WO2019120070A1 - 一种获取下行信道信息的方法及装置 - Google Patents

一种获取下行信道信息的方法及装置 Download PDF

Info

Publication number
WO2019120070A1
WO2019120070A1 PCT/CN2018/118998 CN2018118998W WO2019120070A1 WO 2019120070 A1 WO2019120070 A1 WO 2019120070A1 CN 2018118998 W CN2018118998 W CN 2018118998W WO 2019120070 A1 WO2019120070 A1 WO 2019120070A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna ports
weight matrix
matrix
downlink channel
network side
Prior art date
Application number
PCT/CN2018/118998
Other languages
English (en)
French (fr)
Inventor
张敏
刁英斐
董广伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18890586.3A priority Critical patent/EP3716496A4/en
Publication of WO2019120070A1 publication Critical patent/WO2019120070A1/zh
Priority to US16/906,292 priority patent/US11363585B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas

Definitions

  • the present application relates to the field of information technology, and in particular, to a method and an apparatus for acquiring downlink channel information.
  • MIMO Multiple-input multiple-output
  • MIMO-BF MIMO beamforming
  • the same channel is used for the uplink transmission and the downlink transmission, so the base station can estimate the downlink channel information by measuring the uplink channel according to the channel dissimilarity.
  • the channel reciprocity means that the uplink channel and the downlink channel use the same channel.
  • the UE is usually 2T4R (that is, the UE includes 4 antenna ports, and is transmitted through 2 antenna ports in uplink transmission and 4 antennas in downlink reception). Port reception), 4T8R (ie, the UE includes 8 antenna ports, which are transmitted through 4 antenna ports when transmitting in the uplink, and 8 antenna ports when receiving in the downlink), and so on.
  • the current method for obtaining the downlink channel is as follows: The UE uses the 2T4R UE as an example. The UE first sends a Sounding Reference Signal (SRS) to the base station through the two antenna ports, so that the base station obtains the reciprocity according to the uplink and downlink channels.
  • SRS Sounding Reference Signal
  • the UE Downlink channel information corresponding to two antenna ports. Then, the UE sends the SRS to the base station through the other two antenna ports, so that the base station acquires the downlink channel information corresponding to the other two antenna ports according to the reciprocity of the uplink and downlink channels. Since the UE requires a certain time interval between sending SRSs twice, the real-time performance is poor, so that the accuracy of the downlink channel information acquired by the base station is low.
  • the present application provides a method and an apparatus for acquiring downlink channel information, which are used to solve the problem that the acquired downlink channel information has low accuracy in the prior art.
  • the present application provides a method for acquiring downlink channel information, where the method includes: receiving, by a network side device, a first pilot signal sent by a user equipment through N first antenna ports, and according to the received A pilot signal determines a downlink channel gain matrix corresponding to the N first antenna ports. And determining, according to the downlink channel gain matrix corresponding to the N first antenna ports, a first weight matrix corresponding to the N first antenna ports, where the first weight matrix is used to represent the N first antennas The downlink channel information corresponding to the port.
  • the network side device further sends a second pilot signal to the user equipment, and receives a precoding matrix indication PMI fed back by the user equipment, where the PMI is based on the user equipment receiving the second through the P antenna ports.
  • the pilot signal is determined.
  • the P antenna ports include M second antenna ports and at least one of the first antenna ports, or the P antenna ports include the M second antenna ports. And determining, according to the PMI, a second weight matrix, where the second weight matrix is used to represent downlink channel information corresponding to the P receiving ports.
  • the network side device determines downlink channel information corresponding to the N first antenna ports and the M second antenna ports based on the first weight matrix and the second weight matrix.
  • the network side device receives the first pilot measurement uplink channel in an uplink time slot to obtain downlink channel information, and sends a second pilot measurement downlink channel in one downlink time slot, and then combines the first channel.
  • the downlink channel information obtained by the frequency signal and the downlink channel information measured by the second pilot signal obtain all the downlink channel information, and the uplink channel is obtained by continuously transmitting the SRS in the two uplink time slots to obtain the downlink channel information.
  • the real-time performance of the embodiment of the present application is better when acquiring the downlink channel information. , can effectively improve the accuracy of obtaining downlink channel information.
  • the PMI is determined by the user equipment based on a second pilot signal received through the M second antenna ports.
  • the network side device cascades the first weight matrix and the second weight matrix to obtain downlink channel information corresponding to the N first antenna ports and the M second antenna ports.
  • the first weight matrix for characterizing the downlink channel information corresponding to the N first antenna ports and the second weight matrix for characterizing the downlink channel information corresponding to the M receiving ports may be combined in a cascade manner, thereby Obtaining downlink channel information corresponding to the N first antenna ports and the M second antenna ports.
  • the PMI is determined by the user equipment based on a second pilot signal received through the M second antenna ports and the at least one of the first antenna ports.
  • the network side device may determine an m-column matrix in the second weight matrix, and cascade the first weight matrix with the m-column matrix in the second weight matrix to obtain a The downlink channel information corresponding to the N first antenna ports and the M second antenna ports is described.
  • the user equipment sends the SRS pilot to the network side device through the M second antenna ports in the second uplink time slot, so that the network side device acquires the downlink channel information corresponding to the M second antenna ports.
  • the downlink channel information corresponding to the multiple antenna ports of the M second antenna ports may be acquired in a downlink time slot with a shorter time interval between the first uplink time slots, so that more information can be obtained.
  • the downlink channel information corresponding to the M second antenna ports is accurate.
  • the network side device may receive the user equipment by using the M second And determining, by the antenna port, the first pilot signal, and determining, according to the received first pilot signal, a downlink channel gain matrix corresponding to the M second antenna ports. Then, the network side device determines, according to the downlink channel gain matrix corresponding to the M second antenna ports, a third weight matrix corresponding to the M second antenna ports, where the third weight matrix is used to represent the The downlink channel information corresponding to the M second antenna ports is described.
  • the network side device determines, according to the third weight matrix, an m-column matrix in the second weight matrix, wherein a rank of the m-column matrix is equal to a rank of the third weight matrix.
  • the third weight matrix is used to represent the downlink channel information corresponding to the M second antenna ports, and the real-time performance of the second weight matrix is better than the third weight matrix, so in the second weight matrix
  • the m-column matrix whose rank is equal to the rank of the third weight matrix can more accurately reflect the downlink channel condition corresponding to the M second antenna ports.
  • the PMI is determined by the user equipment based on a second pilot signal received through the M second antenna ports and the N first antenna ports.
  • the network side device may receive the first guide sent by the user equipment by using the M second antenna ports. a frequency signal, and determining a downlink channel gain matrix corresponding to the M second antenna ports based on the received first pilot signal.
  • the network side device determines, according to the downlink channel gain matrix corresponding to the M second antenna ports, a fourth weight matrix corresponding to the M second antenna ports, where the fourth weight matrix is used to represent the Downstream channel information corresponding to the M second antenna ports.
  • the network side device cascades the first weight matrix and the fourth weight matrix to obtain a fifth weight matrix, and adjusts the fifth weight based on the second weight matrix.
  • the matrix obtains downlink channel information corresponding to the N first antenna ports and the M second antenna ports. Since the second weight matrix is measured and measured in one downlink time slot, and the fifth weight matrix is measured and measured in two consecutive uplink time slots, the second weight matrix is smaller than the fifth weight matrix.
  • the real-time performance is better. In the above design, adjusting the fifth weight matrix based on the second weight matrix with better real-time performance can improve the real-time performance of acquiring downlink channel information, thereby effectively improving the accuracy of acquiring downlink channel information.
  • the network side device adjusts the fifth weight based on the second weight matrix by multiplying the second weight matrix and the fifth weight matrix. Value matrix. In this way, the phase of the transmit beam corresponding to the fifth weight matrix can be corrected, so that the transmit beam formed based on the modified fifth weight matrix is more accurate.
  • the network side device adjusts the second weight matrix, and/or the size of the matrix element in the fifth weight matrix, and then adjusts the second weight matrix Multiplying the adjusted fifth weight matrix to adjust the fifth weight matrix based on the second weight matrix.
  • the phase and amplitude of the transmit beam corresponding to the fifth weight matrix can be corrected, so that the transmit beam formed based on the modified fifth weight matrix is more accurate.
  • the network side device determines an H*H-order orthogonal matrix of the downlink channel gain matrix corresponding to the N first antenna ports, and a downlink channel corresponding to the N first antenna ports.
  • the rank of the gain matrix where H is the number of receiving ports of the network side device.
  • the downlink channel gain matrix corresponding to the N first antenna ports can be normalized, so that the second weight matrix can be combined to improve the accuracy of acquiring the downlink channel information.
  • the network side device performs precoding weighting on the second pilot signal based on a preset weight matrix, and then sends the weighted second pilot signal to the user equipment. . Then, the network side device multiplies the preset weight matrix by the PMI to obtain the second weight matrix. In this way, the PMI can be normalized so that it can be combined with the first weight matrix to improve the accuracy of acquiring downlink channel information.
  • the present application provides an apparatus for acquiring downlink channel information, where the apparatus includes: a receiving module, configured to receive a first pilot signal sent by a user equipment through the N first antenna ports. a determining module, configured to determine, according to the first pilot signal received by the receiving module, a downlink channel gain matrix corresponding to the N first antenna ports, where N is an integer greater than 0, and based on the N The downlink channel gain matrix corresponding to the first antenna ports determines a first weight matrix corresponding to the N first antenna ports. The first weight matrix is used to represent downlink channel information corresponding to the N first antenna ports. And a sending module, configured to send a second pilot signal to the user equipment.
  • a receiving module configured to receive a first pilot signal sent by a user equipment through the N first antenna ports.
  • a determining module configured to determine, according to the first pilot signal received by the receiving module, a downlink channel gain matrix corresponding to the N first antenna ports, where N is an integer greater than 0, and based on the N
  • the receiving module is further configured to receive a precoding matrix indication PMI that is fed back by the user equipment, where the PMI is determined by the user equipment based on a second pilot signal received by the P antenna ports.
  • the P antenna ports include M second antenna ports and at least one of the first antenna ports, or the P antenna ports include the PMI for the user equipment based on receiving through the M second antenna ports
  • the second pilot signal is determined.
  • the determining module is further configured to determine a second weight matrix based on the PMI received by the receiving module, where the second weight matrix is used to represent downlink channel information corresponding to the P receiving ports, and The first weight matrix and the second weight matrix determine downlink channel information corresponding to the N first antenna ports and the M second antenna ports.
  • the PMI is determined by the user equipment based on a second pilot signal received through the M second antenna ports.
  • the determining module is specifically used to determine downlink channel information corresponding to the N first antenna ports and the M second antenna ports based on the first weight matrix and the second weight matrix. And cascading the first weight matrix and the second weight matrix to obtain downlink channel information corresponding to the N first antenna ports and the M second antenna ports.
  • the PMI is determined by the user equipment based on a second pilot signal received through the M second antenna ports and the at least one of the first antenna ports.
  • the determining module is specifically used to determine downlink channel information corresponding to the N first antenna ports and the M second antenna ports based on the first weight matrix and the second weight matrix. Determining an m-column matrix in the second weight matrix, and cascading the first weight matrix and the m-column matrix in the second weight matrix to obtain the N first The downlink channel information corresponding to the antenna port and the M second antenna ports, where m is an integer greater than 0 and smaller than the number of columns of the second weight matrix.
  • the receiving module is configured to receive the user equipment through the M second antenna ports before receiving the first pilot signal sent by the user equipment through the N first antenna ports.
  • the determining module is further configured to determine, according to the first pilot signal received by the receiving module, a downlink channel gain matrix corresponding to the M second antenna ports, and corresponding to the M second antenna ports.
  • the downlink channel gain matrix determines a third weight matrix corresponding to the M second antenna ports.
  • the third weight matrix is used to represent downlink channel information corresponding to the M second antenna ports.
  • the determining module when determining the m-column matrix in the second weight matrix, is specifically configured to: determine, according to the third weight matrix, an m-column matrix in the second weight matrix, where The rank of the m-column matrix is equal to the rank of the third weight matrix.
  • the PMI is determined by the user equipment based on a second pilot signal received through the M second antenna ports and the N first antenna ports.
  • the receiving module after receiving the first pilot signal sent by the user equipment through the N first antenna ports, is further configured to receive the first pilot that is sent by the user equipment by using the M second antenna ports signal.
  • the determining module is further configured to determine, according to the first pilot signal received by the receiving module, a downlink channel gain matrix corresponding to the M second antenna ports, and corresponding to the M second antenna ports.
  • the downlink channel gain matrix determines a fourth weight matrix corresponding to the M second antenna ports.
  • the fourth weight matrix is used to represent downlink channel information corresponding to the M second antenna ports.
  • the determining module is specifically used to determine downlink channel information corresponding to the N first antenna ports and the M second antenna ports based on the first weight matrix and the second weight matrix. And cascading the first weight matrix and the fourth weight matrix to obtain a fifth weight matrix, and adjusting the fifth weight matrix based on the second weight matrix to obtain the N Downlink channel information corresponding to the first antenna port and the M second antenna ports.
  • the determining module when adjusting the fifth weight matrix based on the second weight matrix, is specifically configured to: use the second weight matrix and the fifth weight The value matrix is multiplied.
  • the determining module when adjusting the fifth weight matrix based on the second weight matrix, is specifically configured to: adjust the second weight matrix, and/or The size of the matrix element in the fifth weight matrix, and then multiplying the adjusted second weight matrix by the adjusted fifth weight matrix.
  • the determining module is specifically used to determine the first weight matrix corresponding to the N first antenna ports based on the downlink channel gain matrix corresponding to the N first antenna ports. And determining an H*H-order orthogonal matrix of the downlink channel gain matrix corresponding to the N first antenna ports, and a rank of the downlink channel gain matrix corresponding to the N first antenna ports.
  • the H is the number of receiving ports of the network side device. It is then determined that the first n columns of the H*H-order orthogonal matrix are the first weight matrix. The n is equal to the rank of the downlink channel gain matrix corresponding to the N first antenna ports.
  • the apparatus further includes an encoding module for precoding weighting the second pilot signal based on a preset weight matrix.
  • the sending module is configured to send the weighted second pilot signal to the user equipment when the second pilot signal is sent to the user equipment.
  • the determining module is configured to: when the second weight matrix is determined based on the PMI, specifically: multiplying the preset weight matrix by the PMI to obtain the second weight matrix.
  • the present application provides an apparatus for acquiring downlink channel information, including: a transceiver, a memory, and a processor, where the memory is used to store program code that the processor needs to execute.
  • the transceiver is used to receive and transmit data.
  • the processor is configured to execute the program code stored in the memory, specifically for performing the method described in any one of the first aspect or the first aspect.
  • the present application further provides a computer readable storage medium, configured to store computer software instructions for performing the functions of any of the above first aspect, the first aspect, including A program designed on the one hand or in any of the first aspects.
  • an embodiment of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the method described in any one of the above first aspect or the first aspect.
  • an embodiment of the present application provides a chip, where the chip is connected to a memory, and is configured to read and execute a software program stored in the memory, so as to implement the foregoing aspect or the first aspect.
  • a method provided by the design is provided.
  • FIG. 1A is a schematic structural diagram of a SISO system provided by the present application.
  • FIG. 1B is a schematic structural diagram of a MISO system provided by the present application.
  • 1C is a schematic structural diagram of a SIMO system provided by the present application.
  • 1D is a schematic structural diagram of a MIMO system provided by the present application.
  • FIG. 2 is a schematic flowchart of a method for acquiring downlink channel information according to the present application
  • FIG. 3 is a schematic structural diagram of a MIMO system provided by the present application.
  • FIG. 4 is a schematic flowchart of a method for acquiring downlink channel information according to the present application.
  • FIG. 5 is a schematic flowchart of a method for acquiring downlink channel information according to the present application.
  • FIG. 6 is a schematic flowchart of a method for acquiring downlink channel information according to the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for acquiring downlink channel information according to the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for acquiring downlink channel information according to the present application.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the communication system can be divided into a single-input single-output (SISO) system, a multiple-input single-output (MISO) system, and a single-input multiple-output (SIMO).
  • SISO single-input single-output
  • MISO multiple-input single-output
  • MIMO single-input multiple-output
  • the network side device and the user equipment in the SISO each include an antenna, as shown in FIG. 1A.
  • the network side device includes multiple antennas, and the user equipment includes one antenna, as shown in FIG. 1B.
  • the network side device in SIMO includes an antenna, and the user equipment includes multiple antennas, as shown in FIG. 1C.
  • the network side device in MIMO includes a plurality of antennas, and the user equipment includes a plurality of antennas, as shown in FIG. 1D.
  • the embodiment of the present application can be applied to the MIMO system shown in FIG. 1D.
  • the MIMO system involved in the embodiments of the present application may be various types of communication systems, for example, may be long term evolution (LTE), may be a fifth generation (5G) communication system, or may be a hybrid architecture of LTE and 5G.
  • LTE long term evolution
  • 5G fifth generation
  • the network side device may be an ordinary base station (such as a Node B or an eNB), a new radio controller (NR controller), a gNode B (gNB) in a 5G system, a centralized network unit, or a centralized network unit.
  • the present invention is implemented by a new wireless base station, a radio remote module, a micro base station, a distributed network unit, a transmission reception point (TRP), or a transmission point (TP) or any other wireless access device.
  • TRP transmission reception point
  • TP transmission point
  • a user equipment is a terminal device, which is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, and the like.
  • Terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • a network side device (such as a base station) can transmit data to a UE through a MIMO beamforming (MIMO-BF).
  • MIMO-BF is a network side device that weights the transmission data according to the downlink channel information to form a narrow transmission beam, and aligns the energy with the target UE, thereby improving communication quality.
  • the MIMO system can be divided into a frequency division fuplexing (FDD) system and a time division duplex (TDD) system.
  • FDD frequency division fuplexing
  • TDD time division duplex
  • the uplink transmission and the downlink transmission use two channels independent of each other, and in the TDD system, the same channel is used for the uplink transmission and the downlink transmission. Therefore, in the TDD system, the network side device can estimate the downlink channel information by measuring the uplink channel according to the channel dissimilarity.
  • the channel reciprocity means that the uplink channel and the downlink channel use the same channel.
  • the UE is usually unbalanced in transmission and reception.
  • the UE is usually 2T4R (that is, the UE includes 4 antenna ports, which are transmitted through 2 antenna ports in uplink transmission, and received through 4 antenna ports in downlink reception), and 4T8R (ie, UE). It includes 8 antenna ports, which are transmitted through 4 antenna ports in uplink transmission, and 8 antenna ports in downlink reception, etc., so in the TDD system, the network side device estimates downlink channel information by measuring the uplink channel. The method can only obtain downlink channel information corresponding to a part of antenna ports included in the UE.
  • the current method for obtaining the downlink channel is as follows: the existing scheme 1: taking the 2T4R UE as an example, the four antenna ports of the UE are the antenna port 0 to the antenna port respectively. 3.
  • the UE sends a Sounding Reference Signal (SRS) to the base station through an antenna port 0 and an antenna port 2 in an uplink time slot, so that the base station determines the antenna port after receiving the SRS from the antenna port 0 and the antenna port 2. 0 and the uplink channel information corresponding to the antenna port 2, and then obtaining the downlink channel information corresponding to the antenna port 0 and the antenna port 2 according to the reciprocity of the uplink and downlink channels.
  • SRS Sounding Reference Signal
  • the UE sends the SRS to the base station through the antenna port 1 and the antenna port 3 in the next uplink time slot, so that the base station determines the uplink channel information corresponding to the antenna port 1 and the antenna port 3 after receiving the SRS from the antenna port 1 and the antenna port 3.
  • the downlink channel information corresponding to the antenna port 1 and the antenna port 3 is obtained according to the reciprocity of the uplink and downlink channels. Since the UE needs a certain time interval between sending SRSs twice, that is, there is a certain time interval between two consecutive uplink time slots, the real-time information of the downlink channel information corresponding to antenna port 0 and antenna port 2 acquired first is obtained. The performance is poor, so that the accuracy of the downlink channel information acquired by the base station is low.
  • the currently used method for obtaining the downlink channel is also the existing scheme 2: the UE of the 2T4R is taken as an example, and the network side device sends the CSI reference signals (CSI-RS) to the UE, and the UE After receiving the CSI-RS through the four antenna ports, the network side device feeds back a Precoding Matrix Indicator (PMI), so that the network side device acquires the downlink channel information according to the PMI fed back by the UE.
  • PMI Precoding Matrix Indicator
  • the number of PMIs specified by the 3rd generation partnership project (3GPP) protocol is relatively limited. Therefore, the downlink channel information obtained by the network side device according to the PMI fed back by the UE can only approximate the true downlink channel condition. The true downlink channel condition cannot be accurately reflected and the accuracy is low.
  • the present application provides a method and an apparatus for acquiring downlink channel information, which are used to solve the problem that the acquired downlink channel information has low accuracy in the prior art.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • the uplink channel gain matrix is composed of a plurality of uplink channel gains, wherein the number of rows of the uplink channel gain matrix indicates the number of antenna ports used by the network side device to receive data, and the number of columns of the uplink channel gain matrix indicates that the UE is used to transmit data.
  • the number of antenna ports therefore, the matrix element h i,j of the i-th row and the j-th column in the uplink channel gain matrix represents the channel of the uplink channel between the i-th antenna port of the network side device and the j-th antenna port of the UE Gain, and h ij can meet the following formula requirements:
  • y i,j represents the received signal from the jth antenna port of the UE received by the i th antenna port of the network side device
  • h i,j represents the i th antenna port of the network side device and the jth of the UE
  • the channel gain of the uplink channel between the antenna ports, s i,j represents the transmission signal transmitted by the UE through the ith antenna port, and n represents the noise of the network side device.
  • the downlink channel gain matrix is composed of a plurality of downlink channel gains, wherein the number of rows of the downlink channel gain matrix indicates the number of antenna ports used by the UE to receive data, and the number of columns of the downlink channel gain matrix indicates that the network side device is used to transmit data.
  • the number of antenna ports therefore, the matrix element of the rth row and the kth column in the downlink channel gain matrix represents the channel gain of the downlink channel between the rth antenna port of the UE and the kth antenna port of the network side device.
  • the channel reciprocity means that the uplink channel and the downlink channel use the same channel.
  • the fading of the uplink channel and the downlink channel can be considered to be substantially the same. Therefore, the channel gain of the uplink channel between the i-th antenna port of the network side device and the j-th antenna port of the UE and the downlink channel between the j-th antenna port of the UE and the i-th antenna port of the network side device The channel gain is the same.
  • SVD Singular Value Decomposition
  • U is the a*a-order orthogonal matrix of the matrix M
  • S is the diagonal matrix of the matrix M
  • V is the b*b-order orthogonal matrix of the matrix M.
  • Rank The maximum order of a non-zero subform of a matrix is the rank of the matrix.
  • Multiple means two or more.
  • the method for obtaining downlink channel information may be applied to a TDD system in a MIMO system, and the method may specifically include the following:
  • the UE sends a first pilot signal to a network side device (such as a base station) through the N first antenna ports in the first uplink time slot.
  • the first uplink time slot may be any uplink time slot. N is an integer greater than zero.
  • the first antenna port may be an antenna port used for transmitting data in the first uplink time slot among the antenna ports included in the UE. If the UE is 2T4R, the UE may pass any two antenna ports in the first uplink time slot.
  • the first pilot signal is transmitted to a network side device such as a base station. If the UE is 4T8R, the UE may send the first pilot signal to the network side device (such as the base station) through any four antenna ports in the first uplink time slot.
  • the first pilot signal can be an SRS.
  • the network side device determines, according to the first pilot signal from the N first antenna ports, a downlink channel gain matrix corresponding to the N first antenna ports.
  • the network side device may determine, according to the first pilot signal from the N first antenna ports, an uplink channel gain matrix H UL (H*N corresponding to the N first antenna ports. a matrix of the order, and then determining a downlink channel gain matrix H DL (N*H-order matrix) corresponding to the N first antenna ports according to reciprocity of the uplink and downlink channels.
  • H is the number of antenna ports used for transmitting and receiving data in the network side device.
  • the network side device determines that the first of the N antenna ports corresponding to a first weight matrix V 1 based on the N antenna ports corresponding to a first downlink channel gain matrix.
  • the first weight matrix V 1 is used to represent downlink channel information corresponding to the N first antenna ports.
  • a first weight matrix V 1 may be determined by: the network side device determines the H DL order orthogonal matrix H * H, and H DL rank, and determining said first n-order orthogonal matrix H * H is Listed as the first weight matrix V 1 . Where n is equal to the rank of H DL .
  • the network side device may determine the H * H H DL order orthogonal matrices, and the rank of H DL H DL by way of the SVD performed as follows:
  • V HDL H DL represents the order of the orthogonal matrix H * H
  • S HDL represents a diagonal matrix H DL, wherein the number of nonzero lines S HDL is the rank of H DL.
  • the network side device sends a second pilot signal to the UE in a first downlink time slot.
  • the first downlink time slot may be before the first uplink time slot or after the first uplink time slot.
  • the second pilot signal may be a CSI-RS, or may be a cell-specific RS (CRS), etc., and the embodiment of the present application is not specifically limited herein.
  • the second pilot signal when the network side device sends the second pilot signal to the UE, the second pilot signal may be precoded and weighted based on the preset weight matrix V, and then Transmitting the weighted second pilot signal to the UE.
  • the number of rows of the preset weight matrix is equal to the H, and the number of columns of the preset weight matrix is equal to the number of antenna ports included in the UE for receiving data.
  • the UE feeds back the PMI to the network side device.
  • the PMI is determined by the UE based on the second pilot signal received by the P antenna ports.
  • the P antenna ports include M second antenna ports and at least one of the first antenna ports, or the P antenna ports include the M second antenna ports.
  • the P, M are integers greater than 0, and the P is greater than or equal to the M.
  • the second antenna port may refer to an antenna port that is not used for transmitting data in the first uplink time slot among the antenna ports included in the UE, that is, the antenna ports included in the UE except the N first antenna ports. Antenna port.
  • the network side device determines a second weight matrix V 2 based on the PMI.
  • the second weight V 2 matrix is used to represent downlink channel information corresponding to the P receiving ports.
  • the network side device may determine the second weight matrix V 2 by multiplying the preset weight matrix by the PMI.
  • the network side device 2 determines the N first antenna port and the antenna port corresponding to the M downlink channel information based on the first weight matrix V. 1 and said second weight matrix V .
  • the network side device receives the first pilot measurement uplink channel in an uplink time slot to obtain downlink channel information, and sends a second pilot measurement downlink channel in one downlink time slot, and then combines the first channel.
  • the downlink channel information obtained by the frequency and the downlink channel information measured by the second pilot obtain all the downlink channel information, and the method for transmitting the uplink channel in the uplink time channel in the two uplink time slots to obtain the downlink channel information in the prior art is compared.
  • the time interval between the adjacent uplink time slot and the downlink time slot is smaller than the time interval between the two adjacent uplink time slots. Therefore, the real-time performance of the embodiment of the present application is better when acquiring the downlink channel information. Effectively improve the accuracy of obtaining downlink channel information.
  • the UE may receive the second through the M second antenna ports. Pilot signal, in this case, the preset weight matrix V is a matrix of H*M order.
  • the UE when determining the PMI, may determine, according to the second pilot signal received by the M second antenna ports.
  • the network side device may determine the second weight by multiplying the preset weight matrix of the H*M order by the determined PMI when determining the second weight matrix V 2 .
  • Value matrix V 2 The second weight matrix V 2 can be as follows:
  • the network side device may determine the downlink channel information V DL corresponding to the N first antenna ports and the M second antenna ports.
  • the first weight matrix V 1 and the second weight matrix V 2 are implemented in a cascade manner.
  • the first weight matrix V 1 and the second weight matrix V 2 are as follows:
  • the downlink channel information V DL corresponding to the N first antenna ports and the M second antenna ports is as follows:
  • the UE may also pass the M second antenna ports and at least one of the foregoing.
  • the first antenna port receives the second pilot signal.
  • the preset weight matrix V is a matrix of H*(M+x) steps, and the x is the at least one of the first The number of antenna ports.
  • the UE when determining the PMI, the UE may be implemented by using the following two methods:
  • the UE determines the PMI based on the second pilot signal received by the M second antenna ports.
  • the network side device when determining the second weight matrix V 2 , may be implemented by: the network side device first determining the preset weight matrix in the H*(M+x) order. The M column matrix, and then multiplying the M column matrix by the determined PMI to determine the second weight matrix V 2 .
  • the M column matrix may be composed of any M column matrix elements of the second weight matrix V 2 .
  • the second weight matrix V 2 can be as follows:
  • V 2 (M column matrix in V) ⁇ PMI.
  • the network side device may determine the first weight by determining the downlink channel information V DL corresponding to the N first antenna ports and the M second antenna ports, according to the first implementation manner.
  • the matrix V 1 and the second weight matrix V 2 are implemented in a cascade manner.
  • a method similar to the above-described V DL is obtained by cascading V 1 and V 2 , and the details of the present application are not repeated here.
  • the UE may determine the PMI based on the second pilot signals received by the M second antenna ports and the at least one of the first antenna ports.
  • the network side device may multiply the preset weight matrix of the H*(M+x) order by the PMI. to fulfill.
  • the second weight matrix V 2 can be as follows:
  • the network side device when the network side device determines the downlink channel information V DL corresponding to the N first antenna ports and the M second antenna ports, the network side device may be implemented as follows: An m-column matrix in the second weight matrix V 2 is described, and then the first weight matrix V 1 is concatenated with the m-column matrix in the second weight matrix V 2 .
  • the m is an integer greater than 0 and less than the number of columns of the second weight matrix.
  • the first weight matrix V 1 and the second weight matrix V 2 are as follows:
  • the downlink channel information V DL corresponding to the N first antenna ports and the M second antenna ports is as follows:
  • the m-column matrix may be composed of any m-column matrix elements of the second weight matrix V 2 .
  • the m-column matrix may also be composed of some m-column matrix elements in the second weight matrix V 2 , and the rank of the m-column matrix elements is equal to the rank of the third weight matrix V 3 .
  • the third weight matrix V 3 is used to represent downlink channel information corresponding to the M second antenna ports.
  • the network side device may determine that the third weight matrix V by way 3: UE by the M antenna ports in the second pilot signal in the uplink time slots to the network device transmitting the first guide.
  • the second uplink time slot may precede the first uplink time slot.
  • the downlink channel gain matrix corresponding to the port determines a third weight matrix V 3 corresponding to the M second antenna ports.
  • the network side device may determine a downlink channel gain matrix corresponding to the M second antenna ports by using a method similar to determining a downlink channel gain matrix corresponding to the N first antenna ports, where the network side device may also adopt and determine the
  • the third weight matrix is determined by a similar method of the first weight matrix, and details are not repeatedly described herein.
  • the second pilot signal is received by the M second antenna ports and the N first antenna ports when the number of the at least one first antenna port is N, And determining, according to the second pilot signals received by the M second antenna ports and the N first antenna ports, the network side device determining the N first antenna ports and
  • V DL downlink channel information
  • the network side device cascades the first weight matrix V 1 and the third weight matrix V 3 to obtain a fourth weight matrix, and then adjusts the fourth based on the second weight matrix
  • the weight matrix obtains downlink channel information V DL corresponding to the N first antenna ports and the M second antenna ports.
  • the second uplink time slot may be before the first uplink time slot or after the first uplink time slot.
  • the network side device adjusts the fourth weight matrix based on the second weight matrix
  • the network side device may be, but is not limited to, implemented as follows:
  • Manner 1 The network side device multiplies the second weight matrix V 2 and the fourth weight matrix V 4 .
  • the downlink channel information V DL corresponding to the N first antenna ports and the M second antenna ports is as follows:
  • V DL V 2 ⁇ V 4 .
  • the network side device adjusts the second weight matrix, and/or the size of the matrix element in the fourth weight matrix, and then adjusts the adjusted second weight matrix V 2 '
  • the adjusted fourth weight matrix V 4 ' is multiplied.
  • the downlink channel information V DL corresponding to the N first antenna ports and the M second antenna ports is as follows:
  • V DL V' 2 ⁇ V' 4 .
  • the first pilot signal is an SRS
  • the second pilot signal is a CIS-RS.
  • the MIMO system includes a 2T4R UE and a The network side device, wherein the UE includes four antenna ports 0, respectively U 0 to U 3 , wherein the N first antenna ports are U 0 and U 2 , and the M second antenna ports are U 1 And U 3 , the network side device includes 64 antenna ports for transmitting and receiving data, which are respectively E 0 to E 63 .
  • FIG. 3 is only a schematic diagram, and does not specifically limit the communication system to which the embodiment of the present application is applied.
  • FIG. 4 it is a process of acquiring downlink channel information.
  • the UE sends the SRS to the network side device by using U 0 and U 2 .
  • the network-side device according to the received E 0 to E 63 SRS from the U 0 and U 2 U 0 and U 2 is determined corresponding to the uplink channel gain matrix H UL (0,2), H UL (0,2) as follows :
  • the network side device determines, according to reciprocity of the uplink and downlink channels, a downlink channel gain matrix H DL(0, 2) corresponding to U 0 and U 2 as follows:
  • the network side device determines, according to H DL (0, 2), a corresponding weight matrix V SRS (0, 2) .
  • U (0, 2) is a 2*2 order orthogonal matrix of H DL(0, 2)
  • V (0, 2) is a 64*64 order orthogonal matrix of H DL (0, 2)
  • S (0, 2) is a diagonal matrix of H DL (0, 2) .
  • the number of non-zero lines in the network side device S (0 , 2) is the rank of H DL (0, 2) .
  • H DL (0,2) of rank 2 after which the former two as V SRS (0,2) (64 * 2 stage) V (0,2) in the.
  • the network side device via E 0 to E 63 to the UE U 1 and U 3 transmits CSI-RS.
  • the network side device based on a predetermined weight matrix V (64 * 2-order) U of CSI-RS for precoding weight, and then the weighted CSI-RS to the UE via E 0 to E 63 1 And U 3 .
  • V 64 * 2-order
  • the step S405 and the step S401 are not strictly followed.
  • the step S405 may be performed before the step S401, or may be performed after the step S401.
  • the embodiment of the present application is not specifically limited herein.
  • CSI-RS S406, UE U 1 and U 3 based on the received feedback PMI to the network device.
  • the network side device determines, according to the PMI, a corresponding weight matrix V PMI (1, 3) .
  • the network side device multiplies the V (64*2 order) by the fed back PMI to obtain V PMI (1, 3) (64*2 order).
  • the network side device cascades V SRS (0, 2) and V PMI (1, 3) to obtain downlink channel information V DL corresponding to U 0 to U 3 .
  • step S501 to S504 refer to step S401 to step S404 shown in FIG. 4, and details of the embodiments of the present application are not repeated herein.
  • the network side device via E 0 to E 63 U to U 3 0 to UE transmits CSI-RS.
  • the network side device based on a predetermined weight matrix V (64 * 4-order) of CSI-RS for precoding weight, and then the weighted CSI-RS to the UE via the E 0 to E 63 U 0 To U 3 .
  • V 64 * 4-order
  • the step S505 and the step S501 are not strictly followed.
  • the step S505 may be performed before the step S501, or may be performed after the step S501.
  • the embodiment of the present application is not specifically limited herein.
  • the network side device determines a corresponding weight matrix V PMI based on the PMI .
  • the network side device multiplies the V (64*4th order) by the fed back PMI to obtain V PMI (64*4th order).
  • the network side device determines the V PMI in m columns matrix V PMI ', then V' PMI and V SRS (0,2) cascading obtain V DL.
  • step S601 to S604 refer to step S401 to step S404 shown in FIG. 4, and details of the embodiments of the present application are not repeated herein.
  • S605 UE through U 1 and U 3 transmits the SRS to the network device.
  • the step S605 and the step S601 are not strictly followed.
  • the step S605 may be performed before the step S601, or may be performed after the step S601.
  • the embodiment of the present application is not specifically limited herein.
  • the network-side device according to the received E 0 to E 63 from U and the U SRS 1 3 U 1 and U 3 to determine the corresponding uplink channel gain matrix H UL (1,3).
  • the network side device determines the method of the H UL (1, 3) . For details, refer to the step S402 shown in FIG. 4, and details are not repeatedly described herein.
  • the network side device determines that the downlink channel gain matrix H DL(1, 3) corresponding to U 1 and U 3 is as follows:
  • the network side device may refer to step S403 shown in FIG. 4, and details are not repeatedly described herein.
  • the network side device determines a corresponding weight matrix V SRS(1, 3) according to H DL (1, 3) .
  • the network side device may refer to step S404 shown in FIG. 4, and details are not repeatedly described herein.
  • step S609 to S611 refer to step S505 to step S507 shown in FIG. 5, and details are not repeatedly described herein.
  • the network side device determines the V DL according to any one of the following manners according to V SRS (0 , 2) , V SRS (1, 3), and V PMI .
  • Manner 1 The network side device cascades V SRS(0 , 2) and V SRS(1, 3) to obtain V SRS ', and then multiplies V SRS ' with V PMI to obtain V DL .
  • the network device will V SRS (0,2), V SRS (1,3) cascade, resulting V SRS ', then adjust V SRS' size of matrix elements, then the adjusted V SRS ' Multiply with V PMI to get V DL .
  • Mode 3 The network side device cascades V SRS (0 , 2) and V SRS (1, 3) to obtain V SRS ', then adjusts the size of the matrix element in V PMI , and then adjusts the V SRS ' with V PMI is multiplied to obtain V DL .
  • Manner 4 The network side device cascades V SRS(0 , 2) and V SRS(1, 3) to obtain V SRS ', and then adjusts the size of the matrix element in V SRS ' and the size of the matrix element in V PMI .
  • the adjusted V SRS ' is then multiplied by the adjusted V PMI to obtain V DL .
  • step S605 When step S605 is performed before step S601, the network side device may also determine an m-column matrix in V PMI whose rank is equal to the rank of V SRS (1, 3) .
  • the embodiment of the present application provides an apparatus for acquiring downlink channel information, which is specifically used to implement the method described in the embodiments of FIG. 2 to FIG.
  • the structure of the device is as shown in FIG. 7, and includes: a receiving module 701, a determining module 702, and a sending module 703.
  • the receiving module 701 is configured to receive a first pilot signal that is sent by the user equipment through the N first antenna ports.
  • a determining module 702 configured to determine, according to the first pilot signal received by the receiving module 701, a downlink channel gain matrix corresponding to the N first antenna ports, where the N is an integer greater than 0, and The downlink channel gain matrix corresponding to the N first antenna ports determines a first weight matrix corresponding to the N first antenna ports. The first weight matrix is used to represent downlink channel information corresponding to the N first antenna ports.
  • the sending module 703 is configured to send a second pilot signal to the user equipment.
  • the receiving module 701 is further configured to receive a precoding matrix indication PMI that is fed back by the user equipment, where the PMI is determined by the user equipment based on a second pilot signal received by the P antenna ports.
  • the P antenna ports include M second antenna ports and at least one of the first antenna ports, or the P antenna ports include the PMI for the user equipment based on receiving through the M second antenna ports
  • the second pilot signal is determined.
  • the determining module 702 is further configured to determine, according to the PMI received by the receiving module 701, a second weight matrix, where the second weight matrix is used to represent downlink channel information corresponding to the P receiving ports, and Determining downlink channel information corresponding to the N first antenna ports and the M second antenna ports based on the first weight matrix and the second weight matrix.
  • the determining module 702 is based on the first weight matrix and the The determining, by the second weight matrix, the downlink channel information corresponding to the N first antenna ports and the M second antenna ports, may be specifically used to: use the first weight matrix and the second weight matrix The cascading is performed to obtain downlink channel information corresponding to the N first antenna ports and the M second antenna ports.
  • the determining module 702 is based on the first And determining, by the weight matrix, the second weight matrix, the downlink channel information corresponding to the N first antenna ports and the M second antenna ports, And an m-column matrix, and cascading the first weight matrix and the m-column matrix in the second weight matrix to obtain the N first antenna ports and the M second antennas
  • the downlink channel information corresponding to the port where m is an integer greater than 0 and smaller than the number of columns of the second weight matrix.
  • the receiving module 701 may be further configured to receive the first sending by the user equipment by using the M second antenna ports before receiving the first pilot signal sent by the user equipment through the N first antenna ports. Pilot signal.
  • the determining module 702 is further configured to determine, according to the first pilot signal received by the receiving module 701, a downlink channel gain matrix corresponding to the M second antenna ports, and based on the M second The downlink channel gain matrix corresponding to the antenna port determines a third weight matrix corresponding to the M second antenna ports.
  • the third weight matrix is used to represent downlink channel information corresponding to the M second antenna ports.
  • the determining module 702 when determining the m-column matrix in the second weight matrix, may be specifically configured to: determine an m-column matrix in the second weight matrix, where the m-column matrix The rank is equal to the rank of the third weight matrix.
  • the receiving module 701 passes the receiving user equipment.
  • the first pilot signal sent by the N first antenna ports may be used to receive the first pilot signal sent by the user equipment by using the M second antenna ports.
  • the determining module 702 is further configured to determine, according to the first pilot signal received by the receiving module 701, a downlink channel gain matrix corresponding to the M second antenna ports, and based on the M second The downlink channel gain matrix corresponding to the antenna port determines a fourth weight matrix corresponding to the M second antenna ports.
  • the fourth weight matrix is used to represent downlink channel information corresponding to the M second antenna ports.
  • the determining module 702 may be specific when determining downlink channel information corresponding to the N first antenna ports and the M second antenna ports based on the first weight matrix and the second weight matrix. And the method is: cascading the first weight matrix and the fourth weight matrix to obtain a fifth weight matrix, and adjusting the fifth weight matrix based on the second weight matrix to obtain a The downlink channel information corresponding to the N first antenna ports and the M second antenna ports is described.
  • the determining module 702 when adjusting the fifth weight matrix based on the second weight matrix, may be specifically used to: use the second weight matrix with the The fifth weight matrix is multiplied.
  • the determining module 702 may be specifically configured to: adjust the second weight matrix when adjusting the fifth weight matrix based on the second weight matrix, and And/or the size of the matrix element in the fifth weight matrix, and then multiplying the adjusted second weight matrix with the adjusted fifth weight matrix.
  • the determining module 702 when determining the first weight matrix corresponding to the N first antenna ports based on the downlink channel gain matrix corresponding to the N first antenna ports, may be specifically used to: determine the N An H*H-order orthogonal matrix of the downlink channel gain matrix corresponding to the first antenna port, and a rank of the downlink channel gain matrix corresponding to the N first antenna ports.
  • the H is the number of receiving ports of the network side device.
  • the first n columns of the H*H-order orthogonal matrix are then determined to be the first weight matrix.
  • the n is equal to the rank of the downlink channel gain matrix corresponding to the N first antenna ports.
  • the apparatus also includes an encoding module 704 for precoding weighting the second pilot signal based on a preset weight matrix.
  • the sending module 703 may be configured to send the weighted second pilot signal to the user equipment when the second pilot signal is sent to the user equipment.
  • the determining module 702 is specifically configured to: when the second weight matrix is determined based on the PMI, multiply the preset weight matrix by the PMI to obtain the second weight matrix.
  • each functional module in each embodiment of the present application may be integrated into one processing. In the device, it can also be physically existed alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the device for acquiring downlink channel information may include a processor 802.
  • the hardware of the entity corresponding to the above module may be the processor 802.
  • the processor 802 can be a central processing unit (English: central processing unit, CPU for short), or a digital processing module or the like.
  • the device for acquiring downlink channel information may further include a communication interface 801, and the processor 802 transmits and receives data through the communication interface 801.
  • the apparatus also includes a memory 803 for storing programs executed by the processor 802.
  • the memory 803 can be a non-volatile memory, such as a hard disk (English: hard disk drive, abbreviated as HDD) or a solid state drive (English: solid-state drive, abbreviation: SSD), or a volatile memory (English: volatile Memory), such as random access memory (English: random-access memory, abbreviation: RAM).
  • Memory 803 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 802 is configured to execute the program code stored in the memory 803, specifically for performing the method described in the embodiment shown in FIG. 2 or FIG. 6. For the method described in the embodiment shown in FIG. 2 or FIG. 6, the application is not described herein again.
  • connection medium between the communication interface 801, the processor 802, and the memory 803 is not limited in the embodiment of the present application.
  • the memory 803, the processor 802, and the communication interface 801 are connected by a bus 804 in FIG. 8.
  • the bus is indicated by a thick line in FIG. 8, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the invention further provides a computer readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which comprises a program for executing the above-mentioned processor.
  • the embodiment of the present invention further provides a chip, which includes the above communication interface and the foregoing processor, and is used to support the network side device to implement any one of the methods described in the embodiments shown in FIG. 2 to FIG.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种获取下行信道信息的方法及装置,用以解决现有技术中存在获取的下行信道信息准确性低的问题。该方法包括:网络侧设备接收用户设备通过N个第一天线端口发送的第一导频信号,并根据接收到的第一导频信号确定N个第一天线端口对应的下行信道增益矩阵。然后基于N个第一天线端口对应的下行信道增益矩阵确定N个第一天线端口对应的第一权值矩阵。网络侧设备向用户设备发送第二导频信号,并接收用户设备反馈的预编码矩阵指示PMI,然后基于PMI确定第二权值矩阵。之后网络侧设备基于第一权值矩阵以及第二权值矩阵确定N个第一天线端口和M个第二天线端口对应的下行信道信息。

Description

一种获取下行信道信息的方法及装置
本申请要求在2017年12月20日提交中国专利局、申请号为201711386200.5、发明名称为“一种获取下行信道信息的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息技术领域,尤其涉及一种获取下行信道信息的方法及装置。
背景技术
多天线技术(multiple-input multiple-output,MIMO)指在发送端和接收端分别使用多个发送天线和接收天线,使信号通过发送端与接收端的多个天线传送和接收,从而改善通信质量。而多天线波束赋形技术(MIMO beamforming,MIMO-BF)是基站根据下行信道信息对发送数据进行加权,形成窄的发送波束,将能量对准目标用户,从而提高通信质量。
在时分双工(英文:time division duplex,简称:TDD)系统中,上行传输和下行传输采用同样的信道,因此基站可以根据信道互异性,通过测量上行信道来估计下行信道信息。信道互易性指上行传输和下行传输采用同样的信道,当上下行的发送时间间隔足够短时,可认为上行信道与下行信道的衰落基本相同。
然而,由于用户设备(user equipment,UE)侧收发不平衡,如UE通常为2T4R(即UE包括4个天线端口,在上行发送时通过其中2个天线端口发送,在下行接收时通过4个天线端口接收)、4T8R(即UE包括8个天线端口,在上行发送时通过其中4个天线端口发送,在下行接收时通过8个天线端口接收)等等。目前常用的获取下行信道的方法为,以2T4R的UE为例,UE首先通过2个天线端口向基站发送探测参考信号(Sounding Reference Signal,SRS),从而基站根据上下行信道的互易性获取这2个天线端口对应的下行信道信息。然后UE再通过另外2个天线端口向基站发送SRS,从而基站根据上下行信道的互易性获取另外2个天线端口对应的下行信道信息。由于UE在两次发送SRS之间需要一定的时间间隔,导致实时性较差,使得基站获取的下行信道信息准确性较低。
发明内容
本申请提供一种获取下行信道信息的方法及装置,用以解决现有技术中存在获取的下行信道信息准确性低的问题。
第一方面,本申请提供了一种获取下行信道信息的方法,该方法包括:网络侧设备接收用户设备通过N个第一天线端口发送的第一导频信号,并根据接收到的所述第一导频信号确定所述N个第一天线端口对应的下行信道增益矩阵。然后基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵,所述第一权值矩阵用于表征所述N个第一天线端口对应的下行信道信息。所述网络侧设备还向所述用户设备发送第二导频信号,并接收所述用户设备反馈的预编码矩阵指示PMI,所述PMI为所述用户设备基于通过P个天线端口接收的第二导频信号所确定的。所述P个天线端口包括M个第二天线端口和至少一个所述第一天线端口,或者所述P个天线端口包括所述M个 第二天线端口。然后基于所述PMI确定第二权值矩阵,所述第二权值矩阵用于表征所述P个接收端口对应的下行信道信息。之后所述网络侧设备基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
本申请实施例中网络侧设备在一个上行时隙中接收第一导频测量上行信道从而获取下行信道信息,在一个下行时隙中发送第二导频测量下行信道,然后将结合通过第一导频信号获取的下行信道信息和通过第二导频信号测量的下行信道信息得到全部下行信道信息,相比于现有技术中连续在两个上行时隙中发送SRS测量上行信道从而获取下行信道信息的方式,由于相邻的上行时隙与下行时隙之间的时间间隔小于相邻的两个上行时隙之间的时间间隔,因此,本申请实施例在获取下行信道信息时实时性比较好,可以有效的提高获取下行信道信息的准确性。
在一种可能的设计中,所述PMI为所述用户设备基于通过所述M个第二天线端口接收的第二导频信号所确定的。所述网络侧设备将所述第一权值矩阵以及所述第二权值矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。通过级联的方式可以将用于表征N个第一天线端口对应下行信道信息的第一权值矩阵和用于表征所述M个接收端口对应下行信道信息的第二权值矩阵进行结合,从而获取所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
在一种可能的设计中,所述PMI为所述用户设备基于通过M个第二天线端口和至少一个所述第一天线端口接收的第二导频信号所确定的。所述网络侧设备可以确定所述第二权值矩阵中的m列矩阵,并将所述第一权值矩阵与所述第二权值矩阵中的所述m列矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。相比于现有技术中用户设备在第二个上行时隙中通过M个第二天线端口向网络侧设备发送SRS导频以使网络侧设备获取M个第二天线端口对应的下行信道信息的方式,上述设计可以在与第一个上行时隙之间的时间间隔更短的下行时隙中获取包括所述M个第二天线端口的多个天线端口对应的下行信道信息,从而可以获取更准确的所述M个第二天线端口对应的下行信道信息。
在一种可能的设计中,所述网络侧设备接收用户设备通过N个第一天线端口发送的第一导频信号之前,所述网络侧设备可以接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号,并基于接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵。然后,所述网络侧设备基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第三权值矩阵,所述第三权值矩阵用于表征所述M个第二天线端口对应的下行信道信息。之后,所述网络侧设备根据所述第三权值矩阵确定所述第二权值矩阵中的m列矩阵,其中,所述m列矩阵的秩与所述第三权值矩阵的秩相等。由于第三权值矩阵用于表征所述M个第二天线端口对应的下行信道信息,并且第二权值矩阵的实时性比第三权值矩阵更好一些,因此在第二权值矩阵中的秩与所述第三权值矩阵的秩相等的所述m列矩阵可以更准确的反映所述M个第二天线端口对应的下行信道状况。
在一种可能的设计中,所述PMI为所述用户设备基于通过所述M个第二天线端口和所述N个第一天线端口接收的第二导频信号所确定的。在网络侧设备接收用户设备通过N个第一天线端口发送的第一导频信号之后,所述网络侧设备可以接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号,并基于接收到的所述第一导频信号确定所 述M个第二天线端口对应的下行信道增益矩阵。然后所述网络侧设备基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第四权值矩阵,所述第四权值矩阵用于表征所述M个第二天线端口对应的下行信道信息。之后,所述网络侧设备将所述第一权值矩阵与所述第四权值矩阵进行级联,得到第五权值矩阵,并基于所述第二权值矩阵调整所述第五权值矩阵,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。由于第二权值矩阵是在一个下行时隙中所测量获取的,而第五权值矩阵是在连续的两个上行时隙中所测量获取的,第二权值矩阵比第五权值矩阵的实时性更好一些,上述设计中基于实时性较好的第二权值矩阵调整第五权值矩阵可以提高获取下行信道信息的实时性,从而可以有效的提高获取下行信道信息的准确性。
在一种可能的设计中,所述网络侧设备通过将所述第二权值矩阵与所述第五权值矩阵进行相乘,以实现基于所述第二权值矩阵调整所述第五权值矩阵。这样可以修正第五权值矩阵对应的发射波束的相位,使得基于修正后的第五权值矩阵所形成的发射波束更准确。
在一种可能的设计中,所述网络侧设备调整所述第二权值矩阵,和/或所述第五权值矩阵中矩阵元素的大小,然后将经过调整的所述第二权值矩阵与经过调整的所述第五权值矩阵进行相乘,以实现基于所述第二权值矩阵调整所述第五权值矩阵。这样可以修正第五权值矩阵对应的发射波束的相位以及幅度,使得基于修正后的第五权值矩阵所形成的发射波束更准确。
在一种可能的设计中,所述网络侧设备确定所述N个第一天线端口对应的下行信道增益矩阵的H*H阶正交矩阵,以及所述N个第一天线端口对应的下行信道增益矩阵的秩,所述H为所述网络侧设备的接收端口数。然后确定所述H*H阶正交矩阵的前n列为所述第一权值矩阵,所述n等于所述N个第一天线端口对应的下行信道增益矩阵的秩。这样可以将所述N个第一天线端口对应的下行信道增益矩阵进行归一化,从而可以与第二权值矩阵进行结合以提高获取下行信道信息的准确性。
在一种可能的设计中,所述网络侧设备基于预设权值矩阵对所述第二导频信号进行预编码加权,然后将加权后的所述第二导频信号发送给所述用户设备。之后所述网络侧设备将所述预设权值矩阵与所述PMI进行相乘,得到所述第二权值矩阵。这样可以将PMI进行归一化,从而可以与第一权值矩阵进行结合以提高获取下行信道信息的准确性。
第二方面,本申请提供了一种获取下行信道信息的装置,该装置包括:接收模块,用于接收用户设备通过N个第一天线端口发送的第一导频信号。确定模块,用于根据所述接收模块接收到的所述第一导频信号确定所述N个第一天线端口对应的下行信道增益矩阵,所述N为大于0的整数,以及基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵。所述第一权值矩阵用于表征所述N个第一天线端口对应的下行信道信息。发送模块,用于向所述用户设备发送第二导频信号。所述接收模块,还用于接收所述用户设备反馈的预编码矩阵指示PMI,所述PMI为所述用户设备基于P个天线端口接收的第二导频信号所确定的。所述P个天线端口包括M个第二天线端口和至少一个所述第一天线端口,或者所述P个天线端口包括所述PMI为所述用户设备基于通过所述M个第二天线端口接收的第二导频信号所确定的。所述确定模块,还用于基于所述接收模块接收的所述PMI确定第二权值矩阵,所述第二权值矩阵用于表征所述P个接收端口对应的下行信道信息,以及基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
在一种可能的设计中,所述PMI为所述用户设备基于通过所述M个第二天线端口接收的第二导频信号所确定的。所述确定模块,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,具体用于:将所述第一权值矩阵以及所述第二权值矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
在一种可能的设计中,所述PMI为所述用户设备基于通过M个第二天线端口和至少一个所述第一天线端口接收的第二导频信号所确定的。所述确定模块,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,具体用于:确定所述第二权值矩阵中的m列矩阵,并将所述第一权值矩阵与所述第二权值矩阵中的所述m列矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息,所述m为大于0且小于所述第二权值矩阵的列数的整数。
在一种可能的设计中,所述接收模块,在接收用户设备通过N个第一天线端口发送的第一导频信号之前,还用于接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号。所述确定模块,还用于基于所述接收模块接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵,以及基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第三权值矩阵。所述第三权值矩阵用于表征所述M个第二天线端口对应的下行信道信息。所述确定模块,在确定所述第二权值矩阵中的m列矩阵时,具体用于:根据所述第三权值矩阵确定所述第二权值矩阵中的m列矩阵,其中,所述m列矩阵的秩与所述第三权值矩阵的秩相等。
在一种可能的设计中,所述PMI为所述用户设备基于通过所述M个第二天线端口和所述N个第一天线端口接收的第二导频信号所确定的。所述接收模块,在接收用户设备通过N个第一天线端口发送的第一导频信号之后,还用于接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号。所述确定模块,还用于基于所述接收模块接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵,以及基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第四权值矩阵。所述第四权值矩阵用于表征所述M个第二天线端口对应的下行信道信息。所述确定模块,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,具体用于:将所述第一权值矩阵与所述第四权值矩阵进行级联,得到第五权值矩阵,并基于所述第二权值矩阵调整所述第五权值矩阵,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
在一种可能的设计中,所述确定模块,在基于所述第二权值矩阵调整所述第五权值矩阵时,具体用于:将所述第二权值矩阵与所述第五权值矩阵进行相乘。
在一种可能的设计中,所述确定模块,在基于所述第二权值矩阵调整所述第五权值矩阵时,具体用于:调整所述第二权值矩阵,和/或所述第五权值矩阵中矩阵元素的大小,然后将经过调整的所述第二权值矩阵与经过调整的所述第五权值矩阵进行相乘。
在一种可能的设计中,所述确定模块,在基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵时,具体用于:确定所述N个第一天线端口对应的下行信道增益矩阵的H*H阶正交矩阵,以及所述N个第一天线端口对应的下行信道增益矩阵的秩。所述H为网络侧设备的接收端口数。然后确定所述H*H阶 正交矩阵的前n列为所述第一权值矩阵。所述n等于所述N个第一天线端口对应的下行信道增益矩阵的秩。
在一种可能的设计中,所述装置还包括编码模块,用于基于预设权值矩阵对所述第二导频信号进行预编码加权。所述发送模块,在向所述用户设备发送第二导频信号时,具体用于:将加权后的所述第二导频信号发送给所述用户设备。所述确定模块,在基于所述PMI确定第二权值矩阵时,具体用于:将所述预设权值矩阵与所述PMI进行相乘,得到所述第二权值矩阵。
第三方面,本申请提供了一种获取下行信道信息的装置,包括:收发器、存储器以及处理器,存储器用于存储处理器所需执行的程序代码。收发器用于接收和发送数据。处理器用于执行存储器所存储的程序代码,具体用于执行第一方面或第一方面的任一种设计所述的方法。
第四方面,本申请还提供了一种计算机可读存储介质,用于存储为执行上述第一方面、第一方面的任意一种设计的功能所用的计算机软件指令,其包含用于执行上述第一方面或第一方面的任一种设计所设计的程序。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一种设计所述的方法。
第六方面,本申请实施例提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述可实现第一方面或第一方面的任一种设计提供的方法。
附图说明
图1A为本申请提供的一种SISO系统的架构示意图;
图1B为本申请提供的一种MISO系统的架构示意图;
图1C为本申请提供的一种SIMO系统的架构示意图;
图1D为本申请提供的一种MIMO系统的架构示意图;
图2为本申请提供的一种获取下行信道信息方法的流程示意图;
图3为本申请提供的一种MIMO系统的架构示意图;
图4为本申请提供的一种获取下行信道信息方法的流程示意图;
图5为本申请提供的一种获取下行信道信息方法的流程示意图;
图6为本申请提供的一种获取下行信道信息方法的流程示意图;
图7为本申请提供的一种获取下行信道信息装置的结构示意图;
图8为本申请提供的一种获取下行信道信息装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术 问题,同样适用。
通信系统可以分为单入单出(single-input single-output,SISO)系统、多入单出(multiple-input single-output,MISO)系统、单入多出(single-input multiple-output,SIMO)系统、多入多出(multiple-input multiple-output,MIMO)系统。其中,SISO中网络侧设备和用户设备均包括一个天线,如图1A所示。MISO中网络侧设备包括多个天线,用户设备包括一个天线,如图1B所示。SIMO中网络侧设备包括一个天线,用户设备包括多个天线,如图1C所示。MIMO中网络侧设备包括多个天线,用户设备包括多个天线,如图1D所示。本申请实施例可以应用于图1D所示的MIMO系统中。本申请实施例涉及的MIMO系统可以是各类通信系统,例如,可以是长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构。
其中,网络侧设备可以是普通的基站(如Node B或eNB)、新无线控制器(new radio controller,NR controller)、5G系统中的gNode B(gNB)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、分布式网元(distributed unit)、接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,本申请实施例不限于此。
用户设备(user equipment,UE)即为终端设备,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
在MIMO系统中,可以网络侧设备(比如基站)通过多天线波束赋形技术(MIMO beamforming,MIMO-BF)向UE发送数据。MIMO-BF是网络侧设备根据下行信道信息对发送数据进行加权,形成窄的发送波束,将能量对准目标UE,从而提高通信质量。
MIMO系统可以分为频分双工(frequency division fuplexing,FDD)系统和时分双工(英文:time division duplex,简称:TDD)系统。在FDD系统中上行传输和下行传输分别采用彼此独立的两个信道,而在TDD系统中,上行传输和下行传输采用同样的信道。因此在TDD系统中,网络侧设备可以根据信道互异性,通过测量上行信道来估计下行信道信息。信道互易性指上行传输和下行传输采用同样的信道,当上下行的发送时间间隔足够短时,可认为上行信道与下行信道的衰落基本相同。
然而,UE通常收发不平衡,如UE通常为2T4R(即UE包括4个天线端口,在上行发送时通过其中2个天线端口发送,在下行接收时通过4个天线端口接收)、4T8R(即UE包括8个天线端口,在上行发送时通过其中4个天线端口发送,在下行接收时通过8个天线端口接收)等等,因此在TDD系统中,网络侧设备通过测量上行信道来估计下行信道信息的方式只能获取UE包括的一部分天线端口所对应的下行信道信息。为获取UE包括的所有天线对应的下行信道信息,目前常用的获取下行信道的方法有,现有方案一:以2T4R的UE为例,该UE的4个天线端口分别为天线端口0至天线端口3,UE在一个上行时隙中通过天线端口0和天线端口2向基站发送探测参考信号(Sounding Reference Signal,SRS),从而基站在接收到来自天线端口0和天线端口2的SRS后确定天线端口0和天线端口2对应的上行信道信息,然后根据上下行信道的互易性获取天线端口0和天线端口2对应的下行信道信息。然后UE在下一个上行时隙中通过天线端口1和天线端口3向基站发送SRS,从而基站在接收到来自天线端口1和天线端口3的SRS后确定天线端口1和天线端口3对 应的上行信道信息,然后根据上下行信道的互易性获取天线端口1和天线端口3对应的下行信道信息。由于UE在两次发送SRS之间需要一定的时间间隔,也就是两个连续的上行时隙之间有一定的时间间隔,因此先获取的天线端口0和天线端口2对应的下行信道信息的实时性较差,使得基站获取的下行信道信息准确性较低。
除了现有方案一,目前常用的获取下行信道的方法还有现有方案二:以2T4R的UE为例,网络侧设备向UE发送信道状态测量导频(CSI reference signals,CSI-RS),UE在通过4个天线端口接收CSI-RS后向网络侧设备反馈一个预编码矩阵指示(Precoding Matrix Indicator,PMI),从而该网络侧设备根据UE反馈的PMI获取下行信道信息。然而第三代合作伙伴计划(3rd generation partnership project,3GPP)协议所规定的PMI的个数相对有限,因此网络侧设备根据UE反馈的PMI获取的下行信道信息只能逼近真实的下行信道状况,而不能准确反映真实的下行信道状况,准确性较低。
基于此,本申请提供一种获取下行信道信息的方法及装置,用以解决现有技术中存在获取的下行信道信息准确性低的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
为了使得本申请的实施例更容易被理解,下面,首先对本申请的实施例中涉及的一些描述加以说明,这些说明不应视为对本申请所要求的保护范围的限定。
上行信道增益矩阵:由多个上行信道增益组成,其中,上行信道增益矩阵的行数表示网络侧设备用于接收数据的天线端口的数量,上行信道增益矩阵的列数表示UE用于发送数据的天线端口的数量,因此,上行信道增益矩阵中第i行第j列的矩阵元素h i,j表示网络侧设备的第i个天线端口与UE的第j个天线端口之间的上行信道的信道增益,而h ij可以满足如下公式要求:
y i,j=h i,j×s i,j+n
其中,y i,j表示网络侧设备的第i个天线端口接收到的来自UE的第j个天线端口的接收信号,h i,j表示网络侧设备的第i个天线端口与UE的第j个天线端口之间的上行信道的信道增益,s i,j表示UE通过所述第i个天线端口发送的发送信号,n表示网络侧设备的噪声。
下行信道增益矩阵:由多个下行信道增益组成,其中,下行信道增益矩阵的行数表示UE用于接收数据的天线端口的数量,下行信道增益矩阵的列数表示网络侧设备用于发送数据的天线端口的数量,因此,下行信道增益矩阵中第r行第k列的矩阵元素表示UE的第r个天线端口与网络侧设备的第k个天线端口之间的下行信道的信道增益。
信道互易性指上行传输和下行传输采用同样的信道,当上下行的发送时间间隔足够短时,可认为上行信道与下行信道的衰落基本相同。因此,网络侧设备的第i个天线端口与UE的第j个天线端口之间的上行信道的信道增益和UE的第j个天线端口与网络侧设备的第i个天线端口之间的下行信道的信道增益相同。
奇异值分解(Singular Value Decomposition,SVD):对a*b阶的矩阵M进行SVD,即将矩阵M分解为三个矩阵的乘积:
SVD(M)=USV;
其中,U为矩阵M的a*a阶正交矩阵,S为矩阵M的对角矩阵,V为矩阵M的b*b阶正交矩阵。
秩:矩阵的不为零子式的最大阶数即为该矩阵的秩。
多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将结合附图对本申请实施例作进一步地详细描述。
参阅图2所示,为本申请实施例提供的获取下行信道信息的方法,该方法可以应用于MIMO系统中的TDD系统,该方法具体可以包括如下:
S201,UE在第一上行时隙中通过N个第一天线端口向网络侧设备(比如基站)发送第一导频信号。其中,所述第一上行时隙可以为任一上行时隙。N为大于0的整数。第一天线端口可以指UE所包括的天线端口中在第一上行时隙中用于发送数据的天线端口,若UE为2T4R,则该UE可以在第一上行时隙中通过任意两个天线端口向网络侧设备(比如基站)发送第一导频信号。若UE为4T8R,则该UE可以在第一上行时隙中通过任意四个天线端口向网络侧设备(比如基站)发送第一导频信号。第一导频信号可以为SRS。
S202,网络侧设备根据来自所述N个第一天线端口的第一导频信号确定所述N个第一天线端口对应的下行信道增益矩阵。
在一种可能的实现方式中,网络侧设备可以根据来自所述N个第一天线端口的第一导频信号确定所述N个第一天线端口对应的上行信道增益矩阵H UL(H*N阶矩阵),然后根据上下行信道的互易性确定所述N个第一天线端口对应的下行信道增益矩阵H DL(N*H阶矩阵)。其中,H为网络侧设备中用于收发数据的天线端口的数量。
S203,所述网络侧设备基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵V 1。所述第一权值矩阵V 1用于表征所述N个第一天线端口对应的下行信道信息。
第一权值矩阵V 1可以通过如下方式确定:所述网络侧设备确定H DL的H*H阶正交矩阵,以及H DL的秩,然后确定所述H*H阶正交矩阵的前n列为所述第一权值矩阵V 1。其中,所述n等于H DL的秩。网络侧设备可以通过将H DL进行SVD的方式来确定H DL的H*H阶正交矩阵,以及H DL的秩,如下:
SVD(H DL)=U HDLS HDLV HDL
其中,V HDL表示H DL的H*H阶正交矩阵,S HDL表示H DL的对角矩阵,其中,S HDL中非零行的个数即为H DL的秩。
S204,所述网络侧设备在第一下行时隙向所述UE发送第二导频信号。其中,第一下行时隙可以在所述第一上行时隙之前,也可以在所述第一上行时隙之后。第二导频信号,可以为CSI-RS,也可以为小区专有导频(cell-specific RS,CRS)等等,本申请实施例在这里不做具体限定。
在一种可能的实现方式中,所述网络侧设备在向所述UE发送第二导频信号时,可以先基于预设权值矩阵V对所述第二导频信号进行预编码加权,然后将加权后的所述第二导频信号发送给所述UE。其中,预设权值矩阵的行数等于所述H,预设权值矩阵的列数等于UE包括的用于接收数据的天线端口的数量。
S205,UE向网络侧设备反馈PMI。所述PMI为UE基于P个天线端口接收的第二导频信号所确定的。所述P个天线端口包括M个第二天线端口和至少一个所述第一天线端口,或者所述P个天线端口包括所述M个第二天线端口。所述P、M为大于0的整数,且所述P大于或等于所述M。所述第二天线端口可以指UE所包括的天线端口中在第一上行时隙 中没有用于发送数据的天线端口,即UE包括的天线端口中除所述N个第一天线端口以外的其它天线端口。
S206,所述网络侧设备基于所述PMI确定第二权值矩阵V 2。所述第二权值V 2矩阵用于表征所述P个接收端口对应的下行信道信息。
在一种可能的实现方式中,网络侧设备可以通过将所述预设权值矩阵与该PMI相乘的方式来确定所述第二权值矩阵V 2
S207,所述网络侧设备基于所述第一权值矩阵V 1以及所述第二权值矩阵V 2确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
本申请实施例中网络侧设备在一个上行时隙中接收第一导频测量上行信道从而获取下行信道信息,在一个下行时隙中发送第二导频测量下行信道,然后将结合通过第一导频获取的下行信道信息和通过第二导频测量的下行信道信息得到全部下行信道信息,相比于现有技术中连续在两个上行时隙中发送SRS测量上行信道从而获取下行信道信息的方式,由于相邻的上行时隙与下行时隙之间的时间间隔小于相邻的两个上行时隙之间的时间间隔,因此,本申请实施例在获取下行信道信息时实时性比较好,可以有效的提高获取下行信道信息的准确性。
在一种可能的实现方式中,在所述网络侧设备在第一下行时隙向所述UE发送第二导频信号之后,UE可以通过所述M个第二天线端口接收所述第二导频信号,这种情况下,所述预设权值矩阵V为H*M阶的矩阵。
基于上述实现方式,UE在确定PMI时,可以基于所述M个第二天线端口接收的所述第二导频信号来确定。
基于上述确定PMI的方式,网络侧设备在确定第二权值矩阵V 2时,可以通过将所述H*M阶的预设权值矩阵与确定的该PMI相乘来确定所述第二权值矩阵V 2。所述第二权值矩阵V 2可以如下:
Figure PCTCN2018118998-appb-000001
基于上述确定第二权值矩阵V 2的方式,所述网络侧设备在确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL时,可以通过将所述第一权值矩阵V 1以及所述第二权值矩阵V 2进行级联的方式来实现。例如,第一权值矩阵V 1,第二权值矩阵V 2,分别如下:
Figure PCTCN2018118998-appb-000002
则所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL如下:
Figure PCTCN2018118998-appb-000003
在另一种可能的实现方式中,在所述网络侧设备在第一下行时隙向所述UE发送第二 导频信号之后,UE还可以通过M个第二天线端口和至少一个所述第一天线端口接收所述第二导频信号,这种情况下,所述预设权值矩阵V为H*(M+x)阶的矩阵,所述x为所述至少一个所述第一天线端口的数量。
基于上述另一种实现方式,UE在确定PMI时,可以但不限于通过如下两种方式实现:
第一种实现方式,UE基于其中的所述M个第二天线端口所接收的所述第二导频信号确定PMI。
基于上述第一种实现方式,网络侧设备在确定第二权值矩阵V 2时,可以通过如下方式实现:网络侧设备先确定所述H*(M+x)阶的预设权值矩阵中的M列矩阵,然后将所述M列矩阵与确定的该PMI相乘来确定所述第二权值矩阵V 2。所述M列矩阵可以由所述第二权值矩阵V 2中的任意M列矩阵元素组成。所述第二权值矩阵V 2可以如下:
V 2=(V中的M列矩阵)×PMI。
基于上述第一种实现方式,所述网络侧设备在确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL时,可以通过将所述第一权值矩阵V 1以及所述第二权值矩阵V 2进行级联的方式来实现。这里可以采用与上述通过将V 1和V 2进行级联得到V DL类似的方法,本申请实施例在这里不再重复赘述。
第二种实现方式,UE可以基于所述M个第二天线端口和至少一个所述第一天线端口所接收的所述第二导频信号确定PMI。
基于上述第二种实现方式,网络侧设备在确定所述第二权值矩阵V 2时,可以通过将所述H*(M+x)阶的预设权值矩阵与该PMI相乘的方式来实现。所述第二权值矩阵V 2可以如下:
Figure PCTCN2018118998-appb-000004
基于上述第二种实现方式,所述网络侧设备在确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL时,可以通过如下方式实现:先确定所述第二权值矩阵V 2中的m列矩阵,然后将所述第一权值矩阵V 1与所述第二权值矩阵V 2中的所述m列矩阵进行级联。所述m为大于0且小于所述第二权值矩阵的列数的整数。例如,第一权值矩阵V 1,第二权值矩阵V 2,分别如下:
Figure PCTCN2018118998-appb-000005
则所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL如下:
Figure PCTCN2018118998-appb-000006
所述m列矩阵可以由所述第二权值矩阵V 2中的任意m列矩阵元素组成。或者,所述m列矩阵也可以由所述第二权值矩阵V 2中的某m列矩阵元素组成,该m列矩阵元素的秩与第三权值矩阵V 3的秩相等。所述第三权值矩阵V 3用于表征所述M个第二天线端口对应的下行信道信息。
网络侧设备可以通过如下方式确定所述第三权值矩阵V 3:UE在第二上行时隙中通过所述M个第二天线端口向所述网络侧设备发送所述第一导频信号。所述第二上行时隙可以在所述第一上行时隙之前。然后网络侧设备根据接收到的来自所述M个第二天线端口的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵,并基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第三权值矩阵V 3。网络侧设备可以采用与确定所述N个第一天线端口对应的下行信道增益矩阵类似的方法确定所述M个第二天线端口对应的下行信道增益矩阵,网络侧设备也可以采用与确定所述第一权值矩阵类似的方法确定所述第三权值矩阵,本申请实施例在这里不再重复赘述。
基于上述第二种实现方式,当所述至少一个第一天线端口的数量为N时,即UE通过M个第二天线端口和所述N个第一天线端口接收所述第二导频信号,并基于所述M个第二天线端口和所述N个第一天线端口所接收的所述第二导频信号确定PMI时,所述网络侧设备在确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL时,还可以通过如下方式实现:
所述网络侧设备将所述第一权值矩阵V 1与所述第三权值矩阵V 3进行级联,得到第四权值矩阵,然后基于所述第二权值矩阵调整所述第四权值矩阵,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL。在这种方式中,所述第二上行时隙可以在所述第一上行时隙之前,也可以在所述第一上行时隙之后。
网络侧设备在基于所述第二权值矩阵调整所述第四权值矩阵时,可以但不限于通过如下方式实现:
方式一:所述网络侧设备将所述第二权值矩阵V 2与所述第四权值矩阵V 4进行相乘。则所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL如下:
V DL=V 2×V 4
方式二:所述网络侧设备调整所述第二权值矩阵,和/或所述第四权值矩阵中矩阵元素的大小,然后将经过调整的所述第二权值矩阵V 2'与经过调整的所述第四权值矩阵V 4'进行相乘。则所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息V DL如下:
V DL=V′ 2×V′ 4
为了更好地理解本申请实施例,以图3所示的MIMO系统,第一导频信号为SRS,第二导频信号为CIS-RS为例,所述MIMO系统包括一个2T4R的UE和一个网络侧设备,其中,UE包括4个天线端口0,分别为U 0至U 3,其中,所述N个第一天线端口为U 0和U 2,所述M个第二天线端口为U 1和U 3,网络侧设备包括64个用于收发数据的天线端口,分别为E 0至E 63为例,以下结合具体应用场景,对所述获取下行信道信息的方法进行具体详细描述。图3仅是一种示意图,并不对本申请实施例所应用的通信系统进行具体限定。
如图4所示,为一种获取下行信道信息过程。
S401,UE通过U 0和U 2向网络侧设备发送SRS。
S402,网络侧设备根据E 0至E 63接收到的来自U 0和U 2的SRS确定U 0和U 2对应的上行信道增益矩阵H UL(0,2),H UL(0,2)如下:
Figure PCTCN2018118998-appb-000007
S403,网络侧设备根据上下行信道的互易性确定U 0和U 2对应的下行信道增益矩阵H DL(0,2)如下:
Figure PCTCN2018118998-appb-000008
S404,网络侧设备根据H DL(0,2)确定对应的权值矩阵V SRS(0,2)
具体的,网络侧设备可以将H DL(0,2)(2*64阶)进行SVD,SVD(H DL(0,2))=U (0,2)S (0,2)V (0,2)。其中,U (0,2)为H DL(0,2)的2*2阶的正交矩阵,V (0,2)为H DL(0,2)的64*64阶的正交矩阵,S (0,2)为H DL(0,2)的对角矩阵。然后网络侧设备S (0,2)中非零行的个数为H DL(0,2)的秩。假设,H DL(0,2)的秩为2,之后将V (0,2)中的前2列作为V SRS(0,2)(64*2阶)。
S405,网络侧设备通过E 0至E 63向UE的U 1和U 3发送CSI-RS。
具体的,网络侧设备基于预设权值矩阵V(64*2阶)对CSI-RS进行预编码加权,然后将加权后的所述CSI-RS通过E 0至E 63发送给UE的U 1和U 3
步骤S405与步骤S401没有严格的先后顺序,步骤S405可以在步骤S401之前执行,也可以在步骤S401之后执行,本申请实施例在这里不做具体限定。
S406,UE基于U 1和U 3接收到的CSI-RS向网络侧设备反馈PMI。
S407,所述网络侧设备基于所述PMI确定对应的权值矩阵V PMI(1,3)
具体的,网络侧设备将所述V(64*2阶)与反馈的所述PMI相乘,得到V PMI(1,3)(64*2阶)。
S408,网络侧设备将V SRS(0,2)与V PMI(1,3)进行级联,得到U 0至U 3对应的下行信道信息V DL
如图5所示,为另一种获取下行信道信息过程。
S501至S504,参见图4所示的步骤S401至步骤S404,本申请实施例在这里不再重复赘述。
S505,网络侧设备通过E 0至E 63向UE的U 0至U 3发送CSI-RS。
具体的,网络侧设备基于预设权值矩阵V(64*4阶)对CSI-RS进行预编码加权,然后将加权后的所述CSI-RS通过E 0至E 63发送给UE的U 0至U 3
步骤S505与步骤S501没有严格的先后顺序,步骤S505可以在步骤S501之前执行,也可以在步骤S501之后执行,本申请实施例在这里不做具体限定。
S506,UE基于U 0至U 3接收到的CSI-RS向网络侧设备反馈PMI。
S507,所述网络侧设备基于所述PMI确定对应的权值矩阵V PMI
具体的,网络侧设备将所述V(64*4阶)与反馈的所述PMI相乘,得到V PMI(64*4阶)。
S508,网络侧设备确定V PMI中的m列矩阵V PMI',然后将V' PMI与V SRS(0,2)进行级联,得到V DL
如图6所示,为另一种获取下行信道信息过程。
S601至S604,参见图4所示的步骤S401至步骤S404,本申请实施例在这里不再重复赘述。
S605,UE通过U 1和U 3向网络侧设备发送SRS。
步骤S605与步骤S601没有严格的先后顺序,步骤S605可以在步骤S601之前执行,也可以在步骤S601之后执行,本申请实施例在这里不做具体限定。
S606,网络侧设备根据E 0至E 63接收到的来自U 1和U 3的SRS确定U 1和U 3对应的上行信道增益矩阵H UL(1,3)
网络侧设备确定H UL(1,3)的方法,具体可以参阅图4所示的步骤S402,本申请实施例在这里不再重复赘述。
S607,网络侧设备确定U 1和U 3对应的下行信道增益矩阵H DL(1,3)如下:
网络侧设备确定H DL(1,3)的方法,具体可以参阅图4所示的步骤S403,本申请实施例在这里不再重复赘述。
S608,网络侧设备根据H DL(1,3)确定对应的权值矩阵V SRS(1,3)
网络侧设备确定V SRS(1,3)的方法,具体可以参阅图4所示的步骤S404,本申请实施例在这里不再重复赘述。
S609至S611,参见图5所示的步骤S505至步骤S507,本申请实施例在这里不再重复赘述。
S612,网络侧设备基于V SRS(0,2)、V SRS(1,3)以及V PMI通过如下任意一种方式确定V DL
方式一:网络侧设备将V SRS(0,2)、V SRS(1,3)进行级联,得到V SRS',然后将V SRS'与V PMI进行相乘得到V DL
方式二:网络侧设备将V SRS(0,2)、V SRS(1,3)进行级联,得到V SRS',然后调整V SRS'中矩阵元素的大小,然后将调整后的V SRS'与V PMI进行相乘得到V DL
方式三:网络侧设备将V SRS(0,2)、V SRS(1,3)进行级联,得到V SRS',然后调整V PMI中矩阵元素的大小,然后将V SRS'与调整后的V PMI进行相乘得到V DL
方式四:网络侧设备将V SRS(0,2)、V SRS(1,3)进行级联,得到V SRS',然后调整V SRS'中矩阵元素的大小以及V PMI中矩阵元素的大小,然后将调整后的V SRS'与调整后的V PMI进行相乘得到V DL
方式五:当步骤S605在步骤S601之前执行时,网络侧设备还可以确定V PMI中的m列矩阵,所述m列矩阵的秩等于V SRS(1,3)的秩。
基于与方法实施例的同一发明构思,本申请实施例提供一种获取下行信道信息的装置,具体用于实现图2至图6所述的实施例描述的方法,所述装置可以应用于网络侧设备中,该装置的结构如图7所示,包括:接收模块701、确定模块702以及发送模块703。其中:接收模块701,用于接收用户设备通过N个第一天线端口发送的第一导频信号。确定模块 702,用于根据所述接收模块701接收到的所述第一导频信号确定所述N个第一天线端口对应的下行信道增益矩阵,所述N为大于0的整数,以及基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵。所述第一权值矩阵用于表征所述N个第一天线端口对应的下行信道信息。发送模块703,用于向所述用户设备发送第二导频信号。所述接收模块701,还用于接收所述用户设备反馈的预编码矩阵指示PMI,所述PMI为所述用户设备基于P个天线端口接收的第二导频信号所确定的。所述P个天线端口包括M个第二天线端口和至少一个所述第一天线端口,或者所述P个天线端口包括所述PMI为所述用户设备基于通过所述M个第二天线端口接收的第二导频信号所确定的。所述确定模块702,还用于基于所述接收模块701接收的所述PMI确定第二权值矩阵,所述第二权值矩阵用于表征所述P个接收端口对应的下行信道信息,以及基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
若所述PMI为所述用户设备基于通过所述M个第二天线端口接收的第二导频信号所确定的,则所述确定模块702,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,可以具体用于:将所述第一权值矩阵以及所述第二权值矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
若所述PMI为所述用户设备基于通过M个第二天线端口和至少一个所述第一天线端口接收的第二导频信号所确定的,则所述确定模块702,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,可以具体用于:确定所述第二权值矩阵中的m列矩阵,并将所述第一权值矩阵与所述第二权值矩阵中的所述m列矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息,所述m为大于0且小于所述第二权值矩阵的列数的整数。
所述接收模块701,在接收用户设备通过N个第一天线端口发送的第一导频信号之前,还可以用于接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号。所述确定模块702,还可以用于基于所述接收模块701接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵,以及基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第三权值矩阵。所述第三权值矩阵用于表征所述M个第二天线端口对应的下行信道信息。则所述确定模块702,在确定所述第二权值矩阵中的m列矩阵时,可以具体用于:确定所述第二权值矩阵中的m列矩阵,其中,所述m列矩阵的秩与所述第三权值矩阵的秩相等。
若所述PMI为所述用户设备基于通过所述M个第二天线端口和所述N个第一天线端口接收的第二导频信号所确定的,所述接收模块701,在接收用户设备通过N个第一天线端口发送的第一导频信号之后,还可以用于接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号。所述确定模块702,还可以用于基于所述接收模块701接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵,以及基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第四权值矩阵。所述第四权值矩阵用于表征所述M个第二天线端口对应的下行信道信息。所述确定模块702,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,可以具体用于:将所述第一权值矩阵与所 述第四权值矩阵进行级联,得到第五权值矩阵,并基于所述第二权值矩阵调整所述第五权值矩阵,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
在一种可能的实现方式中,所述确定模块702,在基于所述第二权值矩阵调整所述第五权值矩阵时,可以具体用于:将所述第二权值矩阵与所述第五权值矩阵进行相乘。
在另一种可能的实现方式中,所述确定模块702,在基于所述第二权值矩阵调整所述第五权值矩阵时,可以具体用于:调整所述第二权值矩阵,和/或所述第五权值矩阵中矩阵元素的大小,然后将经过调整的所述第二权值矩阵与经过调整的所述第五权值矩阵进行相乘。
所述确定模块702,在基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵时,可以具体用于:确定所述N个第一天线端口对应的下行信道增益矩阵的H*H阶正交矩阵,以及所述N个第一天线端口对应的下行信道增益矩阵的秩。所述H为网络侧设备的接收端口数。然后确定所述H*H阶正交矩阵的前n列为所述第一权值矩阵。所述n等于所述N个第一天线端口对应的下行信道增益矩阵的秩。
所述装置还包括编码模块704,用于基于预设权值矩阵对所述第二导频信号进行预编码加权。所述发送模块703,在向所述用户设备发送第二导频信号时,可以具体用于:将加权后的所述第二导频信号发送给所述用户设备。所述确定模块702,在基于所述PMI确定第二权值矩阵时,具体用于:将所述预设权值矩阵与所述PMI进行相乘,得到所述第二权值矩阵。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
其中,集成的模块既可以采用硬件的形式实现时,如图8所示,所述获取下行信道信息的装置可以包括处理器802。上述模块对应的实体的硬件可以为处理器802。处理器802,可以是一个中央处理模块(英文:central processing unit,简称CPU),或者为数字处理模块等等。所述获取下行信道信息的装置还可以包括通信接口801,处理器802通过通信接口801收发数据。该装置还包括:存储器803,用于存储处理器802执行的程序。存储器803可以是非易失性存储器,比如硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)等,还可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM)。存储器803是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器802用于执行存储器803存储的程序代码,具体用于执行图2或图6所示实施例所述的方法。可以参见图2或图6所示实施例所述的方法,本申请在此不再赘述。
本申请实施例中不限定上述通信接口801、处理器802以及存储器803之间的具体连接介质。本申请实施例在图8中以存储器803、处理器802以及通信接口801之间通过总线804连接,总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执 行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本发明实施例还提供了一种芯片,该芯片包括上述通信接口和上述处理器,用于支持网络侧设备实现图2至图6所示实施例所述的方法中的任一种方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种获取下行信道信息的方法,其特征在于,所述方法包括:
    网络侧设备接收用户设备通过N个第一天线端口发送的第一导频信号,并根据接收到的所述第一导频信号确定所述N个第一天线端口对应的下行信道增益矩阵;所述N为大于0的整数;
    所述网络侧设备基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵;所述第一权值矩阵用于表征所述N个第一天线端口对应的下行信道信息;
    所述网络侧设备向所述用户设备发送第二导频信号,并接收所述用户设备反馈的预编码矩阵指示PMI;所述PMI为所述用户设备基于通过P个天线端口接收的第二导频信号所确定的;所述P个天线端口包括M个第二天线端口和至少一个所述第一天线端口,或者所述P个天线端口包括所述M个第二天线端口;所述P、M为大于0的整数,且所述P大于或等于所述M;
    所述网络侧设备基于所述PMI确定第二权值矩阵;所述第二权值矩阵用于表征所述P个接收端口对应的下行信道信息;
    所述网络侧设备基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
  2. 如权利要求1所述的方法,其特征在于,所述PMI为所述用户设备基于通过所述M个第二天线端口接收的第二导频信号所确定的;所述网络侧设备基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息,包括:
    所述网络侧设备将所述第一权值矩阵以及所述第二权值矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
  3. 如权利要求1所述的方法,其特征在于,所述PMI为所述用户设备基于通过M个第二天线端口和至少一个所述第一天线端口接收的第二导频信号所确定的;所述网络侧设备基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息,包括:
    所述网络侧设备确定所述第二权值矩阵中的m列矩阵,并将所述第一权值矩阵与所述第二权值矩阵中的所述m列矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息;所述m为大于0且小于所述第二权值矩阵的列数的整数。
  4. 如权利要求3所述的方法,其特征在于,所述网络侧设备接收用户设备通过N个第一天线端口发送的第一导频信号之前,所述方法还包括:
    所述网络侧设备接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号,并基于接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵;
    所述网络侧设备基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第三权值矩阵;所述第三权值矩阵用于表征所述M个第二天线端口对应的下行信道信息;
    所述网络侧设备确定所述第二权值矩阵中的m列矩阵,包括:
    所述网络侧设备根据所述第三权值矩阵确定所述第二权值矩阵中的m列矩阵,其中,所述m列矩阵的秩与所述第三权值矩阵的秩相等。
  5. 如权利要求1所述的方法,其特征在于,所述PMI为所述用户设备基于通过所述M个第二天线端口和所述N个第一天线端口接收的第二导频信号所确定的;在网络侧设备接收用户设备通过N个第一天线端口发送的第一导频信号之后,所述方法还包括:
    所述网络侧设备接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号,并基于接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵;
    所述网络侧设备基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第四权值矩阵;所述第四权值矩阵用于表征所述M个第二天线端口对应的下行信道信息;
    所述网络侧设备基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息,包括:
    所述网络侧设备将所述第一权值矩阵与所述第四权值矩阵进行级联,得到第五权值矩阵;
    所述网络侧设备基于所述第二权值矩阵调整所述第五权值矩阵,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
  6. 如权利要求5所述的方法,其特征在于,所述网络侧设备基于所述第二权值矩阵调整所述第五权值矩阵,包括:
    所述网络侧设备将所述第二权值矩阵与所述第五权值矩阵进行相乘。
  7. 如权利要求5所述的方法,其特征在于,所述网络侧设备基于所述第二权值矩阵调整所述第五权值矩阵,包括:
    所述网络侧设备调整所述第二权值矩阵,和/或所述第五权值矩阵中矩阵元素的大小;
    所述网络侧设备将经过调整的所述第二权值矩阵与经过调整的所述第五权值矩阵进行相乘。
  8. 如权利要求1至7任一项所述的方法,其特征在于,所述网络侧设备基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵,包括:
    所述网络侧设备确定所述N个第一天线端口对应的下行信道增益矩阵的H*H阶正交矩阵,以及所述N个第一天线端口对应的下行信道增益矩阵的秩;所述H为所述网络侧设备的接收端口数;
    所述网络侧设备确定所述H*H阶正交矩阵的前n列为所述第一权值矩阵;所述n等于所述N个第一天线端口对应的下行信道增益矩阵的秩。
  9. 如权利要求1至8任一项所述的方法,其特征在于,所述网络侧设备向所述用户设备发送第二导频信号,包括:
    所述网络侧设备基于预设权值矩阵对所述第二导频信号进行预编码加权;
    所述网络侧设备将加权后的所述第二导频信号发送给所述用户设备;
    所述网络侧设备基于所述PMI确定第二权值矩阵,包括:
    所述网络侧设备将所述预设权值矩阵与所述PMI进行相乘,得到所述第二权值矩阵。
  10. 一种获取下行信道信息的装置,其特征在于,所述装置包括:
    收发器,用于接收用户设备通过N个第一天线端口发送的第一导频信号;所述N为大于0的整数;
    处理器,用于根据所述收发器接收到的所述第一导频信号确定所述N个第一天线端口对应的下行信道增益矩阵;基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵;所述第一权值矩阵用于表征所述N个第一天线端口对应的下行信道信息;
    所述收发器,还用于向所述用户设备发送第二导频信号,并接收所述用户设备反馈的预编码矩阵指示PMI;所述PMI为所述用户设备基于P个天线端口接收的第二导频信号所确定的;所述P个天线端口包括M个第二天线端口和至少一个所述第一天线端口,或者所述P个天线端口包括所述PMI为所述用户设备基于通过所述M个第二天线端口接收的第二导频信号所确定的;所述P、M为大于0的整数,且所述P大于或等于所述M;
    所述处理器,还用于基于所述收发器接收的所述PMI确定第二权值矩阵;所述第二权值矩阵用于表征所述P个接收端口对应的下行信道信息;基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
  11. 如权利要求10所述的装置,其特征在于,所述PMI为所述用户设备基于通过所述M个第二天线端口接收的第二导频信号所确定的;所述处理器,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,具体用于:
    将所述第一权值矩阵以及所述第二权值矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
  12. 如权利要求10所述的装置,其特征在于,所述PMI为所述用户设备基于通过M个第二天线端口和至少一个所述第一天线端口接收的第二导频信号所确定的;所述处理器,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,具体用于:
    确定所述第二权值矩阵中的m列矩阵,并将所述第一权值矩阵与所述第二权值矩阵中的所述m列矩阵进行级联,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息;所述m为大于0且小于所述第二权值矩阵的列数的整数。
  13. 如权利要求12所述的装置,其特征在于,所述收发器,在接收用户设备通过N个第一天线端口发送的第一导频信号之前,还用于:
    接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号;
    所述处理器,还用于基于所述收发器接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵;备基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第三权值矩阵;所述第三权值矩阵用于表征所述M个第二天线端口对应的下行信道信息;
    所述处理器,在确定所述第二权值矩阵中的m列矩阵时,具体用于:
    根据所述第三权值矩阵确定所述第二权值矩阵中的m列矩阵,其中,所述m列矩阵的秩与所述第三权值矩阵的秩相等。
  14. 如权利要求10所述的装置,其特征在于,所述PMI为所述用户设备基于通过所述M个第二天线端口和所述N个第一天线端口接收的第二导频信号所确定的;所述收发 器,在接收用户设备通过N个第一天线端口发送的第一导频信号之后,还用于:
    接收所述用户设备通过所述M个第二天线端口发送的所述第一导频信号;
    所述处理器,还用于基于所述收发器接收到的所述第一导频信号确定所述M个第二天线端口对应的下行信道增益矩阵;基于所述M个第二天线端口对应的下行信道增益矩阵确定所述M个第二天线端口对应的第四权值矩阵;所述第四权值矩阵用于表征所述M个第二天线端口对应的下行信道信息;
    所述处理器,在基于所述第一权值矩阵以及所述第二权值矩阵确定所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息时,具体用于:
    将所述第一权值矩阵与所述第四权值矩阵进行级联,得到第五权值矩阵;
    基于所述第二权值矩阵调整所述第五权值矩阵,得到所述N个第一天线端口和所述M个第二天线端口对应的下行信道信息。
  15. 如权利要求14所述的装置,其特征在于,所述处理器,在基于所述第二权值矩阵调整所述第五权值矩阵时,具体用于:
    将所述第二权值矩阵与所述第五权值矩阵进行相乘。
  16. 如权利要求14所述的装置,其特征在于,所述处理器,在基于所述第二权值矩阵调整所述第五权值矩阵时,具体用于:
    调整所述第二权值矩阵,和/或所述第五权值矩阵中矩阵元素的大小;
    将经过调整的所述第二权值矩阵与经过调整的所述第五权值矩阵进行相乘。
  17. 如权利要求10至16任一项所述的装置,其特征在于,所述处理器,在基于所述N个第一天线端口对应的下行信道增益矩阵确定所述N个第一天线端口对应的第一权值矩阵时,具体用于:
    确定所述N个第一天线端口对应的下行信道增益矩阵的H*H阶正交矩阵,以及所述N个第一天线端口对应的下行信道增益矩阵的秩;所述H为网络侧设备的接收端口数;
    确定所述H*H阶正交矩阵的前n列为所述第一权值矩阵;所述n等于所述N个第一天线端口对应的下行信道增益矩阵的秩。
  18. 如权利要求10至17任一项所述的装置,其特征在于,所述处理器,还用于基于预设权值矩阵对所述第二导频信号进行预编码加权;
    所述收发器,在向所述用户设备发送第二导频信号时,具体用于:将加权后的所述第二导频信号发送给所述用户设备;
    所述处理器,在基于所述PMI确定第二权值矩阵时,具体用于:将所述预设权值矩阵与所述PMI进行相乘,得到所述第二权值矩阵。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储程序,所述程序在被一个或多个处理器读取并执行时可实现权利要求1至9任一项所述的方法。
PCT/CN2018/118998 2017-12-20 2018-12-03 一种获取下行信道信息的方法及装置 WO2019120070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18890586.3A EP3716496A4 (en) 2017-12-20 2018-12-03 DOWNLINK CHANNEL INFORMATION ACQUISITION PROCESS AND APPARATUS
US16/906,292 US11363585B2 (en) 2017-12-20 2020-06-19 Method and apparatus for obtaining downlink channel information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711386200.5A CN109951215B (zh) 2017-12-20 2017-12-20 一种获取下行信道信息的方法及装置
CN201711386200.5 2017-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/906,292 Continuation US11363585B2 (en) 2017-12-20 2020-06-19 Method and apparatus for obtaining downlink channel information

Publications (1)

Publication Number Publication Date
WO2019120070A1 true WO2019120070A1 (zh) 2019-06-27

Family

ID=66994373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118998 WO2019120070A1 (zh) 2017-12-20 2018-12-03 一种获取下行信道信息的方法及装置

Country Status (4)

Country Link
US (1) US11363585B2 (zh)
EP (1) EP3716496A4 (zh)
CN (1) CN109951215B (zh)
WO (1) WO2019120070A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021211971A1 (en) * 2020-04-17 2021-10-21 Ntt Docomo, Inc. User equipment and method of srs transmission
CN113972941A (zh) * 2020-07-23 2022-01-25 三星电子株式会社 在基站处利用部分信道信息和ue反馈的发射器波束形成

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217550B (zh) * 2019-07-12 2022-03-29 华为技术有限公司 预编码处理方法和装置
WO2021109150A1 (zh) * 2019-12-06 2021-06-10 华为技术有限公司 一种信道信息确定方法及装置
CN115842574A (zh) * 2021-09-22 2023-03-24 华为技术有限公司 通信方法、装置、设备以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050543A1 (zh) * 2009-11-02 2011-05-05 上海贝尔股份有限公司 获取下行信道状态信息的方法及装置
CN102104404A (zh) * 2009-12-21 2011-06-22 株式会社Ntt都科摩 无线通信系统中多用户mimo的传输方法、基站和用户终端
CN106160820A (zh) * 2015-03-30 2016-11-23 北京信威通信技术股份有限公司 一种基于信道互易性获取下行信道信息的方法
WO2017136749A1 (en) * 2016-02-03 2017-08-10 Docomo Innovations, Inc. User equipment and method for wireless communication
CN107078993A (zh) * 2015-01-30 2017-08-18 华为技术有限公司 一种获取下行信道信息的方法、装置以及网络侧设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895947B1 (ko) * 2010-01-18 2018-09-07 엘지전자 주식회사 무선 통신 시스템에서 채널 품질 정보를 제공하는 방법 및 장치
CN102158319B (zh) * 2010-02-12 2015-12-16 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN104218982B (zh) * 2013-05-31 2017-11-24 华为技术有限公司 确定下行信道状态信息的方法和装置
CN103475401B (zh) * 2013-09-18 2017-02-01 北京北方烽火科技有限公司 一种下行波束赋形方法与装置
EP3244549B1 (en) * 2015-01-07 2021-03-03 LG Electronics Inc. Method for reporting channel quality information in tdd type wireless communication system, and device therefor
CN105991171B (zh) * 2015-02-15 2019-05-10 电信科学技术研究院 一种三维信道状态信息确定方法及装置
CN107359916B (zh) * 2015-05-15 2020-12-01 索尼公司 无线通信系统中的装置和方法
MX2019002900A (es) * 2016-09-26 2019-07-04 Lg Electronics Inc Metodo de transmision/recepcion de enlace ascendente en sistema de comunicacion inalambrica y dispositivo para el mismo.
CN108631847B (zh) * 2017-03-24 2021-06-01 华为技术有限公司 传输信道状态信息的方法、终端设备和网络设备
CN109151969B (zh) * 2017-06-16 2022-04-05 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
CN109803362B (zh) * 2017-11-17 2022-04-12 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050543A1 (zh) * 2009-11-02 2011-05-05 上海贝尔股份有限公司 获取下行信道状态信息的方法及装置
CN102104404A (zh) * 2009-12-21 2011-06-22 株式会社Ntt都科摩 无线通信系统中多用户mimo的传输方法、基站和用户终端
CN107078993A (zh) * 2015-01-30 2017-08-18 华为技术有限公司 一种获取下行信道信息的方法、装置以及网络侧设备
CN106160820A (zh) * 2015-03-30 2016-11-23 北京信威通信技术股份有限公司 一种基于信道互易性获取下行信道信息的方法
WO2017136749A1 (en) * 2016-02-03 2017-08-10 Docomo Innovations, Inc. User equipment and method for wireless communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716496A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021211971A1 (en) * 2020-04-17 2021-10-21 Ntt Docomo, Inc. User equipment and method of srs transmission
CN113972941A (zh) * 2020-07-23 2022-01-25 三星电子株式会社 在基站处利用部分信道信息和ue反馈的发射器波束形成
CN113972941B (zh) * 2020-07-23 2024-05-10 三星电子株式会社 在基站处利用部分信道信息和ue反馈的发射器波束形成

Also Published As

Publication number Publication date
CN109951215A (zh) 2019-06-28
CN109951215B (zh) 2022-05-13
US20200322933A1 (en) 2020-10-08
EP3716496A4 (en) 2020-12-09
EP3716496A1 (en) 2020-09-30
US11363585B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
US10193609B2 (en) Method for feeding back channel state information, base station and user equipment
WO2019120070A1 (zh) 一种获取下行信道信息的方法及装置
WO2020156103A1 (zh) 信息反馈方法及装置
CN107888246B (zh) 基于码本的信道状态信息反馈方法及设备
WO2016155416A1 (zh) 一种信道状态信息反馈、获取方法及装置
WO2015161795A1 (zh) 一种信道状态信息测量的方法、系统及设备
US10673508B2 (en) Channel state information feedback method, user equipment, and base station
WO2015192777A1 (zh) 一种数据传输的方法和装置
WO2017020730A1 (zh) 一种反馈和接收信道状态信息csi的方法及装置
CN111342871A (zh) 基站设备、用户设备和通信系统
TW201318367A (zh) 用於多維天線陣列之頻道量測及回饋之方法及裝置
WO2018171604A1 (zh) 信息的传输方法和设备
US10601559B2 (en) Methods and devices for transmitting and receiving pilot signal
WO2017166977A1 (zh) 信道状态信息反馈的获取方法、相关设备及系统
WO2019144418A1 (zh) 一种预编码矩阵索引上报方法、通信装置及介质
WO2016119655A1 (zh) 一种确定码本的方法及装置
WO2016183835A1 (zh) 传输信号的方法和设备
US20220302980A1 (en) Method for reporting information, method for indicating information, terminal device, and network device
WO2016124078A1 (zh) 一种信道测量方法及装置
WO2018094709A1 (zh) 一种确定预编码矩阵的方法、装置及系统
CN108282204B (zh) 通信方法、装置及系统
WO2016023410A1 (zh) 下行信道预编码方法与装置
WO2020155116A1 (zh) 一种pmi上报方法及通信装置
CN112020092A (zh) 一种信道信息获取方法及装置
WO2021047594A1 (zh) 信息上报、发送方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018890586

Country of ref document: EP

Effective date: 20200623