WO2016155416A1 - 一种信道状态信息反馈、获取方法及装置 - Google Patents

一种信道状态信息反馈、获取方法及装置 Download PDF

Info

Publication number
WO2016155416A1
WO2016155416A1 PCT/CN2016/073363 CN2016073363W WO2016155416A1 WO 2016155416 A1 WO2016155416 A1 WO 2016155416A1 CN 2016073363 W CN2016073363 W CN 2016073363W WO 2016155416 A1 WO2016155416 A1 WO 2016155416A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimension
reference signal
downlink reference
resource
terminal
Prior art date
Application number
PCT/CN2016/073363
Other languages
English (en)
French (fr)
Inventor
李辉
高秋彬
陈润华
拉盖施
陈文洪
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/563,464 priority Critical patent/US10305569B2/en
Priority to EP16771171.2A priority patent/EP3280070B1/en
Publication of WO2016155416A1 publication Critical patent/WO2016155416A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a channel state information feedback and acquisition method and apparatus.
  • base station antenna arrays are typically arranged horizontally.
  • the base station transmitter beam can only be adjusted in the horizontal direction, while the vertical direction is a fixed downtilt angle for each user. Therefore, various beamforming/precoding techniques are performed based on the horizontal channel information.
  • the wireless signal is three-dimensionally propagated in space, the method of fixing the downtilt angle does not optimize the performance of the system. Vertical beam adjustment is important for system performance improvement.
  • FIG. 1 is a schematic diagram of a two-dimensional antenna structure in a 3D (3D) MIMO (Multiple-Input Multiple-Out-put) system, and the number of antennas is 8 Antenna array structure at 16, 32, and 64.
  • 3D MIMO Multiple-Input Multiple-Out-put
  • An important feature of 3D MIMO is the large number of antennas on the base station side, such as 64 antennas or higher. This way of the antenna array makes it possible to dynamically adjust the beam in the vertical direction.
  • the embodiment of the present application provides an information state information feedback and acquisition method and device for obtaining channel state information between a network device and a terminal.
  • the terminal obtains a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence relationship configured by the network device, where the first correspondence relationship includes S second dimension downlink reference signal resources and N Corresponding relationship between the first dimension beamforming weights, S and N are integers greater than one;
  • the terminal measures the downlink reference signal of the first dimension according to the downlink reference signal resource of the first dimension, Obtaining a first dimension precoding matrix indicating PMI, where the first dimension PMI indicates one of the N first dimension beamforming weights;
  • the terminal selects, according to the obtained first dimension PMI and the first correspondence, resources for performing measurement of the second dimension downlink reference signal from the S second dimension downlink reference signal resources;
  • the terminal performs measurement and channel state information feedback on the second-dimensional downlink reference signal according to the selected resource for performing measurement of the second-dimension downlink reference signal; wherein, the selected second-dimensional downlink reference signal resource
  • the second dimension reference signal sent on the uplink is sent after being shaped by the first dimension beamforming weight corresponding to the resource.
  • the network device configures, for the terminal, a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence, where the first correspondence includes the S second dimension downlink reference signal resources and the N
  • the correspondence between the one-dimensional beamforming weights, S and N are integers greater than one;
  • the network device sends a first-dimension downlink reference signal according to the first-dimension downlink reference signal resource, and sends a second-dimension downlink reference signal according to the second-dimension downlink reference signal resource, where each second-dimensional downlink reference signal resource is used.
  • the sent second-dimensional downlink reference signal is sent after being shaped by the first-dimension beamforming weight corresponding to the resource;
  • the network device receives channel state information measured and fed back by the terminal according to the second dimension downlink reference signal, and obtains a channel state of the terminal according to the channel state information; wherein the channel state information is that the terminal is based on
  • the first dimension precoding matrix that is measured by the one-dimensional downlink reference signal indicates the PMI and the first correspondence
  • the second reference downlink signal signal is selected from the S second-dimensional downlink reference signal resources for performing the second-dimensional downlink reference signal measurement.
  • the second dimension downlink reference signal is measured according to the selected second dimension downlink reference signal resource, where the first dimension PMI indicates one of the N first dimension beamforming weights One-dimensional beam shaping weights.
  • An acquiring module configured to obtain a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence relationship configured by the network device, where the first correspondence relationship includes S second dimension downlink reference signals Correspondence between the resource and the N first-dimension beamforming weights, S and N are integers greater than one;
  • a first measurement module configured to measure, according to the first dimension downlink reference signal resource, a first dimension downlink reference signal, to obtain a first dimension precoding matrix indication PMI, where the first dimension PMI indicates the N a first dimension beamforming weight in a one-dimensional beamforming weight;
  • a selection module configured to use the first dimension PMI and the first correspondence relationship from the S first Selecting, from the second-dimensional downlink reference signal resource, a resource for performing measurement of the second-dimensional downlink reference signal;
  • a second measurement module configured to perform measurement and channel state information feedback on the second-dimensional downlink reference signal according to the selected resource for performing measurement of the second-dimension downlink reference signal; wherein, in the second dimension of the selection
  • the second dimension reference signal sent on the downlink reference signal resource is sent after being shaped by the first dimension beamforming weight corresponding to the resource.
  • a configuration module configured to configure, for the terminal, a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence, where the first correspondence includes the S second dimension downlink reference signal resources and Corresponding relationship between N first-dimension beamforming weights, S and N are integers greater than 1;
  • the reference signal sending module is configured to send the first dimension downlink reference signal according to the first dimension downlink reference signal resource, and send the second dimension downlink reference signal according to the second dimension downlink reference signal resource, where each second dimension downlink reference The second-dimensional downlink reference signal sent on the signal resource is sent after being shaped by the first dimension beamforming weight corresponding to the resource;
  • a channel state determining module configured to receive channel state information measured and fed back by the terminal according to the second dimension downlink reference signal, and obtain a channel state of the terminal according to the channel state information; wherein the channel state information is the terminal Determining, by the first dimension precoding matrix, the PMI and the first correspondence according to the first dimension downlink reference signal, selecting, from the S second dimension downlink reference signal resources, the second dimension downlink reference After the resource of the signal is measured, the second dimension downlink reference signal is measured according to the selected second dimension downlink reference signal resource, where the first dimension PMI indicates the N first dimension beam shaping weights. A first dimension beam shaping weight.
  • the network device configures, for the terminal, a first dimension downlink reference signal resource, a S second dimension downlink reference signal resource, and a first correspondence, where the first correspondence includes S second Corresponding relationship between the dimension downlink reference signal resource and the N first dimension beamforming weights; when performing channel measurement and feedback, the terminal first performs the first dimension PMI measurement according to the first dimension downlink reference signal resource, and then according to the measured Determining, by the first dimension PMI and the first correspondence, a second dimension downlink reference signal resource used for performing second dimension channel measurement, so as to perform second dimension channel state information based on the determined second dimension downlink reference signal resource measuring.
  • the second-dimensional downlink reference signal resource used for measurement is determined based on the first-dimension PMI and is shaped by the first-dimension beamforming weight, the measured The second dimension channel state can reflect the first dimension characteristic of the terminal, thereby obtaining the three-dimensional channel state of the terminal; on the other hand, the terminal uses only some resources of the S second dimension downlink reference signal resources to perform the second dimension.
  • the channel state information is measured, so that the three-dimensional channel state information of the terminal can be obtained without occupying excessive system resource overhead.
  • 1a-1d are schematic diagrams showing a structure of a two-dimensional antenna in a prior art 3D MIMO
  • FIG. 2 is a schematic diagram of a channel state information acquisition process implemented by a network side according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of channel state information feedback implemented by a terminal side according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a working principle of an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • the embodiment of the present application provides a feedback and acquisition scheme of channel state information, which is used to obtain three-dimensional channel state information of a terminal.
  • the embodiment of the present application can be applied to an FDD MIMO (Multi-Input Multi-Output) system or a TDD (Time Division Duplexing) MIMO system to solve the problem of channel state information feedback.
  • FDD MIMO Multi-Input Multi-Output
  • TDD Time Division Duplexing
  • FIG. 2 is a schematic flowchart of a channel state information feedback process according to an embodiment of the present application.
  • the process is implemented on the network side, such as by a base station. As shown, the process can include the following steps:
  • Step 201 The network device configures, for the terminal, a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence, where the first correspondence includes the S second dimension downlink reference signal resources and Corresponding relationship between N first-dimension beamforming weights, S and N are integers greater than 1;
  • Step 202 The network device sends a first dimension downlink reference signal according to the first dimension downlink reference signal resource, and sends a second dimension downlink reference signal according to the second dimension downlink reference signal resource, where each second dimension downlink reference The second-dimensional downlink reference signal sent on the signal resource is based on the first dimension beam corresponding to the resource The shaped weight is sent after being shaped;
  • Step 203 The network device receives channel state information measured and fed back by the terminal according to the second dimension downlink reference signal, and obtains a channel state of the terminal according to the channel state information, where the channel state information is the terminal. And selecting, according to the first dimension PMI (Precoding Matrix Indicator) and the first correspondence, which are measured by using the first dimension downlink reference signal, and selecting, from the S second dimension downlink reference signal resources, After the second dimension downlink reference signal measurement resource is measured, the second dimension downlink reference signal is measured according to the selected second dimension downlink reference signal resource, where the first dimension PMI indicates the N first dimensions A first dimension beamforming weight in the beamforming weight.
  • PMI Precoding Matrix Indicator
  • the network device can define a set of N first dimension beamforming weights.
  • the first dimension beamforming weights in the set are used to perform beamforming on the first dimension in the downlink reference signals transmitted on the S second-dimensional downlink reference signal resources.
  • the correspondence between the first dimension beamforming weight and the second dimension downlink reference signal resource in the set is called a first correspondence.
  • the following is a set of first dimension beamforming weights corresponding to the second dimension downlink reference signal resources, or all downlink reference signals used for transmitting the second dimension downlink reference signal resources.
  • the set A is known to the network device and the terminal, and the set A is configured in the terminal as a codebook for the terminal to perform channel state information feedback (ie, a precoding matrix set).
  • the codebook includes all first dimension beamforming weights in the set A and the corresponding PMI.
  • the network device may configure configuration information of the first dimension downlink reference signal resource, configuration information of the S second dimension downlink reference signal resources, and the first correspondence relationship (ie, N first dimension shaping rights)
  • the correspondence between the value and the S second-dimension downlink reference signal resources is notified to the terminal by signaling.
  • the first correspondence may be configured in the form of a list, or may be configured in other forms.
  • the first correspondence may be expressed as a list form as shown in Table 1 below:
  • step 202 when the network device sends the second-dimensional downlink reference signal according to the second-dimension downlink reference signal resource, the first dimension used by the second-dimensional downlink reference signal sent on each second-dimension downlink reference signal resource
  • the relationship between the beamforming weight and the second dimension downlink reference signal resource is consistent with the first correspondence.
  • the base station determines, according to the first correspondence, a first dimension beamforming weight value used by each downlink reference signal resource, and uses the determined first dimension beam shaping weight value to the corresponding second dimension downlink reference signal.
  • the downlink reference signal transmitted on the resource is beamformed.
  • the second second-dimension downlink reference signal resources may be configured with different subframe offsets to implement different second-dimensional downlink reference signal resources occupying different time-frequency resources.
  • the S second downlink downlink reference signal resources may also be configured with the same subframe and offset, but in different positions within one subframe, different second frequency downlink reference signal resources may occupy different frequency resources.
  • each second-dimensional downlink reference signal resource uses a first-dimension beamforming matrix corresponding to a first-dimension beam direction.
  • the S second-dimensional downlink reference signal resources will implement the first dimension coverage of the cell.
  • the channel state information that is measured by the terminal after the second-dimensional downlink reference signal is measured may include: the selected second-dimensional downlink reference signal resource used for performing the second-dimensional downlink reference signal measurement. Index information, and a second dimension PMI, RI (rank indication, and CQI (Channel Quality Indicator) according to the selected second-dimensional downlink reference signal measurement for performing the second-dimensional downlink reference signal measurement. Channel quality indication).
  • the network device may determine, according to the index of the second dimension downlink reference signal resource and the first correspondence, a first dimension beamforming weight corresponding to the second dimension downlink reference signal resource, for example, according to The index query table 1 of the second dimension downlink reference signal resource obtains the PMI corresponding to the first dimension beamforming weight. Then, the network device further synthesizes the three-dimensional precoding matrix of the terminal according to the determined first dimension beamforming weight and the precoding matrix indicated by the second dimension PMI, for example, according to the following formula (1) or (2) computing to obtain the precoding matrix of the terminal:
  • V represents a precoding matrix of the terminal
  • the precoding matrix may reflect a three-dimensional channel state of the terminal
  • V 1 represents a first dimension beamforming weight
  • V 2 represents a precoding matrix indicated by the second dimension PMI; Represents the Kronecker product operation.
  • the set A includes all N first-dimension beamforming weights, and in the first correspondence, each first-dimension beamforming weight corresponds to a second dimension downlink reference. Signal resources.
  • the network device may determine, according to the first correspondence, a first dimension beamforming weight corresponding to each second-dimensional downlink reference signal resource, and use a unique correspondence with the corresponding second-dimensional downlink reference signal resource.
  • the first dimension beamforming weight is beamformed and transmitted on the downlink reference signal sent on the resource.
  • the set A includes all N first-dimension beamforming weights, and in the first correspondence, at least one second-dimension downlink reference signal resource Corresponding to a plurality of first dimension beam shaping weights; and one of the plurality of first dimension beam shaping weights is used to send a downlink to the second dimension downlink reference signal resource
  • the reference signal is beamformed, and the remaining first dimension beamforming weights are not used for beamforming the downlink reference signal, and the remaining first dimension beamforming weights are used to refer to the second dimension downlink reference
  • the first dimension beamforming weight of the downlink reference signal transmitted on the signal resource for beamforming has a large correlation, for example, the correlation metric value is greater than the threshold value.
  • the first correspondence may be expressed as a list form as shown in Table 2 below:
  • the first dimension beamforming weight corresponding to the PMI 1 is used to perform beamforming on the downlink reference sent on the second-dimensional downlink reference signal resource corresponding to Index1, and the first dimension beam corresponding to PMI 2
  • the weight value is not used to beamform the downlink reference signal transmitted on any second-dimensional downlink reference signal resource.
  • the first dimension beamforming weights corresponding to PMI 1 and PMI 2 have a large correlation. For example, the angle difference between the first dimension beams corresponding to PMI 1 and PMI 2 is less than a preset threshold.
  • the network device may determine, according to the first correspondence, a first dimension beamforming weight corresponding to each second dimension downlink reference signal resource, and use the corresponding second dimension to descend.
  • the first dimension beamforming weight corresponding to the reference signal resource for performing beamforming is beamformed and transmitted on the downlink reference signal sent on the resource.
  • the set A includes S first-dimension beamforming weights, and of course, the set A may also include all N first-dimension beamforming weights. .
  • the S first-dimension beamforming weights of the N first-dimension beamforming weights respectively correspond to one second-dimension downlink reference signal resource.
  • the network device may select S beamforming weights from the N first-dimension beamforming weights to perform downlink reference signals sent on the S second-dimension downlink reference signal resources. Beam shaping, and configuration information of the first dimension downlink reference signal resource, configuration information of the S second dimension downlink reference signal resources, and the first correspondence relationship (ie, N first dimension shaping weights and S The correspondence between the second dimension downlink reference signal resources is notified to the terminal by signaling. Further, the network device may also notify the terminal of the selected S first-dimension beamforming weights.
  • the network device may determine, according to the first correspondence, a first dimension beamforming weight corresponding to each second-dimensional downlink reference signal resource, and use a unique correspondence with the corresponding second-dimensional downlink reference signal resource.
  • the first dimension beamforming weight is beamformed and transmitted on the downlink reference signal sent on the resource.
  • set A contains all N first dimensional beamforming weights.
  • the network device is also configured with a second set, which is referred to as a collection B for convenience of description.
  • the set B includes at least S first-dimension beamforming weights.
  • the set B includes S first-dimension beamforming weights. The following describes the S-shaped first-dimension beam-forming weights in the set B as an example.
  • set A is a subset of set B.
  • at least one first dimension beamforming weight in the set A corresponds to a plurality of first dimension beam shaping weights in the set B. If a first dimension beamforming weight in the set A corresponds to a plurality of first dimension beamforming weights in the set B, the plurality of first dimensional beamforming weights in the set B have a higher value Correlation, for example, the correlation between the plurality of first dimension beamforming weights is greater than a set threshold.
  • the set A is placed on the terminal side as a codebook for performing channel state information feedback.
  • the first correspondence relationship refers to the correspondence between the first dimension beamforming weights in the set B and the second dimension downlink reference signal resources.
  • Each of the first dimension beam shaping weights corresponds to a second dimension downlink reference signal resource, such that the S first dimension beamforming weights are in one-to-one correspondence with the S second dimension downlink reference signal resources.
  • the network device may configure configuration information, S second dimensions of the first dimension downlink reference signal resource.
  • the configuration information of the downlink reference signal resource, the set A, the set B, and the first correspondence that is, the correspondence between the N first dimension shaping weights and the S second dimension downlink reference signal resources
  • the relationship ie, the correspondence between the first dimension beamforming weights in set A and set B is signaled to the terminal.
  • the network device may determine, according to the first correspondence, a first dimension beamforming weight corresponding to each second-dimensional downlink reference signal resource, and use a unique correspondence with the corresponding second-dimensional downlink reference signal resource.
  • the first dimension beamforming weight is beamformed and transmitted on the downlink reference signal sent on the resource.
  • the network device configures, for the terminal, a first-dimension downlink reference signal resource, a second-dimension downlink reference signal resource, and a first correspondence, the first correspondence. Corresponding relationship between the S second-dimension downlink reference signal resources and the N first-dimension beamforming weights is included.
  • the terminal when performing channel measurement and feedback, the terminal performs first dimension PMI measurement according to the first dimension downlink reference signal resource, and then determines, according to the measured first dimension PMI and the first correspondence, for performing the second dimension.
  • the second dimension downlink reference signal resource used by the channel measurement, so that the second dimension channel state information measurement is performed based on the determined second dimension downlink reference signal resource.
  • the second-dimensional downlink reference signal resource used for measurement is determined based on the first-dimension PMI and is shaped by the first-dimension beamforming weight, the measured The second dimension channel state can reflect the first dimension characteristic of the terminal, thereby obtaining the three-dimensional channel state of the terminal; on the other hand, the terminal uses only some resources of the S second dimension downlink reference signal resources to perform the second dimension.
  • the channel state information is measured, so that the three-dimensional channel state information of the terminal can be obtained without occupying excessive system resource overhead.
  • the network device may further receive a first dimension PMI fed back by the terminal in the coverage of the network device, where the first dimension PMI is a downlink reference sent by the terminal to the resource according to the first dimension downlink reference signal resource configured by the network device. The signal is measured and fed back.
  • the first dimension PMI may reflect the first dimension characteristic of the terminal.
  • the network device may perform one or more of the following operations according to the first dimension PMI of the terminal feedback within the coverage of the network device:
  • the first operation in the case of N>S, the network device selects S first dimensions from the N first dimension beamforming weights according to the first dimension PMI fed back by the terminal in the coverage of the network device.
  • the beamforming weights are beamformed by the downlink reference signals sent by the S second-dimensional downlink reference signal resources, for example, the first-dimension beamforming weights corresponding to the S PMIs with the highest feedback frequency are selected.
  • the S first dimension beamforming weights are selected according to the first dimension PMI fed back by the terminal, and the current terminal can be selected according to the distribution of the current terminal in the first dimension.
  • the first dimension beam shaping weight is used to beamform the second dimension downlink reference signal according to the first dimension beamforming weight, so that the terminal performs measurement and channel state information according to the second dimension downlink reference signal. When feedback, more accurate channel state information can be obtained.
  • the second operation in the case of N>S, after the network device selects S first-dimension beamforming weights from the N first-dimension beamforming weights, the network device may further perform coverage according to the network device.
  • the first dimension PMI fed back by the terminal determines the distribution of the terminals in the coverage of the network device, and reselects the first one from the N first dimension beamforming weights according to the distribution of the terminal.
  • the dimension beam is shaped by a weight, and the corresponding relationship between the reselected S first-dimension beamforming weights and the S second-dimension downlink reference signal resources is notified to the terminal.
  • the network device may reselect the S first dimension dimension beamforming weights for the terminal, and select the selected S first dimension beams.
  • the corresponding relationship between the shaped weight and the second-dimensional downlink reference signal resource is notified to the terminal; otherwise, the existing first correspondence may be maintained.
  • the distribution of the terminal can be obtained in time, so that the selection of the S first-dimension beamforming weight matrix can be timely adjusted according to the change of the terminal distribution, so that more accurate channel state information can be obtained.
  • the third operation is: determining a distribution of the terminal in the coverage of the network device in the first dimension, and adjusting a first dimension beam shaping weight according to the distribution of the terminal in the first dimension of the coverage of the network device, That is, the direction of the first dimension beam is changed, and the codebook of the terminal side is further updated according to the adjusted first dimension beam shaping weight.
  • the correspondence between the first dimension beamforming weight and the second dimension downlink reference signal resource may remain unchanged.
  • the first dimension beamforming weight can be adjusted according to the distribution of the terminal in the first dimension, so that the characteristics of the terminal in the first dimension can be better reflected, thereby improving channel state information measurement and The accuracy of the feedback.
  • Embodiments of the present application are applicable to network devices having large-scale antenna arrays.
  • the antenna array of the network device may be divided into K (K is an integer greater than 1) antenna packets by dimension.
  • the antenna port of the first-dimension downlink reference signal resource corresponds to an antenna unit in one or more antenna groups, and the number of antenna ports is less than or equal to the number of antenna units in one antenna group; each second-dimensional downlink reference signal resource
  • the antenna port corresponds to one or more antenna packets, and the number of antenna ports is less than or equal to the number K of antenna packets.
  • the antenna array of the base station can be divided into K groups according to the first dimension, and each group P (P is an integer greater than or equal to 1) antenna units.
  • P is an integer greater than or equal to 1
  • One way of grouping is to group by the rows and columns of the antenna array. Specifically, if the first dimension is a vertical dimension and the second dimension is a horizontal dimension, each column of antennas is divided into a group. For the cross-polarized antenna array, the antennas of the same polarization direction in each column may be divided into one.
  • the group that is, one column of antennas is divided into two groups, and the polarization directions of the two groups of antennas are different; if the first dimension is a horizontal dimension and the second dimension is a vertical dimension, each row of antennas is divided into a group, for a cross-polarized antenna Arrays can also group antennas of the same polarization direction in each row.
  • Another grouping method is grouping by block, dividing the antenna array into K blocks, each block containing P antenna elements. At this time, the first dimension refers to the antenna within the block, and the second dimension refers to between the plurality of partitions.
  • the first-dimension downlink reference signal resource uses multiple antenna ports arranged in a first dimension, and the number of antenna ports is less than or equal to the number P of antenna elements in one antenna packet.
  • One of the implementation manners is that the downlink reference signal of each antenna port of the first-dimensional downlink reference signal resource is sent from each antenna unit in one antenna group, and may also be used for K.
  • the downlink reference signal sent by the antenna unit in the antenna group is weighted, so that the downlink reference signal of each antenna port of the first-dimension downlink reference signal resource is weighted by the inter-group packet, and K from the K antenna group corresponding to the antenna port Antenna units are emitted.
  • each resource uses multiple antenna ports arranged in the second dimension
  • the number of antenna ports is less than or equal to the number of packets K of the antenna, and the pilot signals of each antenna port are used. After weighting a first dimension beamforming weight, it is sent from an antenna unit in an antenna group corresponding to the port.
  • each antenna unit has a corresponding radio frequency transceiver unit (TXRU), that is, a one-to-one mapping between the TXRU and the antenna unit. If one TXRU is mapped to multiple antenna elements, one antenna unit described in the embodiment of the present application represents a TXRU mapped group of antenna elements.
  • TXRU radio frequency transceiver unit
  • FIG. 3 is a schematic flowchart of a channel state information feedback process provided by an embodiment of the present application, where the process is implemented on a terminal side. As shown, the process can include the following steps:
  • Step 301 The terminal obtains a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence relationship configured by the network device, where the first correspondence relationship includes S second dimension downlink reference signal resources.
  • S and N are integers greater than one;
  • Step 302 The terminal performs measurement on the first-dimension downlink reference signal according to the first-dimension downlink reference signal resource, to obtain a first-dimension PMI, where the first-dimension PMI indicates the N first-dimension beamforming a first dimension beam shaping weight in the weight;
  • Step 303 The terminal selects, according to the obtained first dimension PMI and the first correspondence, resources for performing second dimension downlink reference signal measurement from the S second dimension downlink reference signal resources;
  • Step 304 The terminal performs measurement and channel state information feedback on the second-dimensional downlink reference signal according to the selected resource for performing measurement of the second-dimension downlink reference signal, where the selected second-dimensional downlink reference is used.
  • the second-dimensional downlink reference signal sent on the signal resource is sent after being shaped by the first-dimension beamforming weight corresponding to the resource.
  • the operation process or manner of the network device may be as described in the foregoing network side process.
  • the network device configures the operation of the first dimension downlink reference signal resource, the second dimension downlink reference signal resource, and the first correspondence relationship for the terminal, which may be consistent with the foregoing embodiment, where More details.
  • all the first dimension beamforming weights corresponding to the second dimension downlink reference signal resources may be set, or all downlink reference signals used for transmitting the second dimension downlink reference signal resources may be performed.
  • the set of beamforming weights of the first dimension of beamforming is called set A.
  • the set A is known to the network device and the terminal, and the set A is configured in the terminal as a codebook for the terminal to perform channel state information feedback (ie, a precoding matrix set).
  • the codebook includes all first dimension beamforming weights in the set A and the corresponding PMI.
  • the terminal may receive the downlink reference signal and perform measurement on the corresponding resource according to the first dimension downlink reference signal resource, and obtain a first dimension PMI corresponding to the measurement result according to the measurement result and the set A.
  • N the number of beamforming weights of the first dimension dimension in the set A
  • S the number of downlink reference signal resources in the second dimension
  • the set A includes all N first-dimension beamforming weights, and in the first correspondence, each first-dimension beamforming weight corresponds to a second dimension downlink reference. Signal resources.
  • step 303 the terminal queries the first correspondence according to the first dimension PMI obtained in step 302, and obtains a second dimension downlink reference signal resource that uniquely corresponds to the first dimension PMI, and The queried second-dimensional downlink reference signal resource is determined as a resource used for performing the second-dimensional downlink reference signal measurement.
  • the set A includes S first-dimension beamforming weights, and of course, the set A may also include all N first-dimension beamforming weights.
  • the S first-dimension beamforming weights of the N first-dimension beamforming weights respectively correspond to one second-dimension downlink reference signal resource.
  • first dimension shaping weight is not in the first correspondence, that is, it is possible that the plurality of first dimension beamforming weights correspond to one second dimension downlink reference signal resource.
  • An implementation manner is to select, according to a certain metric between the first dimension beamforming weights, a second corresponding to the shaped weight in the set A of the measured first dimension PMI that satisfies a certain metric.
  • Dimensional downlink reference signal resources are measured. This metric can be that the correlation between the weighted values is greater than a certain threshold.
  • the terminal queries the first correspondence according to the first dimension PMI obtained in step 302; if the second dimension downlink reference signal resource corresponding to the first dimension PMI is queried, the query is performed.
  • the second dimension downlink reference signal resource is determined as a resource for performing the second dimension downlink reference signal measurement; if the second dimension downlink reference signal resource corresponding to the first dimension PMI is not queried, according to the S One-dimensional beam shaping right Corresponding to the first dimension beamforming weight indicated by the first dimension PMI, selecting one of the S first dimension beamforming weights, and querying and selecting the first correspondence according to the first correspondence relationship
  • the second-dimensional downlink reference signal resource corresponding to the one-dimensional beam shaping weight is used to determine the queried second-dimensional downlink reference signal resource as a resource for performing the second-dimensional downlink reference signal measurement.
  • the set A includes all N first-dimension beamforming weights, and the first correspondence has at least one second-dimension downlink reference signal.
  • the resource corresponds to the plurality of first dimension beamforming weights; and the first dimension beamforming weight of the plurality of first dimension beamforming weights is used to send the second dimension downlink reference signal resource
  • the downlink reference signal is beamformed, and the remaining first dimension beamforming weights are not used for beamforming the downlink reference signal, and the remaining first dimension beamforming weights are used to downlink to the second dimension
  • the first dimension beamforming weight of the beamforming of the downlink reference signal transmitted on the reference signal resource has a large correlation, for example, the correlation metric is greater than the threshold.
  • step 303 the terminal queries the first correspondence according to the first dimension PMI obtained in step 302, and obtains a second dimension downlink reference signal resource corresponding to the first dimension PMI, and queries the The second dimension downlink reference signal resource to be determined is determined as a resource for performing the second dimension downlink reference signal measurement.
  • this method can save the processing resource overhead of the terminal.
  • set A contains all N first dimensional beamforming weights.
  • the network device is also configured with a second set, which is referred to as a collection B for convenience of description.
  • the set B includes at least S first-dimension beamforming weights.
  • the set B includes S first-dimension beamforming weights. The following describes the S-shaped first-dimension beam-forming weights in the set B as an example.
  • set A is a subset of set B.
  • at least one first dimension beamforming weight in the set A corresponds to a plurality of first dimension beam shaping weights in the set B. If a first dimension beamforming weight in the set A corresponds to a plurality of first dimension beamforming weights in the set B, the plurality of first dimensional beamforming weights in the set B have a higher value Correlation, for example, the correlation between the plurality of first dimension beamforming weights is greater than a set threshold.
  • the set A is placed on the terminal side as a codebook for performing channel state information feedback.
  • the network device further configures the second correspondence to the terminal.
  • the network device may configure the second correspondence to the terminal by using a broadcast message or a high layer signaling.
  • the terminal may query the second correspondence according to the first dimension PMI obtained in step 302. Obtaining a first dimension beamforming weight in the set B corresponding to the first dimension PMI, wherein, since the set A is configured in the terminal as a codebook for channel state information measurement and feedback, in step 302, the terminal is The first dimension PMI is obtained based on the set A, that is, the first dimension PMI indicates the first dimension beam shaping weight in the set A, so that the terminal queries the second correspondence according to the first dimension PMI, and the terminal can obtain The PMI in the set B corresponding to the PMI in the set A.
  • the terminal queries the first correspondence according to the first dimension beamforming weight in the obtained set B, and obtains a corresponding second dimension downlink reference signal resource, and determines the second dimension downlink reference signal resource according to the obtained second dimension downlink reference signal resource.
  • the multiple downlink reference signal resources may be used as resources for performing second-dimensional downlink reference signal measurement, and may also be selected therefrom. Part of the resource serves as a resource for performing measurement of the second-dimensional downlink reference signal.
  • step 304 the terminal performs measurement of the second-dimensional downlink reference signal based on the determined resource. Feedback of channel status information.
  • the UE performs measurement on the found one or more horizontal-dimensional CSI-RS resources and calculates channel state information of the horizontal dimension, and selects one of them to perform feedback or feedback all of the plurality of horizontal-dimensional channel state information.
  • the channel state information that is sent by the terminal after the second-dimensional downlink reference signal is measured may include the following: performing the second-dimensional downlink reference signal according to the second-dimensional downlink reference signal resource selected in step 303.
  • the measured second dimensions PMI, RI, and CQI may further include RI.
  • the channel state information fed back by the terminal may further include an index of the second-dimension downlink reference signal resource used for performing the measurement of the second-dimension downlink reference signal in step 303, so as to enable the network device.
  • the downlink reference signal transmitted on the second-dimensional downlink reference signal resource uses the corresponding first dimension shaping weight to perform beamforming on the first dimension, so the terminal measures and feedbacks the channel based on the second-dimensional downlink reference signal.
  • the state information contains the gain of the first dimension.
  • the network device configures, for the terminal, a first-dimension downlink reference signal resource, a second-dimension downlink reference signal resource, and a first correspondence, the first correspondence. Corresponding relationship between the S second-dimension downlink reference signal resources and the N first-dimension beamforming weights is included.
  • the terminal when performing channel measurement and feedback, the terminal performs first dimension PMI measurement according to the first dimension downlink reference signal resource, and then determines, according to the measured first dimension PMI and the first correspondence, for performing the second dimension.
  • the second dimension downlink reference signal resource used by the channel measurement, so as to perform the second based on the determined second dimension downlink reference signal resource Dimensional channel state information measurement.
  • the second-dimensional downlink reference signal resource used for measurement is determined based on the first-dimension PMI and is shaped by the first-dimension beamforming weight, the measured The second dimension channel state can reflect the first dimension characteristic of the terminal, thereby obtaining the three-dimensional channel state of the terminal; on the other hand, the terminal uses only some resources of the S second dimension downlink reference signal resources to perform the second dimension.
  • the channel state information is measured, so that the three-dimensional channel state information of the terminal can be obtained without occupying excessive system resource overhead.
  • the terminal may also feed back the first dimension PMI obtained in step 302 to the network device.
  • the first dimension PMI may reflect the first dimension characteristic of the terminal.
  • the network device may perform one or more of the following operations according to the first dimension PMI of the terminal feedback within the coverage of the network device:
  • a first operation in the case of N>S, selecting S first-dimension beamforming weights from the N first-dimension beamforming weights to downlink reference signal resources in the S second dimensions Sending a downlink reference signal for beamforming;
  • the second operation in the case of N>S, after the terminal selects the S first-dimension beamforming weights from the N first-dimension beamforming weights, the method may further be based on the coverage of the network device.
  • the first dimension PMI fed back by the terminal determines the distribution of the terminals in the coverage of the network device, and reselects the S first dimension beams from the N first dimension beamforming weights according to the distribution of the terminal. Defining a weight, and notifying the terminal of the correspondence between the re-selected S first-dimension beamforming weights and the S second-dimension downlink reference signal resources;
  • the third operation is: determining a distribution of the terminal in the coverage of the network device in the first dimension, and adjusting a first dimension beam shaping weight according to the distribution of the terminal in the first dimension of the coverage of the network device, And further updating the codebook on the terminal side according to the adjusted first dimension beamforming weight.
  • the downlink reference signal may be a CRS (Cell-specific Reference Signal) or a CSI-RS, or other reference signal that can be used for channel state information measurement.
  • CRS Cell-specific Reference Signal
  • CSI-RS Cell-specific Reference Signal
  • the type of reference signal is not limited.
  • the first dimension is a vertical dimension
  • the second dimension is a horizontal dimension
  • the first dimension is a horizontal dimension
  • the second dimension is a vertical dimension
  • FIG. 4 shows a schematic diagram of the working principle of the present application.
  • the antenna array of the base station is 2 rows and 2 columns, and the antenna elements of the same polarization direction in the first column antenna are divided into antenna segments of a vertical dimension, and the antenna elements of each row antenna are divided into one horizontal dimension. Antenna grouping.
  • the time-frequency resource of the vertical dimension CSI-RS is ⁇ subframe N ⁇ , and the corresponding antenna port is the first An antenna port of the same polarization direction in a column of antenna elements (shown by a thick solid line in the figure).
  • the time-frequency resources of the CSI-RS of the horizontal dimension are ⁇ subframe N+a, subframe N+a+1, ..., subframe N+a+S-1, ... ⁇ for a total of S subframes.
  • the antenna port corresponding to the resource of the horizontal dimension CSI-RS is the antenna port of the antenna unit of the fourth row (shown by a thick solid line in the figure).
  • Set A contains S vertical dimension beamforming weights, and the corresponding PMI is expressed as ⁇ PMI1, PMI2, ..., PMIS, ⁇ .
  • the correspondence between the vertical dimension beamforming weights in the set A and the horizontal dimension CSI-RS resources is as shown.
  • the set A is configured on the terminal side as a codebook for which the terminal performs measurement and feedback for the vertical dimension CSI-RS.
  • the base station transmits a vertical dimension CSI-RS through the antenna port corresponding to the vertical dimension CSI-RS resource in the subframe N, in the subframe subframe N+a, the subframe N+a+1, ..., the sub-frame
  • the S subframes of the frame N+a+S-1, . . . transmit the horizontal dimension CSI-RS through the antenna port corresponding to the horizontal dimension CSI-RS resource.
  • the terminal measures the vertical dimension CSI-RS in the subframe N to obtain the PMI2, and determines to receive the horizontal dimension CSI-RS on the subframe N+a+1 according to the PMI2, and performs measurement and channel state information feedback.
  • Set A is: ⁇ vertical dimension beamforming weight 1 (PMI1), vertical dimension beamforming weight 2 (PMI2), ..., vertical dimension beamforming weight N (PMIN) ⁇
  • the first correspondence is: vertical dimension beamforming weight 1 (PMI1) corresponding to horizontal dimension CSI-RS resource 1, vertical dimension beamforming weight 2 (PMI2) corresponding horizontal dimension CSI-RS resource 2, ..., vertical
  • the dimension beamforming weight N (PMIN) corresponds to the horizontal dimension CSI-RS resource N.
  • the horizontal dimension CSI-RS is beamformed as follows:
  • the CSI-RS of the horizontal dimension CSI-RS resource N is beamformed with the vertical dimension beamforming weight N.
  • the PMI1 is obtained based on the vertical dimension CSI-RS measurement
  • the horizontal correspondence CSI-RS resource 1 is obtained by querying the first correspondence relationship according to the PMI1
  • the vertical dimension beam shaping right corresponding to the PMI1 is received on the horizontal dimension CSI-RS resource 1.
  • the value 1 is shaped into a horizontal dimension CSI-RS and measured to obtain CSI (Channel State Information) feedback.
  • Set A is: ⁇ vertical dimension beamforming weight 1 (PMI1), vertical dimension beamforming weight 2 (PMI2), ..., Vertical dimension beamforming weight N(PMIN) ⁇
  • the first correspondence is: vertical dimension beam shaping weight 1 and vertical dimension beam shaping weight 2 (PMI1 and PMI2) corresponding horizontal dimension CSI-RS resource 1, vertical dimension beamforming weight 3 (PMI3) corresponding level Dimensional CSI-RS resource 2, ....
  • the vertical dimension beamforming weight 1 and the vertical dimension beam shaping weight 2 are highly correlated, and the vertical dimension beamforming weight 2 is not used for beam assignment to the horizontal dimension CSI-RS.
  • the horizontal dimension CSI-RS is beamformed as follows:
  • PMI1 is obtained based on the vertical dimension CSI-RS measurement, the first dimension is queried according to PMI1 to obtain the horizontal dimension CSI-RS resource 1, and the horizontal dimension CSI-RS resource 1 is received through the vertical dimension beamforming weight 1 The horizontal dimension of the CSI-RS is measured and measured to obtain feedback after CSI.
  • the PMI2 is obtained based on the vertical dimension CSI-RS measurement
  • the horizontal correspondence CSI-RS resource 1 is obtained according to the PMI2 query first correspondence
  • the vertical dimension beamforming weight 1 is received on the horizontal dimension CSI-RS resource 1.
  • the horizontal dimension of the CSI-RS is measured and measured to obtain feedback after CSI.
  • Set A is: ⁇ vertical dimension beamforming weight 1 (PMI1), vertical dimension beamforming weight 2 (PMI2), ..., vertical dimension beamforming weight N (PMIN) ⁇
  • the first correspondence is: vertical dimension beamforming weight 1 (PMI1) corresponding to horizontal dimension CSI-RS resource 1, vertical dimension beamforming weight 3 (PMI3) corresponding to horizontal dimension CSI-RS resource 2, .
  • the vertical dimension beamforming weight 1 and the vertical dimension beam shaping weight 2 are highly correlated, and the vertical dimension beamforming weight 2 is not used for beam assignment to the horizontal dimension CSI-RS.
  • the horizontal dimension CSI-RS is beamformed as follows:
  • PMI1 is obtained based on the vertical dimension CSI-RS measurement, the first dimension is queried according to PMI1 to obtain the horizontal dimension CSI-RS resource 1, and the horizontal dimension CSI-RS resource 1 is received through the vertical dimension beamforming weight 1 The horizontal dimension of the CSI-RS is measured and measured to obtain feedback after CSI.
  • PMI2 is obtained based on the vertical dimension CSI-RS measurement, and if the first correspondence relationship fails to be queried according to the PMI2, the first dimension beamforming weight corresponding to the PMI2 and the first dimension beamforming in the first correspondence relationship are calculated. Right The correlation of the values is the largest, and the correlation with the first dimension beamforming weight indicated by PMI1 in the first correspondence relationship is found to be the largest, so the vertical dimension beamforming is received on the horizontal dimension CSI-RS resource 1 corresponding to PMI1.
  • the weight dimension 1 is shaped by the horizontal dimension CSI-RS and measured to obtain CSI post feedback.
  • Set A is: ⁇ vertical dimension beamforming weight 1 (PMI1), vertical dimension beamforming weight 2 (PMI2), ..., vertical dimension beamforming weight N (PMIN) ⁇
  • Set B is: ⁇ vertical dimension beamforming weight 1 (PMI1), vertical dimension beamforming weight 2 (PMI2), ..., vertical dimension beamforming weight N (PMIN), vertical dimension beam shaping right Value N+1 (PMIN+1), ..., vertical dimension beamforming weight S (PMIS), ⁇
  • the first correspondence is: vertical dimension beamforming weight 1 (PMI1) corresponding to horizontal dimension CSI-RS resource 1, vertical dimension beamforming weight 2 (PMI2) corresponding to horizontal dimension CSI-RS resource 2, vertical dimension beam assignment
  • the shape weight S (PMIS) corresponds to the horizontal dimension CSI-RS resource S.
  • the second correspondence is: PMI1 in set A corresponds to PMI1 and PMI2 in set B, and PMI2 in set A corresponds to PMI3 in set B, ....
  • the horizontal dimension CSI-RS is beamformed as follows:
  • the CSI-RS transmitted on the horizontal dimension CSI-RS resource S is beamformed with the vertical dimension beamforming weight S in the set B.
  • the PMI1 of the set A is obtained based on the vertical dimension CSI-RS measurement, and the PMI1 of the set A is mapped to the PMI1 and PMI2 of the set B according to the correspondence between the set A and the set B, and then queried according to the PMI1 and PMI2 of the set B.
  • the first correspondence relationship obtains the horizontal dimension CSI-RS resource 1 and the resource 2, and receives the horizontal dimension CSI-RS shaped by the vertical dimension beamforming weight 1 and the weight 2 in the set B on the two resources and The measurement is performed to obtain feedback after CSI.
  • the PMI2 of the set A is obtained based on the vertical dimension CSI-RS measurement.
  • the PMI2 of the set A is mapped to the PMI3 of the set B, and the first corresponding relationship is queried according to the PMI2 of the set B.
  • a horizontal dimension CSI-RS resource 3 is obtained, on which the horizontal dimension CSI-RS shaped by the vertical dimension beamforming weight 3 in the set B is received and measured to obtain CSI post feedback.
  • the embodiment of the present application provides a terminal.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal may include: an obtaining module 501, a first measuring module 502, a selecting module 503, and a second measuring module 504, where:
  • the obtaining module 501 is configured to obtain a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence relationship configured by the network device, where the first correspondence relationship includes S second dimension downlink reference Correspondence between signal resources and N first-dimension beamforming weights, S and N are integers greater than one;
  • the first measurement module 502 is configured to measure, according to the first dimension downlink reference signal resource, a first dimension downlink reference signal, to obtain a first dimension precoding matrix indication PMI, where the first dimension PMI indicates the N a first dimension beamforming weight in the first dimension beamforming weight;
  • the selecting module 503 is configured to select, according to the obtained first dimension PMI and the first correspondence, resources for performing second dimension downlink reference signal measurement from the S second dimension downlink reference signal resources;
  • the second measurement module 504 is configured to perform measurement and channel state information feedback on the second-dimensional downlink reference signal according to the selected resource for performing the second-dimensional downlink reference signal measurement, where the selected second dimension
  • the second dimension reference signal sent on the downlink reference signal resource is sent after being shaped by the first dimension beamforming weight corresponding to the resource.
  • each first dimension beamforming weight corresponds to a second dimension downlink reference signal resource.
  • At least one second-dimensional downlink reference signal resource corresponds to multiple first-dimension beamforming weights in the first correspondence, and the plurality of first-dimension beamforming weights
  • a first dimension beamforming weight is used to beamform the downlink reference signal sent on the second dimension downlink reference signal resource, and the remaining first dimension beamforming weights are not used for the downlink reference signal. Beamforming, and the correlation between the remaining first dimension beamforming weights and the first beamforming weights used to beamform the downlink reference signals transmitted on the second dimensional downlink reference signal resources The metric is greater than the threshold.
  • the selecting module 503 may be specifically configured to: query the first correspondence according to the obtained first dimension PMI, and obtain a second dimension downlink reference uniquely corresponding to the first dimension PMI.
  • the signal resource is used to determine the queried second-dimensional downlink reference signal resource as a resource for performing the second-dimensional downlink reference signal measurement.
  • the S first-dimension beamforming weights of the N first-dimension beamforming weights respectively correspond to one second-dimension downlink reference signal resource.
  • the selecting module 503 may be specifically configured to: query the first correspondence according to the obtained first dimension PMI; and if the second dimension downlink reference signal resource corresponding to the first dimension PMI is queried, Queryed
  • the second-dimensional downlink reference signal resource is determined as a resource for performing the second-dimensional downlink reference signal measurement; if the second-dimensional downlink reference signal resource corresponding to the first-dimension PMI is not queried, the first is performed according to the S first Correlating a dimension beamforming weight from a first dimension beamforming weight indicated by the first dimension PMI, selecting one of the S first dimension beamforming weights, and according to the first And correspondingly querying the second-dimensional downlink reference signal resource corresponding to the selected first-dimension beamforming weight, and determining the queried second-dimension downlink reference signal resource for performing the second-dimensional downlink reference signal measurement. Resources.
  • each first dimension beamforming weight corresponds to a second dimension downlink reference signal resource, and the first correspondence, and the second dimension downlink reference signal All first dimension beamforming weights corresponding to the resource belong to the second set; and the second set includes at least S first dimension beamforming weights, and the second set and the first set There is a second correspondence between the one-dimensional beamforming weights, and at least one first-dimension beamforming weight in the first set corresponds to a plurality of first-dimension beamforming weights in the second set,
  • the first set is configured in the terminal as a codebook for performing measurement of a first dimension downlink reference signal.
  • the obtaining module 501 is further configured to: obtain the second correspondence of the network device configuration.
  • the selecting module 503 is specifically configured to: query the second correspondence according to the obtained first dimension PMI, and obtain a first dimension beam shaping weight in the second set corresponding to the first dimension PMI
  • the first dimension PMI indicates a first dimension beam shaping weight in the first set; and the first correspondence is queried according to the first dimension beam shaping weight in the obtained second set
  • obtaining a corresponding second-dimensional downlink reference signal resource and determining, according to the obtained second-dimension downlink reference signal resource, a resource used for performing measurement of the second-dimensional downlink reference signal.
  • the channel state information that is measured by the second measurement module 504 after the second dimension downlink reference signal is measured includes: the selected second dimension downlink reference signal resource used for performing the second dimension downlink reference signal measurement.
  • the second measurement module 504 is further configured to: after obtaining the first dimension PMI, feed the obtained first dimension PMI to the network device.
  • the embodiment of the present application provides a network device.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device may include: a configuration module 601, a reference signal sending module 602, a channel state determining module 603, and further, an acquiring module 604, where:
  • the configuration module 601 is configured to configure, for the terminal, a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence, where the first correspondence includes the S second dimension downlink reference signal resources.
  • S and N are integers greater than one;
  • the reference signal sending module 602 is configured to send a first dimension downlink reference signal according to the first dimension downlink reference signal resource, and send a second dimension downlink reference signal according to the second dimension downlink reference signal resource, where each second dimension downlink The second-dimensional downlink reference signal sent on the reference signal resource is sent after being shaped by the first dimension beamforming weight corresponding to the resource;
  • the channel state determining module 603 is configured to receive channel state information that is measured and fed back by the terminal according to the second dimension downlink reference signal, and obtain a channel state of the terminal according to the channel state information, where the channel state information is And selecting, by the first dimension precoding matrix indicating the PMI and the first correspondence, the second dimension precoding matrix resource, and selecting, by the second second dimension downlink reference signal resource, the second dimension downlink After measuring the measured resource, the second dimension downlink reference signal is measured according to the selected second dimension downlink reference signal resource, where the first dimension PMI indicates the N first dimension beam shaping weights A first dimension beam shaping weight in the middle.
  • the channel state information that is fed back by the terminal after measuring the second-dimension downlink reference signal includes: the selected index information of the second-dimensional downlink reference signal resource used for performing measurement of the second-dimension downlink reference signal And a second dimension PMI, RI and a channel quality indicator CQI obtained by performing the second-dimensional downlink reference signal measurement according to the selected second-dimensional downlink reference signal resource.
  • the channel state determining module 603 is specifically configured to: determine, according to the index of the second dimension downlink reference signal resource and the first correspondence, a first dimension beam corresponding to the second dimension downlink reference signal resource Forming a weight; and obtaining a precoding matrix of the terminal according to the determined first dimension beamforming weight and the precoding matrix indicated by the second dimension PMI.
  • the obtaining module 604 can receive the first dimension PMI of the terminal feedback within the coverage of the network device.
  • the configuration module 601 can also perform one or more of the following first operations to third operations according to the first dimension PMI of the terminal feedback within the coverage of the network device:
  • the first operation includes: selecting, according to N greater than S, S first-dimension beamforming weights from the N first-dimension beamforming weights to downlink the S second dimensions Performing beamforming on the downlink reference signal transmitted by the reference signal resource;
  • the second operation includes: selecting, according to N greater than S, S first-dimension beamforming weights from the N first-dimension beamforming weights to downlink the S second dimensions After performing beamforming on the downlink reference signal sent by the reference signal resource, determining the distribution of the terminal according to the first dimension PMI fed back by the terminal in the coverage of the network device, and re-shaping the right from the N first dimension beams according to the distribution of the terminal Selecting S first-dimension beamforming weights to perform beamforming on the downlink reference signals transmitted on the S second-dimension downlink reference signal resources, and re-selecting the first ones Dimension beam shaping weight and the S second dimension downlink reference signal resources The corresponding relationship is notified to the terminal;
  • the third operation includes: determining a distribution of the terminal in the coverage of the network device in a first dimension, and adjusting a first dimension beamforming according to a distribution of the terminal in the first dimension of the coverage of the network device Weight.
  • each first dimension beamforming weight corresponds to a second dimension downlink reference signal resource.
  • At least one second-dimensional downlink reference signal resource corresponds to multiple first-dimension beamforming weights in the first correspondence, and the plurality of first-dimension beamforming weights
  • a first dimension beamforming weight is used to beamform the downlink reference signal sent on the second dimension downlink reference signal resource, and the remaining first dimension beamforming weights are not used for the downlink reference signal.
  • Beamforming, and the remaining first dimension beamforming weights are related to the first dimension beamforming weights used to beamform the downlink reference signals transmitted on the second dimensional downlink reference signal resources
  • the sex metric is greater than the threshold.
  • the S first-dimension beamforming weights of the N first-dimension beamforming weights respectively correspond to one second-dimension downlink reference signal resource.
  • each first dimension beamforming weight corresponds to a second dimension downlink reference signal resource, and the first correspondence, and the second dimension downlink reference signal All first dimension beamforming weights corresponding to the resource belong to the second set; and the second set includes at least S first dimension beamforming weights, and the second set and the first set There is a second correspondence between the one-dimensional beamforming weights, and at least one first-dimension beamforming weight in the first set corresponds to a plurality of first-dimension beamforming weights in the second set,
  • the first set is configured in the terminal as a codebook for performing measurement of a first dimension downlink reference signal.
  • the embodiment of the present application further provides a terminal.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal can include a processor 701, a memory 702, a transceiver 703, and a bus interface.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 702 can store data used by the processor 701 in performing operations.
  • the transceiver 703 is configured to receive and transmit data under the control of the processor 701.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 701 and various circuits of memory represented by memory 702.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 703 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 702 can store data used by the processor 701 in performing operations.
  • the processor 701 is configured to read a program in the memory 702 and perform the following process:
  • first dimension downlink reference signal resource a second second dimension downlink reference signal resource, and a first correspondence
  • first correspondence includes the S second dimension downlink reference signal resources and the N
  • the correspondence between the one-dimensional beamforming weights, S and N are integers greater than one;
  • the two-dimensional reference signal is sent after being shaped by the first dimension beamforming weight corresponding to the resource.
  • each first dimension beamforming weight corresponds to a second dimension downlink reference signal resource.
  • At least one second-dimension downlink reference signal resource corresponds to a plurality of first-dimension beamforming weights in the first correspondence, and the plurality of first-dimension beamformings
  • a first dimension beamforming weight in the weight is used to beamform the downlink reference signal sent on the second dimension downlink reference signal resource, and the remaining first dimension beamforming weights are not used for the downlink
  • the reference signal is beamformed, and the remaining first dimension beamforming weights are between the first beamforming weights used to beamform the downlink reference signals transmitted on the second dimensional downlink reference signal resources
  • the correlation metric is greater than the threshold.
  • the processor 701 may be specifically configured to: query the first correspondence according to the obtained first dimension PMI, and obtain a second dimension downlink reference that uniquely corresponds to the first dimension PMI.
  • the signal resource is used to determine the queried second-dimensional downlink reference signal resource as a resource for performing the second-dimensional downlink reference signal measurement.
  • the S first dimension beam shaping weights of the N first dimension beamforming weights respectively correspond to a second dimension downlink reference signal Resources.
  • the processor 701 may be configured to: query the first correspondence according to the obtained first dimension PMI; and if the second dimension downlink reference signal resource corresponding to the first dimension PMI is queried, The queried second-dimensional downlink reference signal resource is determined as a resource for performing the second-dimensional downlink reference signal measurement; if the second-dimensional downlink reference signal resource corresponding to the first-dimension PMI is not queried, according to the Correlation of S first dimension beamforming weights with first dimension beamforming weights indicated by the first dimension PMI, from the S first dimension waves Selecting one of the beam-shaped weights, and querying the second-dimensional downlink reference signal resource corresponding to the selected first-dimension beamforming weight according to the first correspondence, and querying the second dimension downlink reference
  • the signal resource is determined to be a resource for performing measurement of the second-dimensional downlink reference signal.
  • each first dimension beam shaping weight corresponds to a second dimension downlink reference signal resource, and in the first correspondence, the second dimension is downlinked All first dimension beamforming weights corresponding to the reference signal resource belong to the second set; and the second set includes at least S first dimension beamforming weights, the second set and the first set
  • the first dimension beamforming weight has a second correspondence, and at least one first dimension beamforming weight in the first set corresponds to multiple first dimension beam shaping rights in the second set
  • the first set is configured by the terminal as a codebook for performing measurement of the first dimension downlink reference signal.
  • the processor 701 is further configured to: obtain, by the transceiver 703, the second correspondence of the network device configuration. Further, the processor 701 may query the second correspondence according to the obtained first dimension PMI, and obtain a first dimension beam shaping weight in the second set corresponding to the first dimension PMI, The first dimension PMI indicates a first dimension beam shaping weight in the first set; and the first correspondence is queried according to the first dimension beam shaping weight in the obtained second set And obtaining a corresponding second-dimension downlink reference signal resource, and determining, according to the obtained second-dimension downlink reference signal resource, a resource used for performing the second-dimensional downlink reference signal measurement.
  • the channel state information fed back by the processor 701 after the second dimension downlink reference signal is measured by the transceiver 703 includes: the selected second dimension downlink reference signal used for performing the second dimension downlink reference signal measurement.
  • the processor 701 is further configured to: after obtaining the first dimension PMI, feed the obtained first dimension PMI to the network device by using the transceiver 703.
  • the embodiment of the present application further provides a network device.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device can include a processor 801, a memory 802, a transceiver 803, and a bus interface.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 802 can store data used by the processor 801 in performing operations.
  • the transceiver 803 is configured to receive and transmit data under the control of the processor 801.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 801 and various circuits of memory represented by memory 802.
  • the bus architecture can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art. Therefore, it will not be further described in this article.
  • the bus interface provides an interface.
  • Transceiver 803 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 802 can store data used by the processor 801 in performing operations.
  • the processor 801 is configured to read a program in the memory 802 and perform the following process:
  • a first dimension downlink reference signal resource for the terminal, a first dimension downlink reference signal resource, a second second dimension downlink reference signal resource, and a first correspondence, where the first correspondence includes the S second dimension downlink reference signal resources and the N first dimensions Correspondence between beamforming weights, S and N are integers greater than one;
  • each second dimension downlink reference signal resource is sent by using a second dimension
  • the dimension downlink reference signal is sent after being shaped by the first dimension beamforming weight corresponding to the resource;
  • the channel state information is that the terminal according to the first dimension downlink reference
  • the first dimension precoding matrix obtained by the signal measurement indicates the PMI and the first correspondence, and after selecting the resource for performing the measurement of the second dimension downlink reference signal from the S second dimension downlink reference signal resources, according to The selected second dimension downlink reference signal resource is measured by using the second dimension downlink reference signal, where the first dimension PMI indicates one of the N first dimension beamforming weights. Shape weight.
  • the channel state information that is fed back by the terminal after measuring the second-dimension downlink reference signal includes: the selected index information of the second-dimensional downlink reference signal resource used for performing measurement of the second-dimension downlink reference signal And a second dimension PMI, RI, and CQI obtained by performing the second-dimensional downlink reference signal measurement according to the selected second-dimensional downlink reference signal resource.
  • the processor 801 is specifically configured to: determine, according to the index of the second-dimension downlink reference signal resource and the first correspondence, a first-dimension beamforming corresponding to the second-dimension downlink reference signal resource. And a precoding matrix of the terminal is synthesized according to the determined first dimension beamforming weight and the precoding matrix indicated by the second dimension PMI.
  • the processor 801 can receive, by the transceiver 803, a first dimension PMI fed back by the terminal within the coverage of the network device.
  • the processor 801 may further perform one or more of the following first operations to third operations according to the first dimension PMI of the terminal feedback within the coverage of the network device:
  • the first operation includes: selecting, according to N greater than S, S first-dimension beamforming weights from the N first-dimension beamforming weights to downlink the S second dimensions Downlink reference signal sent by reference signal resource No. Beamforming;
  • the second operation includes: selecting, according to N greater than S, S first-dimension beamforming weights from the N first-dimension beamforming weights to downlink the S second dimensions After performing beamforming on the downlink reference signal sent by the reference signal resource, determining the distribution of the terminal according to the first dimension PMI fed back by the terminal in the coverage of the network device, and re-shaping the right from the N first dimension beams according to the distribution of the terminal Selecting S first-dimension beamforming weights to perform beamforming on the downlink reference signals transmitted on the S second-dimension downlink reference signal resources, and re-selecting the first ones Notifying the terminal of the correspondence between the dimension beamforming weight and the S second dimension downlink reference signal resources;
  • the third operation includes: determining a distribution of the terminal in the coverage of the network device in a first dimension, and adjusting a first dimension beamforming according to a distribution of the terminal in the first dimension of the coverage of the network device Weight.
  • each first dimension beamforming weight corresponds to a second dimension downlink reference signal resource.
  • At least one second-dimension downlink reference signal resource corresponds to a plurality of first-dimension beamforming weights in the first correspondence, and the plurality of first-dimension beamformings
  • a first dimension beamforming weight in the weight is used to beamform the downlink reference signal sent on the second dimension downlink reference signal resource, and the remaining first dimension beamforming weights are not used for downlink reference
  • the signal is beamformed, and the remaining first dimension beamforming weights are between the first beamforming weights used to beamform the downlink reference signals transmitted on the second dimensional downlink reference signal resources
  • the correlation metric is greater than the threshold.
  • the S first dimension beam shaping weights of the N first dimension beamforming weights respectively correspond to a second dimension downlink reference signal Resources.
  • each first dimension beam shaping weight corresponds to a second dimension downlink reference signal resource, and in the first correspondence, the second dimension is downlinked All first dimension beamforming weights corresponding to the reference signal resource belong to the second set; and the second set includes at least S first dimension beamforming weights, the second set and the first set
  • the first dimension beamforming weight has a second correspondence, and at least one first dimension beamforming weight in the first set corresponds to multiple first dimension beam shaping rights in the second set
  • the first set is configured by the terminal as a codebook for performing measurement of the first dimension downlink reference signal.
  • the embodiment of the present application does not need to perform RSRP (Reference Signal Receiving Power) for all horizontal dimension CSI-RS resources.
  • RSRP Reference Signal Receiving Power
  • the measurement avoids the base station frequently using high-level instructions to inform the terminal which horizontal dimension CSI-RS resource to feed back, and the feedback horizontal dimension dimension channel state information includes vertical dimension gain, thereby improving the channel state letter.
  • the accuracy of the information can further adjust the direction of the vertical dimension beam in time.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道状态信息反馈、获取方法及装置,本申请包括:终端获得网络设备配置的1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及两者之间的第一对应关系;终端根据第一维度下行参考信号资源,对第一维度下行参考信号进行测量,根据测量到的第一维度PMI以及第一对应关系,选择用于进行第二维度下行参考信号测量的资源,并根据该资源对第二维度下行参考信号进行测量和信道状态信息反馈;其中,第二维度参考信号是经过第一维度波束赋形权值赋形后发送的。采用本申请可获得网络设备与终端之间的信道状态信息,进一步地,根据第一维度反馈的PMI,可以对用于第二维度参考信号赋形的第一维度波束赋形权值进行调整。

Description

一种信道状态信息反馈、获取方法及装置
本申请要求在2015年03月31日提交中国专利局、申请号为201510149954.3、申请名称为“一种信道状态信息反馈、获取方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种信道状态信息反馈、获取方法及装置。
背景技术
在蜂窝系统中,基站天线阵列一般呈水平排列。基站发射端波束仅能在水平方向进行调整,而垂直方向对每个用户都是固定的下倾角,因此各种波束赋形/预编码技术等均是基于水平方向信道信息进行的。事实上,由于无线信号在空间中是三维传播的,固定下倾角的方法不能使系统的性能达到最优。垂直方向的波束调整对于系统性能的提高有着很重要的意义。
随着天线技术的发展,业界已出现能够对每个阵子独立控制的有源天线。采用这种设计,天线阵列会由现在的水平排列增强到水平和垂直排列的二维结构。如图1a至图1d所示,为3D(3Dimension,三维)MIMO(Multiple-Input Multiple-Out-put,多入多出技术)中二维天线结构示意图,该图中给出了天线数目为8、16、32、64时的天线阵列结构。3D MIMO的一个重要特性是基站侧天线数目非常多,如64天线或者更高。这种天线阵列的方式,使得波束在垂直方向的动态调整成为可能。
在基站天线数目较多的情况下,如何准确获取基站与终端之间的3D信道状态信息,进而动态调整水平维度或垂直维度波束,成为3D MIMO技术中的一个关键问题。
发明内容
本申请实施例提供一种信息状态信息反馈、获取方法及装置,用以获得网络设备与终端之间的信道状态信息。
本申请实施例提供的信道状态信息反馈方法,包括:
终端获得网络设备配置的1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
所述终端根据所述第一维度下行参考信号资源,对第一维度下行参考信号进行测量, 得到第一维度预编码矩阵指示PMI,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值;
所述终端根据得到的所述第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源;
所述终端根据所述选择的用于进行第二维度下行参考信号测量的资源,对第二维度下行参考信号进行测量和信道状态信息反馈;其中,在选择的所述第二维度下行参考信号资源上发送的第二维度参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的。
本申请实施例提供的信道状态信息获取方法,包括:
网络设备为终端配置1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
所述网络设备根据所述第一维度下行参考信号资源发送第一维度下行参考信号,根据第二维度下行参考信号资源发送第二维度下行参考信号,其中,每个第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的;
所述网络设备接收终端根据第二维度下行参考信号测量和反馈的信道状态信息,并根据所述信道状态信息获得所述终端的信道状态;其中,所述信道状态信息是所述终端根据对第一维度下行参考信号进行测量得到的第一维度预编码矩阵指示PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源后,根据所述选择的第二维度下行参考信号资源对第二维度下行参考信号进行测量得到的,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值。
本申请实施例提供的终端,包括:
获取模块,用于获得网络设备配置的1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
第一测量模块,用于根据所述第一维度下行参考信号资源,对第一维度下行参考信号进行测量,得到第一维度预编码矩阵指示PMI,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值;
选择模块,用于根据得到的所述第一维度PMI以及所述第一对应关系,从所述S个第 二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源;
第二测量模块,用于根据所述选择的用于进行第二维度下行参考信号测量的资源,对第二维度下行参考信号进行测量和信道状态信息反馈;其中,在选择的所述第二维度下行参考信号资源上发送的第二维度参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的。
本申请实施例提供的网络设备,包括:
配置模块,用于为终端配置1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
参考信号发送模块,用于根据所述第一维度下行参考信号资源发送第一维度下行参考信号,根据第二维度下行参考信号资源发送第二维度下行参考信号,其中,每个第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的;
信道状态确定模块,用于接收终端根据第二维度下行参考信号测量和反馈的信道状态信息,并根据所述信道状态信息获得所述终端的信道状态;其中,所述信道状态信息是所述终端根据对第一维度下行参考信号进行测量得到的第一维度预编码矩阵指示PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源后,根据所述选择的第二维度下行参考信号资源对第二维度下行参考信号进行测量得到的,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值。
本申请的上述实施例中,网络设备为终端配置了1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系;终端在进行信道测量和反馈时,先根据第一维度下行参考信号资源进行第一维度PMI测量,再根据测量得到的第一维度PMI以及所述第一对应关系确定用于进行第二维度信道测量所使用的第二维度下行参考信号资源,从而基于确定出的第二维度下行参考信号资源进行第二维度信道状态信息测量。可以看出,一方面,由于用于进行测量的第二维度下行参考信号资源是基于第一维度PMI确定出来的,且经过了第一维度波束赋形权值进行赋形,因此所测得的第二维度信道状态中能够体现该终端的第一维度特性,从而得到该终端的三维信道状态;另一方面,由于终端仅使用S个第二维度下行参考信号资源中的部分资源进行第二维度信道状态信息测量,因此可以在不占用过多系统资源开销的情况下,获得终端的三维信道状态信息。
附图说明
图1a-图1d为现有技术3D MIMO中二维天线结构示意图;
图2为本申请实施例中网络侧实现的信道状态信息获取流程示意图;
图3为本申请实施例中终端侧实现的信道状态信息反馈流程示意图;
图4为本申请实施例的工作原理示意图;
图5为本申请实施例提供的终端的结构示意图;
图6为本申请实施例提供的网络设备的结构示意图;
图7为本申请另一实施例提供的终端的结构示意图;
图8为本申请另一实施例提供的网络设备的结构示意图。
具体实施方式
本申请实施例提供了一种信道状态信息的反馈和获取方案,用以获得终端的三维信道状态信息。
将本申请实施例应用于FDD MIMO(Multi-Input Multi-Output,多输入多输出)系统或TDD(Time Division Duplexing,时分双工)MIMO系统,可解决信道状态信息反馈的问题。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
下面介绍的是本申请的多个实施例中的一部分,旨在提供对本申请的基本了解,并不旨在确认本申请的关键或决定性要素或限定所要保护的范围。根据本申请的技术方案,在不变更本申请的实质精神下,可以相互替换而得到其他的实现方式。
参见图2,为本申请实施例提供的信道状态信息反馈流程示意图。该流程在网络侧实现,比如可由基站执行。如图所示,该流程可包括如下步骤:
步骤201:网络设备为终端配置1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
步骤202:所述网络设备根据所述第一维度下行参考信号资源发送第一维度下行参考信号,根据第二维度下行参考信号资源发送第二维度下行参考信号,其中,每个第二维度下行参考信号资源上发送的第二维度下行参考信号是根据与该资源对应的第一维度波束 赋形权值进行赋形后发送的;
步骤203:所述网络设备接收终端根据第二维度下行参考信号测量和反馈的信道状态信息,并根据所述信道状态信息获得所述终端的信道状态;其中,所述信道状态信息是所述终端根据对第一维度下行参考信号进行测量得到的第一维度PMI(Precoding Matrix Indicator,预编码矩阵指示)以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源后,根据所述选择的第二维度下行参考信号资源对第二维度下行参考信号进行测量得到的,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值。
在步骤201中,网络设备可定义一个包含N个第一维度波束赋形权值的集合。该集合中的第一维度波束赋形权值用来对S个第二维度下行参考信号资源上发送的下行参考信号进行第一维度上的波束赋形。该集合中的第一维度波束赋形权值与第二维度下行参考信号资源的对应关系,称为第一对应关系。以下为描述方便,将所有与第二维度下行参考信号资源对应的第一维度波束赋形权值所构成的集合,或者将所有用于对第二维度下行参考信号资源发送的下行参考信号进行波束赋形的第一维度波束赋形权值所构成的集合,称为集合A。集合A为网络设备与终端所共知,且集合A被配置于终端,作为终端进行信道状态信息反馈用的码本(即预编码矩阵集合)。该码本中,包含集合A中的所有第一维度波束赋形权值以及对应的PMI。
在步骤201中,网络设备可将第一维度下行参考信号资源的配置信息、S个第二维度下行参考信号资源的配置信息,以及所述第一对应关系(即N个第一维度赋形权值与S个第二维度下行参考信号资源的对应关系),通过信令告知终端。其中,所述的第一对应关系可以以列表的形式配置,也可以以其他的形式配置。
例如,第一对应关系可以表现为以下表1所示的列表形式:
表1、第一对应关系列表形式
Figure PCTCN2016073363-appb-000001
在步骤202中,网络设备在根据第二维度下行参考信号资源发送第二维度下行参考信号时,每个第二维度下行参考信号资源上发送的第二维度下行参考信号所使用的第一维度 波束赋形权值,与该第二维度下行参考信号资源之间的关系符合所述第一对应关系。例如,基站根据所述第一对应关系,确定每个下行参考信号资源所使用的第一维度波束赋形权值,用确定出的第一维度波束赋形权值对相应第二维度下行参考信号资源上发送的下行参考信号进行波束赋形。
S个第二维度下行参考信号资源可以配置不同的子帧偏移,以实现不同的第二维度下行参考信号资源占用不同的时频资源。S个第二维度下行参考信号资源也可以配置相同的子帧和偏移,但是在一个子帧内的不同位置上,这样可以实现不同的第二维度下行参考信号资源占用不同的频率资源。
可以看出,每个第二维度下行参考信号资源使用一个第一维度波束赋形矩阵,对应一个第一维度波束方向。这样,S个第二维度下行参考信号资源将实现对小区的第一维度覆盖。
在步骤203中,所述终端对第二维度下行参考信号进行测量后所反馈的信道状态信息中可包括:所述选择的用于进行第二维度下行参考信号测量的第二维度下行参考信号资源的索引信息,以及根据所述选择的用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、RI(rank indication,秩指示)和CQI(Channel Quality Indicator,信道质量指示)。
相应地,网络设备可根据所述第二维度下行参考信号资源的索引以及所述第一对应关系,确定与该第二维度下行参考信号资源对应的第一维度波束赋形权值,比如可根据第二维度下行参考信号资源的索引查询表1,得到第一维度波束赋形权值所对应的PMI。然后,网络设备再根据所述确定的第一维度波束赋形权值,以及所述第二维度PMI所指示的预编码矩阵,合成得到所述终端的三维预编码矩阵,比如,可根据以下式(1)或式(2)运算得到该终端的预编码矩阵:
Figure PCTCN2016073363-appb-000002
Figure PCTCN2016073363-appb-000003
其中,V表示终端的预编码矩阵,该预编码矩阵可反映该终端的三维信道状态;V1表示第一维度波束赋形权值;V2表示第二维度PMI所指示的预编码矩阵;
Figure PCTCN2016073363-appb-000004
表示Kronecker乘积运算。
由于集合A中包含N个第一维度维波束赋形权值,而第二维度下行参考信号资源的数量为S个,因此存在N=S,N>S以及N<S三种情况。下面分别针对这三种情况详细描述本申请实施例。
(1)N=S
在N=S的情况下,集合A中包含所有N个第一维度波束赋形权值,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源。
在步骤202中,网络设备可根据所述第一对应关系,确定每个第二维度下行参考信号资源所对应的第一维度波束赋形权值,使用与相应第二维度下行参考信号资源唯一对应的第一维度波束赋形权值对该资源上发送的下行参考信号进行波束赋形后发送。
(2)N>S
在N>S的情况下,一种可能的实现方式中,集合A中包含所有N个第一维度波束赋形权值,所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一维度波束赋形权值具有较大相关性,比如相关性度量值大于门限值。
例如,第一对应关系可以表现为以下表2所示的列表形式:
表2、第一对应关系列表形式
Figure PCTCN2016073363-appb-000005
表2中,PMI 1对应的第一维度波束赋形权值,用来对Index1对应的第二维度下行参考信号资源上发送的下行参考进行进行波束赋形,PMI 2对应的第一维度波束赋形权值不被用来对任何第二维度下行参考信号资源上发送的下行参考信号进行波束赋形。PMI 1和PMI 2对应的第一维度波束赋形权值具有较大相关性,比如,PMI 1和PMI 2对应的第一维度波束之间的角度差小于预设的门限值。
这种情况下,在步骤202中,网络设备可根据所述第一对应关系,确定每个第二维度下行参考信号资源所对应的第一维度波束赋形权值,使用与相应第二维度下行参考信号资源对应的用于进行波束赋形的第一维度波束赋形权值对该资源上发送的下行参考信号进行波束赋形后发送。
在N>S的情况下,另一种可能的实现方式中,集合A中包含S个第一维度波束赋形权值,当然集合A中也可以包含所有N个第一维度波束赋形权值。所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源。
在步骤201中,网络设备可从N个第一维度波束赋形权值中选择出S个波束赋形权值,用来对这S个第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,并将第一维度下行参考信号资源的配置信息、S个第二维度下行参考信号资源的配置信息,以及所述第一对应关系(即N个第一维度赋形权值与S个第二维度下行参考信号资源的对应关系),通过信令告知终端。进一步地,网络设备还可将选择出的S个第一维度波束赋形权值通知给终端。
在步骤202中,网络设备可根据所述第一对应关系,确定每个第二维度下行参考信号资源所对应的第一维度波束赋形权值,使用与相应第二维度下行参考信号资源唯一对应的第一维度波束赋形权值对该资源上发送的下行参考信号进行波束赋形后发送。
(3)N<S
在N<S的情况下,集合A中包含所有N个第一维度波束赋形权值。此外,网络设备还配置第二集合,以下为描述方便,将第二集合称为集合B。集合B中至少包括S个第一维度波束赋形权值,优选地,集合B中包含S个第一维度波束赋形权值。下面以集合B中包含S个第一维度波束赋形权值为例描述。
集合B与集合A中的第一维度波束赋形权值存在一定对应关系,这里为与第一对应关系相区别,将集合B与集合A中的第一维度波束赋形权值之间的对应关系称为第二对应关系。优选地,集合A是集合B的一个子集。根据所述第二对应关系,集合A中至少有一个第一维度波束赋形权值对应集合B中的多个第一维度波束赋形权值。若集合A中的一个第一维度波束赋形权值对应集合B中的多个第一维度波束赋形权值,则集合B中的这多个第一维度波束赋形权值具有较高的相关性,比如,这多个第一维度波束赋形权值之间的相关性大于设定的门限值。
集合A被配置于终端侧作为进行信道状态信息反馈用的码本。
这种情况下,所述第一对应关系是指集合B中的第一维度波束赋形权值与第二维度下行参考信号资源之间的对应关系,具体地,所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,这样,S个第一维度波束赋形权值与S个第二维度下行参考信号资源一一对应。
在步骤201中,网络设备可将第一维度下行参考信号资源的配置信息、S个第二维度 下行参考信号资源的配置信息、集合A、集合B,以及所述第一对应关系(即N个第一维度赋形权值与S个第二维度下行参考信号资源的对应关系)和第二对应关系(即集合A和集合B中的第一维度波束赋形权值之间的对应关系),通过信令告知终端。
在步骤202中,网络设备可根据所述第一对应关系,确定每个第二维度下行参考信号资源所对应的第一维度波束赋形权值,使用与相应第二维度下行参考信号资源唯一对应的第一维度波束赋形权值对该资源上发送的下行参考信号进行波束赋形后发送。
通过以上图2所示流程的描述可以看出,网络设备为终端配置了1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系。这样,终端在进行信道测量和反馈时,先根据第一维度下行参考信号资源进行第一维度PMI测量,再根据测量得到的第一维度PMI以及所述第一对应关系确定用于进行第二维度信道测量所使用的第二维度下行参考信号资源,从而基于确定出的第二维度下行参考信号资源进行第二维度信道状态信息测量。可以看出,一方面,由于用于进行测量的第二维度下行参考信号资源是基于第一维度PMI确定出来的,且经过了第一维度波束赋形权值进行赋形,因此所测得的第二维度信道状态中能够体现该终端的第一维度特性,从而得到该终端的三维信道状态;另一方面,由于终端仅使用S个第二维度下行参考信号资源中的部分资源进行第二维度信道状态信息测量,因此可以在不占用过多系统资源开销的情况下,获得终端的三维信道状态信息。
优选地,网络设备还可接收该网络设备覆盖范围内的终端反馈的第一维度PMI,该第一维度PMI是终端根据网络设备配置的第一维度下行参考信号资源对该资源上发送的下行参考信号进行测量得到并反馈的。第一维度PMI可反映终端的第一维度特性。网络设备可根据该网络设备覆盖范围内的终端反馈的第一维度PMI执行以下操作中的一种或多种:
第一操作:在N>S的情况下,网络设备根据该网络设备覆盖范围内的终端反馈的第一维度PMI,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信号进行波束赋形,比如,选择反馈频率最高的S个PMI所对应的第一维度波束赋形权值。
由于第一维度PMI可反映终端在第一维度上的特性,因此根据终端反馈的第一维度PMI选择S个第一维度波束赋形权值,可以针对当前终端在第一维度上的分布来选择第一维度波束赋形权值,又由于第一维度波束赋形权值用来对第二维度下行参考信号进行波束赋形,从而使终端在根据第二维度下行参考信号进行测量和信道状态信息反馈时,能够获得较为准确的信道状态信息。
第二操作:在N>S的情况下,网络设备为终端从N个第一维度波束赋形权值中选择出S个第一维度波束赋形权值之后,可进一步根据该网络设备覆盖范围内的终端反馈的第一维度PMI,确定所述网络设备覆盖范围内的终端的分布情况,根据终端的分布情况,重新为终端从N个第一维度波束赋形权值中选择S个第一维度波束赋形权值,并将所述重新选择出的S个第一维度波束赋形权值与所述S个第二维度下行参考信号资源的对应关系通知给终端。比如,当根据终端反馈的第一维度PMI确定终端分布发生较大变化时,网络设备可重新为终端选择S个第一维度维波束赋形权值,并将选择出的S个第一维度波束赋形权值与第二维度下行参考信号资源的对应关系告知终端;否则,可保持现有的第一对应关系不变。
通过上述第二操作,可以及时获取终端的分布情况,从而及时根据终端分布的变化,及时调整S个第一维度波束赋形权值矩阵的选取,从而能够获得较为准确的信道状态信息。
第三操作:确定所述网络设备覆盖范围内的终端在第一维度上的分布,根据所述网络设备覆盖范围内的终端在第一维度上的分布,调整第一维度波束赋形权值,即改变第一维度波束的方向,并进一步根据调整后的第一维度波束赋形权值更新终端侧的码本。其中,第一维度波束赋形权值与第二维度下行参考信号资源之间的对应关系可保持不变。
通过所述第三操作,可以根据终端在第一维度上的分布情况调整第一维度波束赋形权值,使其能够更好反映终端在第一维度上的特性,从而提高信道状态信息测量和反馈的准确性。
本申请实施例可适用于具有大规模天线阵列的网络设备。
优选地,网络设备的天线阵列可被按维度划分为K(K为大于1的整数)个天线分组。其中,第一维度下行参考信号资源的天线端口对应一个或多个天线分组内的天线单元,天线端口的数量小于等于一个天线分组内的天线单元的数量;每个第二维度下行参考信号资源的天线端口对应一个或多个天线分组,且天线端口的数目小于等于天线分组的数量K。
以基站为例,可将基站的天线阵列按第一维度分为K组,每组P(P为大于等于1的整数)个天线单元。一种分组方式是按天线阵列的行和列进行分组。具体地,若第一维度为垂直维,第二维度为水平维,则将每列天线分为一组,对于交叉极化天线阵列,可以将每列中的相同极化方向的天线分为一组,即一列天线分为两组,这两组天线的极化方向不同;若第一维度为水平维,第二维度为垂直维,则将每行天线分为一组,对于交叉极化天线阵列,也可以将每行中的相同极化方向的天线分为一组。另一种分组方式是按块进行分组,将天线阵列分成K块,每块内包含P个天线单元。此时第一维度是指块内的天线,第二维度是指多个分块之间。
基于上述天线分组情况,第一维度下行参考信号资源采用按第一维度排列的多个天线端口,天线端口的数目小于等于一个天线分组内的天线单元数目P。其中的一种实现方式是,从天线阵列的某一个分组发出,即第一维度下行参考信号资源的每个天线端口的下行参考信号从一个天线分组内的各个天线单元发出,也可以对K个天线分组内的天线单元发送的下行参考信号进行加权,使得第一维度下行参考信号资源的每个天线端口的下行参考信号经过天线分组间加权后从该天线端口对应的K个天线分组中的K个天线单元发出。
对于S个第二维度下行参考信号资源,其中每个资源均采用按第二维度排列的多个天线端口,天线端口的数目小于等于天线的分组数目K,每个天线端口的导频信号均使用一个第一维度波束赋形权值加权后,从该端口对应的一个天线分组内的天线单元发出。
本申请实施例以天线单元进行描述,所述天线单元采用的是每个阵子独立控制的有源天线,天线功放与天线端口集成在一起。其他形式的天线单元也可以采用本方案。假设每个天线单元都有相应的射频收发单元(TXRU),即TXRU到天线单元之间是一一映射。如果一个TXRU映射到多个天线单元,则本申请实施例中描述的一个天线单元代表一个TXRU映射的一组天线单元。
参见图3,为本申请实施例提供的信道状态信息反馈流程示意图,该流程在终端侧实现。如图所示,该流程可包括如下步骤:
步骤301:终端获得网络设备配置的1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
步骤302:所述终端根据所述第一维度下行参考信号资源,对第一维度下行参考信号进行测量,得到第一维度PMI,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值;
步骤303:所述终端根据所述得到的第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源;
步骤304:所述终端根据所述选择的用于进行第二维度下行参考信号测量的资源,对第二维度下行参考信号进行测量和信道状态信息反馈;其中,所述选择的第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的。
上述流程中,在涉及到网络设备的操作部分中,网络设备的操作过程或方式可如前述网络侧流程所述。比如,在步骤301中,网络设备为终端配置第一维度下行参考信号资源、第二维度下行参考信号资源以及所述第一对应关系的操作,可同前述实施例一致,在此不 再详述。
如前所述,可将所有与第二维度下行参考信号资源对应的第一维度波束赋形权值所构成的集合,或者将所有用于对第二维度下行参考信号资源发送的下行参考信号进行波束赋形的第一维度波束赋形权值所构成的集合,称为集合A。集合A为网络设备与终端所共知,且集合A被配置于终端,作为终端进行信道状态信息反馈用的码本(即预编码矩阵集合)。该码本中,包含集合A中的所有第一维度波束赋形权值以及对应的PMI。
在步骤302中,终端可根据第一维度下行参考信号资源,在相应的资源上接收下行参考信号并进行测量,根据测量结果以及集合A,得到与测量结果对应的第一维度PMI。
由于集合A中的第一维度维波束赋形权值的数量为N个,而第二维度下行参考信号资源的数量为S个,因此存在N=S,N>S以及N<S三种情况。下面分别针对这三种情况详细描述本申请实施例。
(1)N=S
在N=S的情况下,集合A中包含所有N个第一维度波束赋形权值,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源。
这种情况下,在步骤303中,终端根据步骤302中得到的第一维度PMI,查询所述第一对应关系,得到与该第一维度PMI唯一对应的第二维度下行参考信号资源,并将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
(2)N>S
在N>S的情况下,一种可能的实现方式中,集合A中包含S个第一维度波束赋形权值,当然集合A中也可以包含所有N个第一维度波束赋形权值。所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源。
这种情况下,存在某些第一维度赋形权值不在所述第一对应关系中的情况,即,有可能多个第一维度波束赋形权值对应一个第二维度下行参考信号资源。一种实现方式是根据第一维度波束赋形权值之间的某种度量准则,选择与测得的第一维度PMI满足某种度量准则的集合A中的赋形权值所对应的第二维度下行参考信号资源进行测量。此度量准则可以是赋形权值之间的相关性大于某一阈值。
具体地,在步骤303中,终端根据在步骤302中得到的第一维度PMI查询所述第一对应关系;若查询到与该第一维度PMI对应的第二维度下行参考信号资源,则将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源;若未查询到与该第一维度PMI对应的第二维度下行参考信号资源,则根据这S个第一维度波束赋形权 值与第一维度PMI指示的第一维度波束赋形权值的相关性,从这S个第一维度波束赋形权值中选择一个,并根据所述第一对应关系查询与选择出的第一维度波束赋形权值对应的第二维度下行参考信号资源,将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
在N>S的情况下,另一种可能的实现方式中,集合A中包含所有N个第一维度波束赋形权值,所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一维度波束赋形权值具有较大相关性,比如相关性度量值大于门限值。
这种情况下,在步骤303中,终端根据步骤302中得到的第一维度PMI,查询所述第一对应关系,得到与该第一维度PMI对应的第二维度下行参考信号资源,并将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。这种方式与N>S的情况下的上一种处理方式相比,可以节省终端的处理资源开销。
(3)N<S
在N<S的情况下,集合A中包含所有N个第一维度波束赋形权值。此外,网络设备还配置第二集合,以下为描述方便,将第二集合称为集合B。集合B中至少包括S个第一维度波束赋形权值,优选地,集合B中包含S个第一维度波束赋形权值。下面以集合B中包含S个第一维度波束赋形权值为例描述。
集合B与集合A中的第一维度波束赋形权值存在一定对应关系,这里为与第一对应关系相区别,将集合B与集合A中的第一维度波束赋形权值之间的对应关系称为第二对应关系。优选地,集合A是集合B的一个子集。根据所述第二对应关系,集合A中至少有一个第一维度波束赋形权值对应集合B中的多个第一维度波束赋形权值。若集合A中的一个第一维度波束赋形权值对应集合B中的多个第一维度波束赋形权值,则集合B中的这多个第一维度波束赋形权值具有较高的相关性,比如,这多个第一维度波束赋形权值之间的相关性大于设定的门限值。
集合A被配置于终端侧作为进行信道状态信息反馈用的码本。
这种情况下,在步骤301中或是在其他时间点,网络设备还要将所述第二对应关系配置给终端。比如,网络设备可通过广播消息或高层信令将所述第二对应关系配置给终端。
在步骤303中,终端可根据在步骤302中得到的第一维度PMI查询所述第二对应关系, 得到与该第一维度PMI对应的集合B中的第一维度波束赋形权值,其中,由于集合A配置于终端作为信道状态信息测量和反馈用的码本,因此在步骤302中,终端是基于集合A得到第一维度PMI的,也就是说,该第一维度PMI指示集合A中的第一维度波束赋形权值,这样,终端根据该第一维度PMI查询第二对应关系,可以得到与该集合A中的PMI对应的集合B中的PMI。然后,终端根据得到的集合B中的第一维度波束赋形权值查询所述第一对应关系,得到对应的第二维度下行参考信号资源,根据所述得到的第二维度下行参考信号资源确定用于进行第二维度下行参考信号测量的资源。
进一步地,在步骤303中,若终端最终查询到多个第二维度下行参考信号资源,可将该多个下行参考信号资源作为用于进行第二维度下行参考信号测量的资源,也可以从中选择部分资源作为用于进行第二维度下行参考信号测量的资源。
上述图3所示的流程中,根据步骤303中确定出的用于进行第二维度下行参考信号测量的资源,在步骤304中,终端基于确定出的资源进行第二维度下行参考信号的测量和信道状态信息的反馈。
UE针对找到的1个或者多个水平维CSI-RS资源进行测量并计算水平维的信道状态信息,选择其中的一个进行反馈或者对此多个水平维信道状态信息全部进行反馈。
其中,终端对第二维度下行参考信号进行测量后所反馈的信道状态信息中通常可包括如下内容:根据在步骤303中选择的用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、RI和CQI,还可以进一步包括RI。进一步地,本申请实施例中,终端反馈的信道状态信息中还可包括在步骤303中选择的用于进行第二维度下行参考信号测量的第二维度下行参考信号资源的索引,以使网络设备根据终端反馈的PMI所指示的预编码矩阵以及该资源索引所对应的第一维度波束赋形权值得到该终端的三维信道状态。
由于第二维度下行参考信号资源上发送的下行参考信号,使用了对应的第一维度赋形权值进行第一维度上的波束赋形,因此终端基于第二维度下行参考信号测量和反馈的信道状态信息中包含第一维度的增益。
通过以上图2所示流程的描述可以看出,网络设备为终端配置了1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系。这样,终端在进行信道测量和反馈时,先根据第一维度下行参考信号资源进行第一维度PMI测量,再根据测量得到的第一维度PMI以及所述第一对应关系确定用于进行第二维度信道测量所使用的第二维度下行参考信号资源,从而基于确定出的第二维度下行参考信号资源进行第二 维度信道状态信息测量。可以看出,一方面,由于用于进行测量的第二维度下行参考信号资源是基于第一维度PMI确定出来的,且经过了第一维度波束赋形权值进行赋形,因此所测得的第二维度信道状态中能够体现该终端的第一维度特性,从而得到该终端的三维信道状态;另一方面,由于终端仅使用S个第二维度下行参考信号资源中的部分资源进行第二维度信道状态信息测量,因此可以在不占用过多系统资源开销的情况下,获得终端的三维信道状态信息。
优选地,终端还可将步骤302中得到的第一维度PMI反馈给网络设备。该第一维度PMI可反映终端的第一维度特性。网络设备可根据该网络设备覆盖范围内的终端反馈的第一维度PMI,执行以下操作中的一种或多种:
第一操作:在N>S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信号进行波束赋形;
第二操作:在N>S的情况下,为终端从N个第一维度波束赋形权值中选择出S个第一维度波束赋形权值之后,可进一步根据该网络设备覆盖范围内的终端反馈的第一维度PMI,确定所述网络设备覆盖范围内的终端的分布情况,根据终端的分布情况,重新为终端从N个第一维度波束赋形权值中选择S个第一维度波束赋形权值,并将所述重新选择出的S个第一维度波束赋形权值与所述S个第二维度下行参考信号资源的对应关系通知给终端;
第三操作:确定所述网络设备覆盖范围内的终端在第一维度上的分布,根据所述网络设备覆盖范围内的终端在第一维度上的分布,调整第一维度波束赋形权值,并进一步根据调整后的第一维度波束赋形权值更新终端侧的码本。
本申请的上述各实施例中,下行参考信号可以是CRS(Cell-specific Reference Signal,小区参考信号)或CSI-RS,或其他能够用于信道状态信息测量的参考信号,本申请实施例对下行参考信号的类型不作限制。
本申请的上述各实施例中,第一维度为垂直维度,第二维度为水平维度;或者,第一维度为水平维度,第二维度为垂直维度。
以第一维度为垂直维度,第二维度为水平维度为例,图4示出了本申请的工作原理示意图。图4中,基站的天线阵列为2行2列,第一列天线中的同一极化方向的天线单元被划分为一个垂直维度的天线分组,每一行天线的天线单元被划分为一个水平维度的天线分组。
在一个周期T内,垂直维度的CSI-RS的时频资源为{子帧N},对应的天线端口为第 一列天线单元中同一个极化方向的天线端口(如图中粗实线所示)。水平维度的CSI-RS的时频资源为{子帧N+a,子帧N+a+1,……,子帧N+a+S-1,……}共S个子帧。水平维度的CSI-RS的资源对应的天线端口为第4行天线单元的天线端口(如图中粗实线所示)。
集合A中包含S个垂直维度波束赋形权值,对应的PMI表示为{PMI1,PMI2,……,PMIS,}。集合A中的垂直维度波束赋形权值与水平维度CSI-RS资源的对应关系如图所示。集合A被配置于终端侧,作为终端针对垂直维度CSI-RS进行测量和反馈的码本。
在周期T内,基站在子帧N,通过垂直维度CSI-RS资源对应的天线端口发送垂直维度CSI-RS,在子帧子帧N+a,子帧N+a+1,……,子帧N+a+S-1,……等S个子帧,通过水平维度CSI-RS资源对应的天线端口发送水平维度CSI-RS。终端在子帧N,对垂直维度CSI-RS进行测量得到PMI2,根据PMI2确定在子帧N+a+1上接收水平维度CSI-RS,并对其进行测量和信道状态信息反馈。
为了更清楚地理解本申请的上述实施例,下面结合具体实施例分别给出N=S、N>S以及N<S三种情况下的具体实现过程。
(1)N=S的情况下
集合A为:{垂直维度波束赋形权值1(PMI1),垂直维度波束赋形权值2(PMI2),……,垂直维度波束赋形权值N(PMIN)}
第一对应关系为:垂直维度波束赋形权值1(PMI1)对应水平维度CSI-RS资源1,垂直维度波束赋形权值2(PMI2)对应水平维度CSI-RS资源2,……,垂直维度波束赋形权值N(PMIN)对应水平维度CSI-RS资源N。
在基站侧,按照以下方式对水平维度CSI-RS进行波束赋形:
用垂直维度波束赋形权值1对水平维度CSI-RS资源1发送的CS-RS进行波束赋形;
用垂直维度波束赋形权值2对水平维度CSI-RS资源2发送的CSI-RS进行波束赋形;
……;
用垂直维度波束赋形权值N对水平维度CSI-RS资源N的CSI-RS进行波束赋形。
在UE侧,基于垂直维度CSI-RS测量得到PMI1,根据PMI1查询第一对应关系得到水平维度CSI-RS资源1,在水平维度CSI-RS资源1上接收经过PMI1对应的垂直维度波束赋形权值1赋形的水平维度CSI-RS并进行测量,得到CSI(Channel State Information,信道状态信息)后反馈。
(2)N>S的情况下
第一种实施例
集合A为:{垂直维度波束赋形权值1(PMI1),垂直维度波束赋形权值2(PMI2),……, 垂直维度波束赋形权值N(PMIN)}
第一对应关系为:垂直维度波束赋形权值1和垂直维度波束赋形权值2(PMI1和PMI2)对应水平维度CSI-RS资源1,垂直维度波束赋形权值3(PMI3)对应水平维度CSI-RS资源2,……。其中,垂直维度波束赋形权值1和垂直维度波束赋形权值2相关性较大,垂直维度波束赋形权值2不会用来对水平维度CSI-RS进行波束赋值。
在基站侧,按照以下方式对水平维度CSI-RS进行波束赋形:
用垂直维度波束赋形权值1对水平维度CSI-RS资源1上发送的CSI-RS进行波束赋形;
用垂直维度波束赋形权值3对水平维度CSI-RS资源2上发送的CSI-RS进行波束赋形;
……。
在UE1侧,基于垂直维度CSI-RS测量得到PMI1,根据PMI1查询第一对应关系得到水平维度CSI-RS资源1,在水平维度CSI-RS资源1上接收经过垂直维度波束赋形权值1赋形的水平维度CSI-RS并进行测量,得到CSI后反馈。
在UE2侧,基于垂直维度CSI-RS测量得到PMI2,根据PMI2查询第一对应关系得到水平维度CSI-RS资源1,在水平维度CSI-RS资源1上接收经过垂直维度波束赋形权值1赋形的水平维度CSI-RS并进行测量,得到CSI后反馈。
第二种实施例
集合A为:{垂直维度波束赋形权值1(PMI1),垂直维度波束赋形权值2(PMI2),……,垂直维度波束赋形权值N(PMIN)}
第一对应关系为:垂直维度波束赋形权值1(PMI1)对应水平维度CSI-RS资源1,垂直维度波束赋形权值3(PMI3)对应水平维度CSI-RS资源2,……。其中,垂直维度波束赋形权值1和垂直维度波束赋形权值2相关性较大,垂直维度波束赋形权值2不会用来对水平维度CSI-RS进行波束赋值。
在基站侧,按照以下方式对水平维度CSI-RS进行波束赋形:
用垂直维度波束赋形权值1对水平维度CSI-RS资源1的参考信号进行波束赋形;
用垂直维度波束赋形权值3对水平维度CSI-RS资源2的参考信号进行波束赋形;
……。
在UE1侧,基于垂直维度CSI-RS测量得到PMI1,根据PMI1查询第一对应关系得到水平维度CSI-RS资源1,在水平维度CSI-RS资源1上接收经过垂直维度波束赋形权值1赋形的水平维度CSI-RS并进行测量,得到CSI后反馈。
在UE2侧,基于垂直维度CSI-RS测量得到PMI2,根据PMI2查询第一对应关系失败,则计算PMI2对应的第一维度波束赋形权值与第一对应关系中的哪个第一维度波束赋形权 值的相关性最大,发现与第一对应关系中的PMI1指示的第一维度波束赋形权值的相关性最大,因此在PMI1对应的水平维度CSI-RS资源1上接收经过垂直维度波束赋形权值1赋形的水平维度CSI-RS并进行测量,得到CSI后反馈。
(3)N<S的情况下
集合A为:{垂直维度波束赋形权值1(PMI1),垂直维度波束赋形权值2(PMI2),……,垂直维度波束赋形权值N(PMIN)}
集合B为:{垂直维度波束赋形权值1(PMI1),垂直维度波束赋形权值2(PMI2),……,垂直维度波束赋形权值N(PMIN),垂直维度波束赋形权值N+1(PMIN+1),……,垂直维度波束赋形权值S(PMIS),}
第一对应关系为:垂直维度波束赋形权值1(PMI1)对应水平维度CSI-RS资源1,垂直维度波束赋形权值2(PMI2)对应水平维度CSI-RS资源2,垂直维度波束赋形权值S(PMIS)对应水平维度CSI-RS资源S。
第二对应关系为:集合A中的PMI1对应集合B中的PMI1和PMI2,集合A中的PMI2对应集合B中的PMI3,……。
在基站侧,按照以下方式对水平维度CSI-RS进行波束赋形:
用集合B中的垂直维度波束赋形权值1对水平维度CSI-RS资源1上发送的CSI-RS进行波束赋形;
用集合B中的垂直维度波束赋形权值2对水平维度CSI-RS资源2上发送的CSI-RS进行波束赋形;
……;
用集合B中的垂直维度波束赋形权值S对水平维度CSI-RS资源S上发送的CSI-RS进行波束赋形。
在UE1侧,基于垂直维度CSI-RS测量得到集合A的PMI1,根据集合A与集合B的对应关系,将集合A的PMI1映射为集合B的PMI1和PMI2,再根据集合B的PMI1和PMI2查询第一对应关系,得到水平维度CSI-RS资源1和资源2,在这两个资源上接收经过集合B中的垂直维度波束赋形权值1和权值2赋形的水平维度CSI-RS并进行测量,得到CSI后反馈。
在UE2侧,基于垂直维度CSI-RS测量得到集合A的PMI2,根据集合A与集合B的对应关系,将集合A的PMI2映射为集合B的PMI3,根据集合B的PMI2查询第一对应关系,得到水平维度CSI-RS资源3,在这个资源上接收经过集合B中的垂直维度波束赋形权值3赋形的水平维度CSI-RS并进行测量,得到CSI后反馈。
基于相同的技术构思,本申请实施例提供了一种终端。
参见图5,为本申请实施例提供的终端的结构示意图。该终端可包括:获取模块501、第一测量模块502、选择模块503以及第二测量模块504,其中:
获取模块501,用于获得网络设备配置的1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
第一测量模块502,用于根据所述第一维度下行参考信号资源,对第一维度下行参考信号进行测量,得到第一维度预编码矩阵指示PMI,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值;
选择模块503,用于根据所述得到的第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源;
第二测量模块504,用于根据所述选择的用于进行第二维度下行参考信号测量的资源,对第二维度下行参考信号进行测量和信道状态信息反馈;其中,所述选择的第二维度下行参考信号资源上发送的第二维度参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的。
若N等于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源。
若N大于S,则所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且,所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一波束赋形权值之间的相关性度量值大于门限值。
相应地,上述两种情况下,选择模块503可具体用于:根据所述得到的第一维度PMI查询所述第一对应关系,得到与所述第一维度PMI唯一对应的第二维度下行参考信号资源,并将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
若N大于S,则所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源。
相应地,选择模块503可具体用于:根据所述得到的第一维度PMI查询所述第一对应关系;若查询到与所述第一维度PMI对应的第二维度下行参考信号资源,则将查询到的第 二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源;若未查询到与所述第一维度PMI对应的第二维度下行参考信号资源,则根据所述S个第一维度波束赋形权值与所述第一维度PMI指示的第一维度波束赋形权值的相关性,从所述S个第一维度波束赋形权值中选择一个,并根据所述第一对应关系查询与所述选择的第一维度波束赋形权值对应的第二维度下行参考信号资源,将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
若N小于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,且所述第一对应关系中,与第二维度下行参考信号资源对应的所有第一维度波束赋形权值属于第二集合;且,所述第二集合中至少包括S个第一维度波束赋形权值,所述第二集合与第一集合中的第一维度波束赋形权值存在第二对应关系,且所述第一集合中至少有一个第一维度波束赋形权值对应所述第二集合中的多个第一维度波束赋形权值,所述第一集合配置于所述终端作为进行第一维度下行参考信号测量用的码本。
相应地,获取模块501还可用于:获得所述网络设备配置的所述第二对应关系。选择模块503可具体用于:根据所述得到的第一维度PMI查询所述第二对应关系,得到与所述第一维度PMI对应的所述第二集合中的第一维度波束赋形权值,其中,所述第一维度PMI指示所述第一集合中的第一维度波束赋形权值;根据所述得到的第二集合中的第一维度波束赋形权值查询所述第一对应关系,得到对应的第二维度下行参考信号资源,根据所述得到的第二维度下行参考信号资源确定用于进行第二维度下行参考信号测量的资源。
优选地,第二测量模块504对第二维度下行参考信号进行测量后所反馈的信道状态信息中包括:所述选择的用于进行第二维度下行参考信号测量的第二维度下行参考信号资源的索引,以及根据所述选择的用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、RI和CQI。
优选地,第二测量模块504还可用于:在得到第一维度PMI之后,将所述得到的第一维度PMI反馈给所述网络设备。
基于相同的技术构思,本申请实施例提供了一种网络设备。
参见图6,为本申请实施例提供的网络设备的结构示意图。该网络设备可包括:配置模块601、参考信号发送模块602、信道状态确定模块603,进一步地,还可包括获取模块604,其中:
配置模块601,用于为终端配置1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
参考信号发送模块602,用于根据所述第一维度下行参考信号资源发送第一维度下行参考信号,根据第二维度下行参考信号资源发送第二维度下行参考信号,其中,每个第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的;
信道状态确定模块603,用于接收终端根据第二维度下行参考信号测量和反馈的信道状态信息,并根据所述信道状态信息获得所述终端的信道状态;其中,所述信道状态信息是所述终端根据对第一维度下行参考信号进行测量得到的第一维度预编码矩阵指示PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源后,根据所述选择的第二维度下行参考信号资源对第二维度下行参考信号进行测量得到的,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值。
优选地,所述终端对第二维度下行参考信号进行测量后所反馈的信道状态信息中包括:所述选择的用于进行第二维度下行参考信号测量的第二维度下行参考信号资源的索引信息,以及根据所述选择的用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、RI和信道质量指示CQI。
相应地,信道状态确定模块603可具体用于:根据所述第二维度下行参考信号资源的索引以及所述第一对应关系,确定与所述第二维度下行参考信号资源对应的第一维度波束赋形权值;根据所述确定的第一维度波束赋形权值,以及所述第二维度PMI所指示的预编码矩阵,合成得到所述终端的预编码矩阵。
进一步地,获取模块604可接收所述网络设备覆盖范围内的终端反馈的第一维度PMI。相应地,配置模块601还可根据所述网络设备覆盖范围内的终端反馈的第一维度PMI执行以下第一操作至第三操作中的一种或多种:
所述第一操作包括:在N大于S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信号进行波束赋形;
所述第二操作包括:在N大于S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信号进行波束赋形之后,根据所述网络设备覆盖范围内的终端反馈的第一维度PMI确定终端的分布,根据终端的分布重新从N个第一维度波束赋形权值中选择出S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,并将所述重新选择出的S个第一维度波束赋形权值与所述S个第二维度下行参考信号资源的 对应关系通知给终端;
所述第三操作包括:确定所述网络设备覆盖范围内的终端在第一维度上的分布,根据所述网络设备覆盖范围内的终端在第一维度上的分布,调整第一维度波束赋形权值。
若N等于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源。
若N大于S,则所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且,所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一维度波束赋形权值之间的相关性度量值大于门限值。
若N大于S,则所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源。
若N小于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,且所述第一对应关系中,与第二维度下行参考信号资源对应的所有第一维度波束赋形权值属于第二集合;且,所述第二集合中至少包括S个第一维度波束赋形权值,所述第二集合与第一集合中的第一维度波束赋形权值存在第二对应关系,且所述第一集合中至少有一个第一维度波束赋形权值对应所述第二集合中的多个第一维度波束赋形权值,所述第一集合配置于所述终端作为进行第一维度下行参考信号测量用的码本。
基于相同的技术构思,本申请实施例还提供了一种终端。
参见图7,为本申请实施例提供的终端的结构示意图。该终端可包括:处理器701、存储器702、收发机703以及总线接口。
处理器701负责管理总线架构和通常的处理,存储器702可以存储处理器701在执行操作时所使用的数据。收发机703用于在处理器701的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器702代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机703可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器701负责管理总线架构和通常的处理,存储器702可以存储处理器701在执行操作时所使用的数据。
处理器701,用于读取存储器702中的程序,执行下列过程:
获得网络设备配置的1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
根据所述第一维度下行参考信号资源,对第一维度下行参考信号进行测量,得到第一维度PMI,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值;
根据所述得到的第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源;
根据所述选择的用于进行第二维度下行参考信号测量的资源,对第二维度下行参考信号进行测量和信道状态信息反馈;其中,所述选择的第二维度下行参考信号资源上发送的第二维度参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的。
其中,若N等于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源。
其中,若N大于S,则所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且,所述多个第一维度波束赋形权值中中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一波束赋形权值之间的相关性度量值大于门限值。
相应地,上述两种情况下,处理器701可具体用于:根据所述得到的第一维度PMI查询所述第一对应关系,得到与所述第一维度PMI唯一对应的第二维度下行参考信号资源,并将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
其中,若N大于S,则所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源。
相应地,处理器701可具体用于:根据所述得到的第一维度PMI查询所述第一对应关系;若查询到与所述第一维度PMI对应的第二维度下行参考信号资源,则将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源;若未查询到与所述第一维度PMI对应的第二维度下行参考信号资源,则根据所述S个第一维度波束赋形权值与所述第一维度PMI指示的第一维度波束赋形权值的相关性,从所述S个第一维度波 束赋形权值中选择一个,并根据所述第一对应关系查询与所述选择的第一维度波束赋形权值对应的第二维度下行参考信号资源,将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
其中,若N小于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,且所述第一对应关系中,与第二维度下行参考信号资源对应的所有第一维度波束赋形权值属于第二集合;且,所述第二集合中至少包括S个第一维度波束赋形权值,所述第二集合与第一集合中的第一维度波束赋形权值存在第二对应关系,且所述第一集合中至少有一个第一维度波束赋形权值对应所述第二集合中的多个第一维度波束赋形权值,所述第一集合配置于所述终端作为进行第一维度下行参考信号测量用的码本。
相应地,处理器701可进一步用于:通过收发机703获得所述网络设备配置的所述第二对应关系。进一步地,处理器701可根据所述得到的第一维度PMI查询所述第二对应关系,得到与所述第一维度PMI对应的所述第二集合中的第一维度波束赋形权值,其中,所述第一维度PMI指示所述第一集合中的第一维度波束赋形权值;根据所述得到的第二集合中的第一维度波束赋形权值查询所述第一对应关系,得到对应的第二维度下行参考信号资源,根据所述得到的第二维度下行参考信号资源确定用于进行第二维度下行参考信号测量的资源。
优选地,处理器701通过收发机703对第二维度下行参考信号进行测量后所反馈的信道状态信息中包括:所述选择的用于进行第二维度下行参考信号测量的第二维度下行参考信号资源的索引,以及根据所述选择的用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、RI和CQI。
优选地,处理器701还可用于:在得到第一维度PMI之后,通过收发机703将所述得到的第一维度PMI反馈给所述网络设备。
基于相同的技术构思,本申请实施例还提供了一种网络设备。
参见图8,为本申请实施例提供的网络设备的结构示意图。该网络设备可包括:处理器801、存储器802、收发机803以及总线接口。
处理器801负责管理总线架构和通常的处理,存储器802可以存储处理器801在执行操作时所使用的数据。收发机803用于在处理器801的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器802代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的, 因此,本文不再对其进行进一步描述。总线接口提供接口。收发机803可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器801负责管理总线架构和通常的处理,存储器802可以存储处理器801在执行操作时所使用的数据。
处理器801,用于读取存储器802中的程序,执行下列过程:
为终端配置1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
根据所述第一维度下行参考信号资源发送第一维度下行参考信号,根据第二维度下行参考信号资源发送第二维度下行参考信号,其中,每个第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的;
接收终端根据第二维度下行参考信号测量和反馈的信道状态信息,并根据所述信道状态信息获得所述终端的信道状态;其中,所述信道状态信息是所述终端根据对第一维度下行参考信号进行测量得到的第一维度预编码矩阵指示PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源后,根据所述选择的第二维度下行参考信号资源对第二维度下行参考信号进行测量得到的,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值。
优选地,所述终端对第二维度下行参考信号进行测量后所反馈的信道状态信息中包括:所述选择的用于进行第二维度下行参考信号测量的第二维度下行参考信号资源的索引信息,以及根据所述选择的用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、RI和CQI。
相应地,处理器801可具体用于:根据所述第二维度下行参考信号资源的索引以及所述第一对应关系,确定与所述第二维度下行参考信号资源对应的第一维度波束赋形权值;根据所述确定的第一维度波束赋形权值,以及所述第二维度PMI所指示的预编码矩阵,合成得到所述终端的预编码矩阵。
进一步地,处理器801可通过收发机803接收所述网络设备覆盖范围内的终端反馈的第一维度PMI。相应地,处理器801还可根据所述网络设备覆盖范围内的终端反馈的第一维度PMI执行以下第一操作至第三操作中的一种或多种:
所述第一操作包括:在N大于S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信 号进行波束赋形;
所述第二操作包括:在N大于S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信号进行波束赋形之后,根据所述网络设备覆盖范围内的终端反馈的第一维度PMI确定终端的分布,根据终端的分布重新从N个第一维度波束赋形权值中选择出S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,并将所述重新选择出的S个第一维度波束赋形权值与所述S个第二维度下行参考信号资源的对应关系通知给终端;
所述第三操作包括:确定所述网络设备覆盖范围内的终端在第一维度上的分布,根据所述网络设备覆盖范围内的终端在第一维度上的分布,调整第一维度波束赋形权值。
其中,若N等于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源。
其中,若N大于S,则所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且,所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一波束赋形权值之间的相关性度量值大于门限值。
其中,若N大于S,则所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源。
其中,若N小于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,且所述第一对应关系中,与第二维度下行参考信号资源对应的所有第一维度波束赋形权值属于第二集合;且,所述第二集合中至少包括S个第一维度波束赋形权值,所述第二集合与第一集合中的第一维度波束赋形权值存在第二对应关系,且所述第一集合中至少有一个第一维度波束赋形权值对应所述第二集合中的多个第一维度波束赋形权值,所述第一集合配置于所述终端作为进行第一维度下行参考信号测量用的码本。
综上所述,在第一维度为垂直维度,第二维度为水平维度的情况下,本申请实施例不需要对所有水平维度的CSI-RS资源进行RSRP(Reference Signal Receiving Power,参考信号接收功率)测量,避免基站频繁使用高层指令告知终端对哪个水平维度CSI-RS资源进行反馈,反馈的水平维度维信道状态信息中包含了垂直维度增益,从而提高了信道状态信 息的准确性,进一步地还可以适时调整垂直维度波束的方向。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种信道状态信息反馈方法,其特征在于,包括:
    终端获得网络设备配置的1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
    所述终端根据所述第一维度下行参考信号资源,对第一维度下行参考信号进行测量,得到第一维度预编码矩阵指示PMI,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值;
    所述终端根据得到的所述第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源;
    所述终端根据所述选择的用于进行第二维度下行参考信号测量的资源,对第二维度下行参考信号进行测量和信道状态信息反馈;其中,在选择的所述第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的。
  2. 如权利要求1所述的方法,其特征在于,若N等于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源。
  3. 如权利要求1所述的方法,其特征在于,若N大于S,则所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且
    所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一维度波束赋形权值之间的相关性度量值大于门限值。
  4. 如权利要求2或3所述的方法,其特征在于,所述终端根据得到的所述第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源,具体包括:
    所述终端根据得到的所述第一维度PMI查询所述第一对应关系,得到与所述第一维度PMI对应的第二维度下行参考信号资源,并将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
  5. 如权利要求1所述的方法,其特征在于,若N大于S,则所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度 下行参考信号资源。
  6. 如权利要求5所述的方法,其特征在于,所述终端根据得到的所述第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源,具体包括:
    所述终端根据得到的所述第一维度PMI查询所述第一对应关系;
    若查询到与所述第一维度PMI对应的第二维度下行参考信号资源,则将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源;
    若未查询到与所述第一维度PMI对应的第二维度下行参考信号资源,则根据所述S个第一维度波束赋形权值与所述第一维度PMI指示的第一维度波束赋形权值的相关性,从所述S个第一维度波束赋形权值中选择一个,并根据所述第一对应关系查询与所述选择的第一维度波束赋形权值对应的第二维度下行参考信号资源,将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
  7. 如权利要求1所述的方法,其特征在于,若N小于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,且所述第一对应关系中,与第二维度下行参考信号资源对应的所有第一维度波束赋形权值属于第二集合;且
    所述第二集合中至少包括S个第一维度波束赋形权值,所述第二集合与第一集合中的第一维度波束赋形权值存在第二对应关系,且所述第一集合中至少有一个第一维度波束赋形权值对应所述第二集合中的多个第一维度波束赋形权值,所述第一集合配置于所述终端作为进行第一维度下行参考信号测量用的码本。
  8. 如权利要求7所述的方法,其特征在于,还包括:所述终端获得所述网络设备配置的所述第二对应关系;
    所述终端根据所述得到的第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源,具体包括:
    所述终端根据得到的所述第一维度PMI查询所述第二对应关系,得到与所述第一维度PMI对应的所述第二集合中的第一维度波束赋形权值;其中,所述第一维度PMI指示所述第一集合中的第一维度波束赋形权值;
    所述终端根据得到的所述第二集合中的第一维度波束赋形权值查询所述第一对应关系,得到对应的第二维度下行参考信号资源,根据所述得到的第二维度下行参考信号资源确定用于进行第二维度下行参考信号测量的资源。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述终端对第二维度下行参考信号进行测量后所反馈的信道状态信息中包括:选择的所述用于进行第二维度下行参 考信号测量的第二维度下行参考信号资源的索引,以及根据选择的所述用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、秩指示RI和信道质量指示CQI。
  10. 如权利要求1至8中任一项所述的方法,其特征在于,所述终端得到第一维度PMI之后,还包括:
    所述终端将得到的所述第一维度PMI反馈给所述网络设备。
  11. 一种信道状态信息获取方法,其特征在于,包括:
    网络设备为终端配置1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
    所述网络设备根据所述第一维度下行参考信号资源发送第一维度下行参考信号,根据第二维度下行参考信号资源发送第二维度下行参考信号,其中,每个第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的;
    所述网络设备接收终端根据第二维度下行参考信号测量和反馈的信道状态信息,并根据所述信道状态信息获得所述终端的信道状态;其中,所述信道状态信息是所述终端根据对第一维度下行参考信号进行测量得到的第一维度预编码矩阵指示PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源后,根据所述选择的第二维度下行参考信号资源对第二维度下行参考信号进行测量得到的,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值。
  12. 如权利要求11所述的方法,其特征在于,所述终端对第二维度下行参考信号进行测量后所反馈的信道状态信息中包括:选择的所述用于进行第二维度下行参考信号测量的第二维度下行参考信号资源的索引信息,以及根据选择的所述用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、秩指示RI和信道质量指示CQI;
    所述网络设备根据所述信道状态信息获得所述终端的信道状态,具体包括:
    所述网络设备根据所述第二维度下行参考信号资源的索引以及所述第一对应关系,确定与所述第二维度下行参考信号资源对应的第一维度波束赋形权值;
    所述网络设备根据确定的所述第一维度波束赋形权值,以及所述第二维度PMI所指示的预编码矩阵,合成得到所述终端的预编码矩阵。
  13. 如权利要求11所述的方法,其特征在于,还包括:
    所述网络设备接收所述网络设备覆盖范围内的终端反馈的第一维度PMI;
    所述网络设备根据所述网络设备覆盖范围内的终端反馈的第一维度PMI执行以下第一操作至第三操作中的一种或多种:
    所述第一操作包括:在N大于S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信号进行波束赋形;
    所述第二操作包括:在N大于S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信号进行波束赋形之后,根据所述网络设备覆盖范围内的终端反馈的第一维度PMI确定终端的分布,根据终端的分布重新从N个第一维度波束赋形权值中选择出S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,并将所述重新选择出的S个第一维度波束赋形权值与所述S个第二维度下行参考信号资源的对应关系通知给终端;
    所述第三操作包括:确定所述网络设备覆盖范围内的终端在第一维度上的分布,根据所述网络设备覆盖范围内的终端在第一维度上的分布,调整第一维度波束赋形权值。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,若N等于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源。
  15. 如权利要求11至13中任一项所述的方法,其特征在于,若N大于S,则所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且
    所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一维度波束赋形权值之间的相关性度量值大于门限值。
  16. 如权利要求11至13中任一项所述的方法,其特征在于,若N大于S,则所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源。
  17. 如权利要求11至13中任一项所述的方法,其特征在于,若N小于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,且所述 第一对应关系中,与第二维度下行参考信号资源对应的所有第一维度波束赋形权值属于第二集合;且
    所述第二集合中至少包括S个第一维度波束赋形权值,所述第二集合与第一集合中的第一维度波束赋形权值存在第二对应关系,且所述第一集合中至少有一个第一维度波束赋形权值对应所述第二集合中的多个第一维度波束赋形权值,所述第一集合配置于所述终端作为进行第一维度下行参考信号测量用的码本。
  18. 一种终端,其特征在于,包括:
    获取模块,用于获得网络设备配置的1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
    第一测量模块,用于根据所述第一维度下行参考信号资源,对第一维度下行参考信号进行测量,得到第一维度预编码矩阵指示PMI,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值;
    选择模块,用于根据得到的所述第一维度PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源;
    第二测量模块,用于根据所述选择的用于进行第二维度下行参考信号测量的资源,对第二维度下行参考信号进行测量和信道状态信息反馈;其中,在选择的所述第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的。
  19. 如权利要求18所述的终端,其特征在于,
    若N等于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源;或者,
    若N大于S,则所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一波束赋形权值之间的相关性度量值大于门限值。
  20. 如权利要求19所述的终端,其特征在于,所述选择模块具体用于:
    根据得到的所述第一维度PMI查询所述第一对应关系,得到与所述第一维度PMI对应的第二维度下行参考信号资源,并将查询到的第二维度下行参考信号资源确定为用于进 行第二维度下行参考信号测量的资源。
  21. 如权利要求18所述的终端,其特征在于,若N大于S,则所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源;
    所述选择模块具体用于:
    根据得到的所述第一维度PMI查询所述第一对应关系;
    若查询到与所述第一维度PMI对应的第二维度下行参考信号资源,则将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源;
    若未查询到与所述第一维度PMI对应的第二维度下行参考信号资源,则根据所述S个第一维度波束赋形权值与所述第一维度PMI指示的第一维度波束赋形权值的相关性,从所述S个第一维度波束赋形权值中选择一个,并根据所述第一对应关系查询与所述选择的第一维度波束赋形权值对应的第二维度下行参考信号资源,将查询到的第二维度下行参考信号资源确定为用于进行第二维度下行参考信号测量的资源。
  22. 如权利要求18所述的终端,其特征在于,若N小于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,且所述第一对应关系中,与第二维度下行参考信号资源对应的所有第一维度波束赋形权值属于第二集合;且所述第二集合中至少包括S个第一维度波束赋形权值,所述第二集合与第一集合中的第一维度波束赋形权值存在第二对应关系,且所述第一集合中至少有一个第一维度波束赋形权值对应所述第二集合中的多个第一维度波束赋形权值,所述第一集合配置于所述终端作为进行第一维度下行参考信号测量用的码本;
    所述获取模块还用于:获得所述网络设备配置的所述第二对应关系;
    所述选择模块具体用于:
    根据得到的所述第一维度PMI查询所述第二对应关系,得到与所述第一维度PMI对应的所述第二集合中的第一维度波束赋形权值;其中,所述第一维度PMI指示所述第一集合中的第一维度波束赋形权值;
    根据得到的所述第二集合中的第一维度波束赋形权值查询所述第一对应关系,得到对应的第二维度下行参考信号资源,根据所述得到的第二维度下行参考信号资源确定用于进行第二维度下行参考信号测量的资源。
  23. 一种网络设备,其特征在于,包括:
    配置模块,用于为终端配置1个第一维度下行参考信号资源、S个第二维度下行参考信号资源以及第一对应关系,所述第一对应关系包含S个第二维度下行参考信号资源与N 个第一维度波束赋形权值的对应关系,S与N均为大于1的整数;
    参考信号发送模块,用于根据所述第一维度下行参考信号资源发送第一维度下行参考信号,根据第二维度下行参考信号资源发送第二维度下行参考信号,其中,每个第二维度下行参考信号资源上发送的第二维度下行参考信号是经过与该资源对应的第一维度波束赋形权值进行赋形后发送的;
    信道状态确定模块,用于接收终端根据第二维度下行参考信号测量和反馈的信道状态信息,并根据所述信道状态信息获得所述终端的信道状态;其中,所述信道状态信息是所述终端根据对第一维度下行参考信号进行测量得到的第一维度预编码矩阵指示PMI以及所述第一对应关系,从所述S个第二维度下行参考信号资源中选择用于进行第二维度下行参考信号测量的资源后,根据所述选择的第二维度下行参考信号资源对第二维度下行参考信号进行测量得到的,所述第一维度PMI指示所述N个第一维度波束赋形权值中的一个第一维度波束赋形权值。
  24. 如权利要求23所述的网络设备,其特征在于,所述终端对第二维度下行参考信号进行测量后所反馈的信道状态信息中包括:选择的所述用于进行第二维度下行参考信号测量的第二维度下行参考信号资源的索引信息,以及根据选择的所述用于进行第二维度下行参考信号资源进行第二维度下行参考信号测量得到的第二维度PMI、秩指示RI和信道质量指示CQI;
    所述信道状态确定模块具体用于:
    根据所述第二维度下行参考信号资源的索引以及所述第一对应关系,确定与所述第二维度下行参考信号资源对应的第一维度波束赋形权值;
    根据确定的所述第一维度波束赋形权值,以及所述第二维度PMI所指示的预编码矩阵,合成得到所述终端的预编码矩阵。
  25. 如权利要求24所述的网络设备,其特征在于,还包括:获取模块,用于接收所述网络设备覆盖范围内的终端反馈的第一维度PMI;
    所述配置模块还用于:根据所述网络设备覆盖范围内的终端反馈的第一维度PMI执行以下第一操作至第三操作中的一种或多种:
    所述第一操作包括:在N大于S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信号进行波束赋形;
    所述第二操作包括:在N大于S的情况下,从所述N个第一维度波束赋形权值中选择S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源发送的下行参考信 号进行波束赋形之后,根据所述网络设备覆盖范围内的终端反馈的第一维度PMI确定终端的分布,根据终端的分布重新从N个第一维度波束赋形权值中选择出S个第一维度波束赋形权值以对所述S个第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,并将所述重新选择出的S个第一维度波束赋形权值与所述S个第二维度下行参考信号资源的对应关系通知给终端;
    所述第三操作包括:确定所述网络设备覆盖范围内的终端在第一维度上的分布,根据所述网络设备覆盖范围内的终端在第一维度上的分布,调整第一维度波束赋形权值。
  26. 如权利要求23至25中任一项所述的网络设备,其特征在于,
    若N等于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源;或者,
    若N大于S,则所述第一对应关系中,至少有一个第二维度下行参考信号资源对应多个第一维度波束赋形权值;且所述多个第一维度波束赋形权值中的一个第一维度波束赋形权值用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形,其余第一维度波束赋形权值未被用于对下行参考信号进行波束赋形,且所述其余第一维度波束赋形权值与用来对第二维度下行参考信号资源上发送的下行参考信号进行波束赋形的第一维度波束赋形权值之间的相关性度量值大于门限值;或者,
    若N大于S,则所述第一对应关系中,所述N个第一维度波束赋形权值中的S个第一维度波束赋形权值,分别对应一个第二维度下行参考信号资源;或者,
    若N小于S,则所述第一对应关系中,每个第一维度波束赋形权值对应一个第二维度下行参考信号资源,且所述第一对应关系中,与第二维度下行参考信号资源对应的所有第一维度波束赋形权值属于第二集合;且所述第二集合中至少包括S个第一维度波束赋形权值,所述第二集合与第一集合中的第一维度波束赋形权值存在第二对应关系,且所述第一集合中至少有一个第一维度波束赋形权值对应所述第二集合中的多个第一维度波束赋形权值,所述第一集合配置于所述终端作为进行第一维度下行参考信号测量用的码本。
PCT/CN2016/073363 2015-03-31 2016-02-03 一种信道状态信息反馈、获取方法及装置 WO2016155416A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/563,464 US10305569B2 (en) 2015-03-31 2016-02-03 Channel state information feedback and acquisition method and device
EP16771171.2A EP3280070B1 (en) 2015-03-31 2016-02-03 Channel state information acquisition and feedback method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510149954.3A CN106160821B (zh) 2015-03-31 2015-03-31 一种信道状态信息反馈、获取方法及装置
CN201510149954.3 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016155416A1 true WO2016155416A1 (zh) 2016-10-06

Family

ID=57006564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073363 WO2016155416A1 (zh) 2015-03-31 2016-02-03 一种信道状态信息反馈、获取方法及装置

Country Status (4)

Country Link
US (1) US10305569B2 (zh)
EP (1) EP3280070B1 (zh)
CN (1) CN106160821B (zh)
WO (1) WO2016155416A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133611A1 (zh) * 2017-01-20 2018-07-26 京信通信系统(中国)有限公司 一种智能天线性能测试及优化的方法、装置及设备
CN108401264A (zh) * 2017-02-07 2018-08-14 中兴通讯股份有限公司 一种波束信息反馈方法及装置
CN108964727A (zh) * 2017-05-17 2018-12-07 中兴通讯股份有限公司 一种tdd通信系统的造流方法、装置及计算机可读存储介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
CN109075904B (zh) * 2016-04-01 2020-10-16 华为技术有限公司 一种预编码矩阵指示的反馈方法及装置
KR20190007475A (ko) * 2016-05-13 2019-01-22 후아웨이 테크놀러지 컴퍼니 리미티드 채널 상태 정보 보고 방법, 채널 상태 정보 판독 방법, 및 관련 장치
KR102092560B1 (ko) * 2016-11-04 2020-03-25 주식회사 케이티 무선 통신에서 멀티 빔 기반 랜덤 액세스 절차를 수행하는 방법 및 장치
WO2018098969A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 一种波束管理方法、装置及系统
CN110326229A (zh) * 2017-02-28 2019-10-11 瑞典爱立信有限公司 信道系数的报告
CN109890079B (zh) * 2017-03-23 2020-03-10 华为技术有限公司 一种资源配置方法及其装置
WO2018171647A1 (zh) * 2017-03-23 2018-09-27 华为技术有限公司 一种资源配置方法及其装置
WO2018201402A1 (zh) * 2017-05-04 2018-11-08 Oppo广东移动通信有限公司 确定上行信号的传输参数的方法、终端和网络设备
US10312988B2 (en) * 2017-09-15 2019-06-04 At&T Intellectual Property I, L.P. Two reference signal beam reporting and identification
CN110710273B (zh) * 2017-11-10 2021-02-26 Oppo广东移动通信有限公司 一种信息上报方法、获取方法、用户设备及网络设备
CN110086511B (zh) * 2018-01-25 2021-02-05 电信科学技术研究院有限公司 一种波束赋形的方法及装置
EP3890418A4 (en) * 2018-11-29 2022-10-19 Beijing Xiaomi Mobile Software Co., Ltd. METHOD, APPARATUS AND DEVICE FOR DETERMINING BEAM SCAN RANGE AND STORAGE MEDIA
WO2021109150A1 (zh) * 2019-12-06 2021-06-10 华为技术有限公司 一种信道信息确定方法及装置
CN113840324B (zh) * 2020-06-24 2024-01-30 华为技术有限公司 一种测量上报方法及装置
US11696312B2 (en) * 2020-11-24 2023-07-04 Qualcomm Incorporated Frequency and state dependent user equipment beam patterns
CN115707094A (zh) * 2021-08-06 2023-02-17 华为技术有限公司 一种定位方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580739A (zh) * 2012-07-20 2014-02-12 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN103716078A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 一种信道状态信息的处理方法及装置
CN103840907A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备
US20140185556A1 (en) * 2007-06-06 2014-07-03 Texas Instruments Incorporated Channel quality report processes, circuits and systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467733B2 (en) * 2009-08-06 2013-06-18 Truepath Holdings Llc System and methods for wireless broadband delivery of data
CN104412520B (zh) * 2012-06-24 2017-11-21 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法和装置
CN103634085B (zh) * 2012-08-27 2016-09-07 电信科学技术研究院 一种反馈和接收pmi的方法、系统及设备
CN103687010B (zh) 2012-08-30 2017-07-04 电信科学技术研究院 一种传输参考信号的方法、装置及系统
KR101988285B1 (ko) * 2012-09-20 2019-06-12 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
EP2945414B1 (en) * 2013-01-14 2018-03-07 LG Electronics Inc. Method for reporting channel state information for three-dimensional beamforming in wireless communication system and device therefor
WO2014168319A1 (en) * 2013-04-08 2014-10-16 Lg Electronics Inc. Method and apparatus for providing control information for fractional beamforming in a wireless communication system
US9680541B2 (en) * 2013-08-13 2017-06-13 Nec (China) Co., Ltd. Methods and apparatuses for channel estimation and feedback in a three-dimensional multiple input and multiple output system
KR102285852B1 (ko) * 2013-12-17 2021-08-05 삼성전자 주식회사 전차원 다중입력 다중출력 이동통신 시스템에서 통신방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185556A1 (en) * 2007-06-06 2014-07-03 Texas Instruments Incorporated Channel quality report processes, circuits and systems
CN103580739A (zh) * 2012-07-20 2014-02-12 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN103716078A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 一种信道状态信息的处理方法及装置
CN103840907A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP TS 36.213 V11.9.0", EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS (E-UTRA); PHYSICAL LAYER PROCEDURES, 31 December 2014 (2014-12-31), pages 123 - 124, XP055320563 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133611A1 (zh) * 2017-01-20 2018-07-26 京信通信系统(中国)有限公司 一种智能天线性能测试及优化的方法、装置及设备
CN108401264A (zh) * 2017-02-07 2018-08-14 中兴通讯股份有限公司 一种波束信息反馈方法及装置
CN108401264B (zh) * 2017-02-07 2023-03-24 中兴通讯股份有限公司 一种波束信息反馈方法及装置
CN108964727A (zh) * 2017-05-17 2018-12-07 中兴通讯股份有限公司 一种tdd通信系统的造流方法、装置及计算机可读存储介质
CN108964727B (zh) * 2017-05-17 2022-03-11 中兴通讯股份有限公司 一种tdd通信系统的造流方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
US10305569B2 (en) 2019-05-28
US20180069613A1 (en) 2018-03-08
EP3280070A4 (en) 2018-05-02
EP3280070B1 (en) 2019-09-11
CN106160821A (zh) 2016-11-23
CN106160821B (zh) 2019-11-19
EP3280070A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
WO2016155416A1 (zh) 一种信道状态信息反馈、获取方法及装置
US10390246B2 (en) Channel measurement method, terminal device, and base station
US10193609B2 (en) Method for feeding back channel state information, base station and user equipment
TWI580210B (zh) Method, system and equipment for channel status information measurement
EP3276850B1 (en) Method and device for constraining codebook subset
WO2017020730A1 (zh) 一种反馈和接收信道状态信息csi的方法及装置
JP6052468B2 (ja) プリコーディング行列インジケータを決定するための方法、ユーザ機器、及び、基地局
CN106411374B (zh) 一种fd mimo系统信道状态信息反馈方法及相关设备
TWI581655B (zh) A channel status information feedback, access methods and devices
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
TWI602403B (zh) A channel status information feedback method, a downlink reference signal method and device
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
CN105450332B (zh) 一种三维信道状态信息确定方法及装置
WO2019120070A1 (zh) 一种获取下行信道信息的方法及装置
WO2014169873A1 (zh) 一种预编码矩阵反馈方法和终端
CN106712895B (zh) 一种反馈csi的方法和传输下行数据的方法及装置
WO2017032135A1 (zh) 信息配置、信息反馈方法、基站及终端
CN105322989B (zh) Mimo系统中的导频发送方法、测量方法及装置
WO2016124078A1 (zh) 一种信道测量方法及装置
CN108631844B (zh) 一种获取信道状态信息的方法、终端和网络侧设备
JP2019530359A (ja) チャネル状態測定方法、送信方法、移動局及び基地局
WO2016066036A1 (zh) 一种信道状态信息的反馈、获取方法及装置
WO2016161962A1 (zh) 一种信道信息反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15563464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE