WO2017186064A1 - 一种信道状态信息反馈和接收方法、装置 - Google Patents

一种信道状态信息反馈和接收方法、装置 Download PDF

Info

Publication number
WO2017186064A1
WO2017186064A1 PCT/CN2017/081476 CN2017081476W WO2017186064A1 WO 2017186064 A1 WO2017186064 A1 WO 2017186064A1 CN 2017081476 W CN2017081476 W CN 2017081476W WO 2017186064 A1 WO2017186064 A1 WO 2017186064A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
time
frequency resource
shaping
precoding matrix
Prior art date
Application number
PCT/CN2017/081476
Other languages
English (en)
French (fr)
Inventor
陈润华
陈文洪
高秋彬
李辉
拉盖施
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2017186064A1 publication Critical patent/WO2017186064A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a channel state information feedback and receiving method and apparatus.
  • the base station evolved Node B, eNB for short
  • CSI channel information
  • the CSI is measured by the user equipment (User Equipment, UE for short) through the downlink pilot signal, and is notified to the eNB through feedback.
  • a multiple input multiple output (MIMO) system includes Nt transmit antennas and Nr receive antennas
  • the MIMO signal is a complex matrix of Nt ⁇ Nr.
  • the UE does not feed back Nt ⁇ Nr complex information to the eNB side to implement CSI feedback.
  • the MIMO feedback shaping technique is mostly based on an implicit feedback scheme.
  • the system pre-defines a set of possible precoding matrices (also called a mating matrix) called a codebook.
  • the UE is from the codebook.
  • Quality Indicator (CQI) Quality Indicator
  • the UE may also use a Rank Indication (RI) to notify the eNB that the information about the number of data streams can be received.
  • RI Rank Indication
  • the UE feeds back the RI value r and the PMI value is k, which means that the UE proposes that the eNB use the k-th shape matrix in the rank-r codebook for shaping, and the rank-r codebook includes a set of dimensions of Nt ⁇ r. Forming matrix.
  • the existing MIMO feedback scheme is based on a closed-loop design, and for each feedback time-frequency resource, such as a subband, includes a set of physical resource block pairs (PRB pairs; Physical Resource Block, referred to as PRB), the UE feeds back the best PMI/CQI/RI.
  • PRB pairs Physical Resource Block
  • PRB Physical Resource Block
  • the performance of the closed-loop MIMO is ideal. However, in real systems, this assumption is not necessarily true, resulting in a significant drop in MIMO performance. For example, the channel changes quickly and The UE moving speed is related. When the UE speed is large (such as on a car or a high speed railway), the channel varies greatly in each subframe, resulting in a decrease in the correlation between H(n) and H(n+k). For example, the UE measures the downlink channel and feeds back the CSI. The eNB uses the CSI to perform scheduling transmission with a certain delay, which is a total of k subframes. In the Long Term Evolution (LTE) system, each subframe is 1 ms, so the total The delay is k ms. When k is large, the performance of the closed-loop MIMO system is significantly degraded.
  • LTE Long Term Evolution
  • the existing MIMO feedback scheme has low reliability when the UE speed is large, and there is a delay between the feedback time and the data transmission time, thereby causing the performance of the MIMO system to degrade.
  • the embodiment of the present application provides a channel state information feedback and receiving method and apparatus, which are used to solve the problem that the existing MIMO feedback scheme has low reliability when the UE speed is large, and there is a delay between the feedback time and the data transmission time. , resulting in a problem of performance degradation of the MIMO system.
  • a channel state information feedback method includes:
  • the terminal performs shaping on the precoding unit in the at least one time-frequency resource according to the determined shaping mode, using different precoding matrices in the precoding matrix group corresponding to the shaping mode, where the time-frequency resource is configured.
  • the shaping mode corresponds to a precoding matrix group
  • the shaping mode represents a precoding unit group in the precoding unit corresponding to the shaping mode in the time-frequency resource.
  • the terminal performs channel measurement on the shaped time-frequency resource, and obtains a channel quality indicator CQI corresponding to the time-frequency resource;
  • the terminal feeds back a CQI corresponding to the time-frequency resource.
  • the terminal feeds back the CQI corresponding to the time-frequency resource, and further includes:
  • the terminal feeds back index information of the shaping mode.
  • the one precoding unit is obtained by dividing the time-frequency resource in a time domain;
  • the one precoding unit is obtained by dividing the time-frequency resource in a frequency domain;
  • the one precoding unit is obtained by jointly dividing the time-frequency resource in a time domain and a frequency domain.
  • each precoding unit in the one precoding unit includes at least one orthogonal frequency division multiplexing OFDM symbol, or at least one physical resource block PRB; or
  • Each of the one precoding units includes at least one subcarrier, or at least one PRB pair; or
  • Each of the one precoding units includes at least one resource element RE.
  • each precoding unit in the one precoding unit includes a group of subcarriers, where each subcarrier includes at least one demodulation reference signal DMRS symbol.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed, or Obtained by semi-static signaling or dynamic signaling; or there is a set correspondence between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of precoding units in at least one time-frequency resource is pre-agreed or obtained by semi-static signaling or dynamic signaling; or the number I of precoding units in the time-frequency resource and pre-coding There is a set correspondence between system parameters other than the number of cells.
  • the shaping mode indicates that, in the time domain, using the different precoding matrix in the precoding matrix group corresponding to the shaping mode, one precoding in at least one time-frequency resource Forming on the unit; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode in the frequency domain;
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the first time domain and the frequency domain; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the time domain after the frequency domain.
  • the precoding matrix in the precoding matrix group corresponding to the shaping mode is adopted according to the first precoding matrix in the first codebook and the second precoding matrix in the second codebook.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively;
  • the shaping mode indicates that a different first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively.
  • the terminal is configured according to the The shaping mode, using different precoding matrices in the precoding matrix group corresponding to the shaping mode, performing shaping on one precoding unit in at least one time-frequency resource, including: Each of the first precoding matrices in the codebook, the terminal uses the first precoding matrix and the different second precoding matrix to perform shaping on the one precoding unit respectively;
  • the determining, by the terminal, the channel quality indicator CQI corresponding to the time-frequency resource including: for each first precoding matrix in the first codebook, The terminal performs channel measurement on the time-frequency resource after the shaping, and determines M CQIs corresponding to the time-frequency resource, where M is the number of the first pre-coding matrix in the first codebook; and from the M CQIs Selecting a CQI to determine a CQI corresponding to the time-frequency resource;
  • the terminal feeds back the CQI corresponding to the time-frequency resource, and further includes: the terminal feeding back index information of the first pre-coding matrix corresponding to the selected CQI.
  • a channel state information receiving method includes:
  • a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured wherein the time-frequency resource is divided into one pre-coding unit, and the The shape mode corresponds to a precoding matrix group, and the shaping mode represents a mapping relationship between a precoding unit in the time-frequency resource and a precoding matrix in the precoding matrix group corresponding to the shaping mode, where I is greater than 1 The integer.
  • the one precoding unit is obtained by dividing the time-frequency resource in a time domain;
  • the one precoding unit is obtained by dividing the time-frequency resource in a frequency domain;
  • the one precoding unit is obtained by jointly dividing the time-frequency resource in a time domain and a frequency domain.
  • each precoding unit in the one precoding unit includes at least one orthogonal frequency division multiplexing OFDM symbol, or at least one physical resource block PRB; or
  • Each of the one precoding units includes at least one subcarrier, or at least one PRB pair; or
  • Each of the one precoding units includes at least one resource element RE.
  • each precoding unit in the one precoding unit includes a group of subcarriers, where each subcarrier includes at least one demodulation reference signal DMRS symbol.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed Or being notified by the semi-static signaling or dynamic signaling after being determined by the base station; or there is a set correspondence relationship between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of the precoding units in the at least one time-frequency resource is pre-agreed or notified by the semi-static signaling or dynamic signaling after being determined by the base station; or the number of pre-coding units in the time-frequency resource There is a set correspondence between I and system parameters other than the number of precoding units.
  • the base station receives the CQI corresponding to the at least one time-frequency resource, and further includes: The base station receives index information indicating a shaping mode used for forming one precoding unit in the time-frequency resource when indicating terminal channel measurement;
  • Determining, by the base station, a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured the determining, by the base station, determining, according to the index information, that the terminal channel is measured.
  • the shaping mode used by the one precoding unit in the time-frequency resource is shaped.
  • the shaping mode indicates that, in the time domain, using the different precoding matrix in the precoding matrix group corresponding to the shaping mode, one precoding in at least one time-frequency resource Forming on the unit; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode in the frequency domain;
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the first time domain and the frequency domain; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the time domain after the frequency domain.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively;
  • the shaping mode indicates that a different first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively.
  • the receiving, by the base station, the CQI corresponding to the at least one time-frequency resource the method further includes: receiving, by the base station, index information of the first pre-coding matrix;
  • Determining, by the base station, a shaping mode used for forming one precoding unit in the time-frequency resource when the terminal channel is measured the determining, by the base station, determining, according to the received index information of the first precoding matrix, The shaping mode used for shaping one precoding unit in the time-frequency resource when the terminal channel is measured.
  • a computer readable storage medium having stored therein executable program code for implementing the method of the first aspect.
  • a computer readable storage medium wherein executable program code is stored, the program code for implementing the method of the second aspect.
  • a channel state information feedback device includes:
  • a shaping module configured to perform shaping on a precoding unit in at least one time-frequency resource according to the determined shaping mode, using different precoding matrices in the precoding matrix group corresponding to the shaping mode, where
  • the time-frequency resource is divided into one precoding unit, the shaping mode corresponds to one precoding matrix group, and the shaping mode represents time and frequency a mapping relationship between the precoding units in the source and the precoding matrix in the precoding matrix group corresponding to the shaping mode, where I is an integer greater than one;
  • a measurement feedback module configured to perform channel measurement on the shaped time-frequency resource, obtain a channel quality indication CQI corresponding to the time-frequency resource, and feed back a CQI corresponding to the time-frequency resource.
  • the feedback module is further configured to: feed back index information of the shaping mode.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed, or Obtained by semi-static signaling or dynamic signaling; or there is a set correspondence between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of precoding units in at least one time-frequency resource is pre-agreed or obtained by semi-static signaling or dynamic signaling; or the number I of precoding units in the time-frequency resource and pre-coding There is a set correspondence between system parameters other than the number of cells.
  • the shaping mode indicates that, in the time domain, using the different precoding matrix in the precoding matrix group corresponding to the shaping mode, one precoding in at least one time-frequency resource Forming on the unit; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode in the frequency domain;
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the first time domain and the frequency domain; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the time domain after the frequency domain.
  • the precoding matrix in the precoding matrix group corresponding to the shaping mode is adopted according to the first precoding matrix in the first codebook and the second precoding matrix in the second codebook.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively;
  • the shaping mode indicates that a different first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used, respectively forming on the one precoding unit
  • the shaping module is specifically configured to: use, for each first precoding matrix in the first codebook, the first a precoding matrix and a different second precoding matrix are respectively shaped on the one precoding unit;
  • the measurement module is configured to: perform channel measurement on the shaped time-frequency resource for each first pre-coding matrix in the first codebook, and determine M CQIs corresponding to the time-frequency resources, where M is The number of the first precoding matrix in the first codebook; selecting one CQI from the M CQIs to determine the CQI corresponding to the time-frequency resource;
  • the feedback module is further configured to: feed back index information of the first precoding matrix corresponding to the selected CQI.
  • a channel state information receiving apparatus includes:
  • a receiving module configured to receive a channel quality indicator CQI corresponding to the at least one time-frequency resource
  • a determining module configured to determine a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured, wherein the time-frequency resource is divided into one pre-coding unit, where The shaping mode corresponds to a precoding matrix group, and the shaping mode represents a mapping relationship between a precoding unit in a time-frequency resource and a precoding matrix in a precoding matrix group corresponding to the shaping mode, where An integer greater than one.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed, or Determined by the determining module and notified by semi-static signaling or dynamic signaling; or there is a set correspondence between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of precoding units in at least one time-frequency resource is pre-agreed or determined by the determining module and notified by semi-static signaling or dynamic signaling; or a precoding unit in a time-frequency resource There is a set correspondence between the number I and system parameters other than the number of precoding units.
  • the receiving module is further configured to: receive index information of a shaping mode used to represent one precoding unit in the time-frequency resource when indicating terminal channel measurement;
  • the determining module is specifically configured to: according to the index information, determine a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured.
  • the shaping mode indicates that, in the time domain, using the different precoding matrix in the precoding matrix group corresponding to the shaping mode, one precoding in at least one time-frequency resource Forming on the unit; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode in the frequency domain;
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the first time domain and the frequency domain; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the time domain after the frequency domain.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively;
  • the shaping mode indicates that a different first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively.
  • the receiving module is further configured to: receive index information of the first precoding matrix
  • the determining module is specifically configured to: determine, according to the received index information of the first precoding matrix, a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured.
  • a terminal comprising: a transceiver, and at least one processor coupled to the transceiver, wherein:
  • a processor for reading a program in the memory performing the following process:
  • shaping according to the determined shaping mode, using different precoding matrices in the precoding matrix group corresponding to the shaping mode, on the precoding unit in the at least one time-frequency resource, where the time-frequency resource is Dividing into one precoding unit, the shaping mode corresponding to one precoding matrix group, the shaping mode characterizing precoding in a precoding matrix group corresponding to a precoding unit and a shaping mode in a time-frequency resource a mapping relationship between the matrices, where I is an integer greater than one; performing channel measurement on the shaped time-frequency resource to obtain a channel quality indicator CQI corresponding to the time-frequency resource; and controlling the transceiver to feed back the time-frequency resource Corresponding CQI;
  • a transceiver for receiving and transmitting data under the control of the processor.
  • the processor reads the program in the memory, and further performs: feeding back index information of the shaping mode.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used, respectively forming on the one precoding unit
  • the processor reads the program in the memory, and specifically performs: using, for each first precoding matrix in the first codebook, the first precoding matrix and a different second precoding matrix, Performing a shape on the first precoding unit, performing channel measurement on the shaped time-frequency resource for each first precoding matrix in the first codebook, and determining the time-frequency resource.
  • M is the number of the first precoding matrix in the first codebook; selecting one CQI from the M CQIs to determine the CQI corresponding to the time-frequency resource; controlling the transceiver feedback The index information of the first precoding matrix corresponding to the selected CQI.
  • a base station comprising: a transceiver, and at least one processor coupled to the transceiver, wherein:
  • a processor for reading a program in the memory performing the following process:
  • the mapping mode represents a mapping relationship between a precoding unit in a time-frequency resource and a precoding matrix in a precoding matrix group corresponding to the shaping mode, where I is an integer greater than one;
  • the transceiver is configured to receive and transmit data under the control of the processor.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed, or Determined by the processor and notified by semi-static signaling or dynamic signaling; or there is a set correspondence between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of precoding units in at least one time-frequency resource is pre-agreed or notified by the processor through semi-static signaling or dynamic signaling; or the number of pre-coding units in the time-frequency resource There is a set correspondence between I and system parameters other than the number of precoding units.
  • the processor reads a program in the memory, and specifically executes:
  • the processor reads a program in the memory, and specifically executes:
  • the terminal performs shaping on one precoding unit in at least one time-frequency resource by using different precoding matrices in the precoding matrix group corresponding to the determined shaping mode;
  • the channel time measurement is performed on the time-frequency resource, and the channel quality indicator CQI corresponding to the time-frequency resource is obtained, and the CQI corresponding to the time-frequency resource is fed back.
  • one time-frequency resource is divided into one pre-coding unit, and different pre-coding units in the time-frequency resource are shaped by different pre-coding matrices, that is, multiple different time-frequency resources are used.
  • the precoding matrix is shaped, and the channel is averaged by multiple precoding matrices.
  • the CQI can still be accurate. Reflecting the actual situation of the channel, in the scene of high-speed scene or other unstable channels, the influence of feedback delay is small, which improves the robustness of the system.
  • FIG. 1 is a schematic diagram of a channel state information feedback method provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a forming manner provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another shaping manner provided in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a channel state information receiving method provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a channel state information feedback apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a channel state information receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a base station according to an embodiment of the present application.
  • the embodiment of the present application provides a channel state information feedback method on the terminal side. As shown in FIG. 1 , the method includes:
  • the terminal performs, according to the determined shaping mode, using different precoding matrices in the precoding matrix group corresponding to the shaping mode, on one precoding unit (English: precoding units) in at least one time-frequency resource.
  • the time-frequency resource is divided into one precoding unit
  • the shaping mode represents a precoding matrix in a precoding matrix group corresponding to one of the precoding units in the time-frequency resource and the shaping mode A mapping relationship between I and an integer greater than one.
  • one time-frequency resource is divided into one pre-coding unit, and the terminal uses different pre-coding matrices to perform shaping on different pre-coding units according to the determined shaping mode.
  • the different shaping modes may correspond to different precoding matrix groups, and the one precoding unit in the characterized time-frequency resource is in the precoding matrix group corresponding to the shaping mode.
  • the mapping relationship is the same; different shaping modes may also correspond to the same precoding matrix group, and between the precoding units in the characterized time-frequency resources and the precoding matrix in the precoding matrix group corresponding to the shaping mode
  • the mapping relationship is different; different shaping modes may also correspond to different precoding matrix groups, and the precoding matrix in the precoding matrix group corresponding to the shaping mode and the precoding matrix in the precoding unit in the characterized time-frequency resource
  • the mapping relationship between the two is different.
  • the number I of precoding units in the at least one time-frequency resource is pre-agreed or obtained by semi-static signaling or dynamic signaling; or the number of pre-coding units in the time-frequency resource There is a set correspondence relationship with system parameters other than the number of precoding units.
  • the network side (such as a base station) dynamically divides the time-frequency resources, and notifies the terminal of the number I of the pre-coding units included in the divided time-frequency resources by semi-static signaling or dynamic signaling.
  • different subframes correspond to different numbers I
  • the number I of precoding units included in the time-frequency resource may be determined according to the subframe in which the time-frequency resource is located.
  • the location of the at least one time-frequency resource may be pre-agreed or obtained by semi-static signaling or dynamic signaling; or the location and system of the time-frequency resource that needs to be shaped according to the shaping mode There is a corresponding relationship between the parameters.
  • the network side (such as a base station) selects a time-frequency resource that needs to be shaped according to the shaping mode, and notifies the terminal of the location of the selected time-frequency resource by semi-static signaling or dynamic signaling.
  • the time-frequency resource corresponding to the preset subframe 0 needs to be shaped according to the shaping mode, or the time-frequency resource corresponding to the carrier 1 needs to be shaped according to the shaping mode, and the like.
  • the terminal performs channel measurement on the shaped time-frequency resource, and obtains a CQI corresponding to the time-frequency resource;
  • the terminal feeds back a CQI corresponding to the time-frequency resource.
  • each of the at least one time-frequency resource corresponds to one CQI.
  • the terminal performs shaping on one precoding unit in at least one time-frequency resource by using different precoding matrices in the precoding matrix group corresponding to the determined shaping mode;
  • the frequency resource performs channel measurement, and obtains a channel quality indicator CQI corresponding to the time-frequency resource, and feeds back a CQI corresponding to the time-frequency resource.
  • one time-frequency resource is divided into one pre-coding unit, and different pre-coding units in the time-frequency resource are shaped by different pre-coding matrices, that is, multiple different time-frequency resources are used.
  • the precoding matrix is shaped, and the channel is averaged by multiple precoding matrices.
  • the CQI can still be accurate. Reflecting the actual situation of the channel, in the scene of high-speed scene or other unstable channels, the influence of feedback delay is small, which improves the robustness of the system.
  • Manner 1 The first precoding unit is obtained by dividing the time-frequency resource in a time domain.
  • each precoding unit in the one precoding unit includes at least one Orthogonal Frequency Division Multiplex (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplex
  • each of the precoding units in the one precoding unit may include the same number of OFDM symbols, or may be different.
  • each precoding unit includes at least two OFDM symbols
  • the at least two OFDM symbols may be consecutive OFDM symbols, or may be discontinuous OFDM symbols.
  • one subframe in the LTE system includes 14 OFDM symbols, and at least 11 OFDM symbols are used for data transmission.
  • the OFDM symbols may be divided into different OFDM symbol groups, each OFDM symbol group includes at least one OFDM symbol, and different OFDM symbol groups correspond to different precoding matrices in the precoding matrix group V, ie, V.
  • the precoding matrix is looped through in different OFDM symbol groups.
  • symbol5 corresponding to V 1
  • symbol6 corresponding to V 2
  • symbol7 corresponding to V 3
  • each precoding unit in the one precoding unit includes at least one physical resource block (PRB).
  • PRB physical resource block
  • each of the precoding units in the one precoding unit may include the same number of PRBs.
  • each precoding unit includes at least two PRBs
  • the at least two PRBs may be consecutive PRBs in the time domain, or may be PRBs that are discontinuous in the time domain.
  • Manner 2 The one precoding unit is obtained by dividing the time-frequency resource in a frequency domain.
  • each precoding unit in the one precoding unit includes at least one subcarrier.
  • each precoding unit in the one precoding unit may include the same number of subcarriers, or may be different.
  • each precoding unit includes at least two subcarriers
  • the at least two subcarriers may be consecutive subcarriers, or may be discontinuous subcarriers.
  • each precoding unit in the one precoding unit includes a group of subcarriers, where each subcarrier includes a Demodulation Reference Signal (DMRS) symbol.
  • DMRS Demodulation Reference Signal
  • a PRB includes 12 subcarriers.
  • the subcarriers can be divided into different subcarrier groups.
  • Each subcarrier group includes at least one subcarrier, and is different.
  • the subcarrier groups correspond to different precoding matrices in the precoding matrix group V, that is, the precoding matrices in V are circulated in different subcarrier groups.
  • V 1 subcarrier6 corresponding to V 2
  • subcarrier7 corresponding to V 3
  • each precoding unit in the one precoding unit includes at least one PRB pair.
  • each of the precoding units in the one precoding unit may include the same number of PRB pairs, or may be different.
  • each precoding unit includes at least two PRB pairs
  • the at least two PRB pairs may be consecutive PRB pairs in the frequency domain, or may be discontinuous PRB pairs in the frequency domain.
  • the I precoding unit is jointly divided by the at least one time-frequency resource in a time domain and a frequency domain.
  • each precoding unit in the one precoding unit includes at least one Resource Element (RE).
  • RE Resource Element
  • each of the precoding units in the one precoding unit may include the same number of REs.
  • each precoding unit includes at least two REs
  • the at least two REs may be consecutive REs in the frequency domain and the time frequency, or may be continuous in the frequency domain and not in the time frequency.
  • the consecutive REs may also be REs that are discontinuous in the frequency domain and continuous in time-frequency, and may also be REs that are discontinuous in both the frequency domain and the time domain.
  • the terminal when performing channel measurement, performs shaping on different precoding units included in a time-frequency resource by using different precoding matrices in the precoding matrix group corresponding to the shaping mode determined by the terminal.
  • H i is the channel matrix of the ith precoding unit (the size is Nt x Nr, Nt is the number of transmission antennas, Nr is the number of receiving antennas), and x i is the unshaped one transmitted on the i th precoding unit
  • the signal (which may be a Channel State Information-Reference Signals (CSI-RS) or a data signal)
  • V(i) is a corresponding precoding matrix on the i-th precoding unit
  • ⁇ (i) is a mapping function representing 1 ⁇ i ⁇ I precoding unit precoding matrices M Mapping relations.
  • ⁇ (i) represents an index of a corresponding precoding matrix on the i th precoding unit.
  • the method further includes: the terminal determining an shaping mode from the N shaping modes.
  • the terminal in the S13 feeds back the CQI corresponding to the time-frequency resource, and further includes:
  • the terminal feeds back indication information indicating the shaping mode.
  • the terminal and the network side have the same understanding of the shaping mode, so the terminal only needs to perform CQI feedback in the shaping mode, and no feedback is needed to indicate the The indication information of the shaping mode does not need to feed back the related information of the precoding matrix group corresponding to the shaping mode.
  • the UE may determine one shaping mode in the N shaping modes, perform CQI feedback in the determined shaping mode, and feedback the CQI The shaping mode.
  • the indication information for indicating the shaping mode fed back by the terminal is recorded as a Precoding Mapping Indicator (PMAI).
  • PMAI Precoding Mapping Indicator
  • the shaping mode in the embodiment of the present application includes the following four implementation manners:
  • the shaping mode indicates that, in the time domain, using different precoding matrices in the precoding matrix group corresponding to the shaping mode, forming on one precoding unit in at least one time-frequency resource .
  • S12 is specifically: the terminal performs on a precoding unit in at least one time-frequency resource by using different precoding matrices in the precoding matrix group corresponding to the shaping mode in the time domain. Forming.
  • the shaping mode indicates that the shaping is performed on the one precoding unit in the frequency domain by using different precoding matrices in the precoding matrix group corresponding to the shaping mode.
  • the S12 is specifically: the terminal is performed on the precoding unit in the at least one time-frequency resource by using different precoding matrices in the precoding matrix group corresponding to the shaping mode in the frequency domain. Forming.
  • the mode 3 indicates that the shaping mode is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the first time domain and the frequency domain. .
  • S12 is specifically: the terminal uses different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the first time domain and the frequency domain, and at least one of the at least one time-frequency resource. Forming is performed on the precoding unit.
  • the shaping mode indication is performed on the one precoding unit by using different precoding matrices in a precoding matrix group corresponding to the shaping mode according to an order of a time domain in a pre-frequency domain .
  • S12 is specifically: the terminal uses different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the time domain of the pre-frequency domain, and one of the at least one time-frequency resource.
  • Pre-coding unit shape shape.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode may be pre-agreed, It can be obtained through semi-static signaling or dynamic signaling.
  • the network side (such as an eNB) may determine the number of the shaping modes N, N shaping modes, or each shaping according to the operating conditions of the system, such as the channel condition, the antenna configuration, the moving speed of the terminal, and the like.
  • the precoding matrix included in the precoding matrix group corresponding to the mode is notified to the terminal by dynamic signaling or semi-static signaling.
  • the network side may select M precoding matrices from the L precoding matrices, and determine the set formed by the selected precoding matrices. For the V corresponding to the shaping mode, the index of the selected precoding matrix in the codebook is notified to the terminal by the Mlog2 (L) bit. For another example, if there are K possible precoding matrix groups in the preset Nt size codebook, the network side may select one precoding matrix group from the K precoding matrix groups as the corresponding shaping mode. V, and notifying the terminal of the index of the selected precoding matrix group in the codebook by the log2 (K) bit.
  • the precoding matrix in the precoding matrix group corresponding to the shaping mode is obtained by performing a function operation on a precoding matrix in at least two preset codebooks.
  • the M precoding matrices in the precoding matrix group V corresponding to the shaping mode form a composite codebook
  • the composite codebook is generated by a plurality of component codebooks, that is,
  • the precoding matrix in the precoding matrix group corresponding to the shaping mode is an example obtained by function calculation according to the first precoding matrix in the first codebook and the second precoding matrix in the second codebook. Be explained.
  • the mode A indicates that the same first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit.
  • the instruction is traversed in a component codebook when the shaping is performed, and is not traversed in other component codebooks.
  • S12 further includes the following two possible implementations:
  • the terminal performs shaping on the one precoding unit by using a specified first precoding matrix and a different second precoding matrix.
  • W 1 is a broadband component codebook
  • W 2 is a narrow band.
  • Component codebook 8Tx is only an example.
  • the solutions provided by the embodiments of the present application are equally applicable.
  • All precoding units in the real-time resource correspond to the same first precoding matrix (ie, a precoding matrix in the first codebook, also referred to as a first codeword), and each precoding in the time-frequency resource
  • the terminal performs shaping on the one precoding unit in the time-frequency resource, then calculates a CQI of the time-frequency resource, and feeds back the CQI.
  • the specified first precoding matrix is preset, or obtained by semi-static signaling or dynamic signaling, or determined by the terminal. If the first precoding matrix used is determined by the terminal, it is necessary to feed back the index information of the used first precoding matrix in the first codebook.
  • Mode A2 For each first precoding matrix in the first codebook, the terminal uses the first precoding matrix and a different second precoding matrix, respectively, on the I precoding units Forming;
  • the terminal For each first precoding matrix in the first codebook, the terminal performs channel measurement on the shaped time-frequency resource, and determines M CQIs corresponding to the time-frequency resource, where M is the a number of first precoding matrices in a codebook; selecting one CQI from the M CQIs is determined as a CQI corresponding to the time-frequency resource.
  • the second codebook W 2 includes K 2 second precoding matrices, ie
  • the terminal I precoding unit precoding unit each are all traversing a first codebook second precoding matrix W 2
  • the time-frequency resource is divided into two precoding units, and the first codebook includes two first precoding matrices, denoted as W 11 , W 12 , and the second codebook includes two second precoding matrices. , expressed as W 21 , W 22 .
  • the terminal performs shaping using W 11 ⁇ W 21 , W 11 ⁇ W 21 , W 21 ⁇ W 21 , and W 21 ⁇ W 22 respectively;
  • the terminal separately Forming is performed using W 11 ⁇ W 21 , W 11 ⁇ W 21 , W 21 ⁇ W 21 , and W 21 ⁇ W 22 .
  • the terminal feeds back the CQI corresponding to the time-frequency resource, and further includes:
  • the terminal feeds back index information of the first precoding matrix corresponding to the selected CQI, so that the base station side can obtain The first precoding matrix selected by the terminal.
  • the shaping mode indicates that the first precoding matrix and the different second precoding matrix are used to perform shaping on the one precoding unit.
  • traversing is performed in all component codebooks when forming the shape. That is, the terminal uses different first precoding matrices and different second precoding matrices to perform shaping on the one precoding unit.
  • the time-frequency resource is divided into four pre-coding units, and the first codebook includes two first pre-coding matrices, denoted as W 11 , W 12 , and the second codebook includes two second pre-coding matrices. , expressed as W 21 , W 22 .
  • the terminal can shape the first precoding unit by using W 11 ⁇ W 21 , and shape the second precoding unit by using W 11 ⁇ W 22 , and use the W 21 ⁇ W 21 pair of the third precoding.
  • the unit is shaped and the fourth pre-coding unit is shaped using W 21 ⁇ W 22 .
  • the embodiment of the present application further provides a channel state information receiving method on the base station side.
  • the method includes:
  • the base station receives the CQI corresponding to the at least one time-frequency resource.
  • the base station determines, in a terminal channel measurement, a shaping mode used by forming one precoding unit in the time-frequency resource, where the time-frequency resource is divided into one pre-coding unit.
  • the shaping mode represents a mapping relationship between a precoding unit in a time-frequency resource and a precoding matrix in a precoding matrix group corresponding to the shaping mode, and I is an integer greater than 1.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed Or being notified by the semi-static signaling or dynamic signaling after being determined by the base station; or there is a set correspondence relationship between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of the precoding units in the at least one time-frequency resource is pre-agreed or notified by the semi-static signaling or dynamic signaling after being determined by the base station; or the number of pre-coding units in the time-frequency resource I and precoding unit There is a set correspondence between system parameters other than the number.
  • the receiving, by the base station, the CQI corresponding to the at least one time-frequency resource further includes:
  • Determining, by the base station, a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured the determining, by the base station, determining, according to the index information, that the terminal channel is measured.
  • the shaping mode used by the one precoding unit in the time-frequency resource is shaped.
  • the receiving, by the base station, the CQI corresponding to the at least one time-frequency resource the method further includes: receiving, by the base station, index information of the first pre-coding matrix;
  • Determining, by the base station, a shaping mode used for forming one precoding unit in the time-frequency resource when the terminal channel is measured the determining, by the base station, determining, according to the received index information of the first precoding matrix, The shaping mode used for shaping one precoding unit in the time-frequency resource when the terminal channel is measured.
  • the method further includes:
  • the base station selects an shaping mode from among the N shaping modes;
  • the base station uses different precoding matrices in the precoding matrix group corresponding to the shaping mode to transmit downlinks on one precoding unit in at least one time-frequency resource.
  • Data, shaping including:
  • the base station in the frequency domain, uses different precoding matrices in the precoding matrix group corresponding to the shaping mode to shape data transmitted on one precoding unit included in the time-frequency resource; or
  • the base station performs data transmitted on the I precoding units included in the time-frequency resource according to the order of the first-time domain and the frequency domain.
  • the base station performs data transmitted on the I precoding units included in the time-frequency resource according to the sequence of the pre-frequency domain and the time domain. Forming.
  • the precoding matrix in the precoding matrix group corresponding to the shaping mode is obtained by a function operation according to the first precoding matrix in the first codebook and the second precoding matrix in the second codebook.
  • the base station uses the same first precoding matrix and a different second precoding matrix to respectively shape data transmitted on the one precoding unit included in the time-frequency resource; or
  • the base station uses different first precoding matrices and different second precoding matrices to respectively form data transmitted on the one precoding unit included in the time-frequency resource.
  • the method further includes:
  • the base station notifies the base station of the selected shaping mode by using downlink signaling.
  • the base station adopts the same shaping mode used by the CQI feedback corresponding to the time-frequency resource, and the first pre-coding unit included in the time-frequency resource.
  • the data transmitted on the shape is shaped;
  • the base station may select one shaping mode from the N shaping modes according to the CQI corresponding to the time-frequency resource and comprehensive information such as the antenna configuration and the moving speed of the terminal.
  • the selected shaping mode may have the same or different shaping mode as the CQI feedback corresponding to the time-frequency resource.
  • the base station may notify, by using downlink signaling, indication information indicating a shaping mode selected by the base station for data transmission.
  • the base station uses 1 bit signaling to notify whether the data is shaped using the shaping mode used by the CQI feedback corresponding to the time-frequency resource, and 1 represents that the eNB uses the shaping mode pair data used by the CQI feedback corresponding to the time-frequency resource.
  • the shaping is performed, and 0 means that the eNB does not use the shaping mode used by the CQI feedback corresponding to the time-frequency resource to shape the data.
  • the base station notifies the indication information indicating the shaping mode selected by the base station for data transmission by log2(N)bits signaling.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are performed.
  • the embodiment of the present application further provides a channel state information feedback device.
  • the device includes:
  • the shaping module 51 is configured to perform shaping on the precoding unit in the at least one time-frequency resource according to the determined shaping mode, using different precoding matrices in the precoding matrix group corresponding to the shaping mode, where
  • the time-frequency resource is divided into one precoding unit, and the shaping mode corresponds to one precoding matrix group, and the shaping mode represents a precoding unit corresponding to the shaping mode in the time-frequency resource.
  • the measuring module 52 is configured to perform channel measurement on the shaped time-frequency resource, to obtain a channel quality indicator CQI corresponding to the time-frequency resource;
  • the feedback module 53 is configured to feed back a CQI corresponding to the time-frequency resource.
  • the feedback module is further configured to: feed back index information of the shaping mode.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed, or Obtained by semi-static signaling or dynamic signaling; or there is a set correspondence between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of precoding units in at least one time-frequency resource is pre-agreed or obtained by semi-static signaling or dynamic signaling; or the number I of precoding units in the time-frequency resource and pre-coding There is a set correspondence between system parameters other than the number of cells.
  • the shaping mode indicates that, in the time domain, using the different precoding matrix in the precoding matrix group corresponding to the shaping mode, one precoding in at least one time-frequency resource Forming on the unit; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode in the frequency domain;
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the first time domain and the frequency domain; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the time domain after the frequency domain.
  • the precoding matrix in the precoding matrix group corresponding to the shaping mode is adopted according to the first precoding matrix in the first codebook and the second precoding matrix in the second codebook.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively;
  • the shaping mode indicates that a different first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used, respectively forming on the one precoding unit
  • the shaping module is specifically configured to: use, for each first precoding matrix in the first codebook, the first precoding matrix and a different second precoding matrix, respectively, in the one pre Forming on the coding unit;
  • the measurement module is configured to: perform channel measurement on the shaped time-frequency resource for each first pre-coding matrix in the first codebook, and determine M CQIs corresponding to the time-frequency resources, where M is The first pre-editing in the first codebook a number of code matrices; selecting one CQI from the M CQIs to determine a CQI corresponding to the time-frequency resource;
  • the feedback module is further configured to: feed back index information of the first precoding matrix corresponding to the selected CQI.
  • the embodiment of the present application further provides a channel state information receiving apparatus.
  • the apparatus includes:
  • the receiving module 61 is configured to receive a channel quality indicator CQI corresponding to the at least one time-frequency resource;
  • a determining module 62 configured to determine a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured, where the time-frequency resource is divided into one pre-coding unit,
  • the shaping mode corresponds to a precoding matrix group, and the shaping mode represents a mapping relationship between a precoding unit in a time-frequency resource and a precoding matrix in a precoding matrix group corresponding to the shaping mode, Is an integer greater than 1.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed, or Determined by the determining module and notified by semi-static signaling or dynamic signaling; or there is a set correspondence between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of precoding units in at least one time-frequency resource is pre-agreed or determined by the determining module and notified by semi-static signaling or dynamic signaling; or a precoding unit in a time-frequency resource There is a set correspondence between the number I and system parameters other than the number of precoding units.
  • the receiving module is further configured to: receive index information of a shaping mode used to represent one precoding unit in the time-frequency resource when indicating terminal channel measurement;
  • the determining module is specifically configured to: according to the index information, determine a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured.
  • the shaping mode indicates that, in the time domain, using the different precoding matrix in the precoding matrix group corresponding to the shaping mode, one precoding in at least one time-frequency resource Forming on the unit; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode in the frequency domain;
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the first time domain and the frequency domain; or
  • the shaping mode indicates that the forming is performed on the one precoding unit by using different precoding matrices in the precoding matrix group corresponding to the shaping mode according to the order of the time domain after the frequency domain.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively;
  • the shaping mode indicates that a different first precoding matrix and a different second precoding matrix are used to perform shaping on the one precoding unit respectively.
  • the receiving module is further configured to: receive index information of the first precoding matrix
  • the determining module is specifically configured to: determine, according to the received index information of the first precoding matrix, a shaping mode used by the one precoding unit in the time-frequency resource when the terminal channel is measured.
  • the embodiment of the present application further provides a terminal, which is the same as the above-mentioned channel state information feedback method in the embodiment, and the related description in the embodiment shown in FIG. No longer.
  • the terminal includes: a transceiver 71, and at least one processor 72 connected to the transceiver 71, wherein:
  • the processor 72 is configured to read a program in the memory 73 and perform the following process:
  • shaping according to the determined shaping mode, using different precoding matrices in the precoding matrix group corresponding to the shaping mode, on the precoding unit in the at least one time-frequency resource, where the time-frequency resource is Dividing into one precoding unit, the shaping mode corresponding to one precoding matrix group, the shaping mode characterizing precoding in a precoding matrix group corresponding to a precoding unit and a shaping mode in a time-frequency resource a mapping relationship between the matrices, where I is an integer greater than one; performing channel measurement on the shaped time-frequency resource to obtain a channel quality indicator CQI corresponding to the time-frequency resource; and controlling the transceiver to feed back the time-frequency resource Corresponding CQI;
  • the transceiver 71 is configured to receive and transmit data under the control of the processor 72.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 72 and various circuits of memory represented by memory 73.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 71 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 74 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • Processor 72 is responsible for managing the bus architecture and general processing, and memory 73 can store data used by processor 72 in performing the operations.
  • the processor reads the program in the memory, and further performs: controlling the transceiver to feed back the index information of the shaping mode.
  • the shaping mode indicates that the same first precoding matrix and a different second precoding matrix are used, respectively forming on the one precoding unit
  • the processor reads a program in the memory, and specifically executes: for each first pre-in the first codebook An encoding matrix that is shaped on the one precoding unit using the first precoding matrix and a different second precoding matrix, respectively; for each first precoding matrix in the first codebook And performing channel measurement on the time-frequency resource after the shaping, determining M CQIs corresponding to the time-frequency resource, where M is the number of the first pre-coding matrix in the first codebook; and from the M CQIs Selecting a CQI to determine a CQI corresponding to the time-frequency resource; and controlling the transceiver to feed back index information of the first pre-coding matrix corresponding to the selected CQI.
  • the embodiment of the present application further provides a base station, which is the same as the above-mentioned one of the channel state information receiving methods in the embodiment, and the related description in the embodiment shown in FIG. No longer.
  • the base station includes a transceiver 81, and at least one processor 82 coupled to the transceiver 81, wherein:
  • the processor 82 is configured to read a program in the memory 83 and perform the following process:
  • a channel quality indicator CQI corresponding to at least one time-frequency resource
  • the mapping relationship between precoding matrices in a group, I is an integer greater than one;
  • the transceiver 81 is configured to receive and transmit data under the control of the processor 82.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 82 and various circuits of memory represented by memory 83.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 81 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 82 is responsible for managing the bus architecture and general processing, and the memory 83 can store data used by the processor 82 in performing the operations.
  • the number of the shaping modes is N, N shaping modes, and at least one piece of information in the precoding matrix included in each precoding matrix group corresponding to the shaping mode is pre-agreed, or Determined by the processor and notified by semi-static signaling or dynamic signaling; or there is a set correspondence between the at least one piece of information and system parameters other than the at least one piece of information;
  • the number I of precoding units in at least one time-frequency resource is pre-agreed or notified by the processor through semi-static signaling or dynamic signaling; or the number of pre-coding units in the time-frequency resource There is a set correspondence between I and system parameters other than the number of precoding units.
  • the processor reads a program in the memory, and specifically executes:
  • the processor reads a program in the memory, and specifically executes:
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道状态信息反馈和接收方法、装置,用于解决现有MIMO反馈方案在UE速度较大时,可靠性不高的问题。方法包括:终端根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;终端对赋形后的时频资源进行信道测量,得到所述时频资源对应的CQI,并反馈所述时频资源对应的CQI。

Description

一种信道状态信息反馈和接收方法、装置
本申请要求在2016年4月29日提交中国专利局、申请号为201610282607.2、申请名称为“一种信道状态信息反馈和接收方法、装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种信道状态信息反馈和接收方法、装置。
背景技术
多天线系统中,基站(evolved Node B,简称eNB)侧需要可靠的信道信息(Channel State Information,简称CSI)进行数据调度、信令传输等处理。CSI是由用户设备(User Equipment,简称UE)通过下行导频信号测量得到的,并通过反馈方式通知给eNB。假设一个多输入多输出(Multiple Input Multiple Output,简称MIMO)系统中包括Nt个传输天线和Nr个接收天线,则MIMO信号为Nt×Nr的复数矩阵。在实际通信系统中,UE并不反馈Nt×Nr个复数信息给eNB侧来实现CSI反馈。MIMO反馈赋形技术大多数基于隐式(implicit)反馈方案,系统预先定义一组可能的预编码矩阵(precoding matrix,也称为赋形矩阵),称为码本(codebook),UE从codebook中选择最佳的赋形矩阵并反馈其索引,即预编码矩阵指示(Precoding Matrix Indicator,简称PMI),并同时反馈在使用该PMI对应的赋形矩阵进行赋形时接收到的信道质量指示(Channel Quality Indicator,简称CQI)。
可选的,UE也可以反馈秩指示(Rank Indication,简称RI)用于通知eNB可以接收数据流数的信息。例如,UE反馈RI值为r,PMI值为k,代表UE建议eNB使用rank-r的codebook中的第k个赋形矩阵进行赋形,rank-r的codebook包括一组维度为Nt×r的赋形矩阵。
现有的MIMO反馈方案(feedback)基于闭环(closed-loop)设计,针对每一个反馈的时频资源,比如子带(subband),包含一组物理资源块对(PRB pairs;Physical Resource Block,简称PRB),UE反馈最佳的PMI/CQI/RI。Closed-loop feedback中假设系统信道较为稳定,这样在子帧n(subframe n)反馈的信道,可以在k个subframe之后eNB进行实际数据发送的时刻较好的反映子帧n+k的信道信息。如果subframe n的信道H(n)和subframe n+k的信道H(n+k)相差不大,则closed-loop MIMO的性能较为理想。但是在现实系统中,这个假设不一定成立,导致MIMO性能有很大下降。例如,信道变化快慢和 UE移动速度相关,当UE速度较大时(比如在汽车、或高速铁路上),信道在每个子帧变化都很大,导致H(n)和H(n+k)相关性下降。又如,UE测量下行信道,反馈CSI,eNB使用该CSI进行调度传输存在一定的延时,总共为k个子帧,长期演进(Long Term Evolution,简称LTE)系统中每个子帧为1ms,所以总共延时为k ms。当k较大时候,closed-loop MIMO系统性能下降明显。
综上所述,现有MIMO反馈方案在UE速度较大时,可靠性不高,并且反馈时刻和数据传输时刻之间存在时延,从而导致MIMO系统性能下降。
发明内容
本申请实施例提供了一种信道状态信息反馈和接收方法、装置,用于解决现有MIMO反馈方案在UE速度较大时,可靠性不高,并且反馈时刻和数据传输时刻之间存在时延,从而导致MIMO系统性能下降的问题。
第一方面,一种信道状态信息反馈方法,包括:
终端根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;
所述终端对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI;
所述终端反馈所述时频资源对应的CQI。
一种可能的实现方式中,若赋形模式的个数N大于1,所述终端反馈所述时频资源对应的CQI,还包括:
所述终端反馈所述赋形模式的索引信息。
一种可能的实现方式中,所述I个预编码单元为所述时频资源在时域上划分得到的;或者
所述I个预编码单元为所述时频资源在频域上划分得到的;或者
所述I个预编码单元为所述时频资源在时域和频域上联合划分得到的。
一种可能的实现方式中,所述I个预编码单位中的每个预编码单元包括至少一个正交频分复用OFDM符号、或者至少一个物理资源块PRB;或者
所述I个预编码单位中的每个预编码单元包括至少一个子载波、或者至少一个PRB对; 或者
所述I个预编码单位中的每个预编码单元包括至少一个资源粒RE。
一种可能的实现方式中,所述I个预编码单位中的每个预编码单元包括一组子载波,其中,每个子载波包括至少一个解调参考信号DMRS符号。
一种可能的实现方式中,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者通过半静态信令或动态信令获取到的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者通过半静态信令或动态信令获取到的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述赋形模式对应的预编码矩阵组中的预编码矩阵是根据第一码本中的第一预编码矩阵和第二码本中的第二预编码矩阵通过函数运算得到的;
所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
一种可能的实现方式中,若所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形,所述终端根据所述赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形,包括:对于所述第一码本中的每个第一预编码矩阵,所述终端使用所述第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;
所述终端对赋形后的时频资源进行信道测量,确定出所述时频资源对应的信道质量指示CQI,包括:对于所述第一码本中的每个第一预编码矩阵,所述终端对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI;
所述终端反馈所述时频资源对应的CQI,还包括:所述终端反馈所选择的CQI对应的第一预编码矩阵的索引信息。
第二方面,一种信道状态信息接收方法,包括:
基站接收到至少一个时频资源对应的信道质量指示CQI;
所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数。
一种可能的实现方式中,所述I个预编码单元为所述时频资源在时域上划分得到的;或者
所述I个预编码单元为所述时频资源在频域上划分得到的;或者
所述I个预编码单元为所述时频资源在时域和频域上联合划分得到的。
一种可能的实现方式中,所述I个预编码单位中的每个预编码单元包括至少一个正交频分复用OFDM符号、或者至少一个物理资源块PRB;或者
所述I个预编码单位中的每个预编码单元包括至少一个子载波、或者至少一个PRB对;或者
所述I个预编码单位中的每个预编码单元包括至少一个资源粒RE。
一种可能的实现方式中,所述I个预编码单位中的每个预编码单元包括一组子载波,其中,每个子载波包括至少一个解调参考信号DMRS符号。
一种可能的实现方式中,所述赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述基站确定后通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述基站确定后通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述基站接收到至少一个时频资源对应的CQI,还包括:所 述基站接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,包括:所述基站根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
一种可能的实现方式中,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述基站接收到至少一个时频资源对应的CQI,还包括:所述基站接收到第一预编码矩阵的索引信息;
所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,包括:所述基站根据接收到的第一预编码矩阵的索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
第三方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第一方面所述的方法。
第四方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第二方面所述的方法。
第五方面,一种信道状态信息反馈装置,包括:
赋形模块,用于根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资 源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;
测量反馈模块,用于对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI,并反馈所述时频资源对应的CQI。
一种可能的实现方式中,若赋形模式的个数N大于1,所述反馈模块还用于:反馈所述赋形模式的索引信息。
一种可能的实现方式中,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者通过半静态信令或动态信令获取到的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者通过半静态信令或动态信令获取到的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述赋形模式对应的预编码矩阵组中的预编码矩阵是根据第一码本中的第一预编码矩阵和第二码本中的第二预编码矩阵通过函数运算得到的;
所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
一种可能的实现方式中,若所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形,
所述赋形模块具体用于:对于所述第一码本中的每个第一预编码矩阵,使用所述第一 预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;
测量模块具体用于:对于所述第一码本中的每个第一预编码矩阵,对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI;
所述反馈模块还用于:反馈所选择的CQI对应的第一预编码矩阵的索引信息。
第六方面,一种信道状态信息接收装置,包括:
接收模块,用于接收到至少一个时频资源对应的信道质量指示CQI;
确定模块,用于确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数。
一种可能的实现方式中,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述确定模块确定并通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述确定模块确定并通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述接收模块还用于:接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
所述确定模块具体用于:根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
一种可能的实现方式中,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述接收模块还用于:接收到第一预编码矩阵的索引信息;
所述确定模块具体用于:根据接收到的第一预编码矩阵的索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
第七方面,提供了一种终端,包括:收发机、以及与该收发机连接的至少一个处理器,其中:
处理器,用于读取存储器中的程序,执行下列过程:
根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI;控制所述收发机反馈所述时频资源对应的CQI;
收发机,用于在所述处理器的控制下接收和发送数据。
一种可能的实现方式中,若赋形模式的个数N大于1,所述处理器读取所述存储器中的程序,还执行:反馈所述赋形模式的索引信息。
一种可能的实现方式中,若所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形,
所述处理器读取所述存储器中的程序,具体执行:对于所述第一码本中的每个第一预编码矩阵,使用所述第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;对于所述第一码本中的每个第一预编码矩阵,对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI;控制所述收发机反馈所选择的CQI对应的第一预编码矩阵的索引信息。
第八方面,提供了一种基站,包括:收发机、以及与该收发机连接的至少一个处理器,其中:
处理器,用于读取存储器中的程序,执行下列过程:
通过所述收发机接收到至少一个时频资源对应的信道质量指示CQI;确定出终端信道 测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;
所述收发机,用于在所述处理器的控制下接收和发送数据。
一种可能的实现方式中,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述处理器确定并通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述处理器并通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述处理器读取所述存储器中的程序,具体执行:
通过所述收发机接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
一种可能的实现方式中,所述处理器读取所述存储器中的程序,具体执行:
通过所述收发机接收到第一预编码矩阵的索引信息;
根据接收到的第一预编码矩阵的索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
本申请实施例提供的方法和装置中,终端使用确定的赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI,并反馈所述时频资源对应的CQI。由于本申请实施例中,一个时频资源被划分成了I个预编码单元,且时频资源中的不同预编码单元采用不同的预编码矩阵赋形,即一个时频资源中采用多个不同的预编码矩阵进行赋形,信道由多个预编码矩阵实现了平均,即使信道在时域上发生变化,由于CQI是终端遍历了不同的预编码矩阵测量得到的,因此,CQI仍能较准确反映信道的实际状况,在高速场景或其他信道不稳定的场景下,反馈时延的影响很小,提高了系统鲁棒性。
附图说明
图1为本申请实施例中提供的一种信道状态信息反馈方法的示意图;
图2为本申请实施例中提供的一种赋形方式的示意图;
图3为本申请实施例中提供的另一种赋形方式的示意图;
图4为本申请实施例中提供的一种信道状态信息接收方法的示意图;
图5为本申请实施例提供的一种信道状态信息反馈装置的示意图;
图6为本申请实施例提供的一种信道状态信息接收装置的示意图;
图7为本申请实施例提供的一种终端的示意图;
图8为本申请实施例提供的一种基站的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合说明书附图对本申请实施例作进一步详细描述。应当理解,此处所描述的实施例仅用于说明和解释本申请,并不用于限定本申请。
本申请实施例提供了终端侧的一种信道状态信息反馈方法,如图1所示,所述方法包括:
S11、终端根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元(英文:precoding units)上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数。
本步骤中,一个时频资源被划分成I个预编码单元,终端根据确定的赋形模式,在不同的预编码单元上采用不同的预编码矩阵进行赋形。
本申请实施例中,每个赋形模式对应一个预编码矩阵组,记为V={V1,V2,...,VM},M表示预编码矩阵组中包含的预编码矩阵的个数;若N赋形模式的个数大于1,不同赋形模式可以对应相同的预编码矩阵组,也可以对应不同的预编码矩阵组;
若赋形模式的个数N大于1,不同的赋形模式可以对应不同的预编码矩阵组,且所表征的时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的 映射关系相同;不同的赋形模式也可以对应相同的预编码矩阵组,且所表征的时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系不同;不同的赋形模式还可以对应不同的预编码矩阵组,且所表征的时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系不同。
可选的,至少一个时频资源中的预编码单元的个数I为预先约定的、或者通过半静态信令或动态信令获取到的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
例如,网络侧(如基站)对时频资源进行动态划分,并通过半静态信令或动态信令将所划分的时频资源包括的预编码单元的个数I通知给终端。
又如,不同子帧对应不同的个数I,可以根据时频资源所在的子帧,确定出该时频资源中包括的预编码单元的个数I。
可选的,所述至少一个时频资源的位置可以为预先约定的、或者通过半静态信令或动态信令获取到的;或者需要根据赋形模式进行赋形的时频资源的位置与系统参数之间存在设定的对应关系。
例如,网络侧(如基站)选择需要根据赋形模式进行赋形的时频资源,并通过半静态信令或动态信令将所选择的时频资源的位置通知给终端。
又如,预先设定子帧0对应的时频资源需要根据赋形模式进行赋形,或者预先设定载波1对应的时频资源需要根据赋形模式进行赋形,等等。
S12、所述终端对赋形后的时频资源进行信道测量,得到所述时频资源对应的CQI;
S13、所述终端反馈所述时频资源对应的CQI。
具体的,所述至少一个时频资源中的每个时频资源对应一个CQI。
本申请实施例中,终端使用确定的赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI,并反馈所述时频资源对应的CQI。由于本申请实施例中,一个时频资源被划分成了I个预编码单元,且时频资源中的不同预编码单元采用不同的预编码矩阵赋形,即一个时频资源中采用多个不同的预编码矩阵进行赋形,信道由多个预编码矩阵实现了平均,即使信道在时域上发生变化,由于CQI是终端遍历了不同的预编码矩阵测量得到的,因此,CQI仍能较准确反映信道的实际状况,在高速场景或其他信道不稳定的场景下,反馈时延的影响很小,提高了系统鲁棒性。
本申请实施例中,所述时频资源中包括的I个预编码单元在划分时,包括以下三种可选的划分方式:
方式一、所述I个预编码单元为所述时频资源在时域上划分得到的。
该方式下,一种可能的实现方式为:所述I个预编码单位中的每个预编码单元包括至少一个正交频分复用(Orthogonal Frequency Division Multiplex,简称OFDM)符号。
可选的,所述I个预编码单位中的每个预编码单元包括的OFDM符号的个数可以相同,也可以不同。
可选的,若每个预编码单元包括至少两个OFDM符号,则所述至少两个OFDM符号可以是连续的OFDM符号,也可以是不连续的OFDM符号。
举例说明,以LTE系统为例,LTE系统中一个子帧包括14个OFDM符号(OFDM symbol),其中,至少有11个OFDM symbol用于数据传输。这些OFDM symbol可以划分为不同的OFDM符号组(OFDM symbol group),每个OFDM symbol group包括至少一个OFDM symbol,且不同的OFDM symbol group对应预编码矩阵组V中不同的预编码矩阵,即V中的预编码矩阵在不同的OFDM symbol group中循环遍历。例如,一个OFDM symbol group包括一个OFDM symbol,且V={V1,V2,V3,V4},则symbol1对应V1,symbol2对应V2,symbol 3对应V3,symbol4对应V4,symbol5对应V1,symbol6对应V2,symbol7对应V3,依此类推,如图2所示。
另一种可能的实现方式为:所述I个预编码单位中的每个预编码单元包括至少一个物理资源块(Physical Resource Block,简称PRB)。
可选的,所述I个预编码单位中的每个预编码单元包括的PRB的个数可以相同,也可以不同。
可选的,若每个预编码单元包括至少两个PRB,则所述至少两个PRB可以是在时域上连续的PRB,也可以是在时域上不连续的PRB。
方式二、所述I个预编码单元为所述时频资源在频域上划分得到的。
该方式下,一种可能的实现方式为:所述I个预编码单位中的每个预编码单元包括至少一个子载波(subcarrier)。
可选的,所述I个预编码单位中的每个预编码单元包括的子载波个数可以相同,也可以不同。
可选的,若每个预编码单元包括至少两个子载波,则所述至少两个子载波可以是连续的子载波,也可以是不连续的子载波。
可选的,所述I个预编码单位中的每个预编码单元包括一组子载波,其中,每个子载波包括一个解调参考信号(Demodulation Reference Signal,简称DMRS)符号。
举例说明,仍以LTE系统为例,LTE系统中一个PRB中包括12个子载波,这些子载 波可以划分为不同的子载波组(subcarrier-group),每个子载波组包括至少一个子载波,且不同的子载波组对应预编码矩阵组V中不同的预编码矩阵,即V中的预编码矩阵在不同的子载波组中循环遍历。例如,一个子载波组包括一个子载波,且V={V1,V2,V3,V4},则subcarrier1对应V1,subcarrier2对应V2,subcarrier3对应V3,subcarrier4对应V4,subcarrier5对应V1,subcarrier6对应V2,subcarrier7对应V3,依此类推,如图3所示。
另一种可能的实现方式为:所述I个预编码单位中的每个预编码单元包括至少一个PRB对(PRB pair)。
可选的,所述I个预编码单位中的每个预编码单元包括的PRB pair个数可以相同,也可以不同。
可选的,若每个预编码单元包括至少两个PRB pair,则所述至少两个PRB pair可以是在频域上连续的PRB pair,也可以是在频域上不连续的PRB pair。
方式三、所述I个预编码单元为所述至少一个时频资源在时域和频域上联合划分得到的。
该方式下,所述I个预编码单位中的每个预编码单元包括至少一个资源粒(Resource Element,简称RE)。
可选的,所述I个预编码单位中的每个预编码单元包括的RE个数可以相同,也可以不同。
可选的,若每个预编码单元包括至少两个RE,则所述至少两个RE可以是在频域和时频上均连续的RE,也可以是在频域上连续且时频上不连续的RE,也可以是在频域上不连续且时频上连续的RE,还可以是在频域和时域上均不连续的RE。
本申请实施例中,终端在进行信道测量时,对一个时频资源包括的不同预编码单元使用该终端确定的赋形模式对应的预编码矩阵组中不同的预编码矩阵进行赋形,该过程中,
可以采用轮询方式(英文:precoding cycle或者precoder cycling,即预编码矩阵轮巡)。假设一个特定的时频资源总共划分为I>1个预编码单元,则第i个预编码单元上的接收信号表示为:yi=HiVΩ(i)xi
其中,Hi为第i个预编码单元的信道矩阵(大小为Nt x Nr,Nt是传输天线数量,Nr是接受天线数量),xi为第i个预编码单元上传输的未赋形的信号(可以是信道状态信息参考信号(Channel State Information-Reference Signals,简称CSI-RS),或者是数据信号),V(i)为第i个预编码单元上对应的预编码矩阵,V(i)=VΩ(i)∈V={V1,V2,...VM},Ω(i)为一 个映射函数,表示1≤i≤I个预编码单元与M个预编码矩阵的映射关系。可选的,Ω(i)表示第i个预编码单元上对应的预编码矩阵的索引(index)。
本申请实施例中,若赋形模式的数量N大于1,一种可能的实现方式中,S11之前,还包括:终端从N个赋形模式中,确定一个赋形模式。
相应的,S13中所述终端反馈所述时频资源对应的CQI,还包括:
所述终端反馈用于表示所述赋形模式的指示信息。
具体的,若只有一个赋形模式,即N=1,终端与网络侧对赋形模式的理解是一致的,因此终端只需要在该赋形模式下进行CQI反馈,不需要反馈用于表示该赋形模式的指示信息,也不需要反馈该赋形模式对应的预编码矩阵组的相关信息。若存在多个赋形模式,即N>1,则UE可以在N个赋形模式中确定一个赋形模式,在所确定的赋形模式下进行CQI反馈,在反馈CQI的同时还需要反馈所述赋形模式。
其中,所述终端反馈的用于表示所述赋形模式的指示信息记为预编码映射指示(Precoding Mapping Indicator,简称PMAI)。
基于上述任一实施例,本申请实施例中的赋形模式包括以下四种实现方式:
方式1、所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形。
该方式下,S12具体为:所述终端在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形。
方式2、所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
该方式下,S12具体为:所述终端在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形。
方式3、所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
该方式下,S12具体为:所述终端按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形。
方式4、所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
该方式下,S12具体为:所述终端按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋 形。
基于上述任一实施例,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息可以是预先约定的,也可以是通过半静态信令或动态信令获取到的。
具体的,网络侧(如eNB)可以根据系统的运行情况,比如信道状况、天线配置、终端的移动速度等等,确定赋形模式的个数N、N个赋形模式、或者每个赋形模式对应的预编码矩阵组包含的预编码矩阵,并通过动态信令或半静态信令通知给终端。
例如,假设预先设定的Nt大小的codebook中包含L个预编码矩阵,则:网络侧可以从该L个预编码矩阵中选择M个预编码矩阵,将所选择的预编码矩阵形成的集合确定为该赋形模式对应的V,并通过Mlog2(L)比特,将所选择的预编码矩阵在codebook中的索引通知给终端。又如,假设预先设定的Nt大小codebook中有K个可能的预编码矩阵组,则:网络侧可以从该K个预编码矩阵组中,选择一个预编码矩阵组作为该赋形模式对应的V,并通过log2(K)比特,将所选择的预编码矩阵组在codebook中的索引通知给终端。
基于上述任一实施例,可选的,所述赋形模式对应的预编码矩阵组中的预编码矩阵是由至少两个预设的码本中的预编码矩阵进行函数运算得到的。
具体的,假设所述赋形模式对应的预编码矩阵组V中的M个预编码矩阵构成一个总体码本(composite codebook),而该composite codebook由多个个体码本(component codebook)产生,即composite codebook可表示为V=f(W1,W2,…,WS),其中,V表示大小为Nt×r的composite codebook,r是该composite codebook的秩(rank),W1,W2,…,WS为S个component codebook,f()表示从component codebook产生composite codebook的函数。
下面以所述赋形模式对应的预编码矩阵组中的预编码矩阵是根据第一码本中的第一预编码矩阵和第二码本中的第二预编码矩阵通过函数运算得到的为例进行说明。
本申请实施例中的赋形模式还包括以下两种可能的实现方式:
方式A、所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
具体的,指示进行赋形时在一个component codebook中进行遍历,在其他的component codebook中不进行遍历。
该方式下,S12进一步包括以下两种可能的实现方式:
方式A1、所述终端使用指定的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
举例说明,以LTE系统中的8天线码本为例,所述赋形模式对应的预编码矩阵组V表示为V=W1×W2,其中,W1是宽带component codebook,W2是窄带component codebook。这里8Tx只是一个例子,对于其他的天线配置和码本配置,本申请实施例提供的方案同样适用。终端进行赋形时,在第一码本W1中采用固定的预编码矩阵,在第二码本W2中进行遍历。即时频资源中的所有预编码单元上都对应相同的第一预编码矩阵(即第一码本中的预编码矩阵,也称为第一码字),且时频资源中的每个预编码单元上对应的第一预编码矩阵(即第二码本中的预编码矩阵,也称为第二码字)采用遍历方式,则第i个预编码单元对应的预编码矩阵可表示为V(i)=VΩ(i)=W1W2,Ω(i),1≤i≤I。终端针对所述时频资源中的I个预编码单元进行赋形,然后计算所述时频资源的CQI,并反馈CQI。
可选的,所述指定的第一预编码矩阵为预先设定的,或者通过半静态信令或动态信令获取到的,或者由终端确定。若由所述终端确定所使用的第一预编码矩阵,则需要反馈所使用的第一预编码矩阵在第一码本中的索引信息。
方式A2、对于所述第一码本中的每个第一预编码矩阵,所述终端使用所述第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;
对于所述第一码本中的每个第一预编码矩阵,所述终端对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI。
具体的,若第一码本W1中包含K1个第一预编码矩阵,即
Figure PCTCN2017081476-appb-000001
第二码本W2中包含K2个第二预编码矩阵,即
Figure PCTCN2017081476-appb-000002
对于第一码本W1中任意的第一预编码矩阵,终端在所述I个预编码单元中的每个预编码单元上,都遍历第一码本W2中的所有第二预编码矩阵进行赋形,即对时频资源中的第i个预编码单元上的赋形可表示为:V(i)=W1W2,Ω(i),并计算该时频资源的CQI。
举例说明,假设时频资源分为2个预编码单元,第一码本中包括两个第一预编码矩阵,表示为W11,W12,第二码本中包括两个第二预编码矩阵,表示为W21,W22。则对于第一个预编码单元,终端分别使用W11×W21、W11×W21、W21×W21、以及W21×W22进行赋形;对于第二个预编码单元,终端分别使用W11×W21、W11×W21、W21×W21、以及W21×W22进行赋形。
该方式下,所述终端反馈所述时频资源对应的CQI,还包括:
所述终端反馈所选择的CQI对应的第一预编码矩阵的索引信息,以使基站侧能够获取 终端所选择的第一预编码矩阵。
方式B、所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
具体的,指示进行赋形时在所有的component codebook中都进行遍历。即所述终端使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
相应的,终端在时频资源中的不同的预编码单元上进行赋形时,每个预编码单元对应的预编码矩阵表示为V(i)=W1,Ω1(i)W2,Ω2(i),其中,W1,Ω1(i)表示第i个预编码单元对应的第一预编码矩阵,W2,Ω2(i)表示第i个预编码单元对应的第二预编码矩阵,Ω1(i)表示第一码本中的第一预编码矩阵上与所述时频资源中不同的预编码单元的映射关系,Ω2(i)表示第二码本中的第二预编码矩阵上与所述时频资源中不同的预编码单元的映射关系。
举例说明,假设时频资源分为4个预编码单元,第一码本中包括两个第一预编码矩阵,表示为W11,W12,第二码本中包括两个第二预编码矩阵,表示为W21,W22。则:终端可以采用W11×W21对第一个预编码单元进行赋形,采用W11×W22对第二个预编码单元进行赋形,采用W21×W21对第三个预编码单元进行赋形,以及采用W21×W22对第四个预编码单元进行赋形。
基于同一申请构思,本申请实施例还提供了基站侧的一种信道状态信息接收方法,与终端侧中相同的部分,请参见图1所示实施例中的相关描述,此处不再赘述,如图4所示,所述方法包括:
S41、基站接收至少一个时频资源对应的CQI;
S42、所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数。
一种可能的实现方式中,所述赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述基站确定后通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述基站确定后通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元 的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述基站接收至少一个时频资源对应的CQI,还包括:
所述基站接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,包括:所述基站根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
一种可能的实现方式中,所述基站接收到至少一个时频资源对应的CQI,还包括:所述基站接收到第一预编码矩阵的索引信息;
所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,包括:所述基站根据接收到的第一预编码矩阵的索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
基于上述任一实施例,S42之后,该方法还包括:
所述基站从N个赋形模式中,选择一个赋形模式;
所述基站根据所述赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,对至少一个时频资源中的I个预编码单元上传输的下行数据,进行赋形。
可选的,所述基站根据所述赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,对至少一个时频资源中的I个预编码单元上传输的下行数据,进行赋形,包括:
所述基站在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,对所述时频资源包括的I个预编码单元上传输的数据进行赋形;或者
所述基站在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,对所述时频资源包括的I个预编码单元上传输的数据进行赋形;或者
所述基站按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,对所述时频资源包括的I个预编码单元上传输的数据进行赋形;或者
所述基站按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,对所述时频资源包括的I个预编码单元上传输的数据进行赋形。
可选的,所述赋形模式对应的预编码矩阵组中的预编码矩阵是根据第一码本中的第一预编码矩阵和第二码本中的第二预编码矩阵通过函数运算得到的;
所述基站根据所述赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,对至少一个时频资源中的I个预编码单元上传输的下行数据,进行赋形,包括:
所述基站使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别对所述时频资源包括的I个预编码单元上传输的数据进行赋形;或者
所述基站使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别对所述时频资源包括的I个预编码单元上传输的数据进行赋形。
可选的,所述方法还包括:
所述基站通过下行信令,通知所述基站所选择的赋形模式。
具体的,若只有一个赋形模式,即N=1,基站采用和时频资源对应的CQI反馈所使用的赋形模式相同的赋形模式,对所述时频资源包括的I个预编码单元上传输的数据进行赋形;
若存在多个赋形模式,即N>1,则基站可以根据时频资源对应的CQI,并综合天线配置、终端的移动速度等信息,从N个赋形模式中,选择一个赋形模式,所选择的赋形模式与时频资源对应的CQI反馈所使用的赋形模式可能相同,也可能不同。
可选的,基站可以通过下行信令通知用于表示该基站所选择的用于数据传输的赋形模式的指示信息。
例如,基站使用1bit信令通知是否使用了时频资源对应的CQI反馈所使用的赋形模式对数据进行赋形,1代表eNB使用了时频资源对应的CQI反馈所使用的赋形模式对数据进行赋形,0代表eNB没有使用时频资源对应的CQI反馈所使用的赋形模式对数据进行赋形。
又如,基站通过log2(N)bits信令,通知用于表示该基站所选择的用于数据传输的赋形模式的指示信息。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
基于同一申请构思,本申请实施例还提供了一种信道状态信息反馈装置,如图5所示,所述装置包括:
赋形模块51,用于根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;
测量模块52,用于对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI;
反馈模块53,用于反馈所述时频资源对应的CQI。
一种可能的实现方式中,若赋形模式的个数N大于1,所述反馈模块还用于:反馈所述赋形模式的索引信息。
一种可能的实现方式中,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者通过半静态信令或动态信令获取到的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者通过半静态信令或动态信令获取到的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述赋形模式对应的预编码矩阵组中的预编码矩阵是根据第一码本中的第一预编码矩阵和第二码本中的第二预编码矩阵通过函数运算得到的;
所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
一种可能的实现方式中,若所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形,
所述赋形模块具体用于:对于所述第一码本中的每个第一预编码矩阵,使用所述第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;
测量模块具体用于:对于所述第一码本中的每个第一预编码矩阵,对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编 码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI;
所述反馈模块还用于:反馈所选择的CQI对应的第一预编码矩阵的索引信息。
基于同一申请构思,本申请实施例还提供了一种信道状态信息接收装置,如图6所示,所述装置包括:
接收模块61,用于接收到至少一个时频资源对应的信道质量指示CQI;
确定模块62,用于确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数。
一种可能的实现方式中,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述确定模块确定并通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述确定模块确定并通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述接收模块还用于:接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
所述确定模块具体用于:根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
一种可能的实现方式中,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
一种可能的实现方式中,所述接收模块还用于:接收到第一预编码矩阵的索引信息;
所述确定模块具体用于:根据接收到的第一预编码矩阵的索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
基于同一申请构思,本申请实施例还提供了一种终端,本实施例中与上述一种信道状态信息反馈方法中相同的内容,请参见图1所示的实施例中的相关描述,此处不再赘述。如图7所示,该终端包括:收发机71、以及与该收发机71连接的至少一个处理器72,其中:
处理器72,用于读取存储器73中的程序,执行下列过程:
根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI;控制所述收发机反馈所述时频资源对应的CQI;
收发机71,用于在处理器72的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器72代表的一个或多个处理器和存储器73代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机71可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口74还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器72负责管理总线架构和通常的处理,存储器73可以存储处理器72在执行操作时所使用的数据。
一种可能的实现方式中,若赋形模式的个数N大于1,所述处理器读取所述存储器中的程序,还执行:控制所述收发机反馈所述赋形模式的索引信息。
一种可能的实现方式中,若所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形,
所述处理器读取所述存储器中的程序,具体执行:对于所述第一码本中的每个第一预 编码矩阵,使用所述第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;对于所述第一码本中的每个第一预编码矩阵,对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI;控制所述收发机反馈所选择的CQI对应的第一预编码矩阵的索引信息。
基于同一申请构思,本申请实施例还提供了一种基站,本实施例中与上述一种信道状态信息接收方法中相同的内容,请参见图4所示的实施例中的相关描述,此处不再赘述。如图8所示,该基站包括:收发机81、以及与该收发机81连接的至少一个处理器82,其中:
处理器82,用于读取存储器83中的程序,执行下列过程:
通过所述收发机接收到至少一个时频资源对应的信道质量指示CQI;确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;
收发机81,用于在处理器82的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器82代表的一个或多个处理器和存储器83代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机81可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器82负责管理总线架构和通常的处理,存储器83可以存储处理器82在执行操作时所使用的数据。
一种可能的实现方式中,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述处理器确定并通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述处理器并通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
一种可能的实现方式中,所述处理器读取所述存储器中的程序,具体执行:
通过所述收发机接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
一种可能的实现方式中,所述处理器读取所述存储器中的程序,具体执行:
通过所述收发机接收到第一预编码矩阵的索引信息;
根据接收到的第一预编码矩阵的索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
由于本领域内的技术人员一旦得知了基本创造性概念,则可对本申请描述的实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括本申请描述的实施例以及落入 本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种信道状态信息反馈方法,其特征在于,所述方法包括:
    终端根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;
    所述终端对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI;
    所述终端反馈所述时频资源对应的CQI。
  2. 如权利要求1所述的方法,其特征在于,若赋形模式的个数N大于1,所述终端反馈所述时频资源对应的CQI,还包括:
    所述终端反馈所述赋形模式的索引信息。
  3. 如权利要求1所述的方法,其特征在于,所述I个预编码单元为所述时频资源在时域上划分得到的;或者
    所述I个预编码单元为所述时频资源在频域上划分得到的;或者
    所述I个预编码单元为所述时频资源在时域和频域上联合划分得到的。
  4. 如权利要求3所述的方法,其特征在于,所述I个预编码单位中的每个预编码单元包括至少一个正交频分复用OFDM符号、或者至少一个物理资源块PRB;或者
    所述I个预编码单位中的每个预编码单元包括至少一个子载波、或者至少一个PRB对;或者
    所述I个预编码单位中的每个预编码单元包括至少一个资源粒RE。
  5. 如权利要求4所述的方法,其特征在于,所述I个预编码单位中的每个预编码单元包括一组子载波,其中,每个子载波包括至少一个解调参考信号DMRS符号。
  6. 如权利要求1所述的方法,其特征在于,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者通过半静态信令或动态信令获取到的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
    至少一个时频资源中的预编码单元的个数I为预先约定的、或者通过半静态信令或动态信令获取到的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系 统参数之间存在设定的对应关系。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
    所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
  8. 如权利要求1~6任一项所述的方法,其特征在于,所述赋形模式对应的预编码矩阵组中的预编码矩阵是根据第一码本中的第一预编码矩阵和第二码本中的第二预编码矩阵通过函数运算得到的;
    所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
  9. 如权利要求8所述的方法,其特征在于,若所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形,所述终端根据所述赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形,包括:对于所述第一码本中的每个第一预编码矩阵,所述终端使用所述第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;
    所述终端对赋形后的时频资源进行信道测量,确定出所述时频资源对应的信道质量指示CQI,包括:对于所述第一码本中的每个第一预编码矩阵,所述终端对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI;
    所述终端反馈所述时频资源对应的CQI,还包括:所述终端反馈所选择的CQI对应的第一预编码矩阵的索引信息。
  10. 一种信道状态信息接收方法,其特征在于,所述方法包括:
    基站接收到至少一个时频资源对应的信道质量指示CQI;
    所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数。
  11. 如权利要求10所述的方法,其特征在于,所述I个预编码单元为所述时频资源在时域上划分得到的;或者
    所述I个预编码单元为所述时频资源在频域上划分得到的;或者
    所述I个预编码单元为所述时频资源在时域和频域上联合划分得到的。
  12. 如权利要求11所述的方法,其特征在于,所述I个预编码单位中的每个预编码单元包括至少一个正交频分复用OFDM符号、或者至少一个物理资源块PRB;或者
    所述I个预编码单位中的每个预编码单元包括至少一个子载波、或者至少一个PRB对;或者
    所述I个预编码单位中的每个预编码单元包括至少一个资源粒RE。
  13. 如权利要求12所述的方法,其特征在于,所述I个预编码单位中的每个预编码单元包括一组子载波,其中,每个子载波包括至少一个解调参考信号DMRS符号。
  14. 如权利要求10所述的方法,其特征在于,所述赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述基站确定后通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
    至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述基站确定后通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
  15. 如权利要求10所述的方法,其特征在于,所述基站接收到至少一个时频资源对应的CQI,还包括:所述基站接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
    所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,包括:所述基站根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
  16. 如权利要求10~15任一项所述的方法,其特征在于,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
    所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
  17. 如权利要求10~15任一项所述的方法,其特征在于,所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
  18. 如权利要求17所述的方法,其特征在于,所述基站接收到至少一个时频资源对应的CQI,还包括:所述基站接收到第一预编码矩阵的索引信息;
    所述基站确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,包括:所述基站根据接收到的第一预编码矩阵的索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
  19. 一种信道状态信息反馈装置,其特征在于,所述装置包括:
    赋形模块,用于根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;
    测量模块,用于对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI;
    反馈模块,用于反馈所述时频资源对应的CQI。
  20. 如权利要求19所述的装置,其特征在于,若赋形模式的个数N大于1,所述反馈模块还用于:反馈所述赋形模式的索引信息。
  21. 如权利要求19所述的装置,其特征在于,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者通过半静态信令或动态信令获取到的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
    至少一个时频资源中的预编码单元的个数I为预先约定的、或者通过半静态信令或动态信令获取到的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
  22. 如权利要求19~21任一项所述的装置,其特征在于,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
    所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
  23. 如权利要求19~21任一项所述的装置,其特征在于,所述赋形模式对应的预编码矩阵组中的预编码矩阵是根据第一码本中的第一预编码矩阵和第二码本中的第二预编码矩阵通过函数运算得到的;
    所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
  24. 如权利要求23所述的装置,其特征在于,若所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形,
    所述赋形模块具体用于:对于所述第一码本中的每个第一预编码矩阵,使用所述第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;
    测量模块具体用于:对于所述第一码本中的每个第一预编码矩阵,对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI;
    所述反馈模块还用于:反馈所选择的CQI对应的第一预编码矩阵的索引信息。
  25. 一种信道状态信息接收装置,其特征在于,所述装置包括:
    接收模块,用于接收到至少一个时频资源对应的信道质量指示CQI;
    确定模块,用于确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预 编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数。
  26. 如权利要求25所述的装置,其特征在于,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述确定模块确定并通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
    至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述确定模块确定并通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
  27. 如权利要求25所述的装置,其特征在于,所述接收模块还用于:接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
    所述确定模块具体用于:根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
  28. 如权利要求25~27任一项所述的装置,其特征在于,所述赋形模式指示在时域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的I个预编码单元上进行赋形;或者
    所述赋形模式指示在频域上,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示按照先时域后频域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示按照先频域后时域的顺序,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在所述I个预编码单元上进行赋形。
  29. 如权利要求25~27任一项所述的装置,其特征在于,所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;或者
    所述赋形模式指示使用不同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形。
  30. 如权利要求29所述的装置,其特征在于,所述接收模块还用于:接收到第一预编码矩阵的索引信息;
    所述确定模块具体用于:根据接收到的第一预编码矩阵的索引信息,确定出终端信道 测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
  31. 一种终端,其特征在于,包括:收发机、存储器以及与所述收发机连接的至少一个处理器;
    所述处理器,用于读取所述存储器中的程序,执行下列过程:
    根据确定的赋形模式,使用所述赋形模式对应的预编码矩阵组中的不同预编码矩阵,在至少一个时频资源中的预编码单元上进行赋形,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;对赋形后的时频资源进行信道测量,得到所述时频资源对应的信道质量指示CQI;控制所述收发机反馈所述时频资源对应的CQI;
    所述收发机,用于在所述处理器的控制下接收和发送数据。
  32. 如权利要求31所述的终端,其特征在于,若赋形模式的个数N大于1,所述处理器读取所述存储器中的程序,还执行:控制所述收发机反馈所述赋形模式的索引信息。
  33. 如权利要求31或32所述的终端,其特征在于,若所述赋形模式指示使用相同的第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形,所述处理器读取所述存储器中的程序,具体执行:
    对于所述第一码本中的每个第一预编码矩阵,使用所述第一预编码矩阵和不同的第二预编码矩阵,分别在所述I个预编码单元上进行赋形;对于所述第一码本中的每个第一预编码矩阵,对赋形后的时频资源进行信道测量,确定出所述时频资源对应的M个CQI,M为所述第一码本中第一预编码矩阵的数量;从所述M个CQI中选择一个CQI确定为所述时频资源对应的CQI;控制所述收发机反馈所选择的CQI对应的第一预编码矩阵的索引信息。
  34. 一种基站,其特征在于,包括:收发机、存储器以及与所述收发机连接的至少一个处理器;
    所述处理器,用于读取所述存储器中的程序,执行下列过程:
    通过所述收发机接收到至少一个时频资源对应的信道质量指示CQI;确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式,其中,所述时频资源被划分为I个预编码单元,所述赋形模式对应一个预编码矩阵组,所述赋形模式表征时频资源中的I个预编码单元与赋形模式对应的预编码矩阵组中的预编码矩阵之间的映射关系,I为大于1的整数;
    所述收发机,用于在所述处理器的控制下接收和发送数据。
  35. 如权利要求34所述的基站,其特征在于,赋形模式的个数N,N个赋形模式,每个赋形模式对应的预编码矩阵组包含的预编码矩阵中的至少一项信息为预先约定的、或者由所述处理器确定并通过半静态信令或动态信令通知的;或者所述至少一项信息与除所述至少一项信息之外的系统参数之间存在设定的对应关系;
    至少一个时频资源中的预编码单元的个数I为预先约定的、或者由所述处理器并通过半静态信令或动态信令通知的;或者时频资源中的预编码单元的个数I与除预编码单元的个数之外的系统参数之间存在设定的对应关系。
  36. 如权利要求34所述的基站,其特征在于,所述处理器读取所述存储器中的程序,具体执行:
    通过所述收发机接收到用于表示终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式的索引信息;
    根据所述索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
  37. 如权利要求34-36任一项所述的基站,其特征在于,所述处理器读取所述存储器中的程序,具体执行:
    通过所述收发机接收到第一预编码矩阵的索引信息;
    根据接收到的第一预编码矩阵的索引信息,确定出终端信道测量时在所述时频资源中的I个预编码单元赋形所使用的赋形模式。
PCT/CN2017/081476 2016-04-29 2017-04-21 一种信道状态信息反馈和接收方法、装置 WO2017186064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610282607.2 2016-04-29
CN201610282607.2A CN107332600B (zh) 2016-04-29 2016-04-29 一种信道状态信息反馈和接收方法、装置

Publications (1)

Publication Number Publication Date
WO2017186064A1 true WO2017186064A1 (zh) 2017-11-02

Family

ID=60160735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081476 WO2017186064A1 (zh) 2016-04-29 2017-04-21 一种信道状态信息反馈和接收方法、装置

Country Status (3)

Country Link
CN (1) CN107332600B (zh)
TW (1) TWI644532B (zh)
WO (1) WO2017186064A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601733B (zh) * 2018-06-12 2021-01-15 华为技术有限公司 预编码矩阵的配置方法、装置及计算机可读存储介质
CN111865380B (zh) * 2020-08-07 2021-07-27 成都爱瑞无线科技有限公司 一种利用参考信号进行pmi/ri/mcs选择和反馈的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080165875A1 (en) * 2007-01-05 2008-07-10 Mundarath Jayakrishnan C Multi-user MIMO-SDMA for finite rate feedback systems
CN102122977A (zh) * 2010-01-11 2011-07-13 电信科学技术研究院 反馈cqi信息及信道质量估计的方法、用户终端及基站
CN102307083A (zh) * 2011-08-12 2012-01-04 电信科学技术研究院 信道状态信息的非周期反馈及其调度方法、装置及系统
CN103081371A (zh) * 2010-09-03 2013-05-01 富士通株式会社 用于多小区mimo的信道状态反馈

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014455B2 (en) * 2006-03-27 2011-09-06 Qualcomm Incorporated Feedback of differentially encoded channel state information for multiple-input multiple-output (MIMO) and subband scheduling in a wireless communication system
KR101382760B1 (ko) * 2007-03-21 2014-04-08 엘지전자 주식회사 다중 안테나를 이용한 통신시스템에서 코드북을 이용한데이터 전송방법
KR20150136548A (ko) * 2007-08-20 2015-12-07 리어덴 엘엘씨 분산형 입력 분산형 출력 무선 통신을 위한 시스템 및 방법
CN101400074A (zh) * 2007-09-28 2009-04-01 夏普株式会社 减少预编码矩阵索引号反馈量的方法、用户设备及系统
CN101540631B (zh) * 2009-04-27 2014-03-12 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置
CN101998596B (zh) * 2009-08-17 2014-06-25 夏普株式会社 上行多输入多输出信道的功率控制方法
US20110317748A1 (en) * 2010-06-29 2011-12-29 Interdigital Patent Holdings, Inc. Demodulation reference signal based channel state information feedback in ofdm-mimo systems
CN102684819B (zh) * 2011-03-15 2015-06-03 华为技术有限公司 一种数据传输方法及相关设备、系统
CN103634085B (zh) * 2012-08-27 2016-09-07 电信科学技术研究院 一种反馈和接收pmi的方法、系统及设备
CN103780332B (zh) * 2012-10-19 2017-03-29 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN105207705A (zh) * 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备
US9537552B2 (en) * 2014-09-12 2017-01-03 Samsung Electronics Co., Ltd. Method and apparatus for channel state information based on antenna mapping and subsampling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080165875A1 (en) * 2007-01-05 2008-07-10 Mundarath Jayakrishnan C Multi-user MIMO-SDMA for finite rate feedback systems
CN102122977A (zh) * 2010-01-11 2011-07-13 电信科学技术研究院 反馈cqi信息及信道质量估计的方法、用户终端及基站
CN103081371A (zh) * 2010-09-03 2013-05-01 富士通株式会社 用于多小区mimo的信道状态反馈
CN102307083A (zh) * 2011-08-12 2012-01-04 电信科学技术研究院 信道状态信息的非周期反馈及其调度方法、装置及系统

Also Published As

Publication number Publication date
TW201739198A (zh) 2017-11-01
TWI644532B (zh) 2018-12-11
CN107332600A (zh) 2017-11-07
CN107332600B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
JP6695424B2 (ja) データ送信方法及び関連するデバイス
CN105991231B (zh) 获取信道状态信息csi的方法及装置
US9660784B2 (en) Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission CoMP
US9743304B2 (en) Method of feeding back MU-CQI in a communication system, transmission point device, and user equipment
JP7140827B2 (ja) Csi情報を報告および受信するための方法および通信装置
JP6102606B2 (ja) 無線基地局
US11109251B2 (en) Method and apparatus for channel state information reporting
EP3565154A1 (en) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
US20130250876A1 (en) Method And Apparatus Providing Inter-Transmission Point Phase Relationship Feedback For Joint Transmission CoMP
WO2014063647A1 (zh) 一种确定信道状态信息的方法及终端
US20150049702A1 (en) Channel state information feedbacks for coordinated multipoint transmissions
US10419094B2 (en) Channel state information measurement method, channel state information acquisition method, terminal and network device
WO2011137726A1 (zh) 一种信道状态信息上报方法及其装置
CN102291228A (zh) 信道状态信息的反馈、接收方法和设备
CN105450332B (zh) 一种三维信道状态信息确定方法及装置
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
JP6278325B2 (ja) チャネル状態情報フィードバック方法および装置
CN106888062B (zh) Cqi估计、sinr确定方法及相关设备
CN110521129B (zh) 用于无线通信网络中的预编码控制的方法和装置
WO2016116006A1 (zh) 一种信道状态信息反馈方法、下行参考信号方法及装置
KR20200054256A (ko) 간섭 측정 방법, 사용자 단말 및 네트워크측 기기
JP2018514165A (ja) チャネル情報の設定方法及び装置、フィードバック方法及び装置
US20240120978A1 (en) Channel state information transmission method, channel state information reception method, signaling information transmission method, node, and medium
CN102291229A (zh) 一种信道状态信息的反馈方法、接收方法及其设备
TW201717562A (zh) 用於在多用戶疊加傳輸中增強回饋的方法和設備

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788716

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788716

Country of ref document: EP

Kind code of ref document: A1