WO2016161963A1 - 一种csi反馈方法、装置和相关设备 - Google Patents

一种csi反馈方法、装置和相关设备 Download PDF

Info

Publication number
WO2016161963A1
WO2016161963A1 PCT/CN2016/078800 CN2016078800W WO2016161963A1 WO 2016161963 A1 WO2016161963 A1 WO 2016161963A1 CN 2016078800 W CN2016078800 W CN 2016078800W WO 2016161963 A1 WO2016161963 A1 WO 2016161963A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
port
vertical dimension
vertical
dimension
Prior art date
Application number
PCT/CN2016/078800
Other languages
English (en)
French (fr)
Inventor
王飞
童辉
侯雪颖
王启星
金婧
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Publication of WO2016161963A1 publication Critical patent/WO2016161963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a CSI feedback method, apparatus, and related apparatus.
  • a CSI-RS Channel State Information-Reference Signal
  • the CSI-RS is a downlink pilot signal, which is a known signal that is provided by the transmitting end to the receiving end for useful signal channel measurement.
  • the channel state information (CSI) feedback can be divided into a periodic feedback mode and an aperiodic feedback mode, wherein the CSI is determined by a Rank Indicator (RI), a Precoding Matrix Indicator (PMI), and a channel quality.
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI channel quality indicator
  • acyclic CSI feedback the system workflow is as follows:
  • the base station triggers the user to perform CSI-RS measurement in a certain downlink subframe, and sends a CSI-RS;
  • the terminal obtains a trigger message and measures the CSI-RS signal in the corresponding subframe to estimate the useful signal quality
  • the terminal determines channel state information according to the quality of the useful signal
  • the terminal delays at least K subframes, and feeds back channel state information on the available uplink subframes (where K refers to the processing time for the terminal to calculate CSI);
  • the base station receives the CSI fed back by the terminal in the corresponding uplink subframe.
  • 3D-MIMO (3Dimensions Multiple-Input Multiple-Out-put) technology is an issue being discussed by 3GPP RAN1.
  • Solution 1 Based on the CSI feedback of the Full port CSI-RS (all CSI-RS ports), the number of CSI-RS ports in the solution is equal to the number of TXRUs, and is a one-to-one mapping relationship, as shown in FIG. 2 .
  • the UE can estimate the most comprehensive channel information, that is, the UE can obtain channel information between the UE and all transmit antenna ports.
  • the CSI-RS has a large overhead.
  • the overhead of the 8-port CSI-RS port in LTE is about 1.5%
  • the target of 3D-MIMO is to support a maximum of 64 TXRUs, and the corresponding 64 port CSI-RS.
  • the overhead is about 12%.
  • the more the number of TXRUs the smaller the transmission power of a single CSI-RS, and the coverage of the CSI-RS is limited.
  • Solution 2 Based on the CSI feedback of the Partial port CSI-RS (partial CSI-RS port), the solution uses two independent CSI-RSs, one of which has a port number of 2N, which is mapped to the TXRU array.
  • the number of ports of the other CSI-RS is M TXRU , which is mapped to the M TXRU TXRUs of a certain column of the TXRU array, as shown in FIG. 3 .
  • M TXRU 8, 4, 2, 8
  • the CSI-RS overhead of the scheme is about 3%, but one On the other hand, the UE can only estimate part of the channel information.
  • the UE can only obtain the channel between the UE and a certain row/station of the transmit antenna port.
  • the channels of other antenna ports need to be estimated according to the information such as the antenna oscillator spacing;
  • the more the number of TXRUs the smaller the transmission power of a single CSI-RS, resulting in limited coverage of the CSI-RS.
  • Scheme 3 CSI feedback based on Beamformed CSI-RS (CSI-RS), in which the CSI-RS undergoes beamforming in the vertical dimension, and the same column is obtained by different vertical dimension shaping weights of the B group.
  • the M TXRU TXRUs are mapped to B vertical dimension beams, and each vertical dimension beam corresponds to a set of CSI-RSs (the number of ports per set is 2N), so there are a total of B sets of CSI-RSs, as shown in FIG. 4 .
  • each CSI-RS port undergoes vertical dimension beamforming, and the CSI-RS has better coverage performance.
  • the base station needs to perform appropriate beam selection, if the selected beam is not suitable, The quality of the CSI-RS signal received by the user is deteriorated, which affects channel estimation.
  • the choice of Beam can be completely realized by the base station, and the feedback of the UE can also be utilized. If it is completely based on base station implementation, it is typically based on long-term uplink and downlink channel reciprocity, Beam selection accuracy may be poor, and it is difficult to support frequency domain selective scheduling; if feedback is based on UE, based on existing standards, To configure multiple CSI-process for the user, corresponding to multiple vertical dimension beams, the user needs to complete CSI feedback of multiple CSI-process in one time period to help the base station to perform beam selection.
  • the overhead of the CSI-RS is about 6%.
  • the CSI-RS overhead is large, or the CSI-RS coverage performance is poor.
  • How to reduce the CSI-RS overhead while ensuring the CSI-RS Coverage has become one of the technical problems to be solved in the related art.
  • Some embodiments of the present disclosure provide a CSI feedback method, apparatus, and related apparatus for ensuring coverage of a CSI-RS while reducing CSI-RS overhead.
  • Some embodiments of the present disclosure provide a CSI feedback method implemented by a network side, including:
  • the CSI-RS configuration information including a vertical channel state information reference signal CSI-RS of the B port configured for the UE and a horizontal dimension CSI-RS of the 2N port
  • B is a preset value and N is the number of columns of the dual-polarized antenna array
  • the CSI feedback information includes a vertical dimension CSI-RS port identifier determined by the UE according to a measurement result of measuring a vertical dimension CSI-RS of the B port, and a level of the 2N port.
  • the dimension CSI-RS measures the measured result and determines the rank indication RI and the horizontal dimension precoding matrix PMI.
  • the vertical dimension CSI-RS of the B port is sent to the UE according to the following method:
  • U-shaped vertical beamforming weights are used to form B vertical beams corresponding to B vertical-dimensional CSI-RS ports;
  • Each vertical dimension CSI-RS port is mapped to at least one resource element RE of the time-frequency resource for transmission.
  • the method Before mapping each vertical dimension CSI-RS port to at least one RE of the time-frequency resource, the method further includes:
  • Each row of antennas in the antenna array is shaped in a horizontal dimension using a predetermined set of broadcast shaped weights.
  • the horizontal dimension CSI-RS of the 2N port is sent to the UE according to the following method:
  • the horizontal dimension CSI-RSs of the configured 2N ports are respectively mapped to at least one RE for transmission.
  • the method Before mapping the horizontal dimension CSI-RS of the configured 2N port to the at least one RE, the method further includes:
  • Each column antenna in the antenna array is shaped in a vertical dimension using a predetermined set of vertical broadcast shaping weights.
  • the CSI feedback method implemented by the network side further includes:
  • Some embodiments of the present disclosure provide a CSI feedback apparatus, including:
  • a sending unit configured to send channel state information reference signal CSI-RS configuration information to the user equipment UE, where the CSI-RS configuration information includes a vertical dimension CSI-RS of the B port configured for the UE and a horizontal dimension CSI of the 2N port -RS, where B is a preset value and N is the number of columns of the dual-polarized antenna array;
  • a receiving unit configured to receive channel state information CSI feedback information sent by the UE, where the CSI feedback information includes a vertical dimension CSI-RS determined by the UE according to a measurement result of measuring a vertical dimension CSI-RS of the B port.
  • the port identifier and the measurement result of the measurement of the horizontal dimension CSI-RS of the 2N port determine the rank indication RI and the horizontal dimension precoding matrix PMI.
  • the sending unit is specifically configured to form B vertical beams that are in one-to-one correspondence with B vertical-dimensional CSI-RS ports by using B-group vertical beam shaping weights; and mapping each vertical-dimensional CSI-RS port to each time The at least one resource element RE of the frequency resource is sent.
  • the sending unit is further configured to: before each vertical dimension CSI-RS port is mapped to the at least one RE of the time-frequency resource, use a preset set of broadcast shaping weights in the horizontal dimension to each of the antenna arrays.
  • the line antenna is shaped.
  • the sending unit is specifically configured to map the horizontal dimension CSI-RSs of the configured 2N ports to at least one RE for transmission.
  • the sending unit is specifically configured to map the horizontal dimension CSI-RSs of the configured 2N ports to at least one RE before transmitting, and use a preset set of vertical broadcast shaping weights in the vertical dimension to each of the antenna arrays.
  • a column of antennas is shaped.
  • the CSI feedback device further includes:
  • a determining unit configured to determine a vertical dimension precoding matrix according to the port identifier of the vertical dimension CSI-RS; determine a horizontal dimension precoding matrix according to the RI and the horizontal dimension PMI; and according to the vertical dimension precoding matrix and the horizontal dimension
  • the precoding matrix generates a precoding matrix for transmitting the physical downlink shared channel PDSCH.
  • Some embodiments of the present disclosure provide a base station including the CSI feedback device described above.
  • Some embodiments of the present disclosure provide a CSI feedback method implemented by a user equipment side, including:
  • CSI-RS configuration information includes a vertical dimension CSI-RS of the B port and a horizontal dimension CSI-RS of the 2N port, where B is a preset value, and N is a bipolar The number of columns of the antenna array;
  • the rank indication RI and the horizontal dimension precoding matrix PMI are fed back according to the measurement result measured on the horizontal dimension CSI-RS of the 2N port.
  • the vertical dimension CSI-RS port identifier is fed back according to the measurement result of measuring the vertical dimension CSI-RS of the B port according to the following method:
  • each vertical dimension CSI-RS port is measured, and the vertical dimension CSI-RS port identifier with the highest received signal strength is fed back.
  • Some embodiments of the present disclosure provide a user equipment, including:
  • a receiving unit configured to receive channel state information reference signal CSI-RS configuration information, where the CSI-RS configuration information includes a vertical dimension CSI-RS of the B port and a horizontal dimension CSI-RS of the 2N port;
  • a measuring unit configured to separately measure a vertical dimension CSI-RS of the B port and a horizontal dimension CSI-RS of the 2N port;
  • a feedback unit configured to feed back a vertical dimension CSI-RS port identifier according to a measurement result of measuring the vertical dimension CSI-RS of the B port; and feedback result measurement according to the horizontal dimension CSI-RS of the 2N port
  • the rank indicates the RI and the horizontal dimension precoding matrix PMI.
  • the measuring unit is specifically configured to measure a received signal strength of each vertical dimension CSI-RS port
  • the feedback unit is specifically configured to feed back a vertical dimension CSI-RS port identifier with the highest received signal strength.
  • Some embodiments of the present disclosure provide a CSI feedback system including the base station and user equipment described above.
  • the CSI feedback method, device, and related device configure two sets of independent CSI-RSs for the user equipment by the network side, and the UE separately measures two sets of CSI-RSs configured on the network side, according to the pair.
  • the measurement result of the measurement by the vertical dimension CSI-RS feeds back the vertical dimension port identifier to the network side, and feeds back the RI and the horizontal PMI to the network side according to the measurement result of measuring the horizontal dimension CSI-RS, and can reduce the CSI-RS overhead while reducing the CSI-RS overhead. Guarantee the coverage of CSI-RS.
  • 1 is a schematic diagram of an antenna array and a TXRU array in the related art
  • FIG. 2 is a schematic diagram of mapping between a number of CSI-RS ports and a TXRU in the first scheme in the related art
  • 3 is a schematic diagram of mapping between the number of CSI-RS ports and the TXRU in the second scheme in the related art
  • FIG. 5 is a schematic flowchart of an implementation process of a CSI feedback method implemented by a network side according to some embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of vertical dimension CSI-RS transmission in some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a CSI feedback apparatus according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic flowchart of an implementation process of a user equipment implementing a CSI feedback method according to some embodiments of the present disclosure
  • FIG. 9 is a schematic structural diagram of a user equipment in some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a CSI feedback system in some embodiments of the present disclosure.
  • some embodiments of the present disclosure provide a CSI feedback method, apparatus, and related apparatus.
  • a schematic flowchart of an implementation process of implementing a CSI feedback method on a network side includes the following steps:
  • the CSI-RS configuration information includes a vertical port CSI-RS (Channel State Information Reference Signal) (V-CSI-RS) of the B port configured for the UE (User Equipment) and a horizontal dimension CSI-RS of the 2N port. (H-CSI-RS).
  • V-CSI-RS Channel State Information Reference Signal
  • H-CSI-RS horizontal dimension CSI-RS of the 2N port.
  • the port identifiers of the V-CSI-RS are respectively ⁇ 1, 2, 3, ..., B ⁇ , and B is a preset value, and the value may be determined according to actual needs, where N is the number of columns of the dual-polarized antenna array.
  • the CSI feedback information includes the vertical dimension CSI-RS port identifier determined by the UE according to the measurement result of the measurement of the vertical dimension CSI-RS of the B port, and the measurement result of measuring the horizontal dimension CSI-RS of the 2N port. RI and horizontal PMI.
  • the UE measures the V-CSI-RS configured on the network side, and identifies the port of the V-CSI-RS with the highest signal strength on the network side according to the measurement result. And the UE measures the H-CSI-RS configured on the network side, and feeds back the RI, the horizontal PMI, and the CQI to the network side according to the measurement result.
  • the network side determines the vertical dimension precoding matrix W V according to the V-CSI-RS port identifier fed back by the UE, and determines the horizontal dimension precoding matrix W H according to the RI and the horizontal dimension PMI fed back by the UE, according to the vertical dimension precoding matrix W V and the level.
  • the precoding matrix W H generates a precoding matrix for transmitting a PDSCH (Physical Downlink Shared Channel).
  • the network can generate the final precoding matrix through the Kroneck product.
  • the network side may send the V-CSI-RS of the B port configured for the UE according to the following method: using the preset B group different vertical beam shaping weights Forming B vertical beams corresponding to the B vertical-dimensional CSI-RS ports, and each beam-formed vertical-dimensional CSI-RS port is respectively mapped to at least one RE (resource element) of the time-frequency resource, and B is transmitted.
  • the beam-shaped vertical dimension CSI-RSs together form a set of V-CSI-RSs, wherein the different vertical beamforming weights of group B can be static or semi-static or dynamic to adapt to the cell.
  • the spatial distribution of the internal users enhances the accuracy of beam selection.
  • the shaped CSI-RS corresponds to the vertical beam 1, and R2 represents the vertical dimension.
  • the shaped CSI-RS corresponds to the vertical beam 2, and so on.
  • the weighted weight W H, Broad [w 1 ,w 2 ,...,w 2N ] may be broadcasted in a horizontal dimension through a predetermined set of horizontal broadcasts.
  • the 2N antennas of each row in the two-dimensional antenna array are shaped to enhance the coverage of the CSI-RS.
  • the horizontal broadcast shaping weight may be static or semi-static or dynamic to adapt to the spatial distribution of users in the cell, thereby further enhancing the coverage performance of the CSI-RS.
  • the horizontal dimension CSI-RSs of the configured 2N ports may be mapped to at least one RE for transmission.
  • W V, Broad [w 1 ,w 2 ,...,w MTXRU ]
  • the M TXRU antennas of each column in the array are shaped to enhance CSI-RS coverage.
  • the vertical broadcast shaping weight may be static or semi-static or dynamic, to adapt to the spatial distribution of users in the cell, and further enhance the coverage performance of the CSI-RS.
  • a CSI feedback method provided by some embodiments of the present disclosure is configured by separately configuring two independent CSI-RSs for a UE, including a set of B-port vertical dimension beamformed CSI-RS and a set of 2N port horizontal dimension non- -precoded (pre-coded) CSI-RS, after the UE measures the vertical dimension CSI-RS of the B port, it feeds back the best vertical dimension port identifier to the network side according to the measurement result, and the UE pairs the 2N port level. After the measurement is performed on the dimension CSI-RS, the RI and the horizontal PMI are fed back to the network side according to the measurement result.
  • the CSI-RS overhead can be reduced and the CSI-RS coverage performance can be enhanced, which can enhance the coverage performance of the CSI-RS compared with the second solution in the related art.
  • it can reduce the overhead of the CSI-RS, thereby ensuring the coverage performance of the CSI-RS while reducing the CSI-RS overhead.
  • some embodiments of the present disclosure further provide a CSI feedback apparatus, a base station, and a CSI feedback method implemented by a user equipment, and a user equipment and system, because the foregoing method and apparatus
  • the principle of the device to solve the problem is similar to the implementation of the CSI feedback method on the network side. Therefore, the implementation of the foregoing methods, devices, and devices can be implemented by referring to the CSI feedback method on the network side.
  • FIG. 7 is a schematic structural diagram of a CSI feedback apparatus according to some embodiments of the present disclosure, including:
  • the sending unit 71 is configured to send CSI-RS configuration information to the user equipment UE.
  • the CSI-RS configuration information includes a vertical dimension CSI-RS of the B port configured for the UE and a horizontal dimension CSI-RS of the 2N port, where B is a preset value and N is the number of columns of the dual polarized antenna array.
  • the receiving unit 72 is configured to receive CSI feedback information sent by the UE.
  • the CSI feedback information includes a vertical dimension CSI-RS port identifier determined by the UE according to the measurement result of the measurement of the vertical dimension CSI-RS of the B port, and a rank indication determined by the measurement result of measuring the horizontal dimension CSI-RS of the 2N port.
  • RI and horizontal dimension precoding matrix PMI are examples of the vertical dimension CSI-RS port identifier determined by the UE according to the measurement result of the measurement of the vertical dimension CSI-RS of the B port.
  • PMI horizontal dimension precoding matrix
  • the sending unit 71 may be configured to use the preset B group vertical beam shaping weights to form B vertical beams corresponding to the B vertical dimension CSI-RS ports; each vertical dimension CSI-RS The ports are respectively mapped to at least one resource element RE of the time-frequency resource for transmission.
  • the sending unit 71 is further configured to: before each vertical dimension CSI-RS port is mapped to the at least one RE of the time-frequency resource, use a preset set of broadcast shaping weights to the antenna array in the horizontal dimension. Each row of antennas in the shape is shaped.
  • the sending unit 71 may be configured to map the horizontal dimension CSI-RSs of the configured 2N ports to the at least one RE for transmission.
  • the sending unit 71 is further configured to: before the horizontal dimension CSI-RSs of the configured 2N ports are respectively mapped to the at least one RE, use the preset set of vertical broadcast shaping weights to the antenna array in the vertical dimension.
  • Each column antenna in the shape is shaped.
  • the CSI feedback apparatus may further include: a determining unit, configured to determine a vertical dimension precoding matrix according to a port identifier of the vertical dimension CSI-RS; and determine a horizontal dimension according to the RI and the horizontal dimension PMI a precoding matrix; and generating a precoding matrix for transmitting the PDSCH according to the vertical dimension precoding matrix and the horizontal dimension precoding matrix.
  • modules or units
  • functions of the various modules may be implemented in one or more software or hardware when implementing the present disclosure.
  • the CSI feedback device may be configured in a base station, and the base station implements the CSI feedback method provided above.
  • a schematic flowchart of an implementation process of implementing a CSI feedback method for a user equipment may include the following steps:
  • the CSI-RS configuration information includes a vertical dimension CSI-RS of the B port and a horizontal dimension CSI-RS of the 2N port, where B is a preset value, and N is a number of columns of the dual-polarized antenna array.
  • the user equipment separately measures the received signal strength of each vertical dimension CSI-RS port, and feeds back to the network side the vertical dimension CSI-RS port identifier with the largest received signal strength.
  • steps S82 and S83 have no sequential execution order, and step S83 may also be performed before step S82.
  • a schematic structural diagram of a user equipment provided by some embodiments of the present disclosure includes:
  • the receiving unit 91 is configured to receive CSI-RS configuration information.
  • the CSI-RS configuration information includes a vertical dimension number CSI-RS of the B port and a horizontal dimension CSI-RS of the 2N port, where B is a preset value, and N is a number of columns of the dual-polarized antenna array.
  • the measuring unit 92 is configured to separately measure a vertical dimension CSI-RS of the B port and a horizontal dimension CSI-RS of the 2N port;
  • the feedback unit 93 is configured to feed back a vertical dimension CSI-RS port identifier according to the measurement result of measuring the vertical dimension CSI-RS of the B port; and feed back the RI and the level according to the measurement result measured by the horizontal dimension CSI-RS of the 2N port. Dimension PMI.
  • the measuring unit 92 can be used to measure the received signal strength of each vertical dimension CSI-RS port; the feedback unit 93 can be used to feed back the vertical dimension CSI-RS port identifier with the highest received signal strength.
  • modules or units
  • functions of the various modules may be implemented in one or more software or hardware when implementing the present disclosure.
  • a schematic structural diagram of a CSI feedback system includes a base station 101 and the foregoing user equipment 102, wherein the foregoing CSI feedback apparatus is disposed in a base station.
  • embodiments of the present disclosure may be provided as a method, or a computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种CSI反馈方法、装置和相关设备,用于在降低CSI-RS开销的同时,保证CSI-RS的覆盖性。网络侧实施的CSI反馈方法,包括:向用户设备UE发送信道状态信息参考信号CSI-RS配置信息,所述CSI-RS配置信息包括为所述UE配置的B端口的垂直维CSI-RS和2N端口的水平维CSI-RS;接收所述UE发送的信道状态信息CSI反馈信息,所述CSI反馈信息包括所述UE根据对B端口的垂直维CSI-RS进行测量的测量结果确定出的垂直维CSI-RS端口标识和对2N端口的水平维CSI-RS进行测量的测量结果确定出的秩指示RI和水平维预编码矩阵PMI。

Description

一种CSI反馈方法、装置和相关设备
相关申请的交叉引用
本申请主张在2015年4月10日在中国提交的中国专利申请号No.201510171257.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种CSI反馈方法、装置和相关设备。
背景技术
在LTE-Advanced(Long Term Evolution-Advanced,高级长期演进)系统中,定义了CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。CSI-RS即为下行导频信号,是由发射端提供给接收端用于有用信号信道测量的一种已知信号。信道状态信息(Channel State Information,CSI)反馈可以分为周期反馈模式和非周期反馈模式,其中,CSI由秩指示(Rank Indicator,RI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)和信道质量指示(Channel Quality Indicator,CQI)组成。其中,非周期CSI反馈,系统工作流程如下:
1、基站在某个下行子帧触发用户进行CSI-RS的测量,并发送CSI-RS;
2、终端获得触发消息,并在相应的子帧测量CSI-RS信号,估计有用信号质量;
3、终端根据有用信号质量,确定信道状态信息;
4、终端延迟至少K个子帧,在可用的上行子帧上反馈信道状态信息(其中K指终端计算CSI的处理时间);
5、基站在对应的上行子帧中接收终端反馈的CSI。
3D-MIMO(3Dimensions Multiple-Input Multiple-Out-put,3维多输入多输出)技术是3GPP RAN1正在讨论的一个议题,3D-MIMO主要采用二维阵列天线,可以用如下参数描述(M,N,P,Q),其中M表示同极化的一列天线的振子个数,N表示天线阵列的列数,P=2表示采用双极化天线,MTXRU表示同一列 天线对应的收发通道的个数,一个收发通道可能对应到若干个天线振子,Q=2N*MTXRU表示该天线阵列对应的TXRU阵列中包含的TXRU总个数,例如,(M,N,P,MTXRU)=(8,4,2,4)对应的天线阵列可以用图1(左)表示,对应的Q=32,TXRU阵列可以用图1(右)表示,TXRU#(mTXRU,nTXRU)表示某个TXRU。
CSI反馈增强是3D-MIMO中的一个重要议题,目前主要有三种方案。
方案1:基于Full port CSI-RS(所有CSI-RS端口)的CSI反馈,该方案中CSI-RS端口数与TXRU数相等,且为一一映射的关系,如图2所示。采用该方案,UE可以估计到最全面的信道信息,即UE可以获得UE与所有发送天线端口间的信道信息。但是,采用该方案时,一方面,CSI-RS开销大,目前LTE中8端口CSI-RS端口的开销约为1.5%,3D-MIMO的目标是最大支持64个TXRU,相应的64port CSI-RS的开销约为12%,另一方面,在保证总发送功率一定的情况下,TXRU数目越多,单个CSI-RS的发送功率就越小,导致CSI-RS的覆盖受限。
方案2:基于Partial port CSI-RS(部分CSI-RS端口)的CSI反馈,该方案采用两套独立的CSI-RS,其中一套CSI-RS的端口数为2N,一一映射到TXRU阵列某一行的2N个TXRU,另一套CSI-RS的端口数为MTXRU,一一映射到TXRU阵列某一列的MTXRU个TXRU,如图3所示。采用该方案,虽然CSI-RS开销小,以(M,N,P,MTXRU)=(8,4,2,8)为例,该方案的CSI-RS开销约为3%,但是,一方面UE只能估计到部分信道信息,具体来说UE只能获得UE与某一行/某一列发送天线端口间的信道,其他天线端口的信道需要根据天线振子间距等信息进行估计;另一方面,在保证总发送功率一定的情况下,TXRU数目越多,单个CSI-RS的发送功率就越小,导致CSI-RS的覆盖受限。
方案3:基于Beamformed CSI-RS(波束赋形的CSI-RS)的CSI反馈,该方案中CSI-RS经过了垂直维的波束赋形,通过B组不同的垂直维赋形权值将同一列的MTXRU个TXRU映射到B个垂直维波束上,每一个垂直维波束对应一套CSI-RS(每套的端口数为2N),因此共有B套CSI-RS,如图4所示。采用该方案,每个CSI-RS端口都经过了垂直维波束赋形,CSI-RS的覆盖性能更好;但是,由于基站需要进行适当的beam(波束)选择,如果选择的beam不合适,会导致用户收到的CSI-RS信号质量变差,影响信道估计。其中,Beam的选择可以完全靠基站实现,也可以借助UE的反馈。如果完全基于基站实现,典型 的是基于长时上下行信道互易性,Beam选择准确度可能较差,而且很难支持频域选择性调度;如果借助UE的反馈,基于现有的标准,需要为用户配置多个CSI-process,对应于多个垂直维beam,用户需要在一个时间周期内完成多个CSI-process的CSI反馈,以便帮助基站进行beam选择。配置的CSI-process越多,反馈周期越短,CSI-RS的开销也越大。以垂直维4个beam、(M,N,P,MTXRU)=(8,4,2,8)、反馈周期5ms为例,CSI-RS的开销约为6%。
由此可见,相关技术中的基于CSI-RS的CSI反馈方法中,要么CSI-RS开销较大,要么CSI-RS的覆盖性能较差,如何在降低CSI-RS开销的同时,保证CSI-RS的覆盖性成为相关技术中亟待解决的技术问题之一。
发明内容
本公开的一些实施例提供一种CSI反馈方法、装置和相关设备,用于在降低CSI-RS开销的同时,保证CSI-RS的覆盖性。
本公开的一些实施例提供一种网络侧实施的CSI反馈方法,包括:
向用户设备UE发送信道状态信息CSI-RS配置信息,所述CSI-RS配置信息包括为所述UE配置的B端口的垂直维信道状态信息参考信号CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数;
接收所述UE发送的CSI反馈信息,所述CSI反馈信息包括所述UE根据对B端口的垂直维CSI-RS进行测量的测量结果确定出的垂直维CSI-RS端口标识和对2N端口的水平维CSI-RS进行测量的测量结果确定出的秩指示RI和水平维预编码矩阵PMI。
按照以下方法向所述UE发送B端口的垂直维CSI-RS:
利用B组垂直波束赋形权值,形成与B个垂直维CSI-RS端口一一对应的B个垂直波束;
将每个垂直维CSI-RS端口分别映射到时频资源的至少一个资源元素RE上发送。
将每个垂直维CSI-RS端口映射到时频资源的至少一个RE上发送之前,还包括:
在水平维利用预设的一组广播赋形权值对天线阵列中的每行天线进行赋形。
按照以下方法向所述UE发送2N端口的水平维CSI-RS:
将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送。
将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送之前,还包括:
在垂直维利用预设的一组垂直广播赋形权值对天线阵列中的每一列天线进行赋形。
所述网络侧实施的CSI反馈方法,还包括:
根据所述垂直维CSI-RS的端口标识,确定垂直维预编码矩阵;
根据RI和水平维PMI,确定水平维预编码矩阵;
根据所述垂直维预编码矩阵和水平维预编码矩阵生成用于发送物理下行共享信道PDSCH的预编码矩阵。
本公开的一些实施例提供一种CSI反馈装置,包括:
发送单元,用于向用户设备UE发送信道状态信息参考信号CSI-RS配置信息,所述CSI-RS配置信息包括为所述UE配置的B端口的垂直维CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数;
接收单元,用于接收所述UE发送的信道状态信息CSI反馈信息,所述CSI反馈信息包括所述UE根据对B端口的垂直维CSI-RS进行测量的测量结果确定出的垂直维CSI-RS端口标识和对2N端口的水平维CSI-RS进行测量的测量结果确定出的秩指示RI和水平维预编码矩阵PMI。
所述发送单元,具体用于利用B组垂直波束赋形权值,形成与B个垂直维CSI-RS端口一一对应的B个垂直波束;将每个垂直维CSI-RS端口分别映射到时频资源的至少一个资源元素RE上发送。
所述发送单元,还用于将每个垂直维CSI-RS端口映射到时频资源的至少一个RE上发送之前,在水平维利用预设的一组广播赋形权值对天线阵列中的每行天线进行赋形。
所述发送单元,具体用于将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送。
所述发送单元,具体用于将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送之前,在垂直维利用预设的一组垂直广播赋形权值对天线阵列中的每一列天线进行赋形。
所述CSI反馈装置,还包括:
确定单元,用于根据所述垂直维CSI-RS的端口标识,确定垂直维预编码矩阵;根据RI和水平维PMI,确定水平维预编码矩阵;以及根据所述垂直维预编码矩阵和水平维预编码矩阵生成用于发送物理下行共享信道PDSCH的预编码矩阵。
本公开的一些实施例提供一种基站,包括上述的CSI反馈装置。
本公开的一些实施例提供一种用户设备侧实施的CSI反馈方法,包括:
接收信道状态信息参考信号CSI-RS配置信息,所述CSI-RS配置信息包括B端口的垂直维CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数;
根据对所述B端口的垂直维CSI-RS进行测量的测量结果反馈垂直维CSI-RS端口标识;
根据对所述2N端口的水平维CSI-RS进行测量的测量结果反馈秩指示RI和水平维预编码矩阵PMI。
其中,按照以下方法根据对所述B端口的垂直维CSI-RS进行测量的测量结果反馈垂直维CSI-RS端口标识:
测量每个垂直维CSI-RS端口的接收信号强度,反馈接收信号强度最大的垂直维CSI-RS端口标识。
本公开的一些实施例提供一种用户设备,包括:
接收单元,用于接收信道状态信息参考信号CSI-RS配置信息,所述CSI-RS配置信息包括B端口的垂直维CSI-RS和2N端口的水平维CSI-RS;
测量单元,用于分别对所述B端口的垂直维CSI-RS和所述2N端口的水平维CSI-RS进行测量;
反馈单元,用于根据对所述B端口的垂直维CSI-RS进行测量的测量结果反馈垂直维CSI-RS端口标识;以及根据对所述2N端口的水平维CSI-RS进行测量的测量结果反馈秩指示RI和水平维预编码矩阵PMI。
所述测量单元,具体用于测量每个垂直维CSI-RS端口的接收信号强度;
所述反馈单元,具体用于反馈接收信号强度最大的垂直维CSI-RS端口标识。
本公开的一些实施例提供一种CSI反馈系统,包括上述的基站和用户设备。
本公开的一些实施例提供的CSI反馈方法、装置和相关设备,由网络侧为用户设备配置两套独立的CSI-RS,UE分别对网络侧配置的两套CSI-RS进行测量后,根据对垂直维CSI-RS进行测量的测量结果向网络侧反馈垂直维端口标识,根据对水平维CSI-RS进行测量的测量结果向网络侧反馈RI和水平PMI,在降低CSI-RS开销的同时,能够保证CSI-RS的覆盖性。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为相关技术中,天线阵列和TXRU阵列示意图;
图2为相关技术中,方案一中CSI-RS端口数与TXRU的映射示意图;
图3为相关技术中,方案二中CSI-RS端口数与TXRU的映射示意图;
图4为相关技术中,方案三中CSI-RS端口数与TXRU的映射示意图;
图5为本公开的一些实施例中,网络侧实施的CSI反馈方法的实施流程示意图;
图6为本公开的一些实施例中,垂直维CSI-RS发送示意图;
图7为本公开的一些实施例中,CSI反馈装置的结构示意图;
图8为本公开的一些实施例中,用户设备实施CSI反馈方法的实施流程示意图;
图9为本公开的一些实施例中,用户设备的结构示意图;
图10为本公开的一些实施例中,CSI反馈系统的结构示意图。
具体实施方式
为了在降低CSI-RS开销的同时保证CSI-RS的覆盖性,本公开的一些实施例提供了一种CSI反馈方法、装置和相关设备。
以下结合说明书附图对本公开的一些实施例进行说明,应当理解,此处所描述的一些实施例仅用于说明和解释本公开,并不用于限定本公开,并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
如图5所示,为本公开的一些实施例提供的网络侧实施CSI反馈方法的实施流程示意图,包括以下步骤:
S51、向UE发送CSI-RS配置信息。
其中,CSI-RS配置信息包括为UE(用户设备,User Equipment)配置的B端口的垂直维CSI-RS(信道状态信息参考信号)(V-CSI-RS)和2N端口的水平维CSI-RS(H-CSI-RS)。
其中,V-CSI-RS的端口标识分别为{1,2,3……,B},B为预设值,其值可以根据实际需要确定,N为双极化天线阵列的列数。
S52、接收UE发送的CSI反馈信息。
其中,CSI反馈信息包括UE根据对B端口的垂直维CSI-RS进行测量的测量结果确定出的垂直维CSI-RS端口标识和对2N端口的水平维CSI-RS进行测量的测量结果确定出的RI和水平PMI。
具体的,UE对网络侧配置的V-CSI-RS进行测量,根据测量结果向网络侧信号强度最大的V-CSI-RS的端口标识。以及UE对网络侧配置的H-CSI-RS进行测量,根据测量结果向网络侧反馈RI、水平PMI和CQI。网络侧根据UE反馈的V-CSI-RS端口标识确定垂直维预编码矩阵WV,根据UE反馈的RI和水平维PMI确定水平维预编码矩阵WH,根据垂直维预编码矩阵WV和水平维预编码矩阵WH生成用于发送PDSCH(物理下行共享信道)的预编码矩阵。可选的,网络可以通过Kroneck积生成最终的预编码矩阵
Figure PCTCN2016078800-appb-000001
具体实施时,网络侧可以按照以下方法发送为UE配置的B端口的V-CSI-RS:利用预设的B组不同的垂直波束赋形权值
Figure PCTCN2016078800-appb-000002
Figure PCTCN2016078800-appb-000003
形成与B个垂直维CSI-RS端口一一对应的B个垂直波束,每个波束赋形后的垂直维CSI-RS端口分别映射到时频资源的至少一个RE(资源元素)上发送,B个波束赋形后的垂直维CSI-RS共同构成一套V-CSI-RS,其中,B组不同的垂直波束赋形权值可以是静态的,也可以半静态或动态的调整,以适应小区内用户的空间分布,增强波束选择的准确性。
例如,可以将每种波束赋形后的垂直维CSI-RS分别映射到时频资源的1个RE上,如图6所示,为当B=4时的资源映射示意图,R1表示垂直维通过
Figure PCTCN2016078800-appb-000004
赋形后的CSI-RS,对应于垂直波束1,R2表示垂直维通过
Figure PCTCN2016078800-appb-000005
赋形后的CSI-RS,对应于垂直波束2,以此类推,共有4中CSI-RS,分别对应于4个垂直维波束,每个PRB上共占用4个RE。
可选的,为了进一步增强垂直维CSI-RS的覆盖性能,可以在水平维通过一组预设的水平广播赋形权值WH,Broad=[w1,w2,…,w2N]将二维天线阵列中每行的2N个天线进行赋形,以增强CSI-RS的覆盖。该水平广播赋形权值可以是静态的,也可以半静态或动态的调整,以适应小区内用户的空间分布,从而进一步增强CSI-RS的覆盖性能。
对于为UE配置的2N端口的水平维CSI-RS,可以将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送。当N=2/4/8时,可以重用R12之前的水平维CSI-RS的设计。
可选的,为了增强CSI-RS的覆盖性能,可以在垂直维通过预设的一组垂直广播赋形权值WV,Broad=[w1,w2,…,wMTXRU]将二维天线阵列中每列的MTXRU个天线进行赋形,以增强CSI-RS覆盖。其中,垂直广播赋形权值可以是静态的,也可以半静态或动态的调整,以适应小区内用户的空间分布,进一步增强CSI-RS的覆盖性能。
本公开的一些实施例提供的CSI反馈方法,通过为UE分别配置两套独立的CSI-RS,包括一套B端口的垂直维波束赋形后的CSI-RS和一套2N端口的水平维non-precoded(未经过预编码的)的CSI-RS,UE对B端口的垂直维CSI-RS进行测量后,根据测量结果向网络侧反馈信号最好的垂直维端口标识,UE对2N端口的水平维CSI-RS进行测量后,根据测量结果向网络侧反馈RI和水平PMI。与相关技术中的第一种方案相比,既能够降低CSI-RS开销,又能够增强CSI-RS覆盖性能,与相关技术中的第二种方案相比,其能够增强CSI-RS的覆盖性能,与相关技术中的第三种方案相比,其能够降低CSI-RS的开销,从而,实现了在降低CSI-RS开销的同时,保证了CSI-RS的覆盖性能。
基于同一发明构思,本公开的一些实施例中还提供了一种CSI反馈装置、基站及用户设备实施的CSI反馈方法和用户设备及系统,由于上述方法、装置 及设备解决问题的原理与网络侧实施CSI反馈方法相似,因此上述方法、装置及设备的实施可以参见网络侧实施CSI反馈方法,重复之处不再赘述。
如图7所示,为本公开的一些实施例提供的CSI反馈装置的结构示意图,包括:
发送单元71,用于向用户设备UE发送CSI-RS配置信息。
CSI-RS配置信息包括为所述UE配置的B端口的垂直维CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数。
接收单元72,用于接收UE发送的CSI反馈信息。
CSI反馈信息包括UE根据对B端口的垂直维CSI-RS进行测量的测量结果确定出的垂直维CSI-RS端口标识和对2N端口的水平维CSI-RS进行测量的测量结果确定出的秩指示RI和水平维预编码矩阵PMI。
其中,发送单元71,可以用于维利用预设的B组垂直波束赋形权值,形成与B个垂直维CSI-RS端口一一对应的B个垂直波束;将每个垂直维CSI-RS端口分别映射到时频资源的至少一个资源元素RE上发送。
可选的,发送单元71还可以用于将每个垂直维CSI-RS端口映射到时频资源的至少一个RE上发送之前,在水平维利用预设的一组广播赋形权值对天线阵列中的每行天线进行赋形。
具体实施时,发送单元71可以用于将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送。可选的,发送单元71还可以用于将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送之前,在垂直维利用预设的一组垂直广播赋形权值对天线阵列中的每一列天线进行赋形。
具体实施时,本公开的一些实施例提供的CSI反馈装置还可以包括确定单元,用于根据垂直维CSI-RS的端口标识,确定垂直维预编码矩阵;根据RI和水平维PMI,确定水平维预编码矩阵;以及根据所述垂直维预编码矩阵和水平维预编码矩阵生成用于发送PDSCH的预编码矩阵。
为了描述的方便,以上各部分按照功能划分为各模块(或单元)分别描述。当然,在实施本公开时可以把各模块(或单元)的功能在同一个或多个软件或硬件中实现。
具体实施时,上述CSI反馈装置可以设置于基站中,由基站实施上述提供的CSI反馈方法。
如图8所示,为用户设备实施CSI反馈方法的实施流程示意图,可以包括以下步骤:
S81、接收CSI-RS配置信息。
其中,CSI-RS配置信息包括B端口的垂直维CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数。
S82、根据对B端口的垂直维CSI-RS进行测量的测量结果反馈垂直维CSI-RS端口标识。
具体的,用户设备分别测量每个垂直维CSI-RS端口的接收信号强度,并向网络侧反馈接收信号强度最大的垂直维CSI-RS端口标识。
S83、根据对2N端口的水平维CSI-RS进行测量的测量结果反馈RI和水平维PMI。
需要说明的是,具体实施时,步骤S82和S83并无先后执行顺序,步骤S83也可以先于步骤S82执行。
如图9所示,为本公开的一些实施例提供的用户设备的结构示意图,包括:
接收单元91,用于接收CSI-RS配置信息。
其中,CSI-RS配置信息包括B端口的垂直维号CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数。
测量单元92,用于分别对B端口的垂直维CSI-RS和2N端口的水平维CSI-RS进行测量;
反馈单元93,用于根据对B端口的垂直维CSI-RS进行测量的测量结果反馈垂直维CSI-RS端口标识;以及根据对2N端口的水平维CSI-RS进行测量的测量结果反馈RI和水平维PMI。
其中,测量单元92,可以用于测量每个垂直维CSI-RS端口的接收信号强度;反馈单元93可以用于反馈接收信号强度最大的垂直维CSI-RS端口标识。
为了描述的方便,以上各部分按照功能划分为各模块(或单元)分别描述。当然,在实施本公开时可以把各模块(或单元)的功能在同一个或多个软件或硬件中实现。
如图10所示,为本公开的一些实施例提供的CSI反馈系统的结构示意图,包括基站101和上述的用户设备102,其中,基站中设置有上述的CSI反馈装置。
本领域内的技术人员应明白,本公开的实施例可提供为方法、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的一些实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括一些实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种CSI反馈方法,包括:
    向用户设备UE发送信道状态信息参考信号CSI-RS配置信息,所述CSI-RS配置信息包括为所述UE配置的B端口的垂直维CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数;
    接收所述UE发送的信道状态信息CSI反馈信息,所述CSI反馈信息包括所述UE根据对B端口的垂直维CSI-RS进行测量的测量结果确定出的垂直维CSI-RS端口标识和对2N端口的水平维CSI-RS进行测量的测量结果确定出的秩指示RI和水平维预编码矩阵PMI。
  2. 如权利要求1所述的方法,其中,按照以下方法向所述UE发送B端口的垂直维CSI-RS:
    在垂直维利用B组垂直波束赋形权值,形成与B个垂直维CSI-RS端口一一对应的B个垂直波束;
    将每个垂直维CSI-RS端口分别映射到时频资源的至少一个资源元素RE上发送。
  3. 如权利要求2所述的方法,其中,将每个垂直维CSI-RS端口映射到时频资源的至少一个RE上发送之前,还包括:
    在水平维利用预设的一组广播赋形权值对天线阵列中的每行天线进行赋形。
  4. 如权利要求1所述的方法,其中,按照以下方法向所述UE发送2N端口的水平维CSI-RS:
    将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送。
  5. 如权利要求4所述的方法,其中,在将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送之前,还包括:
    在垂直维利用预设的一组垂直广播赋形权值对天线阵列中的每一列天线进行赋形。
  6. 如权利要求1所述的方法,还包括:
    根据所述垂直维CSI-RS的端口标识,确定垂直维预编码矩阵;
    根据RI和水平维PMI,确定水平维预编码矩阵;
    根据所述垂直维预编码矩阵和水平维预编码矩阵生成用于发送物理下行共 享信道PDSCH的预编码矩阵。
  7. 一种CSI反馈装置,包括:
    发送单元,用于向用户设备UE发送信道状态信息参考信号CSI-RS配置信息,所述CSI-RS配置信息包括为所述UE配置的B端口的垂直维CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数;
    接收单元,用于接收所述UE发送的CSI反馈信息,所述CSI反馈信息包括所述UE根据对B端口的垂直维CSI-RS进行测量的测量结果确定出的垂直维CSI-RS端口标识和对2N端口的水平维CSI-RS进行测量的测量结果确定出的秩指示RI和水平维预编码矩阵PMI。
  8. 如权利要求7所述的装置,其中,
    所述发送单元,具体用于利用B组垂直波束赋形权值,形成与B个垂直维CSI-RS端口一一对应的B个垂直波束;将每个垂直维CSI-RS端口分别映射到时频资源的至少一个资源元素RE上发送。
  9. 如权利要求8所述的装置,其中,
    所述发送单元,还用于将每个垂直维CSI-RS端口映射到时频资源的至少一个RE上发送之前,在水平维利用预设的一组广播赋形权值对天线阵列中的每行天线进行赋形。
  10. 如权利要求7所述的装置,其中,
    所述发送单元,具体用于将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送。
  11. 如权利要求10所述的装置,其中,
    所述发送单元,具体用于将配置的2N端口的水平维CSI-RS分别映射到至少一个RE上发送之前,在垂直维利用预设的一组垂直广播赋形权值对天线阵列中的每一列天线进行赋形。
  12. 如权利要求7所述的装置,还包括:
    确定单元,用于根据所述垂直维CSI-RS的端口标识,确定垂直维预编码矩阵;根据RI和水平维PMI,确定水平维预编码矩阵;以及根据所述垂直维预编码矩阵和水平维预编码矩阵生成用于发送物理下行共享信道PDSCH的预编码矩阵。
  13. 一种基站,包括权利要求7~12任一权利要求所述的装置。
  14. 一种CSI反馈方法,包括:
    接收信道状态信息参考信号CSI-RS配置信息,所述CSI-RS配置信息包括B端口的垂直维CSI-RS和2N端口的水平维CSI-RS,其中,B为预设值,N为双极化天线阵列的列数;
    根据对所述B端口的垂直维CSI-RS进行测量的测量结果反馈垂直维CSI-RS端口标识;
    根据对所述2N端口的水平维CSI-RS进行测量的测量结果反馈秩指示RI和水平维预编码矩阵PMI。
  15. 如权利要求14所述的方法,其中,按照以下方法根据对所述B端口的垂直维CSI-RS进行测量的测量结果反馈垂直维CSI-RS端口标识:
    测量每个垂直维CSI-RS端口的接收信号强度,反馈接收信号强度最大的垂直维CSI-RS端口标识。
  16. 一种用户设备,包括:
    接收单元,用于接收信道状态信息参考信号CSI-RS配置信息,所述CSI-RS配置信息包括B端口的垂直维CSI-RS和2N端口的水平维CSI-RS;
    测量单元,用于分别对所述B端口的垂直维CSI-RS和所述2N端口的水平维CSI-RS进行测量;
    反馈单元,用于根据对所述B端口的垂直维CSI-RS进行测量的测量结果反馈垂直维CSI-RS端口标识;以及根据对所述2N端口的水平维CSI-RS进行测量的测量结果反馈秩指示RI和水平维预编码矩阵PMI。
  17. 如权利要求16所述的用户设备,其中,
    所述测量单元,具体用于测量每个垂直维CSI-RS端口的接收信号强度;
    所述反馈单元,具体用于反馈接收信号强度最大的垂直维CSI-RS端口标识。
PCT/CN2016/078800 2015-04-10 2016-04-08 一种csi反馈方法、装置和相关设备 WO2016161963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510171257.8A CN106160934B (zh) 2015-04-10 2015-04-10 一种csi反馈方法、装置和相关设备
CN201510171257.8 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016161963A1 true WO2016161963A1 (zh) 2016-10-13

Family

ID=57073036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078800 WO2016161963A1 (zh) 2015-04-10 2016-04-08 一种csi反馈方法、装置和相关设备

Country Status (2)

Country Link
CN (1) CN106160934B (zh)
WO (1) WO2016161963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112399567A (zh) * 2019-08-14 2021-02-23 华为技术有限公司 传输信号的方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121022B2 (ja) * 2017-01-31 2022-08-17 エルジー エレクトロニクス インコーポレイティド 無線システムにおけるチャネル状態情報報告方法及びこのための装置
CN108400803B (zh) * 2017-02-06 2022-07-15 中兴通讯股份有限公司 一种信道信息反馈及接收方法、装置
JP6938656B2 (ja) 2017-02-28 2021-09-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 無線通信方法、端末機器及びネットワーク装置
CN108631847B (zh) 2017-03-24 2021-06-01 华为技术有限公司 传输信道状态信息的方法、终端设备和网络设备
WO2021243632A1 (en) * 2020-06-04 2021-12-09 Qualcomm Incorporated Decoupled port selection and coefficients reporting
CN115694758A (zh) * 2021-07-31 2023-02-03 华为技术有限公司 一种信道状态信息反馈方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046485A1 (en) * 2012-09-20 2014-03-27 Samsung Electronics Co., Ltd. Feedback method and apparatus for use in mobile communication system
WO2014046499A1 (en) * 2012-09-20 2014-03-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving channel state information in a wireless communication system
CN104396153A (zh) * 2012-05-18 2015-03-04 三星电子株式会社 用于蜂窝无线通信系统的信道状态信息码字构造的方法和装置
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
CN105207740A (zh) * 2014-06-30 2015-12-30 中国移动通信集团公司 一种信道状态信息的传输方法和相关设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938688B (zh) * 2011-08-15 2015-05-27 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN103634034B (zh) * 2012-08-23 2019-01-08 上海中兴软件有限责任公司 波束赋形处理方法及装置
CN103974315B (zh) * 2013-02-05 2018-01-19 电信科学技术研究院 三维信道测量资源配置和质量测量方法及设备
CN104052532B (zh) * 2013-03-15 2019-02-22 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104396153A (zh) * 2012-05-18 2015-03-04 三星电子株式会社 用于蜂窝无线通信系统的信道状态信息码字构造的方法和装置
WO2014046485A1 (en) * 2012-09-20 2014-03-27 Samsung Electronics Co., Ltd. Feedback method and apparatus for use in mobile communication system
WO2014046499A1 (en) * 2012-09-20 2014-03-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving channel state information in a wireless communication system
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
CN105207740A (zh) * 2014-06-30 2015-12-30 中国移动通信集团公司 一种信道状态信息的传输方法和相关设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112399567A (zh) * 2019-08-14 2021-02-23 华为技术有限公司 传输信号的方法和装置

Also Published As

Publication number Publication date
CN106160934B (zh) 2019-08-02
CN106160934A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
CN110945793B (zh) 用于无线通信系统中的参考信号的信道状态信息
TWI580210B (zh) Method, system and equipment for channel status information measurement
CN107148790B (zh) 用于波束成形信道状态参考信号的系统和方法
US10193609B2 (en) Method for feeding back channel state information, base station and user equipment
WO2016155416A1 (zh) 一种信道状态信息反馈、获取方法及装置
JP6078539B2 (ja) 多次元アンテナ・アレイのチャネル測定およびチャネル・フィードバックのための方法および装置
WO2016041368A1 (zh) 下行导频的发送方法、检测方法、装置及基站、终端
WO2017020730A1 (zh) 一种反馈和接收信道状态信息csi的方法及装置
US11109251B2 (en) Method and apparatus for channel state information reporting
WO2017124968A1 (zh) 混合波束赋形方法、基站和用户终端
WO2014071852A1 (zh) 一种基于天线阵列的参考信号映射方法、装置及系统
TW201409961A (zh) 一種傳輸參考信號的方法、裝置及系統
WO2015196455A1 (zh) 干扰协调方法、装置和通信系统
WO2015042855A1 (zh) 通信方法、基站和用户设备
WO2014194525A1 (zh) 传输导频信号的方法、基站和用户设备
WO2016015666A1 (zh) 一种导频发送方法、信道测量方法及装置
JP2022037135A (ja) ユーザ装置、方法及びシステム
TW201433189A (zh) 三維通道測量資源配置和品質測量方法及設備
WO2017167216A1 (zh) 参考信号发送方法、信道状态信息反馈方法、基站和移动台
TWI602403B (zh) A channel status information feedback method, a downlink reference signal method and device
WO2016026350A1 (zh) 一种三维信道状态信息确定方法及装置
WO2016015579A1 (zh) Mimo系统中的导频发送方法、测量方法及装置
WO2016045527A1 (zh) 一种ue、基站中的3d mimo通信方法和设备
WO2016015568A1 (zh) 一种三维波束预编码信息确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776138

Country of ref document: EP

Kind code of ref document: A1