WO2018133611A1 - 一种智能天线性能测试及优化的方法、装置及设备 - Google Patents

一种智能天线性能测试及优化的方法、装置及设备 Download PDF

Info

Publication number
WO2018133611A1
WO2018133611A1 PCT/CN2017/117267 CN2017117267W WO2018133611A1 WO 2018133611 A1 WO2018133611 A1 WO 2018133611A1 CN 2017117267 W CN2017117267 W CN 2017117267W WO 2018133611 A1 WO2018133611 A1 WO 2018133611A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
smart antenna
performance parameter
target
horizontal
Prior art date
Application number
PCT/CN2017/117267
Other languages
English (en)
French (fr)
Inventor
刘重军
付杰尉
曾宪祥
刁穗东
曾祥峰
姜成玉
Original Assignee
京信通信系统(中国)有限公司
京信通信系统(广州)有限公司
京信通信技术(广州)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司, 京信通信系统(广州)有限公司, 京信通信技术(广州)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2018133611A1 publication Critical patent/WO2018133611A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, device, and device for testing and optimizing smart antenna performance.
  • Beamforming is a key technology in smart antennas. By setting the transmit power weights on each array element of the smart antenna, a beam pointing to the estimated user is formed. Beamforming technology has great advantages in terms of expanding coverage, improving edge throughput, and suppressing interference.
  • the key to beamforming is the determination of the weight, which affects the performance of the entire smart antenna.
  • the antenna pattern characterizes the ability of the antenna to radiate electromagnetic waves in space, reflecting the performance indicators and working states of the smart antenna. Therefore, in the face of complex input parameters and constraints, various field field tests are required to evaluate and adjust the settings of these parameters.
  • phase information of each channel of the antenna is obtained by the calibration method, and the performance of beamforming is obtained.
  • the test based on the experimental environment cannot obtain the beamforming effect and corresponding weights that cannot be accurately applied to the external field.
  • the existing smart antenna test method has strict requirements on the test site conditions, and it is impossible to accurately obtain the beamforming effect and corresponding weight value applicable to the external field. It is urgent to obtain a smart antenna for the external field environment. Beamforming effect, method of adjusting optimization weights.
  • the present invention provides a smart antenna performance test and optimization method, device and device for solving the smart antenna test process in the prior art.
  • the test site conditions are strict, and the beamforming effect applicable to the external field cannot be accurately obtained and correspondingly Problem of weight
  • the embodiment of the present application provides a method for testing and optimizing smart antenna performance, including:
  • test point is determined according to a installation location of the smart antenna
  • the beamforming weight setting is performed on each channel of the smart antenna according to the target performance parameter of the smart antenna, including:
  • the measured performance parameters of the smart antenna are obtained according to the test signals, including:
  • the test point is determined according to the installation location of the smart antenna, and includes:
  • test intermediate point Determining a test intermediate point, the test intermediate point being a test point along the normal direction and having a distance from the test origin of H/tan( ⁇ ), where ⁇ is a downtilt angle of the smart antenna, and H is the The mounting height of the smart antenna relative to the ground plane;
  • test intermediate point as a vertical test intermediate point, and selecting a plurality of vertical test points according to the first step length before and after the vertical test intermediate point along the normal direction;
  • the measured performance parameter includes any one or combination of the following:
  • the downtilt angle, the beamwidth of the horizontal main beam, the beamwidth of the vertical main beam, the sidelobe suppression ratio of the horizontal main beam, and the sidelobe suppression ratio of the vertical main beam is the downtilt angle, the beamwidth of the horizontal main beam, the beamwidth of the vertical main beam, the sidelobe suppression ratio of the horizontal main beam, and the sidelobe suppression ratio of the vertical main beam.
  • the embodiment of the present application further provides a device for testing and optimizing smart antenna performance, including:
  • Calibration module used to calibrate each channel of the installed smart antenna
  • a setting module configured to perform beam shaping weight setting on each channel of the smart antenna according to a target performance parameter of the smart antenna
  • Test module used to obtain test signals received by the test terminal at each test point, the test points Determining according to the installation position of the smart antenna;
  • Processing module obtaining measured performance parameters of the smart antenna according to the test signals; comparing and analyzing the target performance parameter and the measured performance parameter, and adjusting beamforming of each channel of the smart antenna according to the comparison result
  • the weight returning test module performs the step of acquiring the test signal received by the test terminal at each test point until the measured performance parameter and the target performance parameter satisfy the preset condition.
  • the setting module is specifically configured to:
  • the processing module is further configured to:
  • the processing module is specifically configured to:
  • test module is further configured to:
  • test intermediate point Determining a test intermediate point, the test intermediate point being a test point along the normal direction and having a distance from the test origin of H/tan( ⁇ ), where ⁇ is a downtilt angle of the smart antenna, and H is the The mounting height of the smart antenna relative to the ground plane;
  • test intermediate point as a vertical test intermediate point, and selecting a plurality of vertical test points according to the first step length before and after the vertical test intermediate point along the normal direction;
  • the measured performance parameter includes any one or combination of the following:
  • the downtilt angle, the beamwidth of the horizontal main beam, the beamwidth of the vertical main beam, the sidelobe suppression ratio of the horizontal main beam, and the sidelobe suppression ratio of the vertical main beam is the downtilt angle, the beamwidth of the horizontal main beam, the beamwidth of the vertical main beam, the sidelobe suppression ratio of the horizontal main beam, and the sidelobe suppression ratio of the vertical main beam.
  • the embodiment of the present application further provides a test device, including: at least one processor, a transceiver, and a memory communicatively coupled to the at least one processor; wherein the memory is stored and executable by the at least one processor And the instructions are executed by the at least one processor to enable the at least one processor to perform the method of smart antenna performance testing and optimization of the embodiments of the present application.
  • the embodiment of the present application further provides a non-transitory computer storage medium storing computer executable instructions for causing the computer to perform the implementation of the present application.
  • the embodiment of the present application further provides a computer program product, the computer program product comprising a computing program stored on a non-transitory computer readable storage medium, the computer program comprising the computer executable instructions, when the computer When the executable instructions are executed by the computer, the computer is caused to perform the smart antenna performance test and optimization method of the embodiment of the present application.
  • the embodiment of the present application provides a method and device for testing and optimizing smart antenna performance.
  • each channel of the installed smart antenna is calibrated; and according to the target performance parameter of the smart antenna, beamforming rights are applied to each channel of the smart antenna.
  • the value is set; then the test signal received by the test terminal at each test point is obtained, the measured performance parameter of the smart antenna is obtained according to each test signal, the target performance parameter and the measured performance parameter are compared and analyzed, and the respective channels of the smart antenna are adjusted according to the comparison result.
  • Beam shaping weight By optimizing the beamforming weight coefficient, the embodiment of the present invention accurately obtains the beamforming optimal coverage effect in accordance with the actual environment of the external field, and reduces the manual intervention of the beamforming optimization test and the workload of the engineering debugging.
  • FIG. 1 is a schematic flowchart diagram of a method for testing and optimizing smart antenna performance according to an embodiment of the present application
  • FIG. 2a is a schematic diagram of a location of a test terminal according to an embodiment of the present application.
  • FIG. 2b is a schematic diagram of another test terminal according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a beam shaping weight adjustment method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an apparatus for testing and optimizing smart antenna performance according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a test device according to an embodiment of the present application.
  • the smart antenna provided by the embodiment of the present application is a bidirectional antenna installed in a base station field, and acquires directivity through a set of fixed antenna units with programmable electronic phase relationships, and can simultaneously acquire each link between the base station and the mobile station.
  • Directional characteristics Generally, the smart antenna includes three components: an antenna array that implements signal space oversampling, a beamforming network that performs weighted combining of the output of each array element, and a control system for re-merging weights.
  • the antenna array In mobile communication applications, for ease of analysis, sidelobe control, and DOA (Direction Of Arrival) estimation, the antenna array generally uses a uniform linear array or a uniform circular array; in addition, the control system selects rules and algorithms according to the signal environment. Calculate the weight.
  • the embodiment of the present application provides a method for testing and optimizing the performance of a smart antenna.
  • FIG. 1 a schematic flowchart of a method for testing and optimizing a performance of a smart antenna according to an embodiment of the present application is provided.
  • the method may be performed by a test device. Specifically include:
  • Step S101 Perform calibration on each channel of the installed smart antenna.
  • the installation location of the smart antenna to be tested is first selected, and then the base station is fixed and the smart antenna is installed.
  • the installation mode may include two modes, the horizontal installation mode, and the horizontal installation mode is described in detail. This is similar and will not be described here.
  • the smart antenna covers the open test area, and there is no other terminal except the test terminal in the area to be tested, or other terminals are in standby no service initiation state.
  • channel calibration and calibration are required for all RF channel transceiver links of the smart antenna to be tested. Includes amplitude and phase calibration, which allows calibration to check that each RF channel is functioning properly and that the amplitude and phase between all channels are adjusted to within the target performance specifications.
  • the system calibration method and the beamforming performance index requirements are different.
  • the signal amplitude and phase of the carrier center frequency of each channel of the smart antenna to be tested are kept consistent; for the wideband signal, the carrier of each channel of the smart antenna to be tested is kept consistent in amplitude and phase within the effective bandwidth.
  • Multi-channel calibration ensures uniformity of amplitude and phase between channels.
  • Step S102 Perform beamforming weight setting on each channel of the smart antenna according to the target performance parameter of the smart antenna.
  • the target performance parameters include a frequency point, a target downtilt angle, a beam width of the target horizontal main beam, a beam width of the target vertical main beam, a sidelobe suppression ratio of the target horizontal main beam, a sidelobe suppression ratio of the target vertical main beam, and the like. .
  • the beam shaping table is searched, the beam shaping weights of each channel of the smart antenna are obtained, and the beam shaping weights of each channel are configured to take effect.
  • the beam shaping weight of each channel of the smart antenna may be configured by the control system of the base station, or the weight may be remotely configured by the test terminal, and no limitation is imposed herein.
  • the effect of the beamforming weights of each channel can be read, displayed, and monitored through the network port and serial port.
  • Step S103 Acquire a test signal received by the test terminal at each test point, and the test point is determined according to the installation position of the smart antenna.
  • the test terminal may be the test device in the embodiment of the present application, or may be external to the test device in the embodiment of the present application, and communicated with the test device.
  • the test terminal that is communicatively connected to the test device may be one or multiple.
  • test point is determined according to the installation position of the smart antenna. According to the requirements of the test beam direction, the optimal test points are selected at different positions.
  • 2a and 2b are schematic diagrams showing the location of a test terminal according to an embodiment of the present application.
  • the normal direction A of the smart antenna is determined.
  • the ground plane position corresponding to the installation position of the smart antenna is determined as the test origin O.
  • is the downtilt angle of the smart antenna
  • H is the mounting height of the smart antenna relative to the ground plane
  • L represents H/tan( ⁇ ).
  • the test intermediate point 3 is first determined, and the test intermediate point 3 is a test point along the normal A direction and the distance from the test origin O is L. Then, the test intermediate point 3 is taken as the vertical test intermediate point, and a plurality of vertical test points are selected according to the first set step size before and after the vertical test intermediate point 3 in the normal A direction. In this embodiment, 1, 2 are selected. 4, 5, that is, the vertical test points include 1, 2, 3, 4, 5 test points.
  • the first set step size may be 1 meter, that is, the vertical distance interval of each vertical test point is 1 meter, and the position and quantity of the vertical test points may be adjusted accordingly according to the selected test site environment. No restrictions.
  • the test origin O is taken as the origin, and the horizontal test circle is determined by using L as the radius; the intermediate point is tested by the test intermediate point 3, and the horizontal test circle is selected according to the second set step size.
  • Several horizontal test points 1', 2', 4', 5' that is, the horizontal test points include 1', 2', 3, 4', 5' five test points.
  • the second setting step may be the same as the first setting step, or may be different from the second setting step. Specifically, the second setting step may also be 1 meter, and each test The distance between the points of the points is 1 meter.
  • the position and number of the horizontal test points can be adjusted according to the selected test environment. No restrictions are imposed here.
  • the base station After determining the vertical and horizontal test points, the base station sends a test signal to the smart antenna to be tested to
  • the test terminal may be a reference signal or a service signal, and the test signal is received at each test point by the mobile terminal.
  • Step S104 Obtain a measured performance parameter of the smart antenna according to each test signal.
  • the specific address is analyzed according to the test signal received by the test terminal at each test point. For example, receiving a measurement report (MR, Measurement Report), based on signal power, data transmission rate, SINR (Signal to Interference plus Noise Ratio), etc., can be fitted by preset acquisition software.
  • MR Measurement Report
  • SINR Signal to Interference plus Noise Ratio
  • the measured performance parameters of the smart antenna are obtained according to the antenna pattern, and the specific measured performance parameters include but are not limited to the measured downtilt angle, the beam width of the measured horizontal main beam, the beam width of the measured vertical main beam, and the sidelobe suppression of the measured horizontal main beam. Ratio, measured side lobe suppression ratio of the vertical main beam.
  • Step S105 Compare and analyze the target performance parameter and the measured performance parameter, and adjust beamforming weights of each channel of the smart antenna according to the comparison result.
  • step S105 it is required to return to step S103 to reacquire the test signal received by the test terminal at each test point until the measured performance parameter and the target performance parameter satisfy the preset condition.
  • FIG. 3 is a schematic flowchart of a method for adjusting a beam shaping weight according to an embodiment of the present application, including:
  • Step S301 Optimizing the downtilt angle of the main beam.
  • the measured downtilt angle is greater than the target downtilt angle, it means that the downtilt angle value needs to be reduced.
  • the initial phase weight coefficients corresponding to the first channel to the fifth channel of the smart antenna to be tested are W1, W2, W3, W4, and W5
  • the W1 adjustment can be updated to (W1-2 ⁇ )
  • the W2 adjustment can be updated to ( W2- ⁇ ), update W4 adjustment to (W4+ ⁇ ), and update W5 adjustment to (W5+2 ⁇ ).
  • is an integer
  • the specific value of ⁇ can be combined with multiple tests according to the difference between the measured downtilt angle and the target downtilt angle. As well as experience determination, there is no limit here.
  • the W1 adjustment can be updated to (W1+2 ⁇ )
  • the W2 adjustment can be updated to (W2+ ⁇ )
  • the W4 adjustment can be updated.
  • the W5 adjustment is updated to (W5-2 ⁇ ).
  • the weights of multiple channels of the smart antenna are generally adjusted at the same time, and can also be adjusted in a single channel, and no limitation is imposed here. It is assumed that the phase weights of the first channel to the fifth channel of the smart antenna to be tested after the first optimization are adjusted to W11, W12, W13, W14, W15.
  • Step S302 Optimize the beamwidth of the main beam.
  • the specific address in order to improve the test efficiency, get better test results, on the basis of adjusting the optimized phase weights W11, W12, W13, W14, W15, by adjusting the beam shaping phase weight of a single channel, the optimal The beam width, that is, the beam shaping phase weight of each channel is adjusted each time, and the beam shaping weights of other channels are fixed.
  • the size of the phase value that is specifically adjusted is not limited to the difference between the beam width of the measured main beam and the beam width of the target main beam, and is combined with multiple tests and empirical determination, which is not limited herein.
  • phase weights of the first channel to the fifth channel are W21, W22, W23, W24, W25.
  • Step S303 Optimize sidelobe suppression of the main beam.
  • the beam shaping phase weight of a single channel is adjusted to obtain an optimum.
  • the sidelobe suppression of the main beam that is, the beamforming phase weight of each channel is adjusted each time, and the beamforming weights of other channels are fixed.
  • the size of the phase value that is specifically adjusted is not limited to the difference between the side lobe suppression of the measured main beam and the side lobe suppression of the target main beam, and is combined with multiple tests and empirical determination, which is not limited herein.
  • the intelligence to be tested The phase weights of the first to fifth channels of the antenna can be W31, W32, W33, W34, W35.
  • the foregoing method is not limited to the beam shaping phase weight adjustment of the smart antenna of the five channels, and can also be applied to the smart antenna beam shaping phase weight adjustment of several channels, which is not limited herein.
  • the embodiment of the present application is not limited to the adjustment of the smart antenna beam shaping phase weights for the above three performance parameters, and the beam shaping phase weights may also be adjusted for other parameters, which is not limited herein.
  • the beam shaping weight coefficient of each channel is adjusted by testing the remote connection mode of the terminal.
  • the beam shaping weight of each channel of the smart antenna can also be configured by the control system of the base station, and is not limited herein. After the weight is configured, you can read, display, and monitor the effectiveness and change of the beam shaping weight of each channel through the network port and serial port.
  • step 105 it is required to return to step 103 to obtain the test signal received by the test terminal at each test point until the measured performance parameter and the target performance parameter satisfy the preset condition, then the test ends, and the target beam at this time is recorded.
  • the shaping weight value updates the beamforming table according to the target beam shaping weight, which provides an accurate beamforming optimal coverage effect for the external field environment.
  • the test ends, and the beam of the first channel to the fifth channel of the smart antenna is recorded.
  • the initial weight coefficients W1, W2, W3, W4, W5 in the beamform table are updated to W41, W42, W43, W44, W45.
  • the embodiment of the present application provides a method for testing and optimizing the performance of a smart antenna.
  • the channels of the installed smart antenna are calibrated.
  • beamforming weights are set for each channel of the smart antenna.
  • the test signals received by the test terminal at each test point are obtained, the measured performance parameters of the smart antenna are obtained according to the test signals, the target performance parameters and the measured performance parameters are compared and analyzed, and the beam assignment of each channel of the smart antenna is adjusted according to the comparison result.
  • Shape weight By optimizing the beamforming weight coefficient, the embodiment of the present invention accurately obtains the beamforming optimal coverage effect in accordance with the actual environment of the external field, and reduces the manual intervention of the beamforming optimization test and the workload of the engineering debugging.
  • FIG. 4 is a schematic structural diagram of a smart antenna performance test and optimization device provided by an embodiment of the present application, including :
  • the calibration module 401 is configured to calibrate each channel of the installed smart antenna
  • the setting module 402 is configured to perform beam shaping weight setting on each channel of the smart antenna according to the target performance parameter of the smart antenna;
  • the test module 403 is configured to obtain a test signal received by the test terminal at each test point, where the test point is determined according to the installation position of the smart antenna;
  • the processing module 404 is configured to obtain the measured performance parameter of the smart antenna according to the test signals, compare and analyze the target performance parameter and the measured performance parameter, and adjust beamforming of each channel of the smart antenna according to the comparison result.
  • the weighting value returns to the test module to perform the step of acquiring the test signal received by the test terminal at each test point until the measured performance parameter and the target performance parameter satisfy the preset condition.
  • the setting module 402 is specifically configured to:
  • the processing module 404 is further configured to:
  • the beam shaping weight updates the beamforming table according to the target beamforming weight.
  • the processing module 404 is specifically configured to:
  • test module 403 is further configured to:
  • test intermediate point Determining a test intermediate point, the test intermediate point being a test point along the normal direction and having a distance from the test origin of H/tan( ⁇ ), where ⁇ is a downtilt angle of the smart antenna, and H is the The mounting height of the smart antenna relative to the ground plane;
  • test intermediate point as a vertical test intermediate point, and selecting a plurality of vertical test points according to the first step length before and after the vertical test intermediate point along the normal direction;
  • the measured performance parameter includes any one or combination of the following:
  • the downtilt angle, the beamwidth of the horizontal main beam, the beamwidth of the vertical main beam, the sidelobe suppression ratio of the horizontal main beam, and the sidelobe suppression ratio of the vertical main beam is the downtilt angle, the beamwidth of the horizontal main beam, the beamwidth of the vertical main beam, the sidelobe suppression ratio of the horizontal main beam, and the sidelobe suppression ratio of the vertical main beam.
  • the device of the present application provides a device for testing and optimizing the performance of a smart antenna.
  • the channels of the installed smart antenna are calibrated.
  • beamforming weights are set for each channel of the smart antenna.
  • the test signals received by the test terminal at each test point are obtained, the measured performance parameters of the smart antenna are obtained according to the test signals, the target performance parameters and the measured performance parameters are compared and analyzed, and the beam assignment of each channel of the smart antenna is adjusted according to the comparison result.
  • Shape weight By optimizing the beamforming weight coefficient, the embodiment of the present invention accurately obtains the beamforming optimal coverage effect in accordance with the actual environment of the external field, and reduces the manual intervention of the beamforming optimization test and the workload of the engineering debugging.
  • each module involved in the above embodiments is a logic module.
  • a logical unit may be a physical unit, a part of a physical unit, or multiple physical entities. A combination of units is implemented.
  • the present embodiment does not introduce a unit that is not closely related to solving the technical problem proposed by the present application, but this does not indicate that there are no other units in the present embodiment.
  • the embodiment of the present application further provides a test device, as shown in FIG. 5, including: at least one processor 500; a transceiver 510; and a memory 520 communicatively coupled to the at least one processor 500.
  • the test device may be a smart antenna performance test and optimization device in the above embodiment, and the steps performed by each functional module in the smart antenna performance test and optimized device may be performed by a processor in the test device.
  • the processor 500 is configured to read a program in the memory 520 and perform the following processes:
  • Calibrating each channel of the installed smart antenna performing beamforming weight setting on each channel of the smart antenna according to the target performance parameter of the smart antenna; acquiring test signals received by the test terminal at each test point, Determining, according to the installation position of the smart antenna, the measured performance parameter of the smart antenna according to the test signals; comparing and analyzing the target performance parameter and the measured performance parameter, and adjusting according to the comparison result And determining, by the beam shaping weight of each channel of the smart antenna, a step of acquiring a test signal received by the test terminal at each test point until the measured performance parameter and the target performance parameter satisfy a preset condition.
  • the processor 500 is configured to: according to the target performance parameter, search a beamforming table to obtain a beamforming weight of the smart antenna; and after the measured performance parameter and the target performance After the parameter meets the preset condition, the method further includes: determining the target performance parameter and the corresponding target beam shaping weight when the measured performance parameter meets the preset condition, and updating the beam assignment according to the target beam shaping weight Form.
  • the processor 500 can: analyze the test signal received by the test terminal at each test point, and fit an antenna pattern of the smart antenna, where the antenna pattern includes a horizontal pattern and a vertical pattern; determining the measured performance parameter of the smart antenna according to the antenna pattern.
  • the processor 500 is configured to: determine a normal direction of the smart antenna, determine a ground plane position corresponding to the installation position of the smart antenna as a test origin; and determine a test intermediate point, where the test intermediate point is a test point along the normal direction and the distance from the test origin is H/tan ( ⁇ ), ⁇ is a downtilt angle of the smart antenna, and H is a mounting height of the smart antenna relative to a ground plane;
  • the test intermediate point is a vertical test intermediate point, and a plurality of vertical test points are selected according to the first step length before and after the vertical test intermediate point along the normal direction; the test origin is taken as the origin, and H/tan ( ⁇ ) is the radius, the horizontal test circle is determined; the intermediate point is tested horizontally with the test intermediate point, and a plurality of horizontal test points are selected on the horizontal test circle according to the second step.
  • the measured performance parameter includes any one or combination of the following: a downtilt angle, a beamwidth of the horizontal main beam, a beamwidth of the vertical main beam, a sidelobe suppression ratio of the horizontal main beam, and a sidelobe suppression of the vertical main beam. ratio.
  • the transceiver 510 is configured to receive and transmit data under the control of the processor 500.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 530 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 can be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the present application provides a non-volatile computer storage medium
  • the non-transitory computer readable storage medium stores computer executable instructions for causing the computer to perform the method of smart antenna performance testing and optimization in any of the above embodiments.
  • the present application provides a computer program product comprising a computing program stored on a non-transitory computer readable storage medium, the computer program comprising the computer executable instructions
  • the computer executable instructions When executed by a computer, the computer is caused to perform the method of smart antenna performance testing and optimization in any of the above embodiments.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that instructions stored in the computer readable memory produce an article of manufacture including an instruction system.
  • the system implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of a flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种智能天线性能测试及优化的方法、装置及设备,首先对安装后的智能天线的各个通道进行校准;根据智能天线的目标性能参数,对智能天线的各个通道进行波束赋形权值设置;然后获取测试终端在各测试点接收的测试信号,根据各测试信号得到智能天线的实测性能参数,将目标性能参数和实测性能参数进行比较分析,根据比较结果调整智能天线的各个通道的波束赋形权值。本申请实施例通过对波束赋形权值系数进行优化,准确获得了符合外场实际环境的波束赋形最优覆盖效果,减少了波束赋形优化测试的人工干预以及工程调试的工作量。

Description

一种智能天线性能测试及优化的方法、装置及设备
本申请要求在2017年1月20日提交中国专利局、申请号为201710048233.2、发明名称为“一种智能天线性能测试及优化的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通讯技术领域,尤其涉及一种智能天线性能测试及优化的方法、装置及设备。
背景技术
随着无线通信技术的发展,越多越多的无线通信系统中引入智能天线技术以提升系统容量、覆盖范围和系统吞吐。
波束赋形是智能天线中的关键技术,通过设置智能天线各阵元上的发射功率权重,形成指向被估计用户的波束。波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑止等方面都有很大的优势。而波束赋形的关键是权值的确定,其设置影响到整个智能天线性能。此外,智能天线技术指标有很多,其中天线方向图表征了天线在空间中辐射电磁波的能力,反映了智能天线的性能指标与工作状态。因此,面对复杂的输入参数和限制条件,需要进行各种实地外场测试来评价及调整这些参数的设置。
现有的智能天线评测方法包括以下几种:
1、在理想的微波暗室环境下,搭建远场测试环境,对智能天线的波束赋形图进行性能评估。然而,该方法测试场地要求条件较为严格,目前国内能够满足智能天线测试要求的微波暗室测试场地较少。
2、在外场环境下,固定用户数量、位置或运动轨迹,通过打开和关闭智能天线的波束赋形功能来获取智能天线方向图或赋形增益以评估智能天线性能的优劣。然而,该方法仅仅给出了有波束赋形功能相对于无波束赋形功能智能天线性能的影响。
3、在实验室环境下,通过校准方式解析获取天线各通道的相位信息,测试获得波束赋形的性能。然而,基于实验环境的测试无法得到无法准确得到适用于外场的波束赋形效果及相应的权值。
综上所述,现有的智能天线测试的方法存在测试场地条件要求严格,无法准确得到适用于外场的波束赋形效果及相应的权值的问题,亟需一种针对外场环境,获取智能天线波束赋形效果、调整优化权值的方法。
发明内容
本申请提供一种智能天线性能测试及优化的方法、装置及设备,用以解决现有技术中智能天线测试的过程存在测试场地条件要求严格,无法准确得到适用于外场的波束赋形效果及相应的权值的问题
本申请实施例提供了一种智能天线性能测试及优化的方法,包括:
对安装后的智能天线的各个通道进行校准;
根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置;
获取测试终端在各测试点接收的测试信号,所述测试点根据所述智能天线的安装位置确定;
根据所述各测试信号得到所述智能天线的实测性能参数;
将所述目标性能参数和所述实测性能参数进行比较分析,根据比较结果调整所述智能天线的各个通道的波束赋形权值,返回获取测试终端在各测试点接收的测试信号的步骤,直至所述实测性能参数与所述目标性能参数满足预设条件。
较佳地,所述根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置,包括:
根据所述目标性能参数,查找波束赋形表,得到所述智能天线的波束赋形权值;
所述直至所述实测性能参数与所述目标性能参数满足预设条件之后,还 包括:
确定所述目标性能参数和所述实测性能参数满足预设条件时对应的目标波束赋形权值,根据所述目标波束赋形权值更新所述波束赋形表。
较佳地,所述根据所述各测试信号得到所述智能天线的实测性能参数,包括:
对所述测试终端在各测试点接收到的测试信号进行分析,拟合出所述智能天线的天线方向图,所述天线方向图包括水平方向图和垂直方向图;
根据所述天线方向图,确定所述智能天线的所述实测性能参数。
较佳地,所述测试点根据所述智能天线的安装位置确定,包括:
确定所述智能天线的法线方向,将所述智能天线的安装位置对应的地平面位置确定为测试原点;
确定测试中间点,所述测试中间点为沿所述法线方向且与所述测试原点的距离为H/tan(θ)的测试点,θ为所述智能天线的下倾角,H为所述智能天线相对地平面的安装高度;
以所述测试中间点为垂直测试中间点,沿所述法线方向在所述垂直测试中间点的前后按照第一步长各选取若干个垂直测试点;
以所述测试原点为原点,以H/tan(θ)为半径,确定水平测试圆;以所述测试中间点为水平测试中间点,按照第二步长在所述水平测试圆上选取若干个水平测试点。
较佳地,所述实测性能参数包括以下任意之一或组合:
下倾角、水平主波束的波束宽度、垂直主波束的波束宽度、水平主波束的旁瓣抑制比、垂直主波束的旁瓣抑制比。
本申请实施例还提供一种智能天线性能测试及优化的装置,包括:
校准模块:用于对安装后的智能天线的各个通道进行校准;
设置模块:用于根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置;
测试模块:用于获取测试终端在各测试点接收的测试信号,所述测试点 根据所述智能天线的安装位置确定;
处理模块:根据所述各测试信号得到所述智能天线的实测性能参数;将所述目标性能参数和所述实测性能参数进行比较分析,根据比较结果调整所述智能天线的各个通道的波束赋形权值,返回测试模块执行获取测试终端在各测试点接收的测试信号的步骤,直至所述实测性能参数与所述目标性能参数满足预设条件。
较佳地,所述设置模块,具体用于:
根据所述目标性能参数,查找波束赋形表,得到所述智能天线的波束赋形权值;
所述处理模块,还用于:
确定所述目标性能参数和所述实测性能参数满足预设条件时对应的目标波束赋形权值,根据所述目标波束赋形权值更新所述波束赋形表。
较佳地,处理模块,具体用于:
对所述测试终端在各测试点接收到的测试信号进行分析,拟合出所述智能天线的天线方向图,所述天线方向图包括水平方向图和垂直方向图;
根据所述天线方向图,确定所述智能天线的所述实测性能参数。
较佳地,所述测试模块,还用于:
确定所述智能天线的法线方向,将所述智能天线的安装位置对应的地平面位置确定为测试原点;
确定测试中间点,所述测试中间点为沿所述法线方向且与所述测试原点的距离为H/tan(θ)的测试点,θ为所述智能天线的下倾角,H为所述智能天线相对地平面的安装高度;
以所述测试中间点为垂直测试中间点,沿所述法线方向在所述垂直测试中间点的前后按照第一步长各选取若干个垂直测试点;
以所述测试原点为原点,以H/tan(θ)为半径,确定水平测试圆;以所述测试中间点为水平测试中间点,按照第二步长在所述水平测试圆上选取若干个水平测试点。
较佳地,所述实测性能参数包括以下任意之一或组合:
下倾角、水平主波束的波束宽度、垂直主波束的波束宽度、水平主波束的旁瓣抑制比、垂直主波束的旁瓣抑制比。
本申请实施例还提供了一种测试设备,包括:至少一个处理器、收发器和与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请实施例的智能天线性能测试及优化的方法。
本申请实施例还提供了一种非易失性计算机存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行本申请实施例的智能天线性能测试及优化的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括所述计算机可执行指令,当所述计算机可执行指令被计算机执行时,使所述计算机执行本申请实施例的智能天线性能测试及优化的方法。
本申请实施例提供一种智能天线性能测试及优化的方法及装置,首先对安装后的智能天线的各个通道进行校准;根据智能天线的目标性能参数,对智能天线的各个通道进行波束赋形权值设置;然后获取测试终端在各测试点接收的测试信号,根据各测试信号得到智能天线的实测性能参数,将目标性能参数和实测性能参数进行比较分析,根据比较结果调整智能天线的各个通道的波束赋形权值。本申请实施例通过对波束赋形权值系数进行优化,准确获得了符合外场实际环境的波束赋形最优覆盖效果,减少了波束赋形优化测试的人工干预以及工程调试的工作量。
附图说明
图1为本申请实施例提供的一种智能天线性能测试及优化的方法的流程示意图;
图2a为本申请实施例提供的一种测试终端的位置的示意图;
图2b为本申请实施例提供的另一种测试终端的位置的示意图;
图3为本申请实施例提供的一种波束赋形权值调整方法的流程示意图;
图4为本申请实施例提供的一种智能天线性能测试及优化的装置的结构示意图;
图5为本申请实施例提供的一种测试设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供的智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。通常智能天线包括实现信号空间过采样的天线阵、对各阵元输出进行加权合并的波束成型网络、重新合并权值的控制系统三个组成部分。在移动通信应用中,为便于分析、旁瓣控制和DOA(Direction Of Arrival,到达方向)估计,天线阵一般采用均匀线阵或均匀圆阵;此外,通过控制系统依据信号环境,选择规则和算法计算权值。
本申请实施例提供一种智能天线性能测试及优化的方法,如图1所示,为本申请实施例提供的一种智能天线性能测试及优化的方法流程示意图,该方法流程可由测试设备执行,具体包括:
步骤S101:对安装后的智能天线的各个通道进行校准。
具体地,首先需要选择待测智能天线的安装位置,然后进行基站固定和智能天线安装,安装模式可以包括水平和垂直两种模式,本申请实施例针对水平安装模式进行详细说明,垂直安装模式与此类似,在此不做赘述。
为了满足不同波束赋形方向测试点选择需求,安装位置的选点及高度保 证智能天线覆盖空旷的测试区域,且待测区域内除测试终端外无其它终端,或其它终端处于待机无业务发起状态。
进一步地,为了保证待测智能天线的波束赋形权值系数有效,在智能天线安装后、配置波束赋形权值系数之前,需要对待测智能天线的所有射频通道收发链路进行通道校准,校准包括幅度和相位校准,通过校准可以检查各个射频通道的工作是否正常,以及确保所有通道之间的幅度和相位调整至目标性能指标范围内。
具体地,针对不同的待测智能天线应用系统制式和波束赋形性能指标要求,校准的方法选取也不同。对于窄带信号,校准待测智能天线各个通道的载波中心频点的信号幅度和相位保持一致;对于宽带信号,校准待测智能天线各个通道的载波在有效带宽内保持幅度和相位一致。通过多通道校准保证各个通道之间幅度和相位的一致性。
步骤S102:根据智能天线的目标性能参数,对智能天线的各个通道进行波束赋形权值设置。
具体地,在对待测智能天线的所有射频通道进行通道校准之后,启动待测智能天线的波束赋形功能,然后根据智能天线的目标性能参数,对智能天线的各个通道进行波束赋形权值配置,并且保证每个通道的波束赋形权值可单独修改和生效。
进一步地,目标性能参数包括频点、目标下倾角、目标水平主波束的波束宽度、目标垂直主波束的波束宽度、目标水平主波束的旁瓣抑制比、目标垂直主波束的旁瓣抑制比等。具体地,根据目标性能参数中的频点和下倾角等参数,查找波束赋形表,得到智能天线的各个通道的波束赋形权值,并配置各个通道波束赋形权值生效。
需要说明的是,本申请实施例中可以通过基站的控制系统对智能天线的各个通道的波束赋形权值进行配置,也可以通过测试终端远程配置权值,在此不做限制。此外,通过网口和串口等方式可以读取、显示和监控各个通道波束赋形权值的生效和更改情况。
步骤S103:获取测试终端在各测试点接收的测试信号,所述测试点根据所述智能天线的安装位置确定。其中,测试终端可以是本申请实施例中的测试设备,也可以是位于本申请实施例中的测试设备外部,且与测试设备进行通信连接。其中,与测试设备通信连接的测试终端可以是一个,也可以是多个。
其中,测试点根据智能天线的安装位置确定。按照测试波束方向的要求,在不同位置选取最优的测试点。如图2a和图2b所示,为本申请实施例一种测试终端的位置的示意图。
具体地,根据智能天线的安装位置,确定智能天线的法线方向A,如图2a中的A方向,将智能天线的安装位置对应的地平面位置确定为测试原点O。其中,θ为智能天线的下倾角,H为智能天线相对地平面的安装高度,则L表示H/tan(θ)。
进一步地,如图2a所示,首先确定测试中间点3,测试中间点3为沿法线A方向且与测试原点O的距离为L的测试点。然后,以测试中间点3为垂直测试中间点,沿法线A方向在垂直测试中间点3的前后按照第一设定步长各选取若干个垂直测试点,本实施例中选取1、2、4、5,即垂直测试点包括1、2、3、4、5五个测试点。其中,第一设定步长可以为1米,即每个垂直测试点的直线距离间隔为1米,此外也可以根据所选测场地环境对垂直测试点的位置和数量进行相应调整,在此不做限制。
进一步地,如图2b所示,以测试原点O为原点,以L为半径,确定水平测试圆;以测试中间点3为水平测试中间点,按照第二设定步长在水平测试圆上选取若干个水平测试点1’、2’、4’、5’,即水平测试点包括1’、2’、3、4’、5’五个测试点。需要说明的是,第二设定步长可以与第一设定步长相同,也可以与第二设定步长不同,具体地,第二设定步长也可以为1米,每个测试点的直线距离间隔为1米,此外也可以根据所选测场地环境对水平测试点的位置和数量进行相应调整,在此不做限制。
在确定垂直和水平测试点之后,基站通过待测智能天线发送测试信号至 测试终端,测试信号可以为参考信号或业务信号,通过移动终端先后在各测试点接收测试信号。
步骤S104:根据各测试信号得到智能天线的实测性能参数。
具体地址,根据测试终端在各个测试点接收到的测试信号进行分析。例如,接收到测量报告(MR,Measurement Report),根据信号功率、数据传输速率、SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)等性能,可以通过预设的采集软件拟合出智能天线的天线方向图,包括水平方向图和垂直方向图。
然后,根据天线方向图得到智能天线的实测性能参数,具体实测性能参数包括但不限于实测下倾角、实测水平主波束的波束宽度、实测垂直主波束的波束宽度、实测水平主波束的旁瓣抑制比、实测垂直主波束的旁瓣抑制比等。
步骤S105:将所述目标性能参数和所述实测性能参数进行比较分析,根据比较结果调整所述智能天线的各个通道的波束赋形权值。
进一步地,在步骤S105之后,需返回步骤S103重新获取测试终端在各测试点接收的测试信号,直至所述实测性能参数与所述目标性能参数满足预设条件。
具体的,将实测性能参数与目标性能参数对比,根据未达标的性能参数对各个通道赋形权值系数参数进行优化调整。下面以5个通道的智能天线为例,对本申请实施例提供的波束赋形权值调整方法进行详细说明。如图3所示,为本申请实施例提供的一种波束赋形权值调整方法流程示意图,包括:
步骤S301:优化主波束的下倾角。
若实测下倾角大于目标下倾角,则表示下倾角度值需要减小。假设待测智能天线的第1通道至第5通道对应的初始相位权值系数为W1、W2、W3、W4、W5,则可以将W1调整更新为(W1-2θ),将W2调整更新为(W2-θ),将W4调整更新为(W4+θ),将W5调整更新为(W5+2θ)。其中,θ为整数,θ的具体取值可以根据实测下倾角与目标下倾角的差值大小,结合多次测试 以及经验确定,在此不做限定。
相应地,若实测下倾角小于目标下倾角,则表示下倾角度值需要增大,则可以将W1调整更新为(W1+2θ),将W2调整更新为(W2+θ),将W4调整更新为(W4-θ),将W5调整更新为(W5-2θ)。其中,θ为整数,θ的具体取值可以根据实测下倾角与目标下倾角的差值大小,结合多次测试以及经验确定,在此不做限定。
对于主波束的下倾角,为了提高测试效率,得到更好的测试效果,一般同时调整智能天线多个通道的权值,也可以单个通道进行调整,在此不做限制。假设调整第一次优化后待测智能天线的第1通道至第5通道的相位权值为W11,W12,W13,W14,W15。
步骤S302:优化主波束的波束宽度。
具体地址,为了提高测试效率,得到更好的测试效果,在调整优化后相位权值W11,W12,W13,W14,W15的基础上,通过调整单个通道的波束赋形相位权值,获得最优的波束宽度,即每次调整单个通道的波束赋形相位权值,其他通道的波束赋形权值固定不变。具体调整的相位值大小不限于可以根据实测主波束的波束宽度与目标主波束的波束宽度的差值大小,结合多次测试以及经验确定,在此不做限定。
例如,通过大步径δ=90°,仅调整第1通道、第2通道、第4通道以及第5通道中的任一通道的相位权值,假设得到第二次优化后待测智能天线的第1通道至第5通道的相位权值为W21,W22,W23,W24,W25。
步骤S303:优化主波束的旁瓣抑制。
具体地,为了提高测试效率,得到更好的测试效果,在调整优化后相位权值W21,W22,W23,W24,W25的基础上,通过调整单个通道的波束赋形相位权值,获得最优的主波束的旁瓣抑制,即每次调整单个通道的波束赋形相位权值,其他通道的波束赋形权值固定不变。具体调整的相位值大小不限于可以根据实测主波束的旁瓣抑制与目标主波束的旁瓣抑制的差值大小,结合多次测试以及经验确定,在此不做限定。假设得到第三次优化后待测智 能天线的第1通道至第5通道的相位权值为W31,W32,W33,W34,W35。
进一步地,针对5个通道中的任一通道,每次调整权值加10°或者减10°,则得到2*5=10组测试案例,记录下每组测试案例的主波束旁瓣抑制性能;从10组测试案例中,选择N组旁瓣抑制性能优化效果最佳的,然后进行旁瓣抑制性能最优结果搜索,得到最优旁瓣抑制性能。
需要说明的是,上述方法不仅局限于5个通道的智能天线的波束赋形相位权值调整,也可以应用于若干个通道的智能天线波束赋形相位权值调整,在此不做限制。此外,本申请实施例不限于针对以上三个性能参数对智能天线波束赋形相位权值进行调整,针对其它参数也可以对波束赋形相位权值进行调整,在此不限制。
在得到最终优化后的待测智能天线的波束赋形权值后,通过测试终端远程连接方式调整配置各个通道波束赋形权值系数。此外,也可以通过基站的控制系统对智能天线的各个通道的波束赋形权值进行配置,在此不做限制。在权值配置之后可以通过网口和串口等方式可以读取、显示和监控各个通道波束赋形权值的生效和更改情况。
例如,通过测试终端远程配置待测智能天线第1通道至第5通道的波束赋形相位权值系数W31,W32,W33,W34,W35,并在通过串口读取、显示和监控各个通道波束赋形权值的生效和更改情况。
需要说明的是,步骤105之后,需要返回步骤103获取测试终端在各测试点接收的测试信号的步骤,直至实测性能参数与目标性能参数满足预设条件,则测试结束,记录此时的目标波束赋形权值,根据目标波束赋形权值更新波束赋形表,为实际应用时提供准确的符合外场环境的波束赋形最优覆盖效果。
例如,经过多次调整波束赋形权值并测试后,得到实测性能参数与目标性能参数接近一致或差值在预设范围,则测试结束,记录测智能天线第1通道至第5通道的波束赋形相位权值系数W41,W42,W43,W44,W45,则将波束赋形表中初始的权值系数W1,W2,W3,W4,W5更新为W41,W42, W43,W44,W45。
本申请实施例提供一种智能天线性能测试及优化的方法,首先对安装后的智能天线的各个通道进行校准;根据智能天线的目标性能参数,对智能天线的各个通道进行波束赋形权值设置;然后获取测试终端在各测试点接收的测试信号,根据各测试信号得到智能天线的实测性能参数,将目标性能参数和实测性能参数进行比较分析,根据比较结果调整智能天线的各个通道的波束赋形权值。本申请实施例通过对波束赋形权值系数进行优化,准确获得了符合外场实际环境的波束赋形最优覆盖效果,减少了波束赋形优化测试的人工干预以及工程调试的工作量。
基于同样的发明构思,本申请实施例还提供一种智能天线性能测试及优化的装置,如图4所示,为本申请实施例提供的一种智能天线性能测试及优化的装置结构示意图,包括:
校准模块401:用于对安装后的智能天线的各个通道进行校准;
设置模块402:用于根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置;
测试模块403:用于获取测试终端在各测试点接收的测试信号,所述测试点根据所述智能天线的安装位置确定;
处理模块404:根据所述各测试信号得到所述智能天线的实测性能参数;将所述目标性能参数和所述实测性能参数进行比较分析,根据比较结果调整所述智能天线的各个通道的波束赋形权值,返回测试模块执行获取测试终端在各测试点接收的测试信号的步骤,直至所述实测性能参数与所述目标性能参数满足预设条件。
较佳地,所述设置模块402,具体用于:
根据所述目标性能参数,查找波束赋形表,得到所述智能天线的波束赋形权值;
所述处理模块404,还用于:
确定所述目标性能参数和所述实测性能参数满足预设条件时对应的目标 波束赋形权值,根据所述目标波束赋形权值更新所述波束赋形表。
较佳地,处理模块404,具体用于:
对所述测试终端在各测试点接收到的测试信号进行分析,拟合出所述智能天线的天线方向图,所述天线方向图包括水平方向图和垂直方向图;
根据所述天线方向图,确定所述智能天线的所述实测性能参数。
较佳地,所述测试模块403,还用于:
确定所述智能天线的法线方向,将所述智能天线的安装位置对应的地平面位置确定为测试原点;
确定测试中间点,所述测试中间点为沿所述法线方向且与所述测试原点的距离为H/tan(θ)的测试点,θ为所述智能天线的下倾角,H为所述智能天线相对地平面的安装高度;
以所述测试中间点为垂直测试中间点,沿所述法线方向在所述垂直测试中间点的前后按照第一步长各选取若干个垂直测试点;
以所述测试原点为原点,以H/tan(θ)为半径,确定水平测试圆;以所述测试中间点为水平测试中间点,按照第二步长在所述水平测试圆上选取若干个水平测试点。
较佳地,所述实测性能参数包括以下任意之一或组合:
下倾角、水平主波束的波束宽度、垂直主波束的波束宽度、水平主波束的旁瓣抑制比、垂直主波束的旁瓣抑制比。
本申请实施例提供一种智能天线性能测试及优化的装置,首先对安装后的智能天线的各个通道进行校准;根据智能天线的目标性能参数,对智能天线的各个通道进行波束赋形权值设置;然后获取测试终端在各测试点接收的测试信号,根据各测试信号得到智能天线的实测性能参数,将目标性能参数和实测性能参数进行比较分析,根据比较结果调整智能天线的各个通道的波束赋形权值。本申请实施例通过对波束赋形权值系数进行优化,准确获得了符合外场实际环境的波束赋形最优覆盖效果,减少了波束赋形优化测试的人工干预以及工程调试的工作量。
值得一提的是,以上实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
基于相同的发明构思,本申请实施例还提供一种测试设备,如图5所示,包括:至少一个处理器500;收发机510;以及与至少一个处理器500通信连接的存储器520。该测试设备可以是上述实施例中的智能天线性能测试及优化的装置,智能天线性能测试及优化的装置中的各个功能模块执行的步骤可由测设设备中的处理器执行。
其中,处理器500,用于读取存储器520中的程序,执行下列过程:
对安装后的智能天线的各个通道进行校准;根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置;获取测试终端在各测试点接收的测试信号,所述测试点根据所述智能天线的安装位置确定;根据所述各测试信号得到所述智能天线的实测性能参数;将所述目标性能参数和所述实测性能参数进行比较分析,根据比较结果调整所述智能天线的各个通道的波束赋形权值,返回获取测试终端在各测试点接收的测试信号的步骤,直至所述实测性能参数与所述目标性能参数满足预设条件。
可选的,所述处理器500能够:根据所述目标性能参数,查找波束赋形表,得到所述智能天线的波束赋形权值;在所述直至所述实测性能参数与所述目标性能参数满足预设条件之后,还包括:确定所述目标性能参数和所述实测性能参数满足预设条件时对应的目标波束赋形权值,根据所述目标波束赋形权值更新所述波束赋形表。
可选的,所述处理器500能够:对所述测试终端在各测试点接收到的测试信号进行分析,拟合出所述智能天线的天线方向图,所述天线方向图包括水平方向图和垂直方向图;根据所述天线方向图,确定所述智能天线的所述实测性能参数。
可选的,所述处理器500能够:确定所述智能天线的法线方向,将所述智能天线的安装位置对应的地平面位置确定为测试原点;确定测试中间点,所述测试中间点为沿所述法线方向且与所述测试原点的距离为H/tan(θ)的测试点,θ为所述智能天线的下倾角,H为所述智能天线相对地平面的安装高度;以所述测试中间点为垂直测试中间点,沿所述法线方向在所述垂直测试中间点的前后按照第一步长各选取若干个垂直测试点;以所述测试原点为原点,以H/tan(θ)为半径,确定水平测试圆;以所述测试中间点为水平测试中间点,按照第二步长在所述水平测试圆上选取若干个水平测试点。
可选的,所述实测性能参数包括以下任意之一或组合:下倾角、水平主波束的波束宽度、垂直主波束的波束宽度、水平主波束的旁瓣抑制比、垂直主波束的旁瓣抑制比。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
可选的,处理器500可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
基于相同的发明构思,本申请提供一种非易失性计算机存储介质,所述 非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一实施方式中的智能天线性能测试及优化的方法。
基于相同的发明构思,本申请提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括所述计算机可执行指令,当所述计算机可执行指令被计算机执行时,使所述计算机执行上述任一实施方式中的智能天线性能测试及优化的方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)执行各个实施例或者实施例的某些部分所述的方法。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的系统。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令系统的制造品,该指令系统实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种智能天线性能测试及优化的方法,其特征在于,包括:
    对安装后的智能天线的各个通道进行校准;
    根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置;
    获取测试终端在各测试点接收的测试信号,所述测试点根据所述智能天线的安装位置确定;
    根据所述各测试信号得到所述智能天线的实测性能参数;
    将所述目标性能参数和所述实测性能参数进行比较分析,根据比较结果调整所述智能天线的各个通道的波束赋形权值,返回获取测试终端在各测试点接收的测试信号的步骤,直至所述实测性能参数与所述目标性能参数满足预设条件。
  2. 如权利要求1所述的智能天线性能测试及优化的方法,其特征在于,所述根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置,包括:
    根据所述目标性能参数,查找波束赋形表,得到所述智能天线的波束赋形权值;
    在所述直至所述实测性能参数与所述目标性能参数满足预设条件之后,还包括:
    确定所述目标性能参数和所述实测性能参数满足预设条件时对应的目标波束赋形权值,根据所述目标波束赋形权值更新所述波束赋形表。
  3. 如权利要求1所述的智能天线性能测试及优化的方法,其特征在于,所述根据所述各测试信号得到所述智能天线的实测性能参数,包括:
    对所述测试终端在各测试点接收到的测试信号进行分析,拟合出所述智能天线的天线方向图,所述天线方向图包括水平方向图和垂直方向图;
    根据所述天线方向图,确定所述智能天线的所述实测性能参数。
  4. 如权利要求1所述的智能天线性能测试及优化的方法,其特征在于,所述测试点根据所述智能天线的安装位置确定,包括:
    确定所述智能天线的法线方向,将所述智能天线的安装位置对应的地平面位置确定为测试原点;
    确定测试中间点,所述测试中间点为沿所述法线方向且与所述测试原点的距离为H/tan(θ)的测试点,θ为所述智能天线的下倾角,H为所述智能天线相对地平面的安装高度;
    以所述测试中间点为垂直测试中间点,沿所述法线方向在所述垂直测试中间点的前后按照第一步长各选取若干个垂直测试点;
    以所述测试原点为原点,以H/tan(θ)为半径,确定水平测试圆;以所述测试中间点为水平测试中间点,按照第二步长在所述水平测试圆上选取若干个水平测试点。
  5. 如权利要求1~4任一项所述的智能天线性能测试及优化的方法,其特征在于,所述实测性能参数包括以下任意之一或组合:
    下倾角、水平主波束的波束宽度、垂直主波束的波束宽度、水平主波束的旁瓣抑制比、垂直主波束的旁瓣抑制比。
  6. 一种智能天线性能测试及优化的装置,其特征在于,包括:
    校准模块:用于对安装后的智能天线的各个通道进行校准;
    设置模块:用于根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置;
    测试模块:用于获取测试终端在各测试点接收的测试信号,所述测试点根据所述智能天线的安装位置确定;
    处理模块:根据所述各测试信号得到所述智能天线的实测性能参数;将所述目标性能参数和所述实测性能参数进行比较分析,根据比较结果调整所述智能天线的各个通道的波束赋形权值,返回测试模块执行获取测试终端在各测试点接收的测试信号的步骤,直至所述实测性能参数与所述目标性能参数满足预设条件。
  7. 如权利要求6所述的智能天线性能测试及优化的装置,其特征在于,所述设置模块,具体用于:
    根据所述目标性能参数,查找波束赋形表,得到所述智能天线的波束赋形权值;
    所述处理模块,还用于:
    确定所述目标性能参数和所述实测性能参数满足预设条件时对应的目标波束赋形权值,根据所述目标波束赋形权值更新所述波束赋形表。
  8. 如权利要求6所述的智能天线性能测试及优化的装置,其特征在于,处理模块,具体用于:
    对所述测试终端在各测试点接收到的测试信号进行分析,拟合出所述智能天线的天线方向图,所述天线方向图包括水平方向图和垂直方向图;
    根据所述天线方向图,确定所述智能天线的所述实测性能参数。
  9. 如权利要求6所述的智能天线性能测试及优化的装置,其特征在于,所述测试模块,还用于:
    确定所述智能天线的法线方向,将所述智能天线的安装位置对应的地平面位置确定为测试原点;
    确定测试中间点,所述测试中间点为沿所述法线方向且与所述测试原点的距离为H/tan(θ)的测试点,θ为所述智能天线的下倾角,H为所述智能天线相对地平面的安装高度;
    以所述测试中间点为垂直测试中间点,沿所述法线方向在所述垂直测试中间点的前后按照第一步长各选取若干个垂直测试点;
    以所述测试原点为原点,以H/tan(θ)为半径,确定水平测试圆;以所述测试中间点为水平测试中间点,按照第二步长在所述水平测试圆上选取若干个水平测试点。
  10. 如权利要求6~9任一项所述的智能天线性能测试及优化的装置,其特征在于,所述实测性能参数包括以下任意之一或组合:
    下倾角、水平主波束的波束宽度、垂直主波束的波束宽度、水平主波束 的旁瓣抑制比、垂直主波束的旁瓣抑制比。
  11. 一种测试设备,其特征在于,包括:至少一个处理器、收发器和与所述至少一个处理器通信连接的存储器;
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
    对安装后的智能天线的各个通道进行校准;
    根据所述智能天线的目标性能参数,对所述智能天线的各个通道进行波束赋形权值设置;
    获取测试终端在各测试点接收的测试信号,所述测试点根据所述智能天线的安装位置确定;
    根据所述各测试信号得到所述智能天线的实测性能参数;
    将所述目标性能参数和所述实测性能参数进行比较分析,根据比较结果调整所述智能天线的各个通道的波束赋形权值,返回获取测试终端在各测试点接收的测试信号的步骤,直至所述实测性能参数与所述目标性能参数满足预设条件。
  12. 根据权利要求11所述的测试设备,其特征在于,所述处理器能够:
    根据所述目标性能参数,查找波束赋形表,得到所述智能天线的波束赋形权值;
    在所述直至所述实测性能参数与所述目标性能参数满足预设条件之后,还包括:
    确定所述目标性能参数和所述实测性能参数满足预设条件时对应的目标波束赋形权值,根据所述目标波束赋形权值更新所述波束赋形表。
  13. 根据权利要求11所述的测试设备,其特征在于,所述处理器能够:
    对所述测试终端在各测试点接收到的测试信号进行分析,拟合出所述智能天线的天线方向图,所述天线方向图包括水平方向图和垂直方向图;
    根据所述天线方向图,确定所述智能天线的所述实测性能参数。
  14. 根据权利要求11所述的测试设备,其特征在于,所述处理器能够:
    确定所述智能天线的法线方向,将所述智能天线的安装位置对应的地平面位置确定为测试原点;
    确定测试中间点,所述测试中间点为沿所述法线方向且与所述测试原点的距离为H/tan(θ)的测试点,θ为所述智能天线的下倾角,H为所述智能天线相对地平面的安装高度;
    以所述测试中间点为垂直测试中间点,沿所述法线方向在所述垂直测试中间点的前后按照第一步长各选取若干个垂直测试点;
    以所述测试原点为原点,以H/tan(θ)为半径,确定水平测试圆;以所述测试中间点为水平测试中间点,按照第二步长在所述水平测试圆上选取若干个水平测试点。
  15. 根据权利要求11至14中任一项所述的测试设备,其特征在于,所述实测性能参数包括以下任意之一或组合:
    下倾角、水平主波束的波束宽度、垂直主波束的波束宽度、水平主波束的旁瓣抑制比、垂直主波束的旁瓣抑制比。
  16. 一种非易失性计算机存储介质,其特征在于,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1-5任一项所述的智能天线性能测试及优化的方法。
  17. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括所述计算机可执行指令,当所述计算机可执行指令被计算机执行时,使所述计算机执行权利要求1-5任一项所述的智能天线性能测试及优化的方法。
PCT/CN2017/117267 2017-01-20 2017-12-19 一种智能天线性能测试及优化的方法、装置及设备 WO2018133611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710048233.2 2017-01-20
CN201710048233.2A CN106712864B (zh) 2017-01-20 2017-01-20 一种智能天线性能测试及优化的方法及装置

Publications (1)

Publication Number Publication Date
WO2018133611A1 true WO2018133611A1 (zh) 2018-07-26

Family

ID=58910146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117267 WO2018133611A1 (zh) 2017-01-20 2017-12-19 一种智能天线性能测试及优化的方法、装置及设备

Country Status (2)

Country Link
CN (1) CN106712864B (zh)
WO (1) WO2018133611A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712864B (zh) * 2017-01-20 2020-04-14 京信通信系统(中国)有限公司 一种智能天线性能测试及优化的方法及装置
CN107436970B (zh) * 2017-07-06 2020-04-28 西安电子工程研究所 基于序列二次规划的三坐标雷达赋形方向图设计方法
CN108107277A (zh) * 2017-10-31 2018-06-01 黄炎水 一种天线覆盖性能评估方法、电子设备、存储介质、系统
WO2019090693A1 (zh) * 2017-11-10 2019-05-16 上海诺基亚贝尔股份有限公司 一种在波束赋形中进行数字预失真处理的方法和装置
CN109982354B (zh) * 2017-12-28 2022-05-10 中国移动通信集团北京有限公司 一种天线权值调整方法及装置
CN110943770B (zh) * 2018-09-25 2021-08-31 上海华为技术有限公司 多通道波束赋形方法、装置及存储介质
CN111586731A (zh) * 2019-02-18 2020-08-25 大唐移动通信设备有限公司 一种测试方法及系统
CN112953654B (zh) * 2019-12-11 2023-01-13 中国移动通信有限公司研究院 一种多通道天线的测试方法、装置、系统及介质
CN111465026B (zh) * 2020-03-26 2023-04-14 北京拓明科技有限公司 天线权重参数调整方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070052581A1 (en) * 2004-06-21 2007-03-08 Fjuitsu Ten Limited Radar apparatus
CN102300222A (zh) * 2011-06-28 2011-12-28 华为技术有限公司 天线信息管理装置、天线以及天线波束特性管理方法及装置
CN103036603A (zh) * 2011-10-09 2013-04-10 中兴通讯股份有限公司 智能天线波束赋形权值的处理方法及装置
CN103809042A (zh) * 2012-11-07 2014-05-21 中国移动通信集团湖北有限公司 一种智能天线外场测试方法及系统
CN103826249A (zh) * 2012-11-19 2014-05-28 中国移动通信集团湖北有限公司 一种智能天线异常性能评估方法及装置
WO2016155416A1 (zh) * 2015-03-31 2016-10-06 电信科学技术研究院 一种信道状态信息反馈、获取方法及装置
CN106712864A (zh) * 2017-01-20 2017-05-24 京信通信技术(广州)有限公司 一种智能天线性能测试及优化的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873326B2 (en) * 2006-07-11 2011-01-18 Mojix, Inc. RFID beam forming system
CN101848045B (zh) * 2010-06-13 2013-04-03 华中科技大学 一种测量双极化智能天线业务波束的基准方向的方法
US9967124B2 (en) * 2014-03-26 2018-05-08 Nokia Solutions And Networks Oy Use of basis functions for transmission of broadcast control information in a wireless network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070052581A1 (en) * 2004-06-21 2007-03-08 Fjuitsu Ten Limited Radar apparatus
CN102300222A (zh) * 2011-06-28 2011-12-28 华为技术有限公司 天线信息管理装置、天线以及天线波束特性管理方法及装置
CN103036603A (zh) * 2011-10-09 2013-04-10 中兴通讯股份有限公司 智能天线波束赋形权值的处理方法及装置
CN103809042A (zh) * 2012-11-07 2014-05-21 中国移动通信集团湖北有限公司 一种智能天线外场测试方法及系统
CN103826249A (zh) * 2012-11-19 2014-05-28 中国移动通信集团湖北有限公司 一种智能天线异常性能评估方法及装置
WO2016155416A1 (zh) * 2015-03-31 2016-10-06 电信科学技术研究院 一种信道状态信息反馈、获取方法及装置
CN106712864A (zh) * 2017-01-20 2017-05-24 京信通信技术(广州)有限公司 一种智能天线性能测试及优化的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, WENLI: "TD Network Optimization Implementation by Using Smart Antenna Broadcast Beamforming", MOBILE COMMUNICATIONS, 28 February 2011 (2011-02-28) *

Also Published As

Publication number Publication date
CN106712864B (zh) 2020-04-14
CN106712864A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2018133611A1 (zh) 一种智能天线性能测试及优化的方法、装置及设备
US11824272B2 (en) In-field millimeter-wave phased array radiation pattern estimation and validation
KR102650668B1 (ko) 방법 및 측정 환경, 테스트될 장치
US10601695B2 (en) Systems and methods for radio channel emulation of a multiple input multiple output (MIMO) wireless link
US11057120B2 (en) System and method for obtaining far field radiated power with multiple radiated power measurements in middle field range
JP5612257B2 (ja) マルチアンテナ測定方法、マルチアンテナ測定システム
US8730111B2 (en) Antenna evaluation apparatus for evaluating multiple wave of radio waves transmitted from scatterer antennas with function of calibration for the same apparatus
JP7038899B2 (ja) アンテナの校正方法および装置
US10256930B2 (en) Testing methods and systems for mobile communication devices
CN110402548B (zh) 基于用户设备定位精度配置参考信号波束的设备
US20180316402A1 (en) Antenna system configuration
US10393786B2 (en) Test system and method for over the air (OTA) measurements based on randomly adjusted measurement points
WO2020108239A1 (zh) 无线终端的无线性能测试方法及系统
JP2020532231A (ja) ビーム形成ベースのマルチアンテナ・デバイスの無響および非無響環境におけるオーバーザエア校正と試験
CN111372273A (zh) 用于测试被测装置的天线的测试系统以及测试用户设备的方法
JP2019521596A (ja) 適切なインプリシットビームフォーミング動作に関して無線周波数(rf)データパケット信号送受信機を試験するための方法
TWI647460B (zh) 無線通信裝置空中傳輸量測系統
CN113093096B (zh) 到达角度确定方法及相关装置
JP4015180B2 (ja) 到来方向推定装置、到来方向推定方法及び障害物推定装置
CN110514907B (zh) 无线通信装置空中传输量测系统
Kelner et al. Path loss model modification for various gains and directions of antennas
Rehman et al. Development of a cost effective antenna radiation pattern measurement setup
Reyes et al. Over-the-air test method for 5g mmwave devices with beamforming capabilities
JP4014941B2 (ja) 到来方向推定装置及び到来方向推定方法
CN114720937A (zh) 到达角度的确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.11.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17892651

Country of ref document: EP

Kind code of ref document: A1