
  • the CSI scheduling bit indicates one of the first RS resource and the second RS resource, and the reference RS of the A-CSI is the RS resource indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ CI, CQI ⁇ .
  • the second module is further configured to receive the first CQI and the third CI.
  • the first CQI is determined under the condition that the PMI value corresponding to the CI in the CI set is reported to be adopted by the base station, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reporting CI set includes a first CI, a second CI, and a third CI.
  • the third CI is determined under the condition that the UE assumes that the PMI values corresponding to the first CI and the second CI are all adopted by the base station.
  • the present invention discloses a method and apparatus for CSI feedback for the problem that the CSI fed back by the UE in the FD MIMO system occupies excessive air interface overhead.
  • the UE autonomously selects a group of RS resources from the two sets of RS resources as the reference RS, and the UE obtains and feeds back the CI according to the reference RS.
  • the method of the invention enables the UE to use the limited air interface resources to feed back the most effective CI information, which saves the overhead of the air interface resource or improves the feedback efficiency of the CI.
  • FIG. 1 shows an example of a downlink RS pattern of an existing LTE system
  • FIG. 2 shows a flow chart of CSI feedback in accordance with one embodiment of the present invention
  • FIG. 3 illustrates a pattern of a first RS resource and a second RS resource within a PRBP, in accordance with an embodiment of the present invention
  • FIG. 4 is a diagram showing a mapping of a 4 ⁇ 4 cross-polarized antenna array to an RS port on a base station side according to an embodiment of the present invention
  • FIG. 5 is a diagram showing a mapping of a 4 ⁇ 8 vertically polarized antenna array to an RS port on a base station side according to an embodiment of the present invention
  • FIG. 6 shows a structural block diagram of a processing device for use in a UE according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing the structure of a processing device used in a base station according to an embodiment of the present invention.
  • Embodiment 1 is a flow chart of CSI feedback, as shown in FIG.
  • one cell maintained by the base station N1 is a serving cell of the UE U2.
  • the steps within the box identified by F1 are optional steps.
  • step S11 the downlink reference signal is transmitted in the first RS resource and the second RS resource; the first CI and the first index are received in step S12; and the downlink channel parameter is determined in step S13.
  • step S21 the downlink reference signal is received in the first RS resource and the second RS resource; in step S22, the target RS resource is determined, where the target RS resource is the first RS resource or the second RS resource. In step S23, the first CI and the first index are fed back.
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the N1 is a positive integer greater than 1
  • the N2 is a positive integer greater than 1.
  • the reference RS of the first CI is the target RS resource
  • the target RS resource is the first RS resource
  • the source is either a second RS resource
  • the first index indicates the target RS resource.
  • the base station N1 transmits an uplink scheduling DCI in step S110; and receives A-CSI on the PUSCH in step S120.
  • UE U2 receives the uplink scheduling DCI in step S210; transmits A-CSI on the PUSCH in step S230.
  • the uplink scheduling DCI includes a CSI scheduling bit, where the CSI scheduling bit indicates one of the first RS resource and the second RS resource, and the reference RS of the A-CSI is the RS resource indicated by the CSI scheduling bit.
  • the A-CSI includes at least one of ⁇ CI, CQI ⁇ .
  • the transmission resources of the first CI and the second CI are orthogonal in the time domain.
  • the first CI and the second CI occupy the same PUCCH resource in the subframe.
  • the second CI is the last time that the UE U2 feeds back and the reference RS is the CI of the RS resource other than the target RS resource in the ⁇ first RS resource, the second RS resource ⁇ .
  • the first index is 1 bit, and the first index identifies whether the target RS resource is the first RS resource or the second RS resource.
  • the pattern of the RS port in the PRBP is a pattern of the CSI-RS port within the PRBP.
  • the UE U2 feeds back the first CQI in step S23, and the base station N1 receives the first CQI in step S23.
  • the first CQI is calculated by the UEU2 on the condition that the PMI value corresponding to the CI in the CI set is adopted by the base station N1, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reporting CI set includes a first CI and a second CI.
  • the second CI is the last time that the UE U2 feeds back and the reference RS is the CI of the RS resource other than the target RS resource in the ⁇ first RS resource, the second RS resource ⁇ .
  • Embodiment 2 is a pattern of the first RS resource and the second RS resource in the PRBP, as shown in FIG. 3, wherein the RE identified by the number x corresponds to two REs on the same subcarrier adjacent to the RS port x-time domain. OCC (Orthogonal Covering Code) is used.
  • the first RS resource and the second RS resource occupy CSI-RS resources in LTE, as indicated by the squares indicated by oblique lines in FIG.
  • the first RS resource includes an RS port ⁇ 1, 2, 3, 4 ⁇
  • the second RS resource includes an RS port ⁇ 5, 6, 7, 8 ⁇ .
  • the first RS resource and the second RS resource respectively occupy the time, frequency, and code domain resources of a group of 4 CSI-RS ports in the LTE.
  • Embodiment 3 is a map of a 4 ⁇ 4 cross-polarized antenna array to an RS port configured on the base station side, as shown in FIG. 4 .
  • a small square represents a physical antenna, and a number therein indicates an RS port index corresponding to the physical antenna.
  • the four transmit antennas in the first polarization direction of the same row are mapped to the same RS port by precoding (that is, after the RS sequences of the four transmit antennas respectively transmitting the same RS port are phase rotated) Signal, the UE side forms a virtual antenna).
  • four transmit antennas in the second polarization direction of the same column are mapped to the same RS port by precoding.
  • the base station first sends a downlink reference signal to the UE in the first RS resource and the second RS resource; the UE then determines the target RS resource, where the target RS resource is the first RS resource or the second RS resource; the UE then The first CI, the third CI, the first index and the first CQI are fed back to the base station; and the base station finally determines the downlink channel parameter.
  • the first RS resource includes an RS port ⁇ 1, 2, 3, 4 ⁇
  • the second RS resource includes an RS port ⁇ 5, 6, 7, 8 ⁇ .
  • the reference RS of the first CI is the target RS resource
  • the target RS resource is a first RS resource or a second RS resource
  • the first index indicates the target RS resource.
  • the first CQI is calculated under the condition that the UE U2 assumes that the PMI value corresponding to the CI in the CI set is adopted by the base station N1, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reporting CI set includes ⁇ first CI, second CI, third CI ⁇ .
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the codebook space of the first CI is a codebook space corresponding to the first PMI in 8Tx in LTE
  • the PMI value corresponding to the first CI is
  • the codebook space of the second CI is the codebook space corresponding to the first PMI in 8Tx in LTE
  • the PMI value corresponding to the second CI is
  • the codebook space of the third CI is a codebook space of 2Tx in LTE
  • the PMI value corresponding to the third CI is The base station first uses the Kronecker Product operation to obtain the precoding matrix of the 2-dimensional array antenna. Reflecting the phase information of the downlink channel of the 32 antennas to the UE, the base station then determines the amplitude a of the downlink channel by using the first CQI lookup table, and the base station finally determines that the downlink channel is
  • Embodiment 4 is a mapping diagram of a 4 ⁇ 8 vertically polarized antenna array to an RS port configured on the base station side, such as Figure 5 shows.
  • a small square represents a physical antenna, and a number thereof indicates an RS port index corresponding to the physical antenna (an RS antenna sequence in which one physical antenna transmits two RS ports).
  • the four transmit antennas of the same column are mapped to the same RS port-RS port ⁇ 1-4 ⁇ by precoding. Similarly, the four transmit antennas in the same row are precoded to the same RS port - RS port ⁇ 5-8 ⁇ .
  • the base station first sends a downlink reference signal to the UE in the first RS resource and the second RS resource; the UE then determines the target RS resource, where the target RS resource is the first RS resource or the second RS resource; the UE then feeds back the first CI, The first index and the first CQI are to the base station; the base station finally determines the downlink channel parameters.
  • the first RS resource includes an RS port ⁇ 1, 2, 3, 4 ⁇
  • the second RS resource includes an RS port ⁇ 5, 6, 7, 8 ⁇ .
  • the reference RS of the first CI is the target RS resource
  • the target RS resource is a first RS resource or a second RS resource
  • the first index indicates the target RS resource.
  • the first CQI is calculated under the condition that the UE U2 assumes that the PMI value corresponding to the CI in the CI set is adopted by the base station N1, and the reference RS of the first CQI is the first RS resource and the second RS resource.
  • the reporting CI set includes ⁇ first CI, second CI ⁇ .
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the codebook space of the first CI is a codebook space corresponding to the first PMI in 8Tx in LTE; and the codebook space of the second CI is a codebook space of 4Tx in LTE.
  • Embodiment 5 is a structural block diagram of a processing device for use in a UE, as shown in FIG.
  • the processing device 300 in the UE is mainly composed of a first receiving module 301, a first determining module 302 and a first transmitting module 303.
  • the first receiving module 301 is configured to receive the downlink reference signal in the first RS resource and the second RS resource, where the first determining module 302 is configured to determine the target RS resource, where the target RS resource is the first RS resource or the second RS resource.
  • the first sending module 303 is configured to feed back the first CI and the first index.
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the reference RS of the first CI is the target RS resource
  • the first index indicates the target RS resource
  • N1 is a positive integer greater than 1
  • the N2 is a positive integer greater than one.
  • the transmission resources of the first CI and the second CI are orthogonal in the time domain.
  • the first CI and the second CI occupy the same PUCCH resource in the subframe.
  • the second CI is the CI that the UE recently feeds back and the reference RS is an RS resource other than the target RS resource in the ⁇ first RS resource, second RS resource ⁇ .
  • the sum of the N1 plus the N2 is not more than 8.
  • the codebook space of the first CI is the codebook space corresponding to the first PMI in 8Tx in LTE or the codebook space of 4Tx in LTE, and the codebook space of the second CI is in LTE.
  • the codebook space corresponding to the first PMI is the codebook space of 4Tx in LTE.
  • the receiving module 301 is further configured to receive an uplink scheduling DCI, where the uplink scheduling DCI includes a CSI scheduling bit, and the sending module 303 is further configured to send the A-CSI on the PUSCH.
  • the CSI scheduling bit indicates one of the first RS resource and the second RS resource, and the reference RS of the A-CSI is the RS resource indicated by the CSI scheduling bit.
  • the A-CSI includes ⁇ CI, CQI ⁇ .
  • Embodiment 6 is a structural block diagram of a processing device used in a base station (eNB), as shown in FIG.
  • the processing device 400 in the eNB is mainly composed of a second sending module 401, a second receiving module 402, and a second determining module 403.
  • the second sending module 401 is configured to send the downlink reference signal in the first RS resource and the second RS resource
  • the second receiving module 402 is configured to receive the first CI and the first index
  • the second determining module 403 is configured to determine the downlink channel parameter.
  • the first RS resource includes N1 RS ports
  • the second RS resource includes N2 RS ports
  • the N1 is a positive integer greater than 1
  • the N2 is a positive integer greater than 1.
  • the reference RS of the first CI is a target RS resource
  • the target RS resource is a first RS resource or a second RS resource
  • the first index indicates the target RS resource.
  • the transmission resources of the first CI and the second CI are orthogonal in the time domain.
  • the first CI and the second CI occupy the same PUCCH resource in the subframe.
  • the second CI is the last time that the transmitting UE of the first CI and the first index feeds back and the reference RS is the CI of the RS resource other than the target RS resource in the ⁇ first RS resource, the second RS resource ⁇ .
  • the N1 is one of ⁇ 1, 2, 4, 8 ⁇
  • the N2 is one of ⁇ 1, 2, 4, 8 ⁇ .
  • the first RS resource occupies a group of the N1 CSI-RSs
  • the time, frequency, and code domain resources of the port, and the second RS resource occupies a set of time, frequency, and code domain resources of the N2 CSI-RS ports.
  • the codebook space of the first CI is the codebook space corresponding to the first PMI in 8Tx in LTE or the codebook space of 4Tx in LTE, and the codebook space of the second CI is in LTE.
  • the codebook space corresponding to the first PMI is the codebook space of 4Tx in LTE.
  • the second sending module 401 is further configured to send an uplink scheduling DCI, where the uplink scheduling DCI includes a CSI scheduling bit, and the second receiving module 402 is further configured to receive the A-CSI on the PUSCH.
  • the CSI scheduling bit indicates one of the first RS resource and the second RS resource, and the reference RS of the A-CSI is the RS resource indicated by the CSI scheduling bit.
  • the A-CSI includes ⁇ CI, CQI ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种UE、基站中的3D MIMO通信方法和设备。在一个实施例中,UE在步骤一中在第一RS资源和第二RS资源接收下行参考信号;在步骤二中确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;在步骤三中反馈第一CI和第一索引。其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,第一CI的参考RS是所述目标RS资源,第一索引指示所述目标RS资源,所述N1是大于1的正整数,所述N2是大于1的正整数。通过使用本发明中提供的技术方案,UE利用有限的空口资源反馈最有效的CI信息,节省了空口资源的开销或者提高了CI的反馈效率。

Description

一种UE、基站中的3D MIMO通信方法和设备 技术领域
本发明涉及移动通信技术领域中信道信息反馈的方案,特别是涉及采用了FD(Full Dimension,全维度)MIMO(Multiple Input Multiple Output,多输入输出)技术的移动通信系统中的下行信道信息反馈方案。
背景技术
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long Term Evolution,长期演进)系统中,MIMO信道的CSI(Channel Status Information,信道状态信息)反馈主要有两种方式
●反馈隐式CSI
UE(User Equipment,用户设备)通过检测CRS(Cell specific Reference Signal,小区特定的参考信号)或者是CSI-RS(CSI Reference Signal,信道状态指示参考信号)得到CIR(Channel Impulse Response,信道冲激响应)并映射为隐式CSI。隐式CSI包括PMI(Precoding Matrix Indicator,预编码矩阵指示),CQI(Channel Quality Indicator,信道质量指示)等信息。系统侧通过UE反馈的隐式CSI获得MIMO下行信道参数。
附图1是一个现有LTE系统中基于正常CP(Cyclic Prefix,循环前缀)的在PRBP(Physical Resource Block Pair,物理资源块)内CSI-RS图案-同时标示出了CRS和DMRS(Demodulation Reference Signal,解调参考信号),其中一个小方格是LTE的最小资源单位-RE(Resource Element,资源粒子)。斜线标示的RE可以用于发送CSI-RS。LTE系统采用端口的概念定义RS资源:一个RS端口可能映射到一根物理天线,也有可能是多根物理天线通过合并叠加形成一根虚拟的天线。LTE定义了4种CSI-RS端口数量:1,2,4,8。
隐式CSI适用于FDD(Frequency Duplex Division,频分双工)系统和TDD(Time Duplex Division,时分双工)系统。
●反馈上行SRS(Sounding Reference Signal,侦听参考信号)
UE发送上行SRS,系统侧通过解调SRS获得上行信道CSI,再根据链路对称性获得下行CSI。该方法主要适用于TDD系统。
作为一种新的蜂窝网天线架构,Massive MIMO近来成为一个研究热点。Massive MIMO系统的典型特点是通过增加天线阵列单元的数量到较大的值从而获得一系列增益,例如,系统容量理论上随着天线数量的增加而持续增加;发射天线信号的相干叠加降低发射功率等等。Massive MIMO所面临的一个挑战是如何确保发射端准确的获得信道状态指示(CSI-Channel Status Indicator)信息。
目前关于Massive MIMO主要的研究是基于TDD系统,即利用SRS和链路对称性使系统侧获得下行CSI。考虑到实际部署场景,依然有如下问题需要解决:
作为一种新的蜂窝网天线架构,Massive(大规模)MIMO近来成为一个研究热点。Massive MIMO系统的典型特点是通过增加天线阵列单元的数量到较大的值从而获得一系列增益,例如,系统容量理论上随着天线数量的增加而持续增加;发射天线信号的相干叠加降低发射功率等等。3GPP R(Release,版本)12制定了3D(Dimension,维)MIMO信道模型。在RAN(Radio Access Network,无线接入网)#65次会议上,FD-MIMO被批准为3GPP R13的研究课题。FD-MIMO研究最多达到64个物理天线的场景。
FD-MIMO所面临的一个挑战是如何确保基站设备准确的获得下行CSI。目前关于Massive MIMO主要的研究是基于TDD系统,即利用SRS和链路对称性是系统侧获得下行CSI。考虑到SRS的局限性(例如FDD很难采用,射频链路的非对称性,SRS导频污染,SRS资源受限等),隐式CSI在Massive MIMO传输中可能依然扮演重要角色。对于FD-MIMO,如果UE直接反馈针对所有物理天线的CSI,所带来的空口开销在天线数量较多时几乎是不可接受的。
针对上述问题,本发明提出了一种FD MIMO系统中的CSI反馈方法和装置。
发明内容
本发明公开了一种UE中的3D MIMO通信方法,其中,包括如下步骤:
-步骤A.在第一RS资源和第二RS资源接收下行参考信号
-步骤B.确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
-步骤C.反馈第一CI(Codebook Index,码本索引)和第一索引
其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,第一CI的参考RS是所述目标RS资源,第一索引指示所述目标RS资源,所述N1是大于1的正整数,所述N2是大于1的正整数。
所述UE根据参考RS进行信道估计获得相应的信道参数,进而确定相应的CI。上述方法的本质是UE能够自主选择反馈的CI所对应的RS资源,能够利用给定的上行传输资源反馈最有效的下行CSI。作为一个实施例,第一RS资源和第二RS资源分别对应水平方向的天线阵列和垂直方向的天线阵列。
所述步骤B的具体实施是实现相关的即由所述UE自行确定。作为一个实施例,所述UE比较最近一次反馈的基于第一RS资源的一号CI和基于第二RS资源的二号CI,所述UE根据最新接收到的第一RS资源和第二RS资源判断所述一号CI和所述二号CI中较不准确的一项所对应的RS资源就是所述目标RS资源。
作为一个实施例,所述N1和所述N2均为4,第一CI的码本空间是LTE中4Tx(发送天线端口)的码本空间。作为一个实施例,所述N1和所述N2均为8,第一CI的码本空间是LTE中8Tx时第一PMI对应的码本空间。作为一个实施例,所述N1等于所述N2。
作为一个实施例,第一CI和第一索引是在同一个子帧中的同一个PUCCH(Physical Uplink Control Channel,物理上行控制信道)中传输的。
具体的,根据本发明的一个方面,所述步骤C包括如下步骤:
-步骤C0.反馈第一CQI
其中,第一CQI是在所述UE假定上报CI集合中的CI所对应的PMI值被基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报CI集合包括第一CI和第二CI。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为一个实施例,所述N1为4,所述N2均为8,第一CI的码本空间是LTE中4Tx的码本空间。作为一个实施例,第二CI的码本空间是LTE中4Tx的码本空间。作为一个实施例,所述N1和所述N2均为8,第一CI的码本空间是LTE中8Tx时第一PMI对应的码本空间,第二CI的码本空间是LTE中8Tx时第一PMI对应的码本空间。
作为所述步骤B的一个实施例:
-所述UE根据第一RS资源确定针对CSI参考资源(即CSI所关联的时频资源)的第一测试CI,所述UE假定基站采用第一测试CI和第二测试CI对应的PMI值计算出第一测试CQI,第二测试CI是所述UE最近一次反馈的根据第二RS资源确定的CI。所述UE根据第二RS资源确定针对所述CSI参考资源的第三测试CI,所述UE假定基站采用第三测试CI和第四测试CI对应的PMI值计算出第二测试CQI,第四测试CI是所述UE最近一次反馈的根据第一RS资源确定的CI。如果第一测试CQI大于第二测试CQI,所述目标RS资源是第一RS资源;如果第一测试CQI小于第二测试CQI,所述目标RS资源是第二RS资源;如果第一测试CQI等于第二测试CQI,所述目标RS资源是第一RS资源或者第二RS资源中的任意一个。
具体的,根据本发明的一个方面,所述步骤A包括如下步骤:
-步骤A1.接收上行调度DCI(Downlink Control Information,下行控制信息),所述上行调度DCI中包括CSI调度比特。
所述步骤C还包括如下步骤:
-步骤C1.在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上发送A(Aperiodic,异步)-CSI
其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源。所述A-CSI包括{CI,CQI}中的至少一个。
所述PUSCH由所述上行调度DCI调度。作为一个实施例,所述上行调度DCI是DCI格式{0,4}中的一个。作为一个实施例,所述A-CSI的小区信息由所述上行调度DCI中的CSI请求比特按照LTE的方法配置。
具体的,根据本发明的一个方面,所述步骤C还包括如下步骤:
-步骤C2.反馈第三CI
其中,所述上报CI集合包括第三CI,第三CI是在所述UE假定第一CI和第二CI所对应的PMI值都被基站采纳的条件下被确定的。
作为一个实施例,第三CI的参考RS是第一RS资源和第二RS资源。
作为一个实施例,第三CI的参考RS是所述目标RS资源。
具体的,根据本发明的一个方面,第一CI和第二CI的传输资源在时域上是正交的(即处于不同子帧)。第一CI和第二CI在子帧内占用相同的PUCCH资源。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为一个实施例,第一CI的传输PUCCH资源和第二CI的传输PUCCH资源由同一个PUCCH-ConfigDedicated IE(Information Element,信息单元)配置。
具体的,根据本发明的一个方面,第一索引是1个比特,第一索引标识所述目标RS资源是第一RS资源还是第二RS资源。
具体的,根据本发明的一个方面,所述RS端口在PRBP内的图案是CSI-RS端口在PRBP内的图案。
本发明公开了一种基站中的3D MIMO通信方法,其中,包括如下步骤:
-步骤A.在第一RS资源和第二RS资源发送下行参考信号
-步骤B.接收第一CI和第一索引
-步骤C.确定下行信道参数
其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1是大于1的正整数,所述N2是大于1的正整数。第一CI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源,第一索引指示所述目标RS资源。
作为所述步骤C的一个实施例,所述基站根据第一CI和第二CI恢复出下行信道的天线端口之间的相对相位。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为一个实施例,所述N1是{1,2,4,8}中的一个,所述N2是{1,2,4,8}中的一个。第一RS资源占用一组所述N1个CSI-RS端口的时、频、码域资源,第二RS资源占用一组所述N2个CSI-RS端口的时、频、 码域资源。
具体的,根据本发明的一个方面,所述步骤B包括如下步骤:
-步骤B0.接收第一CQI
其中,第一CQI是在发送UE假定上报CI集合中的CI所对应的PMI值被所述基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报CI集合包括第一CI和第二CI。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为所述步骤C的一个实施例,所述基站根据第一CQI恢复出下行信道的幅度,根据第一CI和第二CI恢复出下行信道的天线端口之间的相对相位。
具体的,根据本发明的一个方面,所述步骤A包括如下步骤:
-步骤A1.发送上行调度DCI,所述上行调度DCI中包括CSI调度比特。
所述步骤B还包括如下步骤:
-步骤B1.在PUSCH上接收A-CSI
其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源。所述A-CSI包括{CI,CQI}中的至少一个。
具体的,根据本发明的一个方面,所述步骤B还包括如下步骤:
-步骤B2.接收第三CI
其中,所述上报CI集合包括第三CI,第三CI是在所述UE假定第一CI和第二CI所对应的PMI值都被所述基站采纳的条件下被确定的。
作为一个实施例,所述N1和所述N2均为8,第一CI的码本空间是LTE中8Tx时第一PMI对应的码本空间,第二CI的码本空间是LTE中8Tx时第二PMI对应的码本空间。
具体的,根据本发明的一个方面,第一CI和第二CI的传输资源在时域上是正交的。第一CI和第二CI在子帧内占用相同的PUCCH资源。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
具体的,根据本发明的一个方面,第一索引是1个比特,第一索引 标识所述目标RS资源是第一RS资源还是第二RS资源。
具体的,根据本发明的一个方面,所述RS端口在PRBP内的图案是CSI-RS端口在PRBP内的图案。
本发明公开了一种用户设备,该用户设备包括:
第一模块:用于在第一RS资源和第二RS资源接收下行参考信号
第二模块:用于确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
第三模块:用于反馈第一CI和第一索引
其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,第一CI的参考RS是所述目标RS资源,第一索引指示所述目标RS资源,所述N1是大于1的正整数,所述N2是大于1的正整数。第一CI和第二CI的传输资源在时域上是正交的。第一CI和第二CI在子帧内占用相同的PUCCH资源。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为一个实施例:
-.第一模块还用于接收上行调度DCI,所述上行调度DCI中包括CSI调度比特
-.第三模块还用于在PUSCH上发送A-CSI。
其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源。所述A-CSI包括{CI,CQI}中的至少一个。
作为一个实施例:
第三模块还用于反馈第一CQI和第三CI。其中,第一CQI是在所述UE假定上报CI集合中的CI所对应的PMI值被基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报CI集合包括第一CI,第二CI和第三CI。第三CI是在所述UE假定第一CI和第二CI所对应的PMI值都被基站采纳的条件下被确定的。
本发明公开了一种基站设备,该基站设备包括:
第一模块:用于在第一RS资源和第二RS资源发送下行参考信号
第二模块:用于接收第一CI和第一索引
第三模块:用于确定下行信道参数
其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1是大于1的正整数,所述N2是大于1的正整数。第一CI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源,第一索引指示所述目标RS资源。第一CI和第二CI的传输资源在时域上是正交的。第一CI和第二CI在子帧内占用相同的PUCCH资源。第二CI是第一CI和第一索引的发送UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为一个实施例:
-.第一模块还用于发送上行调度DCI,所述上行调度DCI中包括CSI调度比特。
-.第二模块还用于在PUSCH上接收A-CSI
其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源。所述A-CSI包括{CI,CQI}中的至少一个。
作为一个实施例,第二模块还用于接收第一CQI和第三CI。其中,第一CQI是在发送UE假定上报CI集合中的CI所对应的PMI值被所述基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报CI集合包括第一CI,第二CI和第三CI。第三CI是在所述UE假定第一CI和第二CI所对应的PMI值都被基站采纳的条件下被确定的。
针对FD MIMO系统中UE所反馈的CSI占用过多的空口开销这一问题,本发明公开了一种CSI反馈的方法和装置。根据本发明的方法,UE自主从两组RS资源中选择一组RS资源作为参考RS,UE根据所述参考RS获得并反馈CI。本发明的方法使得UE利用有限的空口资源反馈最有效的CI信息,节省了空口资源的开销或者提高了CI的反馈效率。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了现有LTE系统的下行RS图案的一个示例;
图2示出了根据本发明的一个实施例的CSI反馈的流程图;
图3示出了根据本发明的一个实施例的第一RS资源和第二RS资源在PRBP内的图案;
图4示出了根据本发明的一个实施例的基站侧的4X4交叉极化天线阵到RS端口的映射图;
图5示出了根据本发明的一个实施例的基站侧的4X8垂直极化天线阵到RS端口的映射图;
图6示出了根据本发明的一个实施例的用于UE中的处理装置的结构框图;
图7示出了根据本发明的一个实施例的用于基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1是CSI反馈的流程图,如附图2所示。附图2中,基站N1维持的一个小区是UE U2的服务小区。附图2中,F1标识的方框内的步骤是可选步骤。
对于基站N1,在步骤S11中,在第一RS资源和第二RS资源发送下行参考信号;在步骤S12中接收第一CI和第一索引;在步骤S13中确定下行信道参数。
对于UE U2,在步骤S21中,在第一RS资源和第二RS资源接收下行参考信号;在步骤S22中,确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;在步骤S23中,反馈第一CI和第一索引。
实施例1中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1是大于1的正整数,所述N2是大于1的正整数。第一CI的参考RS是所述目标RS资源,所述目标RS资源是第一RS资 源或者是第二RS资源,第一索引指示所述目标RS资源。
作为实施例1的子实施例1,基站N1在步骤S110中发送上行调度DCI;在步骤S120中在PUSCH上接收A-CSI。UE U2在步骤S210中接收上行调度DCI;在步骤S230中在PUSCH上发送A-CSI。其中,所述上行调度DCI中包括CSI调度比特,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源。所述A-CSI包括{CI,CQI}中的至少一个。
作为实施例1的子实施例2,第一CI和第二CI的传输资源在时域上是正交的。第一CI和第二CI在子帧内占用相同的PUCCH资源。第二CI是UE U2最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为实施例1的子实施例3,第一索引是1个比特,第一索引标识所述目标RS资源是第一RS资源还是第二RS资源。
作为实施例1的子实施例4,所述RS端口在PRBP内的图案是CSI-RS端口在PRBP内的图案。
作为实施例1的子实施例5,UE U2在步骤S23中反馈第一CQI,基站N1在步骤S23中接收第一CQI。其中,第一CQI是UEU2假定上报CI集合中的CI所对应的PMI值被基站N1采纳的条件下被计算出来的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报CI集合包括第一CI和第二CI。第二CI是UE U2最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
实施例2
实施例2是第一RS资源和第二RS资源在PRBP内的图案,如附图3所示,其中数字x标识的RE对应RS端口x-时域相邻的相同子载波上的两个RE采用OCC(Orthogonal Covering Code,正交覆盖码)。附图3中,第一RS资源和第二RS资源占用LTE中的CSI-RS资源,如附图3中斜线标识的方格所示。
实施例2中,第一RS资源包括RS端口{1,2,3,4},第二RS资源包括RS端口{5,6,7,8}。第一RS资源和第二RS资源分别占用了LTE中的一组4个CSI-RS端口的时、频、码域资源。
实施例3
实施例3是基站侧配置的4X4交叉极化天线阵到RS端口的映射图,如附图4所示。附图4中,一个小方格表示一个物理天线,其中的数字表示该物理天线对应的RS端口索引。
如附图4所示,同一行的第一极化方向的4根发送天线采用预编码的方式映射到同一个RS端口(即4根发送天线分别发送同一个RS端口的RS序列经过相位旋转以后的信号,UE侧形成一根虚拟天线)。类似的,同一列的第二极化方向的4根发送天线采用预编码的方式映射到同一个RS端口。
实施例3中,基站首先在第一RS资源和第二RS资源发送下行参考信号给UE;UE然后确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;UE然后反馈第一CI,第三CI,第一索引和第一CQI到基站;基站最后确定下行信道参数。
实施例3中,第一RS资源包括RS端口{1,2,3,4},第二RS资源包括RS端口{5,6,7,8}。第一CI的参考RS是所述目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源,第一索引指示所述目标RS资源。第一CQI是UE U2假定上报CI集合中的CI所对应的PMI值被基站N1采纳的条件下被计算出来的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报CI集合包括{第一CI,第二CI,第三CI}。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为实施例3的子实施例1,第一CI的码本空间是LTE中8Tx时第一PMI对应的码本空间,第一CI对应的PMI值是
Figure PCTCN2015089686-appb-000001
第二CI的码本空间是LTE中8Tx时第一PMI对应的码本空间,第二CI对应的PMI值是
Figure PCTCN2015089686-appb-000002
第三CI的码本空间是LTE中2Tx的码本空间,第三CI对应的PMI值是
Figure PCTCN2015089686-appb-000003
基站首先利用克罗内克积(Kronecker Product)运算得到2维阵列天线的预编码矩阵
Figure PCTCN2015089686-appb-000004
Figure PCTCN2015089686-appb-000005
反映了32根天线到UE的下行信道的相位信息,基站然后利用第一CQI查表确定所述下行信道的幅度a,基站最后确定所述下行信道为
Figure PCTCN2015089686-appb-000006
实施例4
实施例4是基站侧配置的4X8垂直极化天线阵到RS端口的映射图,如 附图5所示。附图5中,一个小方格表示一个物理天线,其中的数字表示该物理天线对应的RS端口索引(一根物理天线发送两个RS端口的RS序列)。
如附图5所示,同一列的4根发送天线采用预编码的方式映射到同一个RS端口-RS端口{1-4}。类似的,同一行的4根发送天线采用预编码的方式映射到同一个RS端口-RS端口{5-8}。
基站首先在第一RS资源和第二RS资源发送下行参考信号给UE;UE然后确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;UE然后反馈第一CI,第一索引和第一CQI到基站;基站最后确定下行信道参数。
实施例4中,第一RS资源包括RS端口{1,2,3,4},第二RS资源包括RS端口{5,6,7,8}。第一CI的参考RS是所述目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源,第一索引指示所述目标RS资源。第一CQI是UE U2假定上报CI集合中的CI所对应的PMI值被基站N1采纳的条件下被计算出来的,第一CQI的参考RS是第一RS资源和第二RS资源。所述上报CI集合包括{第一CI,第二CI}。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为实施例4的子实施例1,第一CI的码本空间是LTE中8Tx时第一PMI对应的码本空间;第二CI的码本空间是LTE中4Tx的码本空间。
实施例5
实施例5是用于UE中的处理装置的结构框图,如附图6所示。附图6中,UE中的处理装置300主要由第一接收模块301,第一确定模块302和第一发送模块303构成。
第一接收模块301用于在第一RS资源和第二RS资源接收下行参考信号;第一确定模块302用于确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源;第一发送模块303用于反馈第一CI和第一索引。
实施例5中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,第一CI的参考RS是所述目标RS资源,第一索引指示所述目标RS资源,所述N1是大于1的正整数,所述N2是大于1的正整数。 第一CI和第二CI的传输资源在时域上是正交的。第一CI和第二CI在子帧内占用相同的PUCCH资源。第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为实施例5的子实施例1,所述N1加上所述N2的和不超过8。
作为实施例5的子实施例2,第一CI的码本空间是LTE中8Tx时第一PMI对应的码本空间或者是LTE中4Tx的码本空间,第二CI的码本空间是LTE中8Tx时第一PMI对应的码本空间或者是LTE中4Tx的码本空间。
作为实施例5的子实施例3,接收模块301还用于接收上行调度DCI,所述上行调度DCI中包括CSI调度比特;发送模块303还用于在PUSCH上发送A-CSI。其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源。所述A-CSI包括{CI,CQI}。
实施例6
实施例6是用于基站(eNB)中的处理装置的结构框图,如附图7所示。附图7中,eNB中的处理装置400主要由第二发送模块401,第二接收模块402和第二确定模块403构成。
第二发送模块401用于在第一RS资源和第二RS资源发送下行参考信号;第二接收模块402用于接收第一CI和第一索引;第二确定模块403用于确定下行信道参数。
实施例6中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1是大于1的正整数,所述N2是大于1的正整数。第一CI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源,第一索引指示所述目标RS资源。第一CI和第二CI的传输资源在时域上是正交的。第一CI和第二CI在子帧内占用相同的PUCCH资源。第二CI是第一CI和第一索引的发送UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
作为实施例6的子实施例1,所述N1是{1,2,4,8}中的一个,所述N2是{1,2,4,8}中的一个。第一RS资源占用一组所述N1个CSI-RS 端口的时、频、码域资源,第二RS资源占用一组所述N2个CSI-RS端口的时、频、码域资源。
作为实施例6的子实施例2,第一CI的码本空间是LTE中8Tx时第一PMI对应的码本空间或者是LTE中4Tx的码本空间,第二CI的码本空间是LTE中8Tx时第一PMI对应的码本空间或者是LTE中4Tx的码本空间。
作为实施例6的子实施例3,第二发送模块401还用于发送上行调度DCI,所述上行调度DCI中包括CSI调度比特;第二接收模块402还用于在PUSCH上接收A-CSI。其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源。所述A-CSI包括{CI,CQI}。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种UE中的3D MIMO通信方法,其中,包括如下步骤:
    -步骤A.在第一RS资源和第二RS资源接收下行参考信号
    -步骤B.确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
    -步骤C.反馈第一CI和第一索引;
    其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,第一CI的参考RS是所述目标RS资源,第一索引指示所述目标RS资源,所述N1是大于1的正整数,所述N2是大于1的正整数。
  2. 根据权利要求1所述的UE中的3D MIMO通信方法,其特征在于,所述步骤C包括如下步骤:
    -步骤C0.反馈第一CQI;
    其中,第一CQI是在UE假定上报CI集合中的CI所对应的PMI值被基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源;所述上报CI集合包括第一CI和第二CI;第二CI是UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
  3. 根据权利要求1所述的UE中的3D MIMO通信方法,其特征在于,所述步骤A包括如下步骤:
    -步骤A1.接收上行调度DCI,所述上行调度DCI中包括CSI调度比特;
    所述步骤C还包括如下步骤:
    -步骤C1.在PUSCH上发送A-CSI;
    其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源;所述A-CSI包括{CI,CQI}中的至少一个。
  4. 根据权利要求2所述的UE中的3D MIMO通信方法,其特征在于,所述步骤C还包括如下步骤:
    -步骤C2.反馈第三CI;
    其中,所述上报CI集合包括第三CI,第三CI是在UE假定第一CI和第二CI所对应的PMI值都被基站采纳的条件下被确定的。
  5. 根据权利要求1-4中任一项所述的UE中的3D MIMO通信方法,其特征在于,第一CI和第二CI的传输资源在时域上是正交的;第一CI和第二CI在子帧内占用相同的PUCCH资源;第二CI是所述UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
  6. 根据权利要求1-4中任一项所述的UE中的3D MIMO通信方法,其特征在于,第一索引是1个比特,第一索引标识所述目标RS资源是第一RS资源还是第二RS资源。
  7. 根据权利要求1-4中任一项所述的UE中的3D MIMO通信方法,其特征在于,所述RS端口在PRBP内的图案是CSI-RS端口在PRBP内的图案。
  8. 一种基站中的3D MIMO通信方法,其中,包括如下步骤:
    -步骤A.在第一RS资源和第二RS资源发送下行参考信号
    -步骤B.接收第一CI和第一索引
    -步骤C.确定下行信道参数;
    其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1是大于1的正整数,所述N2是大于1的正整数;第一CI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源,第一索引指示所述目标RS资源。
  9. 根据权利要求8所述的基站中的3D MIMO通信方法,其特征在于,所述步骤B包括如下步骤:
    -步骤B0.接收第一CQI;
    其中,第一CQI是在发送UE假定上报CI集合中的CI所对应的PMI值被所述基站采纳的条件下被确定的,第一CQI的参考RS是第一RS资源和第二RS资源;所述上报CI集合包括第一CI和第二CI;第二CI是发送UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
  10. 根据权利要求8所述的基站中的3D MIMO通信方法,其特征在于,所述步骤A包括如下步骤:
    -步骤A1.发送上行调度DCI,所述上行调度DCI中包括CSI调度比特;
    所述步骤B还包括如下步骤:
    -步骤B1.在PUSCH上接收A-CSI;
    其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源;所述A-CSI包括{CI,CQI}中的至少一个。
  11. 根据权利要求9所述的基站中的3D MIMO通信方法,其特征在于,所述步骤B还包括如下步骤:
    -步骤B2.接收第三CI;
    其中,所述上报CI集合包括第三CI,第三CI是在UE假定第一CI和第二CI所对应的PMI值都被所述基站采纳的条件下被确定的。
  12. 根据权利要求8-11中任一项所述的基站中的3D MIMO通信方法,其特征在于,第一CI和第二CI的传输资源在时域上是正交的;第一CI和第二CI在子帧内占用相同的PUCCH资源;第二CI是发送UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
  13. 根据权利要求8-11中任一项所述的基站中的3D MIMO通信方法,其特征在于,第一索引是1个比特,第一索引标识所述目标RS资源是第一RS资源还是第二RS资源。
  14. 根据权利要求8-11中任一项所述的基站中的3D MIMO通信方法,其特征在于,所述RS端口在PRBP内的图案是CSI-RS端口在PRBP内的图案。
  15. 一种用户设备,其特征在于,该用户设备包括:
    第一模块:用于在第一RS资源和第二RS资源接收下行参考信号
    第二模块:用于确定目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源
    第三模块:用于反馈第一CI和第一索引;
    其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,第一CI的参考RS是所述目标RS资源,第一索引指示所述目标RS资源,所述N1是大于1的正整数,所述N2是大于1的正整数;第一CI和第二CI的传输资源在时域上是正交的;第一CI和第二CI在子帧内占用相同的PUCCH资源;第二CI是UE最近一次反馈的且参考RS是{第 一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
  16. 根据权利要求15所述的用户设备,其特征在于:
    -.第一模块还用于接收上行调度DCI,所述上行调度DCI中包括CSI调度比特
    -.第三模块还用于在PUSCH上发送A-CSI;
    其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源;所述A-CSI包括{CI,CQI}中的至少一个。
  17. 一种基站设备,其特征在于,该基站设备包括:
    第一模块:用于在第一RS资源和第二RS资源发送下行参考信号
    第二模块:用于接收第一CI和第一索引
    第三模块:用于确定下行信道参数;
    其中,第一RS资源包括N1个RS端口,第二RS资源包括N2个RS端口,所述N1是大于1的正整数,所述N2是大于1的正整数;第一CI的参考RS是目标RS资源,所述目标RS资源是第一RS资源或者是第二RS资源,第一索引指示所述目标RS资源;第一CI和第二CI的传输资源在时域上是正交的;第一CI和第二CI在子帧内占用相同的PUCCH资源;第二CI是第一CI和第一索引的发送UE最近一次反馈的且参考RS是{第一RS资源,第二RS资源}中除了所述目标RS资源之外的RS资源的CI。
  18. 根据权利要求17所述的基站设备,其特征在于:
    -.第一模块还用于发送上行调度DCI,所述上行调度DCI中包括CSI调度比特;
    -.第二模块还用于在PUSCH上接收A-CSI;
    其中,所述CSI调度比特指示第一RS资源和第二RS资源中的一个,所述A-CSI的参考RS是所述CSI调度比特指示的RS资源;所述A-CSI包括{CI,CQI}中的至少一个。
PCT/CN2015/089686 2014-09-24 2015-09-16 一种ue、基站中的3d mimo通信方法和设备 WO2016045527A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/513,408 US20170310371A1 (en) 2014-09-24 2015-09-16 Method and device for 3d mimo communication in ue and base station
CA2970957A CA2970957A1 (en) 2014-09-24 2015-09-16 Method and device for 3d mimo communication in ue and base station
EP15845300.1A EP3200377A4 (en) 2014-09-24 2015-09-16 Method and device for 3d mimo communication in ue and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410491281.5A CN105515732B (zh) 2014-09-24 2014-09-24 一种ue、基站中的用于多天线通信的方法和设备
CN201410491281.5 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016045527A1 true WO2016045527A1 (zh) 2016-03-31

Family

ID=55580291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089686 WO2016045527A1 (zh) 2014-09-24 2015-09-16 一种ue、基站中的3d mimo通信方法和设备

Country Status (5)

Country Link
US (1) US20170310371A1 (zh)
EP (1) EP3200377A4 (zh)
CN (1) CN105515732B (zh)
CA (1) CA2970957A1 (zh)
WO (1) WO2016045527A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781378B (zh) * 2016-03-11 2021-06-22 华为技术有限公司 一种测量信道质量索引的方法及装置
CN110635835B (zh) * 2016-11-01 2022-11-25 极光技术咨询有限责任公司 一种用于多天线系统的ue、基站中的方法和装置
CN108282298B (zh) * 2017-01-06 2023-04-11 中兴通讯股份有限公司 一种参考信号传输方法及装置
CN106982088B (zh) * 2017-04-13 2021-01-01 南京邮电大学 3d mimo系统中一种基于csi-rs端口的多流传输方法
CN111446995B (zh) * 2017-04-18 2024-08-16 Oppo广东移动通信有限公司 一种用于多天线传输的用户设备、基站中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444099A (zh) * 2011-03-29 2013-12-11 Lg电子株式会社 在无线通信系统中决定资源特定传输模式的方法及其设备
CN103477579A (zh) * 2011-04-13 2013-12-25 Lg电子株式会社 在无线通信系统中发送控制信息的方法和设备
WO2014010994A1 (ko) * 2012-07-12 2014-01-16 엘지전자 주식회사 무선 접속 시스템에서 안테나 포트향 참조 신호 전송 방법
US20140079146A1 (en) * 2012-09-18 2014-03-20 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving channel state information in wireless communication system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345130B2 (ja) * 2007-04-20 2013-11-20 マーベル ワールド トレード リミテッド 無線mimo通信システムで利用される空間拡散マトリックスを利用するアンテナ選択およびトレーニング
KR101388794B1 (ko) * 2008-03-03 2014-04-23 삼성전자주식회사 무선 방송 시스템에서 인-밴드 시그널링 정보 송수신 방법 및 장치
US8325661B2 (en) * 2008-08-28 2012-12-04 Qualcomm Incorporated Supporting multiple access technologies in a wireless environment
KR102257623B1 (ko) * 2012-07-02 2021-05-28 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
US9214996B2 (en) * 2012-07-06 2015-12-15 Lg Electronics Inc. Method of receiving or transmitting downlink signal in wireless communication system and device for performing the method
US9438321B2 (en) * 2012-07-12 2016-09-06 Samsung Electronics Co., Ltd. Methods and apparatus for codebook subset restriction for two-dimensional advanced antenna systems
CN103580820A (zh) * 2012-08-03 2014-02-12 上海贝尔股份有限公司 控制ri报告的方法及装置
CN107135058B (zh) * 2012-09-06 2021-01-29 华为技术有限公司 设备间d2d通信中传输参考信号的方法和装置
KR101971079B1 (ko) * 2012-09-20 2019-08-13 삼성전자 주식회사 이동통신 시스템에서 피드백 송수신 방법 및 장치
US9918240B2 (en) * 2012-09-28 2018-03-13 Interdigital Patent Holdings, Inc. Wireless communication using multi-dimensional antenna configuration
CN104038319B (zh) * 2013-03-04 2018-12-21 夏普株式会社 多发射点合作系统的信道状态信息反馈与用户设备
US10149193B2 (en) * 2016-06-15 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for dynamically managing network resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444099A (zh) * 2011-03-29 2013-12-11 Lg电子株式会社 在无线通信系统中决定资源特定传输模式的方法及其设备
CN103477579A (zh) * 2011-04-13 2013-12-25 Lg电子株式会社 在无线通信系统中发送控制信息的方法和设备
WO2014010994A1 (ko) * 2012-07-12 2014-01-16 엘지전자 주식회사 무선 접속 시스템에서 안테나 포트향 참조 신호 전송 방법
US20140079146A1 (en) * 2012-09-18 2014-03-20 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving channel state information in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200377A4 *

Also Published As

Publication number Publication date
CA2970957A1 (en) 2016-03-31
EP3200377A1 (en) 2017-08-02
US20170310371A1 (en) 2017-10-26
EP3200377A4 (en) 2018-06-27
CN105515732B (zh) 2018-01-09
CN105515732A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
US10827375B2 (en) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
US12034508B2 (en) Smaller sub-band size for PMI than for CQI
US12068816B2 (en) Hybrid common/independent FD-basis for Type II CSI enhancement
WO2016050197A1 (zh) 一种fd-mimo通信中的csi反馈的ue、基站中的方法和设备
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
EP2842361B1 (en) Coordinated multipoint (comp) communication between base-stations and mobile communication terminals
WO2017167238A1 (zh) 一种信道状态测量方法及装置
JP2015514351A5 (zh)
KR20150067155A (ko) 무선 통신 시스템에서 안테나 가상화 방법 및 장치
WO2016045527A1 (zh) 一种ue、基站中的3d mimo通信方法和设备
WO2017167156A1 (zh) Dmrs的发送方法及装置
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
KR20220153663A (ko) Mimo를 위한 cdm8 기반 csi-rs 설계들
WO2016004884A1 (zh) 一种基站、ue中的大尺度mimo通信方法和设备
WO2013038609A1 (en) Channel state information feedback method and user equipment
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
CN115843425A (zh) 部分重叠的csi-rs移位
CN110493881B (zh) 一种ue、基站中的用于多天线传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513408

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015845300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845300

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2970957

Country of ref document: CA