WO2016124078A1 - 一种信道测量方法及装置 - Google Patents

一种信道测量方法及装置 Download PDF

Info

Publication number
WO2016124078A1
WO2016124078A1 PCT/CN2016/071345 CN2016071345W WO2016124078A1 WO 2016124078 A1 WO2016124078 A1 WO 2016124078A1 CN 2016071345 W CN2016071345 W CN 2016071345W WO 2016124078 A1 WO2016124078 A1 WO 2016124078A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pilot
resource
resources
port
Prior art date
Application number
PCT/CN2016/071345
Other languages
English (en)
French (fr)
Inventor
陈润华
陈文洪
高秋彬
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2016124078A1 publication Critical patent/WO2016124078A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a channel measurement method and apparatus.
  • a base station can use multiple antenna ports to perform data transmission with a UE (User Equipment).
  • UE User Equipment
  • the antennas of the base stations are generally arranged in a horizontal arrangement, and the number is relatively small. For example, in an LTE (Long Term Evolution) system, the number of base station antenna ports is now 1, 2, 4 or 8.
  • the base station needs to perform downlink data scheduling based on the downlink channel information fed back by the UE. Therefore, the UE needs to perform channel measurement.
  • the UE generally performs channel measurement based on a pilot signal (such as a CSI-RS (Channel State Information Reference Symbol)) transmitted by the base station, and feeds back downlink channel information, including a channel indicator RI (Rank Indicator, ⁇ Indication information, PMI (Precoding Matrix Indicator) information, and CQI (Channel Quality Indicator) information.
  • a pilot signal such as a CSI-RS (Channel State Information Reference Symbol)
  • RI Rank Indicator
  • ⁇ Indication information e.g., PMI (Precoding Matrix Indicator) information
  • CQI Channel Quality Indicator
  • the network side configures pilot resources in units of base stations.
  • the network side separately configures pilot resources for each base station, and indicates configuration information of pilot resources to the UE. So that the UE accurately locates the pilot resource and performs pilot signal measurement; the configuration information includes a resource index, a transmission power information, a transmission period, and a subframe offset.
  • the antenna array will be enhanced from the current horizontal arrangement to the three-dimensional and vertical arrangement, and the number of antennas of the base station will also increase sharply, for example, to 16, 32, 64, 128, or even more; Since the current pilot resource configuration is designed for 1, 2, 4 or 8 antenna ports, it can no longer be applied to this situation; and, in the current pilot resource configuration, the base station is in a different RE of a subframe. (Resource Element, resource unit) respectively transmit pilot signals of different antenna ports, and the number of REs that can be used for transmitting pilot signals in a PRB (Physical Resource Block) pair of one subframe is limited.
  • PRB Physical Resource Block
  • the number of REs that can be used to transmit pilot signals in an existing LTE system is up to 40, and this number 40 is the sum of the number of REs that all base stations can transmit pilot signals; as described above, in existing LTE
  • this number 40 is the sum of the number of REs that all base stations can transmit pilot signals; as described above, in existing LTE
  • for each base station 1, 2, 4 or 8 antenna ports are configured, and each base station occupies 1, 2, 4, or 8 on at most one PRB pair of one subframe. RE.
  • the number of base station antenna ports is greater than 40, there will not be enough resources to support channel measurement for each antenna port of the base station.
  • the existing channel measurement scheme cannot meet the increasing demand of the base station antenna port.
  • the embodiment of the present application provides a channel measurement method and device, which are used to solve the problem that the existing channel measurement solution cannot meet the increasing demand of the base station antenna port.
  • each sub-pilot resource occupies N antennas of the base station At least one of the ports, and the total number of antenna ports occupied by the L sub-pilot resources is N; N and L are positive integers not less than 2;
  • the configuration information of the determined L pilot resources is sent to the UE; and the configuration information of the L sub-pilot resources is used by the UE to perform channel measurement on the N-port pilot resources of the base station.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • the port number information is determined according to the following formula:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • the determining configuration information of the L sub-pilot resources includes:
  • the parameter values shared by the M sub-pilot resources are configured, including:
  • each sub-pilot resource occupies at least one of the N antenna ports of the base station, and the total number of antenna ports occupied by the L sub-pilot resources is N, N, and L are not less than a positive integer of 2;
  • a channel measurement result for the N-port pilot resource of the base station is generated based on channel measurement results for the L sub-pilot resources.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • the configuration information of the sub-pilot resource includes the index l of the sub-pilot resource, and the port number information is not included, determining the port number according to the following formula before performing channel measurement on the L sub-pilot resources information:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • generating channel measurement results on the N-port pilot resources of the base station based on channel measurement results of the L sub-pilot resources including:
  • the measurement results corresponding to different sub-pilot resources in the same sub-frame or the closest sub-frame are divided into a set of channel measurement results.
  • a configuration module configured to configure the N-port pilot resource of the base station when the user equipment UE needs to be configured L sub-pilot resources, and determining configuration information of L sub-pilot resources; wherein each sub-pilot resource occupies at least one of N antenna ports of the base station, and the sum of the number of antenna ports occupied by L sub-pilot resources N; N, L are positive integers not less than 2;
  • a sending module configured to send configuration information of the L sub-pilot resources determined by the configuration module to the UE, where configuration information of the L sub-pilot resources is used by the UE to the N-port pilot of the base station Resources perform channel measurements.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • the port number information is determined according to the following formula:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • the configuration module is specifically configured to:
  • the configuration module is specifically configured to configure parameter values common to the M sub-pilot resources according to the following steps:
  • Another embodiment of the present application provides a channel measurement apparatus, including:
  • a receiving module configured to receive configuration information of the L sub-pilot resources, where each sub-pilot resource occupies at least one of the N antenna ports of the base station, and the total number of antenna ports occupied by the L sub-pilot resources is N, N , L is a positive integer not less than 2;
  • a measuring module configured to perform channel measurement on the L sub-pilot resources based on the configuration information
  • a generating module configured to generate a channel measurement result for the N-port pilot resource of the base station based on channel measurement results of the L sub-pilot resources.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • the measurement module is further configured to: before performing channel measurement on the L sub-pilot resources, according to The following formula determines the port number information:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • the generating module is specifically configured to:
  • the measurement results corresponding to different sub-pilot resources in the same sub-frame or the closest sub-frame are divided into a set of channel measurement results.
  • one pilot resource is configured to be configured to configure multiple sub-pilot resources, and the configuration information of multiple sub-pilot resources is notified to the UE.
  • the UE may perform channel measurement on the L sub-pilot resources based on the configuration information of the L sub-pilot resources, and finally generate a channel measurement of the N-port pilot resource of the base station based on the channel measurement result of the L sub-pilot resources. result.
  • the channel measurement method provided by the embodiment of the present application can not only meet the increasing requirements of the base station antenna port, but also reduce the repeatability of pilot resources between different base stations, thereby reducing pilot signal interference between different base stations;
  • the more the number of the antenna ports occupied by one pilot resource the greater the impact on the performance of the UE that does not support the pilot signal rate matching.
  • the impact on the UE performance can be reduced (that is, the UE is improved). Use performance).
  • FIG. 1 is a flowchart of a channel measurement method according to Embodiment 1 of the present application.
  • 2 is a schematic diagram of a subframe offset of a plurality of sub-pilot resources
  • FIG. 3 is a flowchart of a channel measurement method according to Embodiment 2 of the present application.
  • FIG. 5 is a schematic structural diagram of a channel measurement apparatus according to Embodiment 4 of the present application.
  • FIG. 6 is a schematic structural diagram of a channel measurement apparatus according to Embodiment 5 of the present application.
  • FIG. 7 is a schematic structural diagram of a network side device according to Embodiment 6 of the present application.
  • FIG. 8 is a schematic structural diagram of a user equipment according to Embodiment 7 of the present application.
  • the N-port pilot resource of the base station when the N-port pilot resource of the base station needs to be configured for the UE, it is divided into L sub-pilot resources, and each sub-pilot resource occupies at least one of the N antenna ports of the base station, and Determining configuration information of the L sub-pilot resources; and transmitting configuration information of the determined L sub-pilot resources to the UE.
  • the configuration of one pilot resource is configured to configure multiple sub-pilot resources, and the configuration information of multiple sub-pilot resources is notified to
  • the UE may perform channel measurement on the L sub-pilot resources based on the configuration information of the L sub-pilot resources, and finally generate a channel for the N-port pilot resource of the base station based on the channel measurement result of the L sub-pilot resources. Measurement results.
  • the channel measurement method provided by the embodiment of the present application can not only meet the increasing requirements of the base station antenna port, but also reduce the repeatability of pilot resources between different base stations, thereby reducing pilot signal interference between different base stations; In addition, the more the number of the antenna ports occupied by one pilot resource, the greater the impact on the performance of the UE that does not support the pilot signal rate matching.
  • the pilot resource is divided into multiple sub-leads to cause resources. Measurements can reduce the impact on UE performance (ie, improve UE performance).
  • a flowchart of a channel measurement method provided in Embodiment 1 of the present application includes the following steps:
  • N-port pilot resource of the base station needs to be configured for the UE, configure L sub-pilot resources for the UE, and determine configuration information of the L sub-pilot resources, where each sub-pilot resource occupies the N of the base station.
  • At least one of the antenna ports, and the total number of antenna ports occupied by the L sub-pilot resources is N; N, L are positive integers not less than 2.
  • the N-port pilot resource of the base station needs to be configured for the UE, according to the size of the N value, optionalally, configure one pilot resource, or configure multiple sub-pilot resources. For example, if the value of N is less than or equal to 8, you can configure a pilot resource that occupies N antenna ports according to the traditional pilot resource configuration mode. If the value of N is greater than 8. Selecting L sub-pilot resources, so that each sub-pilot resource occupies at least one of the N antenna ports, different sub-pilot resources occupy different antenna ports, and the number of antenna ports occupied by each sub-pilot resource is smaller than Or equal to 8, such that L sub-pilot resources can be configured based on a conventional pilot resource configuration.
  • the pilot signal may specifically be a CSI-RS (Channel state information reference symbol).
  • S102 Send configuration information of the determined L sub-pilot resources to the UE.
  • the configuration information of the L sub-pilot resources is used by the UE to perform channel measurement on the N-port pilot resource of the base station.
  • the base station may send the configuration information of the determined L sub-pilot resources to the UE by using the high layer signaling.
  • the set of the L sub-pilot resources constitutes an N-port pilot resource; the UE performs channel measurement on the L sub-pilot resources based on the configuration information of the L sub-pilot resources, and obtains a channel measurement result for the N-port pilot resource, Then, the channel measurement result of the N port pilot resource is channel quantized, and the quantized channel measurement value is fed back.
  • configuration information for locating L sub-pilot resources needs to be sent to the UE. Since the L sub-pilot resources are not completely independent of each other, but are part of the pilot resources belonging to one N-antenna port, in the configuration information of the L sub-pilot resources, each sub-pilot needs to be indicated.
  • the configuration information is described in detail below.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • Resource Index of the sub-pilot resource (Resource Index)
  • QCL information for indicating that there are or not QCL (quasi-co-located) characteristics between different antenna ports of the L sub-pilot resources.
  • determining configuration information of the L sub-pilot resources includes:
  • Configuring parameters common to M sub-pilot resources for any one of the configuration information of the L sub-pilot resources a value, 1 ⁇ M ⁇ L; or, respectively, parameter values of each of the L pilot resources are configured.
  • the parameter values configured for each sub-pilot resource may be the same parameter value, or may be different parameter values, and may also be partial sub-pilots.
  • the parameter values of the resources are the same.
  • the parameter values of the sub-pilot resources may be configured separately, and the parameters of each sub-pilot resource in the L sub-pilot resources are separately configured. value). It is also possible to configure a parameter value for a plurality of sub-pilot resources, in particular, perform group configuration, configure the same parameter value for the same group of sub-pilot resources, and configure different parameter values for different groups of sub-pilot resources (ie, Corresponding to the parameter values shared by the M sub-pilot resources configured above.
  • the parameter values shared by the M sub-pilot resources are configured, including:
  • the information is actually a configuration information of a pilot resource (hereinafter referred to as an N-port pilot resource) occupying N antenna ports.
  • the index l of the sub-pilot resource that is, the sequence number of each sub-pilot resource in the L sub-pilot resources, is used to retrieve the configuration information of the corresponding sub-pilot resource.
  • the resource index of the sub-pilot resource is used to indicate the RE occupied by the sub-pilot resource on each PRB pair of each sub-frame; where the number of antenna ports occupied by each sub-pilot resource is not greater than 8,
  • the frequency resource configuration capability is within the range, and therefore, the resource index of the sub-pilot resource can use the resource index of the traditional pilot resource.
  • there are 20 kinds of CSI-RS resources occupying 2 antenna ports in one subframe one CSI-RS resource corresponds to one RE occupation mode
  • 10 types of CSI-RS resources occupying 4 antenna ports are occupied.
  • the resource index is used to indicate which CSI-RS resource is specifically configured.
  • the UE detects the pilot signal on the RE in the time domain/frequency domain corresponding to the resource. Channel measurement.
  • the transmission power information is generally expressed as a ratio of the power of the pilot signal to the transmission power of the PDSCH (Physical Downlink Shared Channel).
  • the transmission power information of different sub-pilot resources may be the same or different.
  • a separate transmission may be configured for each sub-pilot resource. power.
  • the common configuration information of the L sub-pilot resources that is, the configuration information of the N-port pilot resources, may be indicated in the common configuration information of the L sub-pilot resources.
  • the transmission period (Periodicity) is in units of subframes; the transmission periods of different sub-pilot resources may be the same or different.
  • a subframe offset used to indicate an initial subframe offset (ie, a subframe indicating that a pilot signal is transmitted is offset from a reference subframe by several subframes, the reference subframe may be additionally defined in the system), and transmitted
  • the combination of the periods may be used to indicate the subframe in which the pilot signal is transmitted; the subframe offsets of different sub-pilot resources may be the same or different; and configuring multiple subframe offsets for the L sub-pilot resources in some scenarios
  • At least 2 seed frame offsets need to be configured for the L sub-pilot resources, and pilot signals are transmitted in the same subframe for sub-frame resources with the same subframe offset, and the offsets for the subframes are different.
  • a sub-pilot resource that transmits pilot signals in different subframes.
  • the relative relationship between the subframe offset of the other sub-pilot resources and the subframe offset of the sub-pilot resource eg, the subframe offset of other sub-pilot resources is offset from the sub-frame of the sub-pilot resource
  • the shift amount is larger than one subframe.
  • the subframe offset of the other sub-pilot resources is determined, and the relative relationship may also be indicated to the UE as configuration information.
  • the UE after the channel measurement is performed on the configuration information of the L sub-pilot resources, the UE needs to generate a channel measurement result for the N-port pilot resource based on the channel measurement result of the L sub-pilot resources, in the process.
  • the measurement result in the same subframe or the closest subframe corresponding to different sub-pilot resources needs to be divided into a set of channel measurement results, and an N-antenna channel matrix can be calculated by such a set of measurement results. For example, a pilot resource occupying an N antenna port is divided into three sub-pilot resources, and a transmission period of three sub-pilot resources is five subframes, and a sub-frame resource of sub-pilot resource 1 and sub-pilot resource 2 is offset.
  • the pilot signal when performing channel measurement feedback, may measure the measurement result on subframe 0 of the sub-pilot resource 1 and the sub-pilot resource 2 with the subframe in the sub-pilot resource 3
  • the measurement result on 2 is used as a set of measurement results, and the measurement result on the subframe 5 of the sub-pilot resource 1 and the sub-pilot resource 2 and the measurement result on the subframe 7 of the sub-pilot resource 3 are taken as a group measurement.
  • the measurement results in the same subframe or the closest subframe corresponding to different sub-pilot resources are divided into a set of channel measurement results, and channel calculation feedback is performed.
  • the closest subframes corresponding to different sub-pilot resources are subframes that are different from each other by no more than one transmission period.
  • Port number information which is used to indicate the sequence number of each antenna port occupied by the L sub-pilot resources in the N antenna ports; in the pilot resource configuration of the conventional 1/2/4/8 antenna port, each The serial numbers of the respective antenna ports corresponding to the resource indexes are predefined, so that it is not necessary to separately indicate the port number information.
  • the UE since there are multiple sub-pilot resources, the UE needs to know the order relationship between the antenna ports occupied by each sub-pilot resource, and also needs to know the antenna ports of different sub-pilot resources. Order relationship.
  • the port number information may be indicated in the configuration information, and the port number may be determined in advance. For example, the port number may be an index based on each sub-pilot resource and a port of each sub-pilot resource. The quantity is determined. specifically,
  • the port number information can be determined according to the following formula:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant. That is, it indicates the sum of the number of antenna ports occupied by the first 1-1 sub-pilot resources.
  • the port numbers are arranged in ascending order according to index l, and may also be arranged in descending order according to index l.
  • the order information between the sub-pilot resources may be indicated, or the port number of each antenna port occupied by each sub-pilot resource may be directly indicated.
  • QCL information used to indicate that there are or no QCL characteristics between different antenna ports of the L sub-pilot resources, and specifically, may or may not have QCL characteristics between antenna ports indicating different sub-pilot resources.
  • the UE can assume that there is a QCL characteristic between all antenna ports in one pilot resource.
  • any sub-pilot resource pre-defining any sub-pilot resource to satisfy the QCL characteristic between each antenna port occupied by itself.
  • the QCL characteristics are not satisfied between the antenna ports occupied by different sub-pilot resources;
  • the QCL characteristic is met between each antenna port occupied by any one of the sub-pilot resources, and the configuration information indicates that the QCL characteristics are met or not met between the antenna ports occupied by different sub-pilot resources;
  • the QCL information may be uniformly indicated by using the common configuration information; for example, two kinds of QCL information may be preset, in a QCL information.
  • the QCL characteristic is satisfied between the antenna ports occupied by different sub-pilot resources.
  • the QCL characteristics are not satisfied between the antenna ports occupied by different sub-pilot resources.
  • 1 The bits are used to indicate that, for example, 1 is used to indicate that the QCL characteristics are satisfied (or not satisfied) between antenna ports occupied by different sub-pilot resources, and 0 is used to indicate that the antenna ports occupied by different sub-pilot resources are not satisfied. (or meet) QCL characteristics.
  • the QCL information may be separately configured for each sub-pilot resource; for example, for any sub-pilot resource, another one may be configured or The QCL characteristic is satisfied between the antenna port occupied by the plurality of sub-pilots and the antenna port occupied by any one of the sub-pilot resources; for example, one sub-pilot resource may be defined in advance, and for each of the other sub-pilot resources, each of the other sub-pilot resources.
  • the configuration information of the pilot resource indicates that the QCL characteristic is met or not satisfied between the antenna port occupied by each of the other sub-pilot resources and the antenna port occupied by the pre-defined sub-pilot resource.
  • the base station antenna array generates two beams by analog domain beamforming, and the first 8 antenna ports and the last 8 antennas of the pilot resources of the base station occupying 16 antenna ports.
  • the ports correspond to different analog domain beams, so that there is no QCL characteristic under the average gain between the first 8 antenna ports and the last 8 antenna ports, and the sub-pilot resources occupying the first 8 antenna ports need to be configured.
  • FIG. 3 is a flowchart of a channel measurement method according to Embodiment 2 of the present application.
  • the second embodiment is introduced from the perspective of the UE.
  • the content that has been described in the foregoing Embodiment 1 is no longer used in this embodiment.
  • the description includes the following steps:
  • S301 Receive configuration information of L sub-pilot resources, where each sub-pilot resource occupies at least one of N antenna ports of the base station, and the total number of antenna ports occupied by L sub-pilot resources is N, N, and L A positive integer not less than 2.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • S302 Perform channel measurement on the L sub-pilot resources based on the configuration information.
  • the port number is determined according to the following formula before performing channel measurement on each sub-pilot resource. information:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • the UE may perform the calculation according to the preset port number determining manner, for example, by using the above formula.
  • S303 Generate channel measurement results for the N-port pilot resources of the base station based on channel measurement results of the L sub-pilot resources.
  • the channel measurement result is fed back to the base station.
  • the UE may divide the measurement results corresponding to different sub-pilot resources in the same subframe or the closest subframe into a set of channel measurement results, and perform calculation feedback.
  • a flowchart of a channel measurement method provided in Embodiment 3 of the present application includes the following steps:
  • S401 When the base station needs to configure an N-port pilot resource for the UE, configure the L sub-pilot resources for the UE, and determine configuration information of the L sub-pilot resources, where each sub-pilot resource occupies the N of the base station. At least one of the antenna ports, and the total number of antenna ports occupied by the L sub-pilot resources is N; N, L are positive integers not less than 2.
  • the base station sends configuration information of the determined L sub-pilot resources to the UE.
  • the UE receives the configuration information of the L sub-pilot resources, where each sub-pilot resource occupies at least one of the N antenna ports of the base station, and the total number of antenna ports occupied by the L sub-pilot resources is N, L is not A positive integer less than 2.
  • the base station transmits a pilot signal based on the L sub-pilot resources configured for the UE.
  • the UE receives the pilot signal transmitted by the base station according to the configuration information of the L sub-pilot resources, and performs channel measurement.
  • S406 The UE generates an N-port pilot resource for the base station based on channel measurement results of the L sub-pilot resources. Channel measurement results are fed back to the base station.
  • the channel measurement device corresponding to the channel measurement method is also provided in the embodiment of the present application. Since the principle of the device is similar to the channel measurement method in the embodiment of the present application, the implementation of the device may refer to the method. The implementation, repetitions will not be repeated.
  • FIG. 5 is a schematic structural diagram of a channel measurement apparatus according to Embodiment 4 of the present application, including:
  • the configuration module 51 is configured to: when the user equipment UE needs to configure the N-port pilot resource of the base station, configure L sub-pilot resources for the UE, and determine configuration information of the L sub-pilot resources; wherein each sub-pilot resource Occupying at least one of the N antenna ports of the base station, and the total number of antenna ports occupied by the L sub-pilot resources is N; N and L are positive integers not less than 2;
  • the sending module 52 is configured to send configuration information of the L sub-pilot resources determined by the configuration module 51 to the UE, where configuration information of the L sub-pilot resources is used by the UE to the N port of the base station
  • the pilot resources are used for channel measurement.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • the port number information is determined according to the following formula:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • the configuration module 51 is specifically configured to:
  • the configuration module 51 is specifically configured to configure parameter values common to the M sub-pilot resources according to the following steps:
  • FIG. 6 is a schematic structural diagram of a channel measurement apparatus according to Embodiment 5 of the present application, including:
  • the receiving module 61 is configured to receive configuration information of the L sub-pilot resources, where each sub-pilot resource occupies at least one of the N antenna ports of the base station, and the total number of antenna ports occupied by the L sub-pilot resources is N.
  • N, L are positive integers not less than 2;
  • the measuring module 62 is configured to perform channel measurement on the L sub-pilot resources based on the configuration information
  • the generating module 63 is configured to generate a channel measurement result for the N-port pilot resource of the base station based on the channel measurement result of the L sub-pilot resources.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • the measurement module is further configured to: before performing channel measurement on the L sub-pilot resources,
  • the port number information is determined according to the following formula:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • the generating module 63 is specifically configured to:
  • the measurement results corresponding to different sub-pilot resources in the same sub-frame or the closest sub-frame are divided into a set of channel measurement results.
  • FIG. 7 is a schematic structural diagram of a network side device according to Embodiment 6 of the present application, including:
  • the processor 701 is configured to read a program in the memory 704 and perform the following process:
  • the N-port pilot resource of the base station needs to be configured for the user equipment UE, configure L sub-pilot resources for the UE, and determine configuration information of the L sub-pilot resources; where each sub-pilot resource occupies the N of the base station At least one of the antenna ports, and the total number of antenna ports occupied by the L sub-pilot resources is N; N, L are positive integers not less than 2; the configuration information of the determined L sub-pilot resources is sent by the transceiver 702 Giving the UE;
  • the transceiver 702 is configured to receive and transmit data under the control of the processor 701.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • the processor 701 is specifically configured to determine the port number information according to the following formula:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • the processor 701 is specifically configured to:
  • the processor 701 is specifically configured to configure parameter values common to the M sub-pilot resources according to the following steps:
  • bus 700 which may include any number of interconnected buses and bridges, will include storage represented by one or more processors and memory 704 represented by processor 701.
  • the various circuits of the device are linked together.
  • the bus 700 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • Bus interface 703 provides an interface between bus 700 and transceiver 702.
  • Transceiver 702 can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the data processed by the processor 701 is transmitted over the wireless medium via the antenna 705. Further, the antenna 705 also receives the data and transmits the data to the processor 701.
  • the processor 701 is responsible for managing the bus 700 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 704 can be used to store data used by the processor 701 in performing operations.
  • the processor 701 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • FIG. 8 is a schematic structural diagram of a user equipment provided in Embodiment 7 of the present application, including:
  • the processor 801 is configured to read a program in the memory 804 and perform the following process:
  • the configuration information of the L sub-pilot resources is received by the transceiver 802.
  • Each sub-pilot resource occupies at least one of the N antenna ports of the base station, and the total number of antenna ports occupied by the L sub-pilot resources is N, N, L is a positive integer not less than 2; channel measurement is performed on L sub-pilot resources based on the configuration information; channel measurement result of N-port pilot resources to the base station is generated based on channel measurement results of L sub-pilot resources ;
  • the transceiver 802 is configured to receive and transmit data under the control of the processor 801.
  • the configuration information of each sub-pilot resource includes one or more of the following information:
  • the port number is not included.
  • the processor 801 is specifically used to:
  • the port number information is determined according to the following formula:
  • n represents the nth antenna port in the sub-pilot resource
  • M S is the number of antenna ports occupied by the S-th sub-pilot resource
  • is a constant.
  • the processor 801 is specifically configured to:
  • the measurement results corresponding to different sub-pilot resources in the same sub-frame or the closest sub-frame are divided into a set of channel measurement results.
  • bus 800 may include any number of interconnected buses and bridges, and bus 800 will include one or more processors and memory 804 represented by general purpose processor 801. The various circuits of the memory are linked together.
  • the bus 800 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 803 provides an interface between bus 800 and transceiver 802.
  • Transceiver 802 can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. For example, transceiver 802 receives external data from other devices. The transceiver 802 is configured to send the processed data of the processor 801 to other devices.
  • a user interface 805 can also be provided, such as a keypad, display, speaker, microphone, joystick.
  • the processor 801 is responsible for managing the bus 800 and the usual processing, running the general purpose operating system as described above.
  • the memory 804 can be used to store data used by the processor 801 when performing operations.
  • the processor 801 can be a CPU, an ASIC, an FPGA, or a CPLD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,尤其涉及一种信道测量方法及装置,用以满足基站天线端口不断增加的需求。本申请实施例提供的信道测量方法包括:当需要为UE配置基站的N端口导频资源时,为UE配置L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用所述基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数;将确定的L个子导频资源的配置信息发送给UE,用于UE对所述基站的N端口导频资源进行信道测量。采用本申请实施例,不仅可以满足基站天线端口不断增加的需求,而且,可以减少不同基站之间的导频资源的重复性,从而减少不同基站之间的导频信号干扰。

Description

一种信道测量方法及装置
本申请要求在2015年2月6日提交中国专利局、申请号为201510065260.1、申请名称为“一种信道测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信道测量方法及装置。
背景技术
在MIMO(Multiple-Input Multiple-Output,多输入多输出)传输方式中,基站可以使用多个天线端口与UE(User Equipment,用户设备)之间进行数据传输。在现有通信系统中,基站的天线一般部署成水平排列方式,数量比较少,比如,在LTE(Long Term Evolution,长期演进)系统中,基站天线端口数量现在为1、2、4或8。
基站需要基于UE反馈的下行信道信息进行下行数据调度,因此,UE需要进行信道测量。目前,UE一般基于基站发射的导频信号(如CSI-RS(Channel state information reference symbol,信道状态信息参考信号))来进行信道测量,并反馈下行信道信息,其中包括信道RI(Rank Indicator,轶指示)信息、PMI(Precoding Matrix Indicator,码本索引指示)信息和CQI(Channel Quality Indicator,信道质量指示)信息。
目前,网络侧是以基站为单位进行导频资源配置的,在进行多基站联合传输数据的情况下,网络侧会为每个基站分别配置导频资源,并向UE指示导频资源的配置信息,以便UE准确定位导频资源,进行导频信号测量;该配置信息包括资源索引、传输功率信息、传输周期、以及子帧偏移量。
随着天线技术的发展,天线阵列会由现在的水平排列方式增强到三维及垂直排列方式,基站的天线数量也会因此而急剧增加,比如增加到16、32、64、128、甚至更多;当前的导频资源配置由于是针对1、2、4或8天线端口设计的,就无法再继续适用于这种情况;并且,在当前的导频资源配置中,基站在一个子帧的不同RE(Resource Element,资源单元)上分别发送不同天线端口的导频信号,而一个子帧的一个PRB(Physical Resource Block,物理资源块)对中最多可用于发送导频信号的RE数量是有限的,比如在现有LTE系统中可以用来发送导频信号的RE数量最多为40个,并且,这个数量40是所有基站可以发送导频信号的RE数量的总和;如上面所述,在现有LTE系统中,为每个基站配置1、2、4或8个天线端口,则每个基站最多在一个子帧的一个PRB对上占用1、2、4、或8 个RE。显然,按照现有的配置方式,当基站天线端口数量大于40时,将没有足够的资源支持对基站的各个天线端口的信道测量。
综上,现有的信道测量方案无法满足基站天线端口不断增加的需求。
发明内容
本申请实施例提供一种信道测量方法及装置,用以解决现有的信道测量方案无法满足基站天线端口不断增加的需求的问题。
本申请实施例提供的一种信道测量方法,包括:
当需要为用户设备UE配置基站的N端口导频资源时,为该UE配置L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数;
将确定的L个子导频资源的配置信息发送给所述UE;所述L个子导频资源的配置信息用于所述UE对所述基站的N端口导频资源进行信道测量。
可选地,每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;
子导频资源的资源索引;
传输功率信息;
传输周期;
子帧偏移量;
端口号信息;
用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
可选地,根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000001
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000002
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
可选地,所述确定L个子导频资源的配置信息,包括:
针对L个子导频资源的配置信息中的任一种参数,配置M个子导频资源共用的参数值,1≤M≤L;或者,分别配置所述L个子导频资源中的每个子导频资源的参数值。
可选地,所述配置M个子导频资源共用的参数值,包括:
在所述M个子导频资源的公共配置信息中指示该种参数的参数值,或者,在所述M个子导频资源中的一个子导频资源的配置信息中指示该种参数的参数值。
本申请另一实施例提供的一种信道测量方法,包括:
接收L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N,N、L为不小于2的正整数;
基于所述配置信息,对L个子导频资源进行信道测量;
基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果。
可选地,所述每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;
子导频资源的资源索引;
传输功率信息;
传输周期;
子帧偏移量;
端口号信息;
用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
可选地,若子导频资源的配置信息中包括子导频资源的索引l,不包括所述端口号信息,则在对L个子导频资源进行信道测量之前,根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000003
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000004
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
可选地,基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源上的信道测量结果,包括:
将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果。
本申请实施例提供的一种信道测量装置,包括:
配置模块,用于当需要为用户设备UE配置基站的N端口导频资源时,为该UE配置 L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用所述基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数;
发送模块,用于将所述配置模块确定的L个子导频资源的配置信息发送给所述UE;所述L个子导频资源的配置信息用于所述UE对所述基站的N端口导频资源进行信道测量。
可选地,每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;
子导频资源的资源索引;
传输功率信息;
传输周期;
子帧偏移量;
端口号信息;
用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
可选地,根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000005
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000006
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
可选地,所述配置模块具体用于:
针对L个子导频资源的配置信息中的任一种参数,配置M个子导频资源共用的参数值,1≤M≤L;或者,分别配置所述L个子导频资源中的每个子导频资源的参数值。
可选地,所述配置模块具体用于根据以下步骤配置M个子导频资源共用的参数值:
在所述M个子导频资源的公共配置信息中指示该种参数的参数值,或者,在所述M个子导频资源中的一个子导频资源的配置信息中指示该种参数的参数值。
本申请另一实施例提供一种信道测量装置,包括:
接收模块,用于接收L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N,N、L为不小于2的正整数;
测量模块,用于基于所述配置信息,对L个子导频资源进行信道测量;
生成模块,用于基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果。
可选地,每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;
子导频资源的资源索引;
传输功率信息;
传输周期;
子帧偏移量;
端口号信息;
用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
可选地,若子导频资源的配置信息中包括子导频资源的索引l,不包括所述端口号信息,则所述测量模块还用于,对L个子导频资源进行信道测量之前,根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000007
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000008
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
可选地,所述生成模块具体用于:
将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果。
采用本申请实施例,可以在基站天线端口数量超过当前的导频资源配置能力时,将配置一个导频资源划分为配置多个子导频资源,并将多个子导频资源的配置信息通知给UE,这样,UE可以基于L个子导频资源的配置信息,对L个子导频资源进行信道测量,最后基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果。采用本申请实施例提供的信道测量方法,不仅可以满足基站天线端口不断增加的需求,而且,可以减少不同基站之间的导频资源的重复性,从而减少不同基站之间的导频信号干扰;另外,一个导频资源占用的天线端口数量越多,对传统不支持导频信号速率匹配的UE的性能影响越大,采用本申请实施例后,可以减少对UE性能的影响(也即提高UE使用性能)。
附图说明
图1为本申请实施例一提供的信道测量方法流程图;
图2为多个子导频资源的子帧偏移量示意图;
图3为本申请实施例二提供的信道测量方法流程图;
图4为本申请实施例三提供的信道测量方法流程图;
图5为本申请实施例四提供的信道测量装置结构示意图;
图6为本申请实施例五提供的信道测量装置结构示意图;
图7为本申请实施例六提供的网络侧设备结构示意图;
图8为本申请实施例七提供的用户设备结构示意图。
具体实施方式
在本申请实施例中,当需要为UE配置基站的N端口导频资源时,将其划分为配置L个子导频资源,每个子导频资源占用基站的N个天线端口中的至少一个,并确定L个子导频资源的配置信息;将确定的L个子导频资源的配置信息发送给UE。从而采用本申请实施例,可以在基站天线端口数量超过当前的导频资源配置能力时,将配置一个导频资源划分为配置多个子导频资源,并将多个子导频资源的配置信息通知给UE,这样,UE可以基于L个子导频资源的配置信息,对L个子导频资源进行信道测量,最后基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果。采用本申请实施例提供的信道测量方法,不仅可以满足基站天线端口不断增加的需求,而且,可以减少不同基站之间的导频资源的重复性,从而减少不同基站之间的导频信号干扰;另外,一个导频资源占用的天线端口数量越多,对传统不支持导频信号速率匹配的UE的性能影响越大,采用本申请实施例后,将一个导频资源划分为多个子导致资源进行测量,可以减少对UE性能的影响(也即提高UE使用性能)。
下面结合说明书附图对本申请实施例作进一步详细描述。
实施例一
如图1所示,为本申请实施例一提供的信道测量方法流程图,包括以下步骤:
S101:当需要为UE配置基站的N端口导频资源时,为该UE配置L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用所述基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数。
在具体实施中,当需要为UE配置基站的N端口导频资源时,根据该N值的大小,选 择配置一个导频资源,还是配置多个子导频资源,比如,若N值小于或等于8,可以按照传统导频资源配置方式,配置一个占用N个天线端口的导频资源,若N值大于8,选择配置L个子导频资源,使每个子导频资源占用所述N个天线端口中的至少一个,不同子导频资源占用不同的天线端口,每个子导频资源占用的天线端口数量小于或等于8,这样,可以基于传统的导频资源配置来配置L个子导频资源。
在配置导频资源(包括所述子导频资源)时,需要配置具体的导频信号、发射导频信号的时频资源等信息。导频信号具体可以是CSI-RS(Channel state information reference symbol,信道状态信息参考信号)。
S102:将确定的L个子导频资源的配置信息发送给所述UE;所述L个子导频资源的配置信息用于所述UE对所述基站的N端口导频资源进行信道测量。
这里,基站可以将确定的L个子导频资源的配置信息通过高层信令发送给UE。这L个子导频资源的集合构成一个N端口导频资源;UE基于L个子导频资源的配置信息,对L个子导频资源进行信道测量,进而得到对N端口导频资源的信道测量结果,然后,将对N端口导频资源的信道测量结果进行信道量化,并反馈量化后的信道测量值。
在具体实施过程中,为了使UE准确定位配置的L个子导频资源,以便完成信道测量,需要向UE发送用于定位L个子导频资源的配置信息。由于L个子导频资源并不是完全相互独立的,而是同属于一个N天线端口的导频资源下的组成部分,因此,在L个子导频资源的配置信息中,还需要指示各个子导频资源之间的关联关系,以便UE将对L个子导频资源的信道测量结果合成为对N端口导频资源的信道测量结果。下面对配置信息作具体介绍。
在本申请实施例中,每个子导频资源的配置信息包括以下信息中的一种或多种:
1)子导频资源的索引l,其中1<=l<=L;
2)子导频资源的资源索引(Resource Index);
3)传输功率信息;
4)传输周期;
5)子帧偏移量(Subframe Offset);
6)端口号信息;
7)用于指示L个子导频资源的不同天线端口之间具有或不具有QCL(quasi-co-located,准共定位)特性的QCL信息。
可选地,在S101中,确定L个子导频资源的配置信息,包括:
针对L个子导频资源的配置信息中的任一种参数,配置M个子导频资源共用的参数 值,1≤M≤L;或者,分别配置所述L个子导频资源中的每个子导频资源的参数值。
在具体实施过程中,针对所述配置信息中的任一种参数,为各个子导频资源配置的参数值可能为同一个参数值,也可能为各自不同的参数值,还可能部分子导频资源的参数值相同。在具体配置时,针对任一种参数,可以不管各子导频资源之间的参数值是否相同,都单独配置(对应上述分别配置所述L个子导频资源中的每个子导频资源的参数值)。也可以为多个子导频资源共同配置一个参数值,具体地,进行分组配置,为同组的子导频资源配置同一个参数值,为不同组的子导频资源配置不同的参数值(即对应上述配置M个子导频资源共用的参数值)。
可选地,所述配置M个子导频资源共用的参数值,包括:
在所述M个子导频资源的公共配置信息中指示该种参数的参数值,或者,在所述M个子导频资源中的一个子导频资源的配置信息中指示该种参数的参数值。
在具体实施过程中,当配置M个子导频资源共用的参数值时,可以在M个子导频资源的公共配置信息中指示该种参数的参数值,比如,当M=N时,该公共配置信息实际上也就是一个占用N个天线端口的导频资源(以下简称为N端口导频资源)的配置信息。或者,在M个子导频资源中的一个子导频资源的配置信息中指示该种参数的参数值,比如,当M=N时,在索引l=1的子导频资源的配置信息中指示,这时,对于其它子导频资源,默认该种参数的参数值与索引l=1的子导频资源的参数值相同。
下面针对上述参数分别作介绍。
在上述配置信息中,1)子导频资源的索引l,也即是每个子导频资源在L个子导频资源中的序列号,用于检索对应的子导频资源的配置信息。
2)子导频资源的资源索引,用于指示子导频资源在每个子帧的每个PRB对上占用的RE;这里,每个子导频资源占用的天线端口数量不大于8,在传统导频资源配置能力范围内,因此,子导频资源的资源索引可以采用传统的导频资源的资源索引。在LTE系统中,一个子帧内占用2天线端口的CSI-RS资源有20种(一种CSI-RS资源对应一种RE占用方式),占用4天线端口的CSI-RS资源有10种,占用8天线端口的CSI-RS资源有5种,该资源索引即用于指示具体配置的是哪种CSI-RS资源,UE在该资源对应的时域/频域的RE上检测导频信号,进行信道测量。
3)传输功率信息,通常可表示为导频信号的功率和PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输功率的比值。不同子导频资源的传输功率信息可以相同,也可以不同。
在具体实施中,为了提高MIMO系统的灵活性,可以为每个子导频资源单独配置传输 功率。当为L个子导频资源配置相同的传输功率Pc时,可以在L个子导频资源的公共配置信息中指示,这里的公共配置信息也即N端口导频资源的配置信息。
4)传输周期(Periodicity),以子帧(subframe)为单位;不同子导频资源的传输周期可以相同,也可以不同。
在具体实施中,可以为每个子导频资源单独配置传输周期;也可以在N端口导频资源的配置信息中指示一个各个子导频资源共用的传输周期,或者,只在一个子导频资源(比如索引l=1的子导频资源)的配置信息中指示该共用的传输周期,UE默认其它子导频资源的传输周期与该子导频资源的传输周期相同。
5)子帧偏移量,用于指示初始子帧偏置(即指示发送导频信号的子帧相对参考子帧偏移几个子帧,该参考子帧可以在系统中另外定义),与传输周期相结合,可用于指示导频信号发送的子帧;不同子导频资源的子帧偏移量可以相同,也可以不同;为L个子导频资源配置多种子帧偏移量在某些场景下存在部署的必要性,比如:当N=64时,由于一个子帧的一个PRB对上最多只有40个RE能够用于发送CSI-RS,在端口密度为1RE/PRB对的条件下,必然需要为这L个子导频资源配置至少2种子帧偏移量,并针对子帧偏移量相同的子导频资源,在相同的子帧中发送导频信号,针对子帧偏移量不同的子导频资源,在不同的子帧中发送导频信号。
在具体实施中,可以为每个子导频资源单独配置子帧偏移量,不同子导频资源的子帧偏移量可以相同,也可以不同;也可以在N端口导频资源的配置信息中指示一个各个子导频资源共用的子帧偏移量,或者,只在一个子导频资源(比如索引l=1)的配置信息中指示该共用的子帧偏移量,UE默认其它子导频资源的传输周期与该子导频资源的子帧偏移量相同;或者,只在一个子导频资源(比如索引l=1)的配置信息中指示子帧偏移量,UE根据预设的其它子导频资源的子帧偏移量与该子导频资源的子帧偏移量的相对关系(比如其它子导频资源的子帧偏移量比该子导频资源的子帧偏移量大1个子帧)确定其它子导频资源的子帧偏移量,该相对关系也可以作为配置信息指示给UE。
在具体实施中,UE在基于L个子导频资源的配置信息进行信道测量后,还需要基于对L个子导频资源的信道测量结果,生成对N端口导频资源的信道测量结果,在此过程中,需要将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果,通过这样的一组测量结果可以计算得到一个N天线信道矩阵。比如,将一个占用N天线端口的导频资源划分为3个子导频资源,3个子导频资源的传输周期都为5个子帧,子导频资源1和子导频资源2的子帧偏移量都为0,即都在{0,5,10,15,20……}上发送导频信号,子导频资源3的子帧偏移量为2,即在子帧{2,7,12,17……}上发送 导频信号(如图2所示),则在进行信道测量反馈时,可以将在子导频资源1和子导频资源2的子帧0上的测量结果与在子导频资源3的子帧2上的测量结果作为一组测量结果,将在子导频资源1和子导频资源2的子帧5上的测量结果与在子导频资源3的子帧7上的测量结果作为一组测量结果,……,如此,即为将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果,进行信道计算反馈。这里,不同子导频资源对应的最接近子帧也就是相互之间相差不超过一个传输周期的子帧。
6)端口号信息,用于指示L个子导频资源占用的每个天线端口在N个天线端口中的序列号;在传统的1/2/4/8天线端口的导频资源配置中,每个资源索引对应的各个天线端口的序列号是预先定义好的,因此可以无需另外单独指示端口号信息。在本申请实施例中,由于存在多个子导频资源,UE除需要知道每个子导频资源自己占用的各个天线端口之间的顺序关系外,还需要知道不同子导频资源的天线端口之间的顺序关系。在具体实施过程中,可以在配置信息中指示端口号信息,也可以预先定义端口号的确定方式,比如,该端口号可以是基于各个子导频资源的索引l、各个子导频资源的端口数量确定的。具体地,
可以根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000009
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000010
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。这里,
Figure PCTCN2016071345-appb-000011
即表示前l-1个子导频资源占用的天线端口数量之和。
需要说明的是,任何以上公式的变形均可在本申请方案的保护范围内,比如,上述端口号是按照索引l呈升序排列,还可以按照索引l呈降序排列等。
当在配置信息中指示所述端口号信息时,可以指示各个子导频资源之间的排序信息,也可以直接指示每个子导频资源占用的各个天线端口的端口号。
7)QCL信息,用于指示L个子导频资源的不同天线端口之间具有或不具有QCL特性,具体地,可以是指示不同子导频资源的天线端口之间具有或不具有QCL特性。在传统的导频资源配置中,UE可以假设一个导频资源中的所有天线端口之间都具有QCL特性。在本申请实施例中,由于存在多个子导频资源,可以有以下几种不同的定义或配置方式:
预先定义所有子导频资源占用的所有天线端口之间都满足QCL特性,这样,可以不再通过配置信息通知UE;
或者,预先定义任一个子导频资源自己所占用的各个天线端口之间都满足QCL特性, 而不同子导频资源占用的天线端口之间都不满足QCL特性;
或者,预先定义任一个子导频资源自己所占用的各个天线端口之间都满足QCL特性,并通过配置信息指示不同子导频资源所占用的天线端口之间满足或不满足QCL特性;
这里,通过配置信息指示不同子导频资源所占用的天线端口之间是否满足QCL特性时,可以采用公共配置信息统一指示QCL信息;比如,可以预设两种QCL信息,在一种QCL信息中,不同子导频资源所占用的天线端口之间都满足QCL特性,在另一种QCL信息中,不同子导频资源所占用的天线端口之间都不满足QCL特性,具体地,可以采用1个比特位来指示,比如采用1来指示不同子导频资源所占用的天线端口之间满足(或不满足)QCL特性,采用0来指示不同子导频资源所占用的天线端口之间不满足(或满足)QCL特性。
通过配置信息指示不同子导频资源所占用的天线端口之间是否满足QCL特性时,也可以针对每个子导频资源单独配置QCL信息;比如,针对任一个子导频资源,可以配置其它一个或多个子导频占用的天线端口与该任一个子导频资源占用的天线端口之间满足QCL特性;再比如,可以预先定义一个子导频资源,对于其它每个子导频资源,通过其它每个子导频资源的配置信息来指示其它每个子导频资源占用的天线端口与该预先定义的子导频资源占用的天线端口之间满足或不满足QCL特性。
上述对QCL的灵活配置可以满足基站配置需求,比如,基站天线阵列通过模拟域波束赋形产生两个波束,占用16个天线端口的基站的导频资源的前8个天线端口与后8个天线端口对应的是不同的模拟域波束,这样前8个天线端口与后8个天线端口之间不存在平均增益(average gain)下的QCL特性,需要配置占用前8个天线端口的子导频资源的各个天线端口和占用后8个天线端口的子导频资源的各个天线端口之间不具有QCL特性,并通知给UE。
实施例二
如图3所示,为本申请实施例二提供的信道测量方法流程图,该实施例二从UE侧角度进行介绍,具体已在上述实施例一中描述过的内容在该实施例中不再赘述,包括以下步骤:
S301:接收L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N,N、L为不小于2的正整数。
这里,每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;子导频资源的资源索引;传输功率信息;传输周 期;子帧偏移量;端口号信息;用于指示不同子导频资源天线端口之间具有或不具有准共定位QCL特性的QCL信息。
S302:基于所述配置信息,对L个子导频资源进行信道测量。
可选地,若子导频资源的配置信息中包括子导频资源的索引l,不包括所述端口号信息,则在对每个子导频资源进行信道测量之前,根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000012
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000013
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
在具体实施中,若基站通知给UE的配置信息中不包括端口号信息,UE可以根据预设的端口号确定方式进行计算得到,比如可以采用上述公式得到。
S303:基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果。
可选地,生成对N端口导频资源的信道测量结果后,将该信道测量结果反馈给基站。
在该步骤中,UE可以将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果,进行计算反馈。
实施例三
如图4所示,为本申请实施例三提供的信道测量方法流程图,包括以下步骤:
S401:基站在需要为UE配置一个N端口导频资源时,为该UE配置L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用所述基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数。
S402:基站将确定的L个子导频资源的配置信息发送给UE。
S403:UE接收L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N,L为不小于2的正整数。
S404:基站基于为UE配置的L个子导频资源,发射导频信号。
S405:UE基于L个子导频资源的配置信息,接收基站发射的导频信号,进行信道测量。
S406:UE基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的 信道测量结果,并反馈给基站。
基于同一发明构思,本申请实施例中还提供了一种与信道测量方法对应的信道测量装置,由于该装置解决问题的原理与本申请实施例信道测量方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
实施例四
如图5所示,为本申请实施例四提供的信道测量装置结构示意图,包括:
配置模块51,用于当需要为用户设备UE配置基站的N端口导频资源时,为该UE配置L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用所述基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数;
发送模块52,用于将所述配置模块51确定的L个子导频资源的配置信息发送给所述UE;所述L个子导频资源的配置信息用于所述UE对所述基站的N端口导频资源进行信道测量。
可选地,每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;
子导频资源的资源索引;
传输功率信息;
传输周期;
子帧偏移量;
端口号信息;
用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
可选地,根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000014
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000015
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
可选地,所述配置模块51具体用于:
针对L个子导频资源的配置信息中的任一种参数,配置M个子导频资源共用的参数值,1≤M≤L;或者,分别配置所述L个子导频资源中的每个子导频资源的参数值。
可选地,所述配置模块51具体用于根据以下步骤配置M个子导频资源共用的参数值:
在所述M个子导频资源的公共配置信息中指示该种参数的参数值,或者,在所述M个子导频资源中的一个子导频资源的配置信息中指示该种参数的参数值。
实施例五
如图6所示,为本申请实施例五提供的信道测量装置结构示意图,包括:
接收模块61,用于接收L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N,N、L为不小于2的正整数;
测量模块62,用于基于所述配置信息,对L个子导频资源进行信道测量;
生成模块63,用于基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果。
可选地,每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;
子导频资源的资源索引;
传输功率信息;
传输周期;
子帧偏移量;
端口号信息;
用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
可选地,若子导频资源的配置信息中包括子导频资源的索引l,不包括所述端口号信息,则所述测量模块还用于,在对L个子导频资源进行信道测量之前,根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000016
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000017
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
可选地,所述生成模块63具体用于:
将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果。
实施例六
如图7所示,为本申请实施例六提供的网络侧设备结构示意图,包括:
处理器701,用于读取存储器704中的程序,执行下列过程:
当需要为用户设备UE配置基站的N端口导频资源时,为该UE配置L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用所述基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数;通过收发机702将确定的L个子导频资源的配置信息发送给所述UE;
收发机702,用于在处理器701的控制下接收和发送数据。
可选地,每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;
子导频资源的资源索引;
传输功率信息;
传输周期;
子帧偏移量;
端口号信息;
用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
可选地,处理器701具体用于根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000018
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000019
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
可选地,处理器701具体用于:
针对L个子导频资源的配置信息中的任一种参数,配置M个子导频资源共用的参数值,1≤M≤L;或者,分别配置所述L个子导频资源中的每个子导频资源的参数值。
可选地,处理器701具体用于根据以下步骤配置M个子导频资源共用的参数值:
在所述M个子导频资源的公共配置信息中指示该种参数的参数值,或者,在所述M个子导频资源中的一个子导频资源的配置信息中指示该种参数的参数值。
在图7中,总线架构(用总线700来代表),总线700可以包括任意数量的互联的总线和桥,总线700将包括由处理器701代表的一个或多个处理器和存储器704代表的存储 器的各种电路链接在一起。总线700还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口703在总线700和收发机702之间提供接口。收发机702可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器701处理的数据通过天线705在无线介质上进行传输,进一步,天线705还接收数据并将数据传送给处理器701。
处理器701负责管理总线700和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器704可以被用于存储处理器701在执行操作时所使用的数据。
可选的,处理器701可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
实施例七
如图8所示,为本申请实施例七提供的用户设备结构示意图,包括:
处理器801,用于读取存储器804中的程序,执行下列过程:
通过收发机802接收L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N,N、L为不小于2的正整数;基于所述配置信息,对L个子导频资源进行信道测量;基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果;
收发机802,用于在处理器801的控制下接收和发送数据。
可选地,每个子导频资源的配置信息包括以下信息中的一种或多种:
子导频资源的索引l,其中1<=l<=L;
子导频资源的资源索引;
传输功率信息;
传输周期;
子帧偏移量;
端口号信息;
用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
可选地,若子导频资源的配置信息中包括子导频资源的索引l,不包括所述端口号信 息,则处理器801具体用于:
在对每个子导频资源进行信道测量之前,根据以下公式确定所述端口号信息:
Figure PCTCN2016071345-appb-000020
其中,n表示所述子导频资源中的第n个天线端口,
Figure PCTCN2016071345-appb-000021
为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
可选地,处理器801具体用于:
将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果。
在图8中,总线架构(用总线800来代表),总线800可以包括任意数量的互联的总线和桥,总线800将包括由通用处理器801代表的一个或多个处理器和存储器804代表的存储器的各种电路链接在一起。总线800还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口803在总线800和收发机802之间提供接口。收发机802可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发机802从其他设备接收外部数据。收发机802用于将处理器801处理后的数据发送给其他设备。取决于计算系统的性质,还可以提供用户接口805,例如小键盘、显示器、扬声器、麦克风、操纵杆。
处理器801负责管理总线800和通常的处理,如前述所述运行通用操作系统。而存储器804可以被用于存储处理器801在执行操作时所使用的数据。
可选的,处理器801可以是CPU、ASIC、FPGA或CPLD。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种信道测量方法,其特征在于,该方法包括:
    当需要为用户设备UE配置基站的N端口导频资源时,为该UE配置L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数;
    将确定的L个子导频资源的配置信息发送给所述UE;所述L个子导频资源的配置信息用于所述UE对所述基站的N端口导频资源进行信道测量。
  2. 如权利要求1所述的方法,其特征在于,每个子导频资源的配置信息包括以下信息中的一种或多种:
    子导频资源的索引l,其中1<=l<=L;
    子导频资源的资源索引;
    传输功率信息;
    传输周期;
    子帧偏移量;
    端口号信息;
    用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
  3. 如权利要求2所述的方法,其特征在于,根据以下公式确定所述端口号信息:
    Figure PCTCN2016071345-appb-100001
    其中,n表示所述子导频资源中的第n个天线端口,
    Figure PCTCN2016071345-appb-100002
    为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
  4. 如权利要求1~3任一所述的方法,其特征在于,所述确定L个子导频资源的配置信息,包括:
    针对L个子导频资源的配置信息中的任一种参数,配置M个子导频资源共用的参数值,1≤M≤L;或者,分别配置所述L个子导频资源中的每个子导频资源的参数值。
  5. 如权利要求4所述的方法,其特征在于,所述配置M个子导频资源共用的参数值,包括:
    在所述M个子导频资源的公共配置信息中指示该种参数的参数值,或者,在所述M个子导频资源中的一个子导频资源的配置信息中指示该种参数的参数值。
  6. 一种信道测量方法,其特征在于,该方法包括:
    接收L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N,N、L为不小于2的正整数;
    基于所述配置信息,对L个子导频资源进行信道测量;
    基于对L个子导频资源的信道测量结果,生成对所述基站的N端口导频资源的信道测量结果。
  7. 如权利要求6所述的方法,其特征在于,每个子导频资源的配置信息包括以下信息中的一种或多种:
    子导频资源的索引l,其中1<=l<=L;
    子导频资源的资源索引;
    传输功率信息;
    传输周期;
    子帧偏移量;
    端口号信息;
    用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
  8. 如权利要求7所述的方法,其特征在于,若子导频资源的配置信息中包括子导频资源的索引l,不包括所述端口号信息,则在对L个子导频资源进行信道测量之前,根据以下公式确定所述端口号信息:
    Figure PCTCN2016071345-appb-100003
    其中,n表示所述子导频资源中的第n个天线端口,
    Figure PCTCN2016071345-appb-100004
    为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
  9. 如权利要求6~8任一所述的方法,其特征在于,基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果,包括:
    将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果。
  10. 一种信道测量装置,其特征在于,该装置包括:
    配置模块,用于当需要为用户设备UE配置基站的N端口导频资源时,为该UE配置 L个子导频资源,并确定L个子导频资源的配置信息;其中,每个子导频资源占用所述基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N;N、L为不小于2的正整数;
    发送模块,用于将所述配置模块确定的L个子导频资源的配置信息发送给所述UE;所述L个子导频资源的配置信息用于所述UE对所述基站的N端口导频资源进行信道测量。
  11. 如权利要求10所述的装置,其特征在于,每个子导频资源的配置信息包括以下信息中的一种或多种:
    子导频资源的索引l,其中1<=l<=L;
    子导频资源的资源索引;
    传输功率信息;
    传输周期;
    子帧偏移量;
    端口号信息;
    用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
  12. 如权利要求11所述的装置,其特征在于,根据以下公式确定所述端口号信息:
    Figure PCTCN2016071345-appb-100005
    其中,n表示所述子导频资源中的第n个天线端口,
    Figure PCTCN2016071345-appb-100006
    为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
  13. 如权利要求10~12任一所述的装置,其特征在于,所述配置模块具体用于:
    针对L个子导频资源的配置信息中的任一种参数,配置M个子导频资源共用的参数值,1≤M≤L;或者,分别配置所述L个子导频资源中的每个子导频资源的参数值。
  14. 如权利要求13所述的装置,其特征在于,所述配置模块具体用于根据以下步骤配置M个子导频资源共用的参数值:
    在所述M个子导频资源的公共配置信息中指示该种参数的参数值,或者,在所述M个子导频资源中的一个子导频资源的配置信息中指示该种参数的参数值。
  15. 一种信道测量装置,其特征在于,该装置包括:
    接收模块,用于接收L个子导频资源的配置信息;其中,每个子导频资源占用基站的N个天线端口中的至少一个,且L个子导频资源占用的天线端口数量总和为N,N、L为 不小于2的正整数;
    测量模块,用于基于所述配置信息,对L个子导频资源进行信道测量;
    生成模块,用于基于对L个子导频资源的信道测量结果,生成对基站的N端口导频资源的信道测量结果。
  16. 如权利要求15所述的装置,其特征在于,所述每个子导频资源的配置信息包括以下信息中的一种或多种:
    子导频资源的索引l,其中1<=l<=L;
    子导频资源的资源索引;
    传输功率信息;
    传输周期;
    子帧偏移量;
    端口号信息;
    用于指示L个子导频资源的不同天线端口之间具有或不具有准共定位QCL特性的QCL信息。
  17. 如权利要求16所述的装置,其特征在于,若子导频资源的配置信息中包括子导频资源的索引l,不包括所述端口号信息,则所述测量模块还用于,在对L个子导频资源进行信道测量之前,根据以下公式确定所述端口号信息:
    Figure PCTCN2016071345-appb-100007
    其中,n表示所述子导频资源中的第n个天线端口,
    Figure PCTCN2016071345-appb-100008
    为第l个子导频资源的第n个天线端口在所述基站的N端口导频资源中的端口号,MS为第S个子导频资源占用的天线端口数量,α为常数。
  18. 如权利要求15~17任一所述的装置,其特征在于,所述生成模块具体用于:
    将不同子导频资源对应的在相同子帧或者最接近子帧上的测量结果划分为一组信道测量结果。
PCT/CN2016/071345 2015-02-06 2016-01-19 一种信道测量方法及装置 WO2016124078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510065260.1 2015-02-06
CN201510065260.1A CN105991267B (zh) 2015-02-06 2015-02-06 一种信道测量方法及装置

Publications (1)

Publication Number Publication Date
WO2016124078A1 true WO2016124078A1 (zh) 2016-08-11

Family

ID=56563432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071345 WO2016124078A1 (zh) 2015-02-06 2016-01-19 一种信道测量方法及装置

Country Status (2)

Country Link
CN (1) CN105991267B (zh)
WO (1) WO2016124078A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023631B (zh) * 2016-11-04 2023-08-22 华为技术有限公司 传输信息的方法和设备
CN108809600B (zh) * 2017-05-05 2023-11-21 华为技术有限公司 一种通信方法、系统及相关设备
EP3639459A4 (en) * 2017-06-16 2021-04-07 Telefonaktiebolaget LM Ericsson (Publ) MULTI-RESOURCE UPRIGHT AND ANTENNA SUBSET SURVEY SIGNAL TRANSMISSION
CN109392144B (zh) * 2017-08-11 2023-10-03 华为技术有限公司 通信方法和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848017A (zh) * 2009-03-24 2010-09-29 中兴通讯股份有限公司 基于lte-a用户专用资源的信道测量导频配置方法
US20120108254A1 (en) * 2009-06-24 2012-05-03 Pantech Co., Ltd. Reference signal allocation method for wireless communication system, apparatus for same, and transceiver device using the apparatus
CN103812545A (zh) * 2012-11-06 2014-05-21 上海贝尔股份有限公司 信道状态信息的反馈方法与装置
WO2014110837A1 (zh) * 2013-01-21 2014-07-24 富士通株式会社 信道状态信息参考信号的传输方法、基站、终端、系统、机器可读程序和存储有机器可读程序的存储介质
US20140301232A1 (en) * 2011-10-31 2014-10-09 Nec Corporation Apparatus and method for csi calculation and reporting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998680B2 (ja) * 2006-06-19 2012-08-15 日本電気株式会社 移動通信システムにおけるパイロットリソース割当方法、チャネル品質測定方法および基地局

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848017A (zh) * 2009-03-24 2010-09-29 中兴通讯股份有限公司 基于lte-a用户专用资源的信道测量导频配置方法
US20120108254A1 (en) * 2009-06-24 2012-05-03 Pantech Co., Ltd. Reference signal allocation method for wireless communication system, apparatus for same, and transceiver device using the apparatus
US20140301232A1 (en) * 2011-10-31 2014-10-09 Nec Corporation Apparatus and method for csi calculation and reporting
CN103812545A (zh) * 2012-11-06 2014-05-21 上海贝尔股份有限公司 信道状态信息的反馈方法与装置
WO2014110837A1 (zh) * 2013-01-21 2014-07-24 富士通株式会社 信道状态信息参考信号的传输方法、基站、终端、系统、机器可读程序和存储有机器可读程序的存储介质

Also Published As

Publication number Publication date
CN105991267A (zh) 2016-10-05
CN105991267B (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
US20200350965A1 (en) Method for determining precoding matrix indicator, user equipment, and base station
CN107148790B (zh) 用于波束成形信道状态参考信号的系统和方法
WO2015161795A1 (zh) 一种信道状态信息测量的方法、系统及设备
CN105991231B (zh) 获取信道状态信息csi的方法及装置
WO2016155416A1 (zh) 一种信道状态信息反馈、获取方法及装置
JP6388348B2 (ja) パイロット信号伝送方法、基地局、およびユーザ装置
WO2017020730A1 (zh) 一种反馈和接收信道状态信息csi的方法及装置
US9369849B2 (en) Three-dimensional beamforming in a mobile communications network
JP2019537874A (ja) プリコーディング行列指示方法、装置、及びシステム
US10291308B2 (en) Channel state information feedback method, device and system
CN106559182B (zh) 信道参数的配置获取方法、装置及系统
CN103563268A (zh) 在通信系统中反馈mu-cqi的方法、传输点装置以及用户设备
WO2017096954A1 (zh) Cqi估计、sinr确定方法及相关设备
CN106301692B (zh) 一种信道状态信息获取方法及装置
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
WO2016141778A1 (zh) 信道状态信息获取方法、信道状态信息反馈方法及装置
WO2017166977A1 (zh) 信道状态信息反馈的获取方法、相关设备及系统
WO2016124078A1 (zh) 一种信道测量方法及装置
WO2017032135A1 (zh) 信息配置、信息反馈方法、基站及终端
CN112019463A (zh) 信道状态发送、接收、信令信息传输方法、节点和介质
WO2017193404A1 (zh) 信道状态信息的上报方法、读取方法及相关设备
CN106961401B (zh) 一种信道估计方法及装置
CN108631844B (zh) 一种获取信道状态信息的方法、终端和网络侧设备
WO2017186064A1 (zh) 一种信道状态信息反馈和接收方法、装置
US20220321175A1 (en) CRI Extension for Multi-TRP CSI Enhancement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746073

Country of ref document: EP

Kind code of ref document: A1