WO2014063647A1 - 一种确定信道状态信息的方法及终端 - Google Patents

一种确定信道状态信息的方法及终端 Download PDF

Info

Publication number
WO2014063647A1
WO2014063647A1 PCT/CN2013/085898 CN2013085898W WO2014063647A1 WO 2014063647 A1 WO2014063647 A1 WO 2014063647A1 CN 2013085898 W CN2013085898 W CN 2013085898W WO 2014063647 A1 WO2014063647 A1 WO 2014063647A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
terminal
parameter
aperiodic
processes
Prior art date
Application number
PCT/CN2013/085898
Other languages
English (en)
French (fr)
Inventor
李儒岳
徐俊
郭森宝
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/437,946 priority Critical patent/US9686066B2/en
Priority to MX2015005074A priority patent/MX351294B/es
Priority to ES13848900T priority patent/ES2884812T3/es
Priority to BR112015009057-5A priority patent/BR112015009057B1/pt
Priority to AU2013337196A priority patent/AU2013337196B2/en
Priority to JP2015538273A priority patent/JP6037321B2/ja
Priority to RU2015116949/08A priority patent/RU2600533C1/ru
Priority to EP13848900.0A priority patent/EP2897316B1/en
Priority to KR1020157010722A priority patent/KR101728257B1/ko
Publication of WO2014063647A1 publication Critical patent/WO2014063647A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of mobile wireless communications, and more particularly to a terminal and method for determining channel state information for a particular transmission mode in a wireless communication system. Background technique
  • the base station side for example, the evolved Node B, ie, the eNB
  • the data transmission rate can be increased by using spatial multiplexing, that is, the same time-frequency resource is used at the transmitting end. Different data is transmitted at different antenna positions, and the receiving end (for example, User Equipment, UE for short) also uses multiple antennas to receive data. All the resources of all antennas are allocated to the same user in the case of a single user. The user occupies the physical resources allocated to the base station side in a single transmission interval. This transmission method is called single user multiple input and multiple output (Single User).
  • the resource sharing mode may be a space division multiple access mode or a space division multiplexing mode.
  • the transmission mode is called Multiple User Multiple-Input Multiple-Out-put (MU-MIMO), where the base station The physical resources allocated on the side are time-frequency resources. If the transmission system is to support both SU-MIMO and MU-MIMO, the eNB needs to provide the UE with data in these two modes.
  • the UE When the UE is in the SU-MIMO mode or the MU-MIMO mode, it is necessary to know the rank ( Rank) used by the eNB to transmit MIMO data to the UE.
  • Rank the rank used by the eNB to transmit MIMO data.
  • SU-MIMO mode all antenna resources are allocated to the same user, and the number of layers used to transmit MIMO data is equal to the rank used by the eNB to transmit MIMO data.
  • MU-MIMO mode the number of layers used for one user transmission Less than the total number of layers of MIMO data transmitted by the eNB, if SU-MIMO mode and MU-MIMO handover are to be performed, the eNB needs to notify the UE of different control data in different transmission modes.
  • the control signaling required for uplink transmission has a correct/error acknowledgement message (ACK/NACK: Acknowledgement/Negative Acknowledgement) and reflects the downlink physical channel state information (CSI: Channel State).
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • CSI Channel State
  • CQI Channel quality indication
  • PMI Pre-coding Matrix Indicator
  • RI Rank Indicator
  • CQI is an indicator used to measure the quality of downlink channels.
  • CQI is represented by integer values from 0 to 15, which represent different CQI levels.
  • Different CQIs correspond to their respective MCS (Modulation and Coding Scheme), as shown in Table 1.
  • MCS Modulation and Coding Scheme
  • the selected CQI level should be such that the PDSCH (Physical Downlink Shared Channel) corresponding to the CQI has a block error rate of no more than 0.1 under the corresponding MCS.
  • the UE Based on an unrestricted detection interval in the frequency domain and the time domain, the UE will obtain the highest CQI value corresponding to each of the maximum CQI values reported in the uplink subframe n, and the CQI has a sequence number ranging from 1 to 15 and satisfies The following conditions, if the CQI sequence number 1 does not satisfy the condition, the CQI sequence number is 0: The error rate of a single PDSCH transport block when received is not more than 0.1, and the PDSCH transport block contains joint information: modulation mode and transport block size, which corresponds to A CQI sequence number and a group of downlink physical resource blocks occupied, that is, CQI reference resources.
  • the highest CQI value is the maximum CQI value when the BLER (Block Error Ratio) is not greater than 0.1, which is beneficial to control resource allocation.
  • the smaller the CQI value the more resources it consumes and the better the BLER performance.
  • Corresponding information of a transport block size and modulation scheme corresponding to a CQI sequence number if: according to the relevant transport block size, the joint information of the PDSCH transmission in the CQI reference resource can be signaled, and: joint information with the modulation scheme,
  • the resulting effective channel coding rate is the most likely effective channel coding rate that can be characterized by the CQI sequence number.
  • the device has the joint information of the minimum transport block size.
  • Each CQI sequence number corresponds to a modulation mode and a transport block size, and the correspondence between the transport block size and the NPRB can be represented in a table.
  • the encoding rate can be calculated based on the transport block size and the size of the NPRB.
  • the ACK/NACK response message is transmitted on the physical uplink control channel (PUCCH: Physical Uplink Control) in the format 1/1 a/lb (PUCCH format 1/1 al/b), if the terminal (UE: User Equipment)
  • UE User Equipment
  • the feedback of the CQI/PMI and RI may be periodic feedback or non-periodic feedback.
  • the specific feedback is as follows. 1 shows: Table 1 uplink physical channel corresponding to periodic feedback and aperiodic feedback
  • the cyclic feedback CQI/PMI, RI if the UE does not need to send uplink data, the cyclic feedback CQI/PMI, RI is in the format 2/2a/2b (PUCCH format2/2a/2b) on the PUCCH. Transmission, if the UE needs to send uplink data, then CQI/PMI, RI is transmitted on PUSCH; for non-periodic feedback CQI/PMI, RI is only transmitted on PUSCH.
  • the following three types of downlink physical control channels are defined in the Release 8 standard of the Long-Term Evolution (LTE): Physical Control Format Indicator Channel (PCFICH for short), physical A Hybrid Automatic Retransmission Request Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH).
  • the PDCCH is used to carry Downlink Control Information (DCI), and includes: uplink and downlink scheduling information, and uplink power control information.
  • DCI format (DCI format) is divided into the following types: DCI format 0, DCI format 1, DCI format 1A, DCI format IB, DCI format 1C, DCI format 1D, DCI format 2, DCI format 2A, DCI format 3, and DCI Format 3 A, etc.
  • the transmission mode 5 supporting MU-MIMO utilizes the downlink control information of the DCI format ID, and the downlink power domain (Downlink power offset field) ⁇ power . offset in the DCI format ID is used to indicate the MU-MIMO.
  • the information of one user's power is halved (ie, -lOloglO(2)), because MU-MIMO transmission mode 5 only supports MU-MIMO transmission of two users, through this downlink power domain, MU-MIMO transmission mode 5
  • Dynamic switching of SU-MIMO mode and MU-MIMO mode can be supported, but this DCI format is one in either SU-MIMO mode or MU-MIMO mode.
  • UEs only support one stream transmission.
  • LTE Release 8 supports single-user transmission of up to two streams in transmission mode 4, since the switching between transmission modes can only be semi-static, it cannot be used in LTE version 8. Enables dynamic switching of single-user multi-stream transmission and multi-user transmission.
  • a dual-stream beamforming (Beamforming) transmission mode is introduced, defined as transmission mode 8, and downlink control information is added to DCI format 2B to support such transmission.
  • the mode in the DCI format 2B, has a scrambling identity (SCID) identification bit to support two different scrambling code sequences, and the eNB can allocate the two scrambling code sequences to different users, in the same resource. Reuse multiple users.
  • SCID scrambling identity
  • the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block is also used to indicate the antenna port for single layer transmission.
  • a new closed-loop spatial multiplexing transmission mode is added, which is defined as transmission mode 9, and the downlink control information is increased by DCI format 2C.
  • This transmission mode is supported.
  • This transmission mode can support single-user SU-MIMO and multi-user MU-MIMO, and can support dynamic switching between the two.
  • this transmission mode also supports 8-antenna transmission.
  • This new transmission mode has determined the pilot for demodulation using the UE Specific Reference Signal (URS). The UE needs to obtain the position of the pilot before the channel can be used on the pilot. Estimation of interference.
  • URS UE Specific Reference Signal
  • the UE is semi-statically set by higher layer signaling to be based on one of the following transmission modes, in accordance with the indication of the PDCCH of the user equipment-specific (UE-Specific) search space.
  • Transmission mode 1 Single antenna port; Port 0 (Single-antenna port; port 0) Transmission mode 2: Transmit diversity
  • Transmission mode 3 Open-loop spatial multiplexing
  • Transmission Mode 5 Multi-user Multiple Input Multiple Output (Multi-user MIMO)
  • Transmission mode 7 Single antenna port; Port 5 (Single-antenna port; port 5)
  • Transmission mode 8 Dual stream transmission, ie dual stream beamforming Transmission mode 9: Up to 8 layers of transmission. (up to 8 layer transmission)
  • a new transmission mode 9 and a channel-state information are transmitted, and the transmission mode 9 is based on CSI-RS or CRS (Cell-specific reference signals). Based on the channel measurement, the CQI is calculated. Other transmission modes are based on CRS for channel measurement to calculate CQI.
  • CSI-RS channel-state information
  • the CSI reference resource is defined by a group of downlink physical resource blocks, where the downlink physical resource block corresponds to a frequency band corresponding to the source CQI value; in the time domain, the CSI reference resource is defined by one downlink subframe; On the layer domain, CSI reference resources are defined by any RI and PMI, where CQI is based on PMI/RI.
  • LTE Long Term Evolution
  • R10 adds many new features based on the former two, such as DMRS (Demodulation Reference Signal), CSI-RS (Channel State Information Reference Signal). Reference signal) and other pilot characteristics, 8 antenna support and other transmission and feedback characteristics, etc., especially elCIC (enhanced Inter-Cell Interference Cancelling) technology considers R8/9 ICIC (Inter-Cell Interference Cancelling) Based on the small-area interference cancellation, the interference avoidance technique between cells is further considered.
  • the technology for solving the interference problem between cells mainly considers the cell interference avoidance under the isomorphic network in the early stage of the R10 phase, and the mainstream considers the eCIC technology and the CoMP (Coordinated Multi-point) technology.
  • CoMP means that multiple nodes cooperate to one or reduce interference between cells, improve the throughput rate at the cell edge, and expand cell coverage.
  • the heterogeneous network was introduced to introduce more scenarios, the complexity of CoMP technology and the time limit of R10 discussion.
  • the configuration information of the RIO CSI-RS mainly includes non-zero power CSI-RS configuration signaling and zero-power CSI-RS configuration signaling.
  • the non-zero-power CSI-RS configuration mainly considers notifying the terminal-time time-frequency resource position of each non-zero-power CSI-RS in one subframe by using a table index, as shown in Table 2 and Table 3, and through the antenna port.
  • the number is configured to notify the terminal side that the number of time-frequency resources occupied by the non-zero-power CSI-RS has been corresponding to the antenna port and use the subframe offset and the periodic index to notify the terminal side of the subframe in which the CSI-RS is received, as shown in Table 4. Show.
  • Table 3 Resource mapping of CSI-RS in extended cyclic prefix subframe configuration.
  • the zero-power CSI-RS uses a 16-bit bitmap sequence to inform the terminal side of the resource elements that need rate matching.
  • the subframe offset and period inform the terminal side of the sub-frame where the zero-power CSI-RS is located, as shown in Table 4.
  • the purpose of the non-zero power CSI-RS is mainly to let the terminal side measure the CSI and feed back to the base station side.
  • the main purpose of the zero-power CSI-RS is to reduce the interference of the data service to the CSI-RS and improve the accuracy of measuring the CSI.
  • the base station side notifies the terminal side of the zero-power CSI-RS resource location, and the terminal side is false. It is assumed that the base station does not place a PDSCH or other reference signal or channel at a resource location of a zero-power CSI-RS.
  • R11 needs to consider the impact of CoMP on the standard, especially the configuration of interference measurement resources and zero-power CSI-RS resource configuration.
  • using zero-power CSI-RS resources to measure interference can obtain more accurate interference estimation performance, and can also be partially compatible with R10 version terminals, so that it can avoid interference measurement resources by configuring zero-power CSI-RS. Performance loss due to PDSCH punching. If the zero-power CSI-RS is used to measure the interference in the R11 phase, the rate matching resources that need to be identified on the terminal side need to include the following three types:
  • Non-zero power CSI-RS resources It mainly means that the base station side sends CSI-RSs in the manner of 8 or 4 ports. The terminal side can only support 4 or 2 ports at most. In this case, rate matching should be performed at other unrecognized port locations. Or the base station side sends the CSI-RS, but the terminal side uses the feedback mode 1-0, 2-0 or 3-0 mode. In this case, the CSI-RS port does not need to be configured, and only the zero-power CSI-RS needs to be configured.
  • Zero power CSI-RS resources are used to reduce the interference of data services to CSI-RS measurements.
  • Zero power CSI-RS resources are used by the terminal side to measure interference at corresponding resource locations.
  • the purpose is the same.
  • the new zero-power CSI-RS is used for interference measurement. Therefore, a new zero-power CSI-RS configuration mode is required for R11, which can be used for interference measurement.
  • the zero-power CSI-RS used for interference measurement is IMR (Interference Measurement Resource).
  • the terminal can perform channel measurement or interference measurement based on each subframe, each of which The downlink valid subframes can all be a CSI reference resource, and for the R11 system, the CSI-RS and the IMR are periodically configured. If each valid subframe is a CSI reference resource, the computational complexity of the terminal is caused. Especially for CoMP terminals, since such terminals need to calculate and feed back CSIs of multiple CSI Processes (one CSI Process corresponds to one NZP (Non Zero Power) CSI-RS configuration and one IMR configuration).
  • NZP Non Zero Power
  • CSI is determined because the new transmission mode needs to support CSI feedback of multiple CSI Processes
  • the terminal complexity is too high, the cost of the terminal is too high, and the problem is more prominent for the time division duplex TDD system.
  • the embodiments of the present invention provide a terminal and method for determining channel state information, which overcomes the problem of excessive complexity of the terminal, and solves the problem that the existing system is too expensive when using the transmission mode 10 and the TDD duplex mode.
  • An embodiment of the present invention provides a method for determining channel state information, including: receiving, by a terminal UE, an aperiodic channel state information CSI request, according to a capability of the terminal to process channel state information, a CSI process, and/or a currently configured CSI
  • the number of processes y is used to determine the parameter X, and up to X aperiodic CSIs are updated according to the parameter X; wherein, y and X are positive integers greater than or equal to 1, and the parameter X is: the terminal at the same time
  • the capability of processing the CSI process includes the maximum number of CSI processes that the terminal can process;
  • the terminal 4 determines the parameter X according to the capability of the terminal to process the CSI process and/or the number of currently configured CSI processes y:
  • the value of the parameter X is determined according to the number of y of the currently configured CSI process, where the P0 is 3 or 4.
  • the capability of processing the CSI process includes the maximum number of CSI processes that the terminal can process;
  • Determining, by the terminal, the parameter X according to the capability of the terminal to process the CSI process and/or the number of currently configured CSI processes y includes: When P is greater than or equal to P0, the value of the parameter X is determined according to the number of currently configured CSI processes y and the P; wherein P0 is 3 or 4.
  • the P value is one of 3 and 4; or the P is only a value of 4.
  • a maximum of X aperiodic CSIs includes:
  • the terminal determines that the number of aperiodic CSIs that need to be updated is the minimum value Z of both X and Y, and updates Z non-periodic CSIs;
  • the Y is the number of CSIs to be reported.
  • the step of the terminal updating the maximum X aperiodic CSI according to the parameter X includes: performing channel measurement and/or interference measurement according to the received channel state information reference signal CSI-RS, and determining a CSI reference resource, and calculating corresponding to the Acyclic CSI of the CSI reference resource.
  • the embodiment of the present invention further provides a terminal UE that determines channel state information, where the terminal includes: a receiving unit, configured to: receive an aperiodic CSI request;
  • a determining unit configured to: determine a parameter X according to a capability of the terminal to process a CSI process and/or a number of currently configured CSI processes y;
  • An update unit configured to: update a maximum of X non-periodic CSIs according to the parameter X; wherein, y and X are positive integers greater than or equal to 1, the parameter X is: at the same time The total number of CSI processes or reports within the one or more aperiodic CSI requests that the terminal needs to update.
  • the capability of processing the CSI process includes the maximum number of CSI processes that the terminal can process.
  • the determining unit is configured to determine the parameter X in the following manner: When P is greater than or equal to P0, the value of the parameter X is determined according to the number of y processes currently configured, where P0 is 3 or 4.
  • the capability of processing the CSI process includes the maximum number of CSI processes that the terminal can process.
  • the determining unit is configured to determine the parameter X in the following manner:
  • the value of the parameter X is determined according to the number of currently configured CSI processes y and the P; wherein P0 is 3 or 4.
  • the determining unit is configured to determine the parameter X in the following manner:
  • the P value is one of 3 and 4; or the P is only a value of 4.
  • the update unit is arranged to update a maximum of X non-periodic CSIs according to the parameter X as follows:
  • Determining the minimum number of non-periodic CSIs that need to be updated is the minimum value Z of both X and Y, updating Z non-periodic CSIs;
  • the Y is the number of CSIs to be reported.
  • the updating unit is configured to update each aperiodic CSI that needs to be updated according to the following manner: performing channel measurement and/or interference measurement according to the received channel state information reference signal CSI-RS, and determining a CSI reference resource, and calculating corresponding to the CSI Refer to the acyclic CSI of the resource.
  • the terminal further includes an upper unit, which is configured to: send the updated aperiodic CSI to the network side.
  • an upper unit which is configured to: send the updated aperiodic CSI to the network side.
  • FIG. 1 is a flowchart of a method for determining channel state information in an embodiment of a method according to the present invention
  • FIG. 2 is a schematic structural diagram of a terminal in an embodiment of the present invention. Preferred embodiment of the invention
  • the CSI reference resources are described in terms of time domain, frequency domain, and transmission domain.
  • the CSI reference resource is defined by a group of downlink physical resource blocks, and the resource blocks correspond to a bandwidth associated with the obtained CQI value;
  • the CSI reference resource is defined by a unique downlink subframe n-nCQI_ref; here, for the periodic CSI report, nCQI_ref is a minimum value greater than or equal to 4, so that it can correspond to a reasonable one ( The descending subframe of valid ).
  • aperiodic CSI report " ce/ " is a subframe in which the reference resource appears in the same valid subframe as the corresponding CSI request, where the CSI request appears in an uplink DCI format (downlink control letter) Order format).
  • ncQi ref 4 and the downlink subframe nn CQI re f corresponds to a valid downlink subframe, where the downlink subframe nn CQI re f is received after the subframe with the corresponding CSI request And this CSI request appears in a Random Access Response Grant.
  • the CSI reference resources are defined by PMI and RI, and the CQI is based on PMI and RI.
  • This embodiment provides a method for determining channel state information. As shown in FIG. 1, the method includes the following steps: Step 101: The UE receives an aperiodic CSI request.
  • Step 102 The UE determines the parameter X according to the capability of the processing channel state information process CSI Process of the UE and/or the currently configured CSI Process number y, where y is a positive integer greater than or equal to 1;
  • Step 103 Update up to X non-periodic CSIs according to X.
  • the capability of processing the CSI process includes a maximum number of CSI processes P that the terminal can process, where P is a positive integer greater than or equal to 1;
  • the parameter X is: the total number of CSI processes or reports in the one or more aperiodic CSI requests that the terminal needs to update at the same time.
  • the process of determining X according to P and y includes: the largest CSI that can be processed by the terminal
  • the value of X may be determined according to the number of currently configured CSI processes and the maximum number of CSI processes that the terminal can process.
  • Updating up to X aperiodic CSIs according to X includes: The terminal determines the aperiodic that needs to be updated
  • the number of CSIs is Z, and the number of CSIs to be reported is the smallest, and Z is the minimum number of CSIs to be reported.
  • Each process of updating the aperiodic CSI update includes: performing channel measurement and/or interference measurement according to the received channel state information reference signal CSI-RS, and determining a CSI reference resource, where the terminal then calculates a CQI of the corresponding CSI reference resource value.
  • one CSI Process may correspond to one or more of the CSIs to be >3 ⁇ 4.
  • the terminal reports the updated aperiodic CSI to the network side.
  • the terminal updates Z acyclic CSIs.
  • the CSI calculation method here fully considers the capabilities of the UE and the number of configured CSI processes to determine the number of aperiodic CSIs that need to be updated.
  • the data CSI calculation amount is reasonably limited to ensure that the terminal has reasonable complexity, and the terminal has a reasonable cost, and is particularly suitable for a time division duplex system.
  • the embodiment provides a terminal for determining channel state information, as shown in FIG. 2, including: a receiving unit, configured to receive an aperiodic CSI request;
  • a determining unit configured to determine a parameter X according to a capability of the terminal processing channel state information process CSI Process and/or a currently configured CSI Process number y;
  • Updating unit configured to update up to X non-periodic CSIs according to the parameter X;
  • the reporting unit is configured to report the updated aperiodic CSI to the network side.
  • the parameter X is: the total number of CSI processes or reports in the one or more aperiodic CSI requests that the terminal needs to update at the same time.
  • the capability of processing the CSI Process includes the largest CSI that the terminal can process. Number of processes;
  • the process of determining the parameter X by the determining unit includes:
  • the value of the parameter X is determined according to the currently configured number of CSI processes, where the P0 is 3 or 4.
  • the parameter X y.
  • the capability of processing the CSI Process includes the maximum number of CSI Process that the terminal can process;
  • the process of determining the parameter X by the determining unit includes:
  • the value of the parameter X is determined according to the currently configured CSI Process number y and the P; wherein, P0 is 3 or 4.
  • the P is a value of one of 3 and 4; or the P is only a value of 4.
  • the updating unit determines that the number of aperiodic CSIs that need to be updated is a minimum value Z of both X and Y, and updates Z non- Cycle CSI;
  • the Y is the number of CSIs to be reported.
  • the update unit updates each aperiodic CSI that needs to be updated according to the following manner:
  • the processing capability of the UE and the number of configured CSI processes are determined to determine the aperiod that needs to be updated.
  • the number of CSIs makes reasonable limits on the amount of data CSI calculations, ensuring that terminals have reasonable complexity and ensuring that terminals have reasonable costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

一种确定信道状态信息的方法和终端,终端接收非周期的信道状态信息CSI请求,根据所述终端的处理CSI进程的能力和/或当前配置的CSI进程个数y来确定参数X,根据所述参数X来更新最多X个非周期CSI;其中,所述参数X为:在同一个时刻所述终端需要更新的对于一个或者多个非周期CSI请求内CSI进程或者报告的总个数。

Description

一种确定信道状态信息的方法及终端 技术领域
本发明涉及移动无线通信领域, 尤其涉及无线通信系统中对于特定的传 输模式一种确定信道状态信息的终端及方法。 背景技术
在无线通信技术中, 基站侧 (例如演进的节点 B, 即 eNB )使用多根天 线发送数据时, 可以釆取空间复用的方式来提高数据传输速率, 即在发送端 使用相同的时频资源在不同的天线位置发射不同的数据, 接收端 (例如用户 设备, User Equipment, 简称 UE )也使用多根天线接收数据。 在单用户的情 况下将所有天线的资源都分配给同一用户, 此用户在一个传输间隔内独自占 有分配给基站侧分配的物理资源, 这种传输方式称为单用户多入多出(Single User Multiple-Input Multiple-Out-put, 简称 SU-MIMO); 在多用户的情况下将 不同天线的空间资源分配给不同用户, 一个用户和至少一个其它用户在一个 传输间隔内共享基站侧分配的物理资源, 共享方式可以是空分多址方式或者 空分复用方式, 这种传输方式称为多用户多入多 出(Multiple User Multiple-Input Multiple-Out-put, 简称 MU-MIMO), 其中基站侧分配的物理资 源是指时频资源。 传输系统如果要同时支持 SU-MIMO和 MU-MIMO, eNB 则需要向 UE提供这两种模式下的数据。 UE在 SU-MIMO模式或 MU-MIMO 模式时, 均需获知 eNB对于该 UE传输 MIMO数据所用的秩 ( Rank ) 。 在 SU-MIMO模式下, 所有天线的资源都分配给同一用户, 传输 MIMO数据所 用的层数就等于 eNB在传输 MIMO数据所用的秩; 在 MU-MIMO模式下, 对应一个用户传输所用的层数少于 eNB传输 MIMO数据的总层数,如果要进 行 SU-MIMO模式与 MU-MIMO的切换, eNB需要在不同传输模式下通知 UE不同的控制数据。
在长期演进系统(LTE: Long Term Evolution ) 中, 上行需要传输的控制 信令有正确 /错误应答消息 ( ACK/NACK: Acknowledgement/Negative Acknowledgement ) , 以及反映下行物理信道状态信息 ( CSI: Channel State Information )的三种形式: 信道质量指示 ( CQI: Channel quality indication ) 、 预编码矩阵指示 (PMI: Pre-coding Matrix Indicator ) 、 秩指示 (RI: Rank Indicator ) 。
CQI是用来衡量下行信道质量好坏的一个指标。 在 36-213 协议中 CQI 用 0 ~ 15的整数值来表示, 分别代表了不同的 CQI等级, 不同 CQI对应着各 自的 MCS(Modulation and Coding Scheme, 调制编码方案), 见表 1。 CQI等 级的选择应遵循如下准则:
所选择的 CQI等级, 应使得该 CQI所对应的 PDSCH ( Physical Downlink Shared Channel, 物理下行共享信道)传输块在相应的 MCS下的误块率不超 过 0.1。
基于在频域和时域中的一个非限制检测间隔, UE将获得最高的 CQI值, 对应于每个在上行子帧 n中上报的最大 CQI值, CQI的序号范围为 1-15, 并 满足如下条件, 如果 CQI序号 1不满足该条件, CQI序号为 0: 单一的一 个 PDSCH传输块在被接收时错误率不超过 0.1 , PDSCH传输块包含联合信息: 调制方式和传输块大小, 其对应于一个 CQI序号以及占用的一组下行物理资 源块,即 CQI参考资源。其中,该最高 CQI值是指,在保证 BLER( Block Error Ratio, 误块率) 不大于 0.1时的最大 CQI值, 有利于控制资源分配。 一般来 说, CQI值越小, 占用的资源越多, BLER性能越好。
对应于一个 CQI序号的具有传输块大小和调制方式联合信息, 如果: 根 据相关传输块大小, CQI参考资源中 PDSCH传输的这些联合信息能用信令通 知, 另外: 和调制方案的联合信息, 其所产生的有效信道编码速率, 是由 CQI序号所能 表征的最可能接近的有效信道编码速率。 当存在不止一个的该联合信息, 它 们都可以产生同样接近的由 CQI序号表征的有效信道编码速率时, 则釆用具 有最小传输块大小的联合信息。
每个 CQI序号对应了一种调制方式和传输块大小, 传输块大小和 NPRB 的对应关系可以用表格表示。 根据传输块大小和 NPRB的大小可计算编码速 率。 LTE 系统中, ACK/NACK应答消息在物理上行控制信道(PUCCH: Physical Uplink Control )上以格式 1/1 a/lb ( PUCCH format 1/1 al/b )传输, 如 果终端 (UE: User Equipment ) 需要发送上行数据时, 则在物理上行共享信 道(PUSCH: Physical Uplink Shared Channel )上传输, CQI/PMI, RI的反馈 可以是周期性的反馈, 也可以是非周期性的反馈, 具体的反馈如表 1所示: 表 1周期性反馈和非周期性反馈对应的上行物理信道
Figure imgf000005_0001
其中, 对于周期性反馈的 CQI/PMI, RI而言, 如果 UE不需要发送上行 数据, 则周期反馈的 CQI/PMI, RI在 PUCCH上以格式 2/2a/2b ( PUCCH format2/2a/2b )传输,如果 UE需要发送上行数据时,则 CQI/PMI, RI在 PUSCH 上传输; 对于非周期性反馈的 CQI/PMI, RI而言, 只在 PUSCH上传输。
长期演进(Long-Term Evolution, 简称为 LTE ) 的版本 8 ( Release 8 )标 准中定义了如下三种下行物理控制信道: 物理下行控制格式指示信道 ( Physical Control Format Indicator Channel, 简称为 PCFICH ) 、 物理混合自 动重传请求指示信道 ( Physical Hybrid Automatic Retransmission Request Indicator Channel, 简称为 PHICH )和物理下行控制信道 ( Physical Downlink Control Channel, 简称为 PDCCH ) 。 其中 PDCCH用于承载下行控制信息 ( Downlink Control Information, 简称为 DCI ) , 包括: 上、 下行调度信息, 以及上行功率控制信息。 DCI的格式(DCI format )分为以下几种: DCI format 0、 DCI format 1、 DCI format 1A、 DCI format IB、 DCI format 1C、 DCI format 1D、 DCI format 2、 DCI format 2A、 DCI format 3和 DCI format 3 A等; 其中 支持 MU-MIMO的传输模式 5利用了 DCI format ID的下行控制信息,而 DCI format ID中的下行功率域 ( Downlink power offset field ) ^power.offset用于指示在 MU-MIMO模式中对于一个用户的功率减半(即 -lOloglO ( 2 ) ) 的信息, 因 为 MU-MIMO传输模式 5只支持两个用户的 MU-MIMO传输,通过此下行功 率域, MU-MIMO传输模式 5可以支持 SU-MIMO模式和 MU-MIMO模式的 动态切换, 但是无论在 SU-MIMO模式或 MU-MIMO模式此 DCI format对一 个 UE只支持一个流的传输, 虽然 LTE Release 8在传输模式 4中支持最多两 个流的单用户传输, 但是因为传输模式之间的切换只能是半静态的, 所以在 LTE版本 8中不能做到单用户多流传输和多用户传输的动态切换。
在 LTE的版本 9 ( Release 9 ) 中, 为了增强下行多天线传输, 引入了双 流波束形成(Beamforming ) 的传输模式, 定义为传输模式 8, 而下行控制信 息增加了 DCI format 2B 以支持这种传输模式, 在 DCI format 2B中有一个扰 码序列身份(scrambling identity , 简称 SCID )的标识比特以支持两个不同的 扰码序列, eNB可以将这两个扰码序列分配给不同用户, 在同一资源复用多 个用户。 另外, 当只有一个传输块使能的时候, 非使能(Disabled )的传输块 对应的新数据指示 (NDI ) 比特亦用来指示单层传输时的天线端口。
另外, 在 LTE的版本 10 ( Release 10 ) 中, 为了进一步增强下行多天线 的传输, 增加了新的闭环空间复用的传输模式, 定义为传输模式 9, 而下行 控制信息增加了 DCI format 2C 以支持这种传输模式, 这种传输模式既可以 支持单用户 SU-MIMO, 又可以支持多用户 MU-MIMO, 并且可以支持两者 的动态切换, 另外这种传输模式还支持 8天线的传输。 这种新的传输模式已 经确定了用解调导频( UE Specific Reference Signal, 简称为 URS )来作解调 用的导频, UE需获取导频的位置, 才可以在导频上做信道和干扰的估计。
在 R10版本中, UE通过高层信令半静态( semi-statically )的被设置为基 于以下的一种传输模式( transmission mode ) ,按照用户设备专有( UE-Specific ) 的搜索空间的 PDCCH的指示来接收 PDSCH数据传输:
传输模式 1: 单天线端口; 端口 0 ( Single-antenna port; port 0 ) 传输模式 2: 发射分集( Transmit diversity )
传输模式 3: 开环空间复用 ( Open-loop spatial multiplexing )
传输模式 4: 闭环空间复用 ( Closed-loop spatial multiplexing )
传输模式 5: 多用户多输入多输出 ( Multi-user MIMO )
传输模式 6: 闭环 Rank=l预编码( Closed-loop Rank=l precoding ) 传输模式 7: 单天线端口; 端口 5 ( Single-antenna port; port 5 ) 传输模式 8: 双流传输, 即双流波束赋形 传输模式 9: 最多 8层的传输。 (up to 8 layer transmission)
在 RIO 版本中, 新增加了传输模式 9 和测量参考信号 CSI-RS (Channel-State Information - Reference Symbol), 传输模式 9是基于 CSI-RS或 是 CRS ( Cell-specific reference signals, 小区专用参考信号 )基于进行信道测 量, 从而计算得到 CQI。 其他传输模式基于 CRS 进行信道测量, 从而计算 CQI。
在频域上, CSI参考资源用一组下行物理资源块进行定义, 下行物理资 源块对应于源 CQI值相应的频带上; 在时域上, CSI参考资源用一个下行子 帧来定义; 在传输层域上, CSI参考资源用任何 RI 以及 PMI来定义, 其中 CQI是以 PMI/RI为条件。
在 R10中, 对于传输模式 9, 因为引入了 "双码本" 或者 "双 ΡΜΓ 的 新概念, 所以需要反馈两个 PMI; 对于 8天线, 第一 PMI指示宽带的信道状 态信息, 第二 PMI指示子带的信道状态信息, 只有获得两个 PMI才能得到完 整的预编码矩阵信息, 其中子带包括宽带的情况; 对于 2天线和 4天线, 第 一 PMI指示的是单位阵, 第二 PMI等价于原 R8协议的 PMI。
长期演进( Long Term Evolution, 简称 LTE ) 系统在经历了 R8/9/10几个 版本后, 又陆续准确研究 R11技术。 目前部分 R8产品开始逐步商用, R9和 R10有待进一步产品规划。
在经历了 R8和 R9阶段, R10在前两者的基础上又增加了很多新的特性, 例如 DMRS ( Demodulation Reference Signal ,解调参考信号), CSI-RS(Channel State Information Reference Signal, 信道状态信息参考信号)等导频特性, 8天 线支持等传输和反馈特性等等,特别是 elCIC ( enhanced Inter-Cell Interference Cancelling , 小区间干扰抵消增强) 技术在考虑了 R8/9 ICIC(Inter-Cell Interference Cancelling , 小区间干扰抵消)的基础之上,进一步考虑小区之间的 干扰避免技术。 对于解决小区之间干扰问题的技术在 R10阶段初期主要考虑 同构网下的小区干扰避免,其中主流的考虑 elCIC技术和 CoMP ( Coordinated Multi-point, 多点协作)技术。 CoMP顾名思义就是多个节点协作给一个或者 减少小区之间的干扰, 提高小区边缘的吞吐率, 扩大小区覆盖。 但是由于在 讨论后期考虑了异构网引入了更多的场景, CoMP技术的复杂性和 R10讨论 的时间限制, 最终决定在 R10阶段不引入额外的 CoMP标准化内容, 但是在 设计 CSI-RS可以考虑 CoMP部分的需求来设计,所以 CoMP技术在 60bis会 议后就没有进行更深一步的讨论。
RIO CSI-RS 的配置信息主要包括非零功率 CSI-RS 配置信令和零功率 CSI-RS配置信令。 非零功率 CSI-RS配置主要考虑通过利用表格索引的方式 来通知终端侧每个非零功率 CSI-RS在一个子帧的时频资源位置,如表 2和表 3所示, 以及通过天线端口数目配置来通知终端侧非零功率 CSI-RS占用的时 频资源的数目已经对应的天线端口和利用子帧偏置和周期索引来通知终端侧 在接收 CSI-RS的子帧, 如表 4所示。
表 2: CSI-RS在普通循环前缀子帧配置的资源映射
Figure imgf000008_0001
表 3: CSI-RS在扩展循环前缀子帧配置的资源映射.
Figure imgf000009_0001
表 4: CSI-RS 子帧配置
Figure imgf000009_0002
零功率的 CSI-RS利用 16比特的 bitmap (位图)序列来通知终端侧需要 速率匹配的资源元素。 子帧偏置和周期通知终端侧零功率 CSI-RS 所在的子 帧, 如表 4所示。
非零功率 CSI-RS的目的主要是让终端侧测量 CSI并反馈给基站侧。零功 率 CSI-RS的主要目的是为了减少数据业务对于 CSI-RS的干扰从而提高测量 CSI的精确度, 在基站侧通知终端侧零功率的 CSI-RS的资源位置, 终端侧假 设基站不在零功率的 CSI-RS的资源位置放置 PDSCH或者其他参考信号或者 信道。
R11需要考虑 CoMP对于标准的影响, 特别是需要考虑干扰测量资源的 配置和零功率 CSI-RS资源配置。 在最新的 68bis会议上讨论, 利用零功率的 CSI-RS资源测量干扰可以获得比较准确的干扰估计性能, 同时也可以部分兼 容 R10 版本终端, 使其通过配置零功率 CSI-RS 来避免干扰测量资源对于 PDSCH打孔造成的性能损失。 如果在 R11阶段引入零功率 CSI-RS测量干扰 的方式后, 那么终端侧需要识别的速率匹配资源需要包括以下三种:
1.非零功率 CSI-RS资源。 主要是指基站侧按照 8或者 4端口的方式发送 CSI-RS, 终端侧只能最大支持 4或者 2端口, 这时要在其他不能识别的端口 位置进行速率匹配。 或者基站侧发送 CSI-RS, 但是终端侧釆用反馈模式 1-0, 2-0或者 3-0方式, 这时不需要配置 CSI-RS端口, 只需要配置零功率 CSI-RS 即可。
2.零功率 CSI-RS资源用于减少数据业务对于 CSI-RS测量的干扰。
3.零功率 CSI-RS资源用于终端侧在对应的资源位置上测量干扰。
对于第 1、 2点和 R10的零功率 CSI-RS配置的目的相同, 对于第 3点是 新增的零功率 CSI-RS 用于干扰测量。 所以对于 R11 需要存在新的零功率 CSI-RS配置方式,可以用于干扰测量,用于干扰测量的零功率 CSI-RS为 IMR ( Interference Measurement Resource , 干扰测量资源 ) 。
对于传统的 R8/9/10系统, 由于 CRS(Cell Specific Reference Signal, 小区 参考信号)是每个下行有效子帧都发送的, 所以终端可以基于每个子帧来进行 信道测量或者干扰测量, 每一个下行有效子帧都可以为一个 CSI参考资源, 而对于 R11的系统, CSI-RS和 IMR都是周期性配置的, 如果按照每个有效 子帧都为一个 CSI参考资源会导致终端的计算复杂度, 特别是对于 CoMP终 端, 由于这种终端需要计算和反馈多个 CSI Process (进程 )的 CSI (一个 CSI Process对应一个 NZP(Non Zero Power, 非零功率) CSI-RS配置和一个 IMR 配置) 。
由于新的传输模式需要支持多个 CSI Process的 CSI反馈, 所以确定 CSI 时终端复杂度过高,从而导致终端的成本过高,对于时分双工 TDD系统这个 问题更加突出。
发明内容
本发明实施例提供一种确定信道状态信息的终端及方法, 克服终端复杂 度过高问题, 解决现有系统在使用传输模式 10和 TDD双工方式时候成本过 高的问题。
本发明实施例提供了一种确定信道状态信息的方法, 包括: 终端 UE接 收非周期的信道状态信息 CSI请求, 根据所述终端的处理信道状态信息 CSI 进程 Process的能力和 /或当前配置的 CSI进程个数 y来确定参数 X , 根据所 述参数 X来更新最多 X个非周期 CSI; 其中, y和 X均为大于等于 1的正整 数, 所述参数 X为: 在同一个时刻所述终端需要更新的对于一个或者多个非 周期 CSI请求内 CSI进程或者报告的总个数。
上述方法还可具有以下特点:
所述处理 CSI进程的能力包括所述终端能够处理的最大的 CSI进程的个 数 P;
所述终端 4艮据所述终端的处理 CSI进程的能力和 /或当前配置的 CSI进 程个数 y来确定参数 X包括:
当 P大于等于 P0时,根据当前配置的 CSI进程个数 y来确定所述参数 X 的取值, 其中, 所述 P0是 3或者 4。
上述方法还可具有以下特点:
所述参数 X = y。
上述方法还可具有以下特点:
所述处理 CSI进程的能力包括所述终端能够处理的最大的 CSI进程个 数;
所述终端根据所述终端的处理 CSI进程的能力和 /或当前配置的 CSI进程 个数 y来确定参数 X包括: 当 P大于等于 P0时,根据当前配置的 CSI进程个数 y和所述 P来确定所 述参数 X的取值; 其中, P0是 3或者 4。
上述方法还可具有以下特点:
所述 P取值为 3和 4其中之一; 或者所述 P仅取值 4。
上述方法还可具有以下特点:
所述终端根据所述参数 X来更新最多 X个非周期的 CSI包括:
所述终端确定需要更新的非周期 CSI个数为 X和 Y两者的最小值 Z, 更 新 Z个非周期 CSI;
其中, 所述 Y为待上报的 CSI个数。
上述方法还可具有以下特点:
所述终端根据所述参数 X来更新最多 X个非周期 CSI的步骤包括: 根据接收的信道状态信息参考信号 CSI-RS进行信道测量和 /或干扰测量, 并确定 CSI参考资源, 计算对应所述 CSI参考资源的非周期 CSI。
上述方法还可具有以下特点:
本发明实施例还提供一种确定信道状态信息的终端 UE, 所述终端包括: 接收单元, 其设置为: 接收非周期的 CSI请求;
确定单元, 其设置为: 根据所述终端的处理 CSI进程的能力和 /或当前配 置的 CSI进程 个数 y来确定参数 X; 以及
更新单元, 其设置为: 才艮据所述参数 X来更新最多 X个非周期的 CSI; 其中, y和 X均为大于等于 1的正整数, 所述参数 X为: 在同一个时刻 所述终端需要更新的对于一个或者多个非周期 CSI请求内 CSI进程或者报告 的总个数。
上述终端还可具有以下特点:
所述处理 CSI进程的能力包括所述终端能够处理的最大的 CSI进程个数
P;
所述确定单元是设置为以如下方式确定所述参数 X: 当 P大于等于 P0时,根据当前配置的 CSI进程个数 y来确定所述参数 X 的取值, 其中, 所述 P0是 3或者 4。
上述终端还可具有以下特点:
所述参数 X = y。
上述终端还可具有以下特点:
所述处理 CSI进程的能力包括所述终端能够处理的最大的 CSI进程个数
P;
所述确定单元是设置为以如下方式确定所述参数 X:
当 P大于等于 P0时,根据当前配置的 CSI进程个数 y和所述 P来确定所 述参数 X的取值; 其中, P0是 3或者 4。
上述终端还可具有以下特点:
所述确定单元是设置为以如下方式确定所述参数 X:
所述 P取值为 3和 4其中之一; 或者所述 P仅取值 4。
上述终端还可具有以下特点:
所述更新单元是设置为以如下方式才艮据所述参数 X来更新最多 X个非周 期的 CSI:
确定需要更新的非周期 CSI个数为 X和 Y两者的最小值 Z, 更新 Z个非 周期 CSI;
其中, 所述 Y为待上报的 CSI个数。
上述终端还可具有以下特点:
所述更新单元是设置为根据如下方式更新需要更新的各非周期 CSI: 根据接收的信道状态信息参考信号 CSI-RS进行信道测量和 /或干扰测量, 并确定 CSI参考资源, 计算对应所述 CSI参考资源的非周期 CSI。
上述终端还可具有以下特点:
所述终端还包括上 单元, 其设置为: 将所述更新的非周期 CSI上 4艮给 网络侧。 综上所述, 釆用本发明实施例的方案, 在没有增加任何系统复杂度和信 令开销的情况下, 对于传输模式 11或者以后的传输模式, 考虑到 UE的处理 能力和配置的 CSI Process的个数来决定需要更新的非周期的 CSI的个数,对 数据 CSI运算量做出了合理的限制, 保证终端具有合理的复杂度, 保证终端 具有合理的成本。 附图概述
图 1是本发明方法实施例中一种确定信道状态信息方法的流程图;
图 2是本发明实施例中终端结构示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
在介绍本发明技术方案之前, 先简单介绍 CSI参考资源;
首先, 从时域、 频域、 传输域三个方面阐述 CSI参考资源。
在频域上, CSI参考资源是由一组下行物理资源块定义的, 这些资源块 对应于获得的 CQI值相关的一段带宽;
在时域上, CSI参考资源是由一个唯一的下行子帧 n-nCQI— ref 定义的; 在这里,对于周期 CSI报告 nCQI— ref 是大于等于 4的最小值, 目的是它 可以对应一个合理(valid ) 的下行子帧。
在这里对于非周期 CSI报告《ce/— 是如下的子帧:参考资源出现在与对 应的 CSI请求的子帧相同的 valid子帧里,其中这个 CSI请求出现在一个上行 DCI format (下行控制信令格式)中。
在这里,对于非周期的 CSI报告 ncQi ref 等于 4且下行子帧 n-nCQI ref 对应 一个 valid的下行子帧, 在这里下行子帧 n-nCQI ref 在具有对应的 CSI请求的 子帧之后被接收, 而这个 CSI请求出现在一个随机接入响应授权 ( Random Access Response Grant ) 中。
在传输域上, CSI参考资源是由 PMI和 RI定义, CQI是以 PMI和 RI为 条件的。
方法实施例
本实施例提供一种确定信道状态信息的方法, 如图 1所示, 包括如下步 骤: 步骤 101 : UE接收非周期的 CSI请求;
步骤 102: UE根据所述 UE的处理信道状态信息进程 CSI Process的能力 和 /或当前配置的 CSI Process 个数 y来确定参数 X , 其中, y是大于等于 1 的正整数;
步骤 103: 才艮据 X来更新最多 X个非周期的 CSI。
其中, 所述处理 CSI Process的能力包括所述终端能够处理的最大的 CSI Process个数 P, 其中 P是大于等于 1的正整数;
其中, 所述参数 X为: 在同一个时刻所述终端需要更新的对于一个或者 多个非周期 CSI请求内 CSI Process或者报告的总个数。
根据 P和 y来确定 X的过程包括: 当所述终端能够处理的最大的 CSI
Process个数 P大于等于 P0时,可以根据当前配置的 CSI Process个数来确定 X的取值; 比如, X=y, 或者, 当所述终端能够处理的最大的 CSI Process个 数 P大于等于 P0时, 可以根据当前配置 CSI Process 个数和所述终端能够处 理的最大的 CSI Process个数 P来确定 X的取值。
根据 X来更新最多 X个非周期的 CSI包括: 终端确定需要更新的非周期
CSI个数 Z, 更新 Z个非周期 CSI; 其中, Z=min(X,Y), min表示 X、 Y中的 取值求最小, 所述 Y为待上报的 CSI个数。
每个需要更新的非周期 CSI更新的过程包括: 根据接收的信道状态信息 参考信号 CSI-RS进行信道测量和 /或干扰测量, 并确定 CSI参考资源, 之后 所述终端计算对应 CSI参考资源的 CQI值。
较佳的, 一个 CSI Process可以对应一个或者多个所述的待上 >¾的 CSI。 较佳的, 终端将更新的非周期 CSI上报给网络侧。
以下通过两个更加具体的实施说明如何确定 X。
实施例一
如果 P=3或者 4, y = 2、 3和 4时, X取值为 y;
待上报的 CSI 的个数设为 Y个, 需要更新的非周期 CSI 个数为 Z=min(X,Y), min表示两个取值求最小。 终端更新 Z个非周期的 CSI。
y等于 1时, 没有 X的限制。
其中, y目前可能取值为 1、 2、 3和 4; P可能取值为 1、 3、 4。
总之, 这里 CSI的计算方法充分考虑到 UE的能力和配置的 CSI Process 的个数来决定需要更新的非周期的 CSI的个数。 对数据 CSI运算量做出了合 理的限制, 保证终端具有合理的复杂度, 保证终端具有合理的成本, 特别适 用时分双工系统。
实施例二
如果 P=3 , y = 2或 3 , 则 X取值为 P;
^口果 P=4, y = 2或 3 , 则 X取值为 min(P,3); 否则, y = 4时, X取值为 P; 待上报的 CSI 的个数设为 Y个, 需要更新的非周期 CSI 个数为 Z=min(X,Y), min表示两个取值求最小。 终端更新 Z个非周期的 CSI。
y等于 1时, 没有 X的限制。
其中, y目前可能取值为 1、 2、 3和 4; P可能取值为 1、 3、 4。
终端实施例
本实施例提供一种确定信道状态信息的终端, 如图 2所示, 包括: 接收单元, 设置为接收非周期的 CSI请求;
确定单元,设置为根据所述终端的处理信道状态信息进程 CSI Process的 能力和 /或当前配置的 CSI Process 个数 y来确定参数 X;
更新单元, 设置为根据所述参数 X来更新最多 X个非周期的 CSI;
上报单元, 设置为将所述更新的非周期 CSI上报给网络侧。
其中, 所述参数 X为: 在同一个时刻所述终端需要更新的对于一个或者 多个非周期 CSI请求内 CSI进程或者报告的总个数。
其中, 所述处理 CSI Process的能力包括所述终端能够处理的最大的 CSI Process个数;
所述确定单元确定所述参数 X的过程包括:
当所述终端能够处理的最大的 CSI Process个数 P大于等于 P0时, 根据 当前配置的 CSI Process个数 y来确定所述参数 X的取值, 其中, 所述 P0是 3或者 4。
一种实施方式为, 所述参数 X = y。
其中, 所述处理 CSI Process的能力包括所述终端能够处理的最大的 CSI Process个数;
所述确定单元确定所述参数 X的过程包括:
当所述终端能够处理的最大的 CSI Process个数 P大于等于 P0时, 根据 当前配置的 CSI Process个数 y和所述 P来确定所述参数 X的取值; 其中, P0 是 3或者 4。
其中, 所述 P取值为 3和 4其中之一; 或者所述 P仅取值 4。
其中,所述更新单元根据所述参数 X来更新最多 X个非周期的 CSI包括: 所述更新单元确定需要更新的非周期 CSI个数为 X和 Y两者的最小值 Z, 更新 Z个非周期 CSI;
其中, 所述 Y为待上报的 CSI个数。
其中, 所述更新单元根据如下方式更新需要更新的各非周期 CSI:
根据接收的信道状态信息参考信号 CSI-RS进行信道测量和 /或干扰测量, 并确定 CSI参考资源, 计算对应所述 CSI参考资源的非周期 CSI。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
工业实用性
本发明实施例在没有增加任何系统复杂度和信令开销的情况下, 对于传 输模式 11或者以后的传输模式,考虑到 UE的处理能力和配置的 CSI Process 的个数来决定需要更新的非周期的 CSI的个数, 对数据 CSI运算量做出了合 理的限制, 保证终端具有合理的复杂度, 保证终端具有合理的成本。

Claims

权 利 要 求 书
1、 一种确定信道状态信息 CSI的方法, 包括:
终端接收非周期的 CSI请求, 根据所述终端的处理 CSI进程的能力和 / 或当前配置的 CSI进程个数 y来确定参数 X , 根据所述参数 X来更新最多 X 个非周期 CSI; 其中, y和 X均为大于等于 1的正整数, 所述参数 X为: 在 同一个时刻所述终端需要更新的对于一个或者多个非周期 CSI请求内 CSI进 程或者报告的总个数。
2、 如权利要求 1所述的方法, 其中:
所述处理 CSI进程的能力包括所述终端能够处理的最大的 CSI进程的个 数 P;
所述终端 4艮据所述终端的处理 CSI进程的能力和 /或当前配置的 CSI进 程个数 y来确定参数 X包括:
当 P大于等于 P0时,根据当前配置的 CSI进程个数 y来确定所述参数 X 的取值, 其中, 所述 P0是 3或者 4。
3、 如权利要求 2所述的方法, 其中, 所述参数 X = y。
4、 如权利要求 1所述的方法, 其中:
所述处理 CSI进程的能力包括所述终端能够处理的最大的 CSI进程个数
P;
所述终端根据所述终端的处理 CSI进程的能力和 /或当前配置的 CSI进程 个数 y来确定参数 X包括:
当 P大于等于 P0时,根据当前配置的 CSI进程个数 y和所述 P来确定所 述参数 X的取值; 其中, P0是 3或者 4。
5、 如权利要求 2至 4任一所述的方法, 其中: 所述 P取值为 3和 4其中 之一; 或者所述 P仅取值 4。
6、 如权利要求 1至 4任一所述的方法, 其中:
所述终端根据所述参数 X来更新最多 X个非周期的 CSI包括:
所述终端确定需要更新的非周期 CSI个数为 X和 Y两者的最小值 Z, 更 新 Z个非周期 CSI;
其中, 所述 Y为待上报的 CSI个数。
7、 如权利要求 1至 4任一所述的方法, 其中:
所述终端根据所述参数 X来更新最多 X个非周期 CSI的步骤包括: 根据接收的信道状态信息参考信号 CSI-RS进行信道测量和 /或干扰测量, 并确定 CSI参考资源, 计算对应所述 CSI参考资源的非周期 CSI。
8、 如权利要求 1至 4任一所述的方法, 所述方法还包括:
9、 一种确定信道状态信息 CSI的终端, 所述终端包括:
接收单元, 其设置为: 接收非周期的 CSI请求;
确定单元, 其设置为: 根据所述终端的处理 CSI进程的能力和 /或当前配 置的 CSI进程 个数 y来确定参数 X; 以及
更新单元, 其设置为: 才艮据所述参数 X来更新最多 X个非周期的 CSI; 其中, y和 X均为大于等于 1的正整数, 所述参数 X为: 在同一个时刻 所述终端需要更新的对于一个或者多个非周期 CSI请求内 CSI进程或者报告 的总个数。
10、 如权利要求 9所述的终端, 其中:
所述处理 CSI进程的能力包括所述终端能够处理的最大的 CSI进程个数
P;
所述确定单元是设置为以如下方式确定所述参数 X:
当 P大于等于 P0时,根据当前配置的 CSI进程个数 y来确定所述参数 X 的取值, 其中, 所述 P0是 3或者 4。
11、 如权利要求 10所述的终端, 其中, 所述参数 X = y。
12、 如权利要求 9所述的终端, 其中:
所述处理 CSI进程的能力包括所述终端能够处理的最大的 CSI进程个数 所述确定单元是设置为以如下方式确定所述参数 X:
当 P大于等于 P0时,根据当前配置的 CSI进程个数 y和所述 P来确定所 述参数 X的取值; 其中, P0是 3或者 4。
13、 如权利要求 10至 12任一所述的终端, 其中: 所述确定单元是设置 为以如下方式确定所述参数 X
所述 P取值为 3和 4其中之一; 或者所述 P仅取值 4。
14、 如权利要求 9至 12任一所述的终端, 其中:
所述更新单元是设置为以如下方式根据所述参数 X来更新最多 X个非周 期的 CSI:
确定需要更新的非周期 CSI个数为 X和 Y两者的最小值 Z, 更新 Z个非 周期 CSI;
其中, 所述 Y为待上报的 CSI个数。
15、 如权利要求 9至 12任一所述的终端, 其中:
所述更新单元是设置为根据如下方式更新需要更新的各非周期 CSI: 根据接收的信道状态信息参考信号 CSI-RS进行信道测量和 /或干扰测量, 并确定 CSI参考资源, 计算对应所述 CSI参考资源的非周期 CSI。
16、 如权利要求 9至 12任一所述的终端, 其中:
所述终端还包括上 单元, 其设置为: 将所述更新的非周期 CSI上 4艮给 网络侧。
PCT/CN2013/085898 2012-10-24 2013-10-24 一种确定信道状态信息的方法及终端 WO2014063647A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/437,946 US9686066B2 (en) 2012-10-24 2013-10-24 Method and terminal for determining channel state information
MX2015005074A MX351294B (es) 2012-10-24 2013-10-24 Procedimiento y terminal para determinar informacion de estado de canal.
ES13848900T ES2884812T3 (es) 2012-10-24 2013-10-24 Método y terminal para determinar información de estado de canal
BR112015009057-5A BR112015009057B1 (pt) 2012-10-24 2013-10-24 Método para determinação de informação de estado de canal (csi), e terminal para a determinação de informação de estado de canal (csi)
AU2013337196A AU2013337196B2 (en) 2012-10-24 2013-10-24 Method and terminal for determining channel state information
JP2015538273A JP6037321B2 (ja) 2012-10-24 2013-10-24 チャネル状態情報を確定する方法及び端末
RU2015116949/08A RU2600533C1 (ru) 2012-10-24 2013-10-24 Способ и терминал для определения информации о состоянии канала
EP13848900.0A EP2897316B1 (en) 2012-10-24 2013-10-24 Method and terminal for determining channel state information
KR1020157010722A KR101728257B1 (ko) 2012-10-24 2013-10-24 채널 상태 정보를 확정하는 방법 및 단말

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210410504.1 2012-10-24
CN201210410504.1A CN103780358B (zh) 2012-10-24 2012-10-24 一种确定信道状态信息的方法及终端

Publications (1)

Publication Number Publication Date
WO2014063647A1 true WO2014063647A1 (zh) 2014-05-01

Family

ID=50544032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085898 WO2014063647A1 (zh) 2012-10-24 2013-10-24 一种确定信道状态信息的方法及终端

Country Status (12)

Country Link
US (1) US9686066B2 (zh)
EP (1) EP2897316B1 (zh)
JP (1) JP6037321B2 (zh)
KR (1) KR101728257B1 (zh)
CN (1) CN103780358B (zh)
AU (1) AU2013337196B2 (zh)
BR (1) BR112015009057B1 (zh)
ES (1) ES2884812T3 (zh)
MX (1) MX351294B (zh)
MY (1) MY180888A (zh)
RU (1) RU2600533C1 (zh)
WO (1) WO2014063647A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517258A (ja) * 2012-03-29 2015-06-18 クアルコム,インコーポレイテッド チャネル状態情報基準信号(csi−rs)構成およびcsi報告制限
KR20170132169A (ko) * 2015-03-27 2017-12-01 퀄컴 인코포레이티드 Fdd 하프 듀플렉스 네트워크에서의 전력 제어 지령에 의한 업링크 스케쥴링

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102011822B1 (ko) * 2012-01-11 2019-08-19 엘지전자 주식회사 무선 접속 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2015042176A1 (en) * 2013-09-17 2015-03-26 Futurewei Technologies Inc. Device and method of enhancing downlink ue-specific demodulation reference signal to facilitate inter -cell interference supression
US9420472B2 (en) * 2013-09-27 2016-08-16 Qualcomm Incorporated Prioritization of different operators in shared spectrum
JP6580591B2 (ja) 2014-04-16 2019-09-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける非周期的チャネル状態情報を処理する方法及び装置
KR102334620B1 (ko) * 2014-09-25 2021-12-03 엘지전자 주식회사 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
WO2016105121A1 (ko) * 2014-12-24 2016-06-30 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
CN104601286B (zh) * 2015-01-16 2018-03-27 华为技术有限公司 一种上报信道状态信息的方法、用户设备及系统
US9680535B2 (en) * 2015-01-16 2017-06-13 Samsung Electronics Co., Ltd. Method and apparatus for reduced feedback FD-MIMO
CN105991220B (zh) * 2015-01-30 2019-07-30 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
CN106160825B (zh) * 2015-04-20 2021-07-30 中兴通讯股份有限公司 信道信息的配置方法及装置、反馈方法及装置
KR102574954B1 (ko) 2015-08-13 2023-09-05 삼성전자주식회사 통신 시스템에서 기준 신호를 송수신하는 방법 및 장치
WO2017026863A1 (ko) * 2015-08-13 2017-02-16 삼성전자 주식회사 통신 시스템에서 기준 신호를 송수신하는 방법 및 장치
CN106487484B (zh) * 2015-08-25 2021-02-12 中兴通讯股份有限公司 信息配置、信息反馈方法、基站及终端
EP3373469A4 (en) 2015-11-03 2019-05-01 LG Electronics Inc. METHOD FOR INDICATING THE CHANNEL STATUS IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
PL3920455T3 (pl) 2016-05-13 2023-06-26 Telefonaktiebolaget Lm Ericsson (Publ) Wielorozdzielcze przesyłanie zwrotne CSI
EP3477988B1 (en) * 2016-06-24 2020-10-28 LG Electronics Inc. -1- Aperiodic csi reporting method based on aperiodic csi-rs in wireless communication system, and device therefor
EP3490162A4 (en) 2016-07-29 2020-05-06 LG Electronics Inc. -1- METHOD FOR REPORTING CHANNEL STATUS INFORMATION BY A TERMINAL IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE FOR SUPPORTING IT
US11240697B2 (en) 2016-08-11 2022-02-01 Lg Electronics Inc. Aperiodic CSI reporting method based on aperiodic CSI-RS in wireless communication system, and device therefor
WO2018030714A1 (ko) * 2016-08-11 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
EP3577937B1 (en) * 2017-02-04 2021-12-29 QUALCOMM Incorporated Coupling aperiodic channel state information (csi) reference symbol (rs) (csi-rs) structure with feedback content and reporting timing
CN111052647A (zh) 2017-09-08 2020-04-21 Oppo广东移动通信有限公司 无线通信方法、终端设备和发射节点
US11191001B2 (en) * 2017-11-21 2021-11-30 Ualcomm Incorporated Handover schemes for millimeter wave (MMW) wireless communications
CN110474664B (zh) * 2018-05-11 2021-05-04 华为技术有限公司 一种传输数据的方法、设备及计算机可读存储介质
CN110661560B (zh) 2018-06-29 2022-06-24 中兴通讯股份有限公司 Csi反馈的方法、装置、终端、基站及存储介质
WO2020093198A1 (en) * 2018-11-05 2020-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and network element of scheduling uplink reference signal resource
US11690115B1 (en) * 2020-09-22 2023-06-27 Sprint Spectrum Llc Dual-connectivity anchor-carrier selection based on transmission-mode support
US11637726B2 (en) * 2021-03-25 2023-04-25 Telefonaktiebolaget Lm Ericsson (Publ) Receiver for a wireless communication network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271401A (zh) * 2010-06-04 2011-12-07 华为技术有限公司 一种信道状态信息的接收方法、装置和系统
US20120127869A1 (en) * 2010-11-22 2012-05-24 Sharp Laboratories Of America, Inc. Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation
CN102594528A (zh) * 2011-01-10 2012-07-18 夏普株式会社 非周期信道状态信息反馈的触发方法
CN102638325A (zh) * 2011-02-14 2012-08-15 上海贝尔股份有限公司 触发非周期性上行探测参考信号发送的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837351B1 (ko) * 2002-04-06 2008-06-12 엘지전자 주식회사 이동통신 시스템의 무선링크 파라미터 갱신 방법
CN101730239B (zh) * 2008-10-24 2012-05-09 中兴通讯股份有限公司 小区频率资源的分配方法及终端信道质量指示值反馈装置
CN101789813B (zh) * 2009-01-24 2015-05-20 中兴通讯股份有限公司 信道质量信息反馈方法及终端
CN102082636B (zh) * 2010-08-16 2013-05-08 电信科学技术研究院 一种信道状态信息csi反馈指示方法和基站及系统
US9155098B2 (en) * 2012-03-29 2015-10-06 Qualcomm Incorporated Channel state information reference signal (CSI-RS) configuration and CSI reporting restrictions
US9755706B2 (en) * 2012-06-22 2017-09-05 Qualcomm Incorporated Techniques for joint support of coordinated multipoint (CoMP) operations and carrier aggregation (CA)
US9912430B2 (en) * 2012-07-06 2018-03-06 Samsung Electronics Co. Ltd. Method and apparatus for channel state information feedback reporting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271401A (zh) * 2010-06-04 2011-12-07 华为技术有限公司 一种信道状态信息的接收方法、装置和系统
US20120127869A1 (en) * 2010-11-22 2012-05-24 Sharp Laboratories Of America, Inc. Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation
CN102594528A (zh) * 2011-01-10 2012-07-18 夏普株式会社 非周期信道状态信息反馈的触发方法
CN102638325A (zh) * 2011-02-14 2012-08-15 上海贝尔股份有限公司 触发非周期性上行探测参考信号发送的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2897316A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517258A (ja) * 2012-03-29 2015-06-18 クアルコム,インコーポレイテッド チャネル状態情報基準信号(csi−rs)構成およびcsi報告制限
KR20170132169A (ko) * 2015-03-27 2017-12-01 퀄컴 인코포레이티드 Fdd 하프 듀플렉스 네트워크에서의 전력 제어 지령에 의한 업링크 스케쥴링
JP2018509859A (ja) * 2015-03-27 2018-04-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated Fdd半二重ネットワークにおける電力制御コマンドを用いたアップリンクスケジューリング
KR101980031B1 (ko) * 2015-03-27 2019-05-17 퀄컴 인코포레이티드 Fdd 하프 듀플렉스 네트워크에서의 전력 제어 지령에 의한 업링크 스케쥴링

Also Published As

Publication number Publication date
MX2015005074A (es) 2015-09-23
AU2013337196B2 (en) 2016-09-22
RU2600533C1 (ru) 2016-10-20
US20150295694A1 (en) 2015-10-15
JP2015532568A (ja) 2015-11-09
KR101728257B1 (ko) 2017-04-18
US9686066B2 (en) 2017-06-20
CN103780358A (zh) 2014-05-07
AU2013337196A1 (en) 2015-05-14
MX351294B (es) 2017-10-10
EP2897316A4 (en) 2015-08-12
BR112015009057B1 (pt) 2022-11-22
EP2897316A1 (en) 2015-07-22
EP2897316B1 (en) 2021-07-14
BR112015009057A2 (pt) 2017-07-04
MY180888A (en) 2020-12-11
ES2884812T3 (es) 2021-12-13
CN103780358B (zh) 2018-08-21
JP6037321B2 (ja) 2016-12-07
KR20150060916A (ko) 2015-06-03

Similar Documents

Publication Publication Date Title
US9686066B2 (en) Method and terminal for determining channel state information
KR101504446B1 (ko) 채널 품질 지시 정보를 확정하는 방법 및 장치
JP5722461B2 (ja) チャネル状態情報のフィードバック方法及びユーザー装置
US9590749B2 (en) Terminal and method for calculating channel quality indication information
US10341080B2 (en) Method and apparatus for determining quantity of channel quality indicators (CQI)
US20150195071A1 (en) Method and Apparatus Providing Inter-Transmission Point Phase Relationship Feed-Back for Joint Transmission CoMP
WO2012059000A1 (zh) 一种信道质量信息的上报方法及其装置
US10433293B2 (en) Method and apparatus for receiving or transmitting downlink signal in a wireless communication system
US20130250876A1 (en) Method And Apparatus Providing Inter-Transmission Point Phase Relationship Feedback For Joint Transmission CoMP
CN104885502A (zh) 在无线通信系统中测量干扰的方法及其设备
WO2012062197A1 (zh) 一种信道质量信息的上报方法及其装置
WO2014019530A1 (zh) 一种信道状态信息的反馈方法及用户设备
WO2016019741A1 (zh) 信道质量/状态指示信息处理方法、装置、终端及基站
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013848900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/005074

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015538273

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437946

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157010722

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015009057

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201502770

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2013337196

Country of ref document: AU

Date of ref document: 20131024

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015116949

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015009057

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150422