WO2018030714A1 - 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018030714A1
WO2018030714A1 PCT/KR2017/008433 KR2017008433W WO2018030714A1 WO 2018030714 A1 WO2018030714 A1 WO 2018030714A1 KR 2017008433 W KR2017008433 W KR 2017008433W WO 2018030714 A1 WO2018030714 A1 WO 2018030714A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
subframe
terminal
transmitted
processing time
Prior art date
Application number
PCT/KR2017/008433
Other languages
English (en)
French (fr)
Inventor
이현호
이윤정
황대성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020197000522A priority Critical patent/KR102188271B1/ko
Priority to CN201780043278.9A priority patent/CN109478971B/zh
Priority to EP17839732.9A priority patent/EP3471314B1/en
Priority to JP2019507792A priority patent/JP2019532545A/ja
Publication of WO2018030714A1 publication Critical patent/WO2018030714A1/ko
Priority to US16/251,837 priority patent/US10547430B2/en
Priority to US16/710,446 priority patent/US11050540B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for channel state reporting and an apparatus therefor.
  • Latency in packet data is one of the important performance metrics, and reducing it and providing faster Internet access to end users is not only in LTE, but also in the design of next-generation mobile systems, the so-called new RAT.
  • new RAT One of the important tasks.
  • the present invention is intended to address channel state reporting in a wireless communication system supporting such a reduction in latency.
  • the present invention proposes a method for channel status reporting.
  • the method is performed by a terminal and processing time Transmitting, to the base station, terminal capability information regarding the maximum number of CSI processes that can be updated or calculated simultaneously by the terminal having a shortened processing time set therein; Receiving an aperiodic CSI request from the base station; And updating or calculating the CSI in the CSI reference resource at the time point set for the processing time reduction based on the terminal capability information according to the aperiodic CSI request, and transmitting the updated or calculated CSI to the base station. can do.
  • CSI-RS channel state information-reference signal
  • the terminal capability information may include the maximum number of CSI processes that the terminal can update or calculate at the same time for each newomage set for the terminal and / or for processing time set for the terminal.
  • the CSI reference resource for which the updated or calculated CSI was measured belongs to subframe nk, where the minimum value of k is set to reduce processing time. It may be set to an integer smaller than the minimum value for the terminal that is not.
  • the subframe n-k may be the subframe closest to the subframe n of the set of CSI subframes connected to the subframe n in which the aperiodic CSI request is transmitted.
  • the minimum value of k may be an integer less than 5 for a serving cell for frequency division duplex (FDD).
  • the minimum value of k is an integer less than 4 when the serving cell for time division duplex (TDD) is 2 or 3 CSI processes for the terminal; When there are four CSI processes for the terminal, it may be an integer smaller than five.
  • the updated or calculated CSI may be sent in subframe m + l, and l may be set to an integer less than four.
  • the subframe containing the CSI reference resource may be different from the subframe in which the aperiodic CSI request was received.
  • a terminal for performing channel state reporting based on channel state information-reference signal (CSI-RS) in a wireless communication system comprising: a transmitter and a receiver; And a processor controlling the transmitter and the receiver, the processor comprising: terminal capability information regarding a maximum number of CSI processes that the terminal with shortened processing time set may be updated or calculated simultaneously; Transmit to a base station, receive an aperiodic CSI request from the base station, and update or calculate CSI in a CSI reference resource at a time point configured for the processing time reduction based on the terminal capability information according to the aperiodic CSI request; May be configured to transmit the updated or calculated CSI to the base station.
  • CSI-RS channel state information-reference signal
  • the terminal capability information may include the maximum number of CSI processes that the terminal can update or calculate at the same time for each newomage set for the terminal and / or for processing time set for the terminal.
  • the CSI reference resource for which the updated or calculated CSI was measured belongs to subframe nk, where the minimum value of k is set to reduce processing time. It may be set to an integer smaller than the minimum value for the terminal that is not.
  • the subframe n-k may be the subframe closest to the subframe n of the set of CSI subframes connected to the subframe n in which the aperiodic CSI request is transmitted.
  • the minimum value of k may be an integer less than 5 for a serving cell for frequency division duplex (FDD).
  • the minimum value of k is an integer less than 4 when the serving cell for time division duplex (TDD) is 2 or 3 CSI processes for the terminal; When there are four CSI processes for the terminal, it may be an integer smaller than five.
  • the updated or calculated CSI may be sent in subframe m + l, and l may be set to an integer less than four.
  • the subframe containing the CSI reference resource may be different from the subframe in which the aperiodic CSI request was received.
  • channel state measurement and reporting can be efficiently performed.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG 3 illustrates a downlink (DL) subframe structure used in a 3GPP LTE / LTE-A system.
  • FIG. 4 illustrates an example of an uplink (UL) subframe structure used in a 3GPP LTE / LTE-A system.
  • FIG. 5 illustrates an operation of a terminal according to an embodiment of the present invention.
  • FIG. 6 shows a block diagram of an apparatus for implementing an embodiment (s) of the present invention.
  • a user equipment may be fixed or mobile, and various devices which transmit and receive user data and / or various control information by communicating with a base station (BS) belong to this.
  • the UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like.
  • a BS generally refers to a fixed station communicating with the UE and / or another BS, and communicates with the UE and another BS to exchange various data and control information.
  • BS includes Advanced Base Station (ABS), Node-B (NB), evolved-NodeB (eNB), Base Transceiver System (BTS), Access Point, Processing Server (PS), Transmission Point (TP) May be called in other terms.
  • ABS Advanced Base Station
  • NB Node-B
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • PS Processing Server
  • TP Transmission Point
  • BS is collectively referred to as eNB.
  • a node refers to a fixed point capable of transmitting / receiving a radio signal by communicating with a user equipment.
  • Various forms of eNBs may be used as nodes regardless of their name.
  • the node may be a BS, an NB, an eNB, a pico-cell eNB (PeNB), a home eNB (HeNB), a relay, a repeater, and the like.
  • the node may not be an eNB.
  • it may be a radio remote head (RRH), a radio remote unit (RRU).
  • RRHs, RRUs, etc. generally have a power level lower than the power level of the eNB.
  • RRH or RRU, RRH / RRU is generally connected to an eNB by a dedicated line such as an optical cable
  • RRH / RRU and eNB are generally compared to cooperative communication by eNBs connected by a wireless line.
  • cooperative communication can be performed smoothly.
  • At least one antenna is installed at one node.
  • the antenna may mean a physical antenna or may mean an antenna port, a virtual antenna, or an antenna group.
  • Nodes are also called points. Unlike conventional centralized antenna systems (ie, single node systems) where antennas are centrally located at base stations and controlled by one eNB controller, in a multi-node system A plurality of nodes are typically located farther apart than a predetermined interval.
  • the plurality of nodes may be managed by one or more eNBs or eNB controllers that control the operation of each node or schedule data to be transmitted / received through each node.
  • Each node may be connected to the eNB or eNB controller that manages the node through a cable or dedicated line.
  • the same cell identifier (ID) may be used or different cell IDs may be used for signal transmission / reception to / from a plurality of nodes.
  • ID cell identifier
  • each of the plurality of nodes behaves like some antenna group of one cell.
  • a multi-node system may be regarded as a multi-cell (eg, macro-cell / femto-cell / pico-cell) system.
  • the network formed by the multiple cells is particularly called a multi-tier network.
  • the cell ID of the RRH / RRU and the cell ID of the eNB may be the same or may be different.
  • both the RRH / RRU and the eNB operate as independent base stations.
  • one or more eNB or eNB controllers connected with a plurality of nodes may control the plurality of nodes to simultaneously transmit or receive signals to the UE via some or all of the plurality of nodes.
  • multi-node systems depending on the identity of each node, the implementation of each node, etc., these multi-nodes in that multiple nodes together participate in providing communication services to the UE on a given time-frequency resource.
  • the systems are different from single node systems (eg CAS, conventional MIMO system, conventional relay system, conventional repeater system, etc.).
  • embodiments of the present invention regarding a method for performing data cooperative transmission using some or all of a plurality of nodes may be applied to various kinds of multi-node systems.
  • a node generally refers to an antenna group spaced apart from another node by a predetermined distance or more
  • embodiments of the present invention described later may be applied even when the node means any antenna group regardless of the interval.
  • the eNB may control the node configured as the H-pol antenna and the node configured as the V-pol antenna, and thus embodiments of the present invention may be applied. .
  • a communication scheme that enables different nodes to receive the uplink signal is called multi-eNB MIMO or CoMP (Coordinated Multi-Point TX / RX).
  • Cooperative transmission schemes among such cooperative communication between nodes can be largely classified into joint processing (JP) and scheduling coordination.
  • the former may be divided into joint transmission (JT) / joint reception (JR) and dynamic point selection (DPS), and the latter may be divided into coordinated scheduling (CS) and coordinated beamforming (CB).
  • DPS is also called dynamic cell selection (DCS).
  • JP Joint Processing Protocol
  • JR refers to a communication scheme in which a plurality of nodes receive the same stream from the UE.
  • the UE / eNB combines the signals received from the plurality of nodes to recover the stream.
  • the reliability of signal transmission may be improved by transmit diversity.
  • DPS in JP refers to a communication technique in which a signal is transmitted / received through one node selected according to a specific rule among a plurality of nodes.
  • DPS since a node having a good channel condition between the UE and the node will be selected as a communication node, the reliability of signal transmission can be improved.
  • a cell refers to a certain geographic area in which one or more nodes provide a communication service. Therefore, in the present invention, communication with a specific cell may mean communication with an eNB or a node that provides a communication service to the specific cell.
  • the downlink / uplink signal of a specific cell means a downlink / uplink signal from / to an eNB or a node that provides a communication service to the specific cell.
  • the cell providing uplink / downlink communication service to the UE is particularly called a serving cell.
  • the channel state / quality of a specific cell means a channel state / quality of a channel or communication link formed between an eNB or a node providing a communication service to the specific cell and a UE.
  • a UE transmits a downlink channel state from a specific node on a channel CSI-RS (Channel State Information Reference Signal) resource to which the antenna port (s) of the specific node is assigned to the specific node. Can be measured using CSI-RS (s).
  • CSI-RS Channel State Information Reference Signal
  • adjacent nodes transmit corresponding CSI-RS resources on CSI-RS resources orthogonal to each other.
  • Orthogonality of CSI-RS resources means that the CSI-RS is allocated by CSI-RS resource configuration, subframe offset, and transmission period that specify symbols and subcarriers carrying the CSI-RS. This means that at least one of a subframe configuration and a CSI-RS sequence for specifying the specified subframes are different from each other.
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a Physical Uplink Control CHannel (PUCCH) / Physical (PUSCH) Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively.
  • DCI Downlink Control Information
  • CFI Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK
  • the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource is referred to below:
  • the expression that the user equipment transmits the PUCCH / PUSCH / PRACH is hereinafter referred to as uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively.
  • PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
  • Figure 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • Figure 1 (a) shows a frame structure for frequency division duplex (FDD) used in the 3GPP LTE / LTE-A system
  • Figure 1 (b) is used in the 3GPP LTE / LTE-A system
  • the frame structure for time division duplex (TDD) is shown.
  • a radio frame used in a 3GPP LTE / LTE-A system has a length of 10 ms (307200 Ts), and is composed of 10 equally sized subframes (SF). Numbers may be assigned to 10 subframes in one radio frame.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a specific frequency band. In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a specific frequency band.
  • Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS is a time interval reserved for downlink transmission
  • UpPTS is a time interval reserved for uplink transmission.
  • Table 2 illustrates the configuration of a singular frame.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG. 2 shows a structure of a resource grid of a 3GPP LTE / LTE-A system. There is one resource grid per antenna port.
  • a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • OFDM symbol may mean a symbol period.
  • the signal transmitted in each slot is * Subcarriers and It may be represented by a resource grid composed of OFDM symbols.
  • Represents the number of resource blocks (RBs) in the downlink slot Represents the number of RBs in the UL slot.
  • Wow Depends on the DL transmission bandwidth and the UL transmission bandwidth, respectively.
  • Denotes the number of OFDM symbols in the downlink slot Denotes the number of OFDM symbols in the UL slot.
  • the OFDM symbol may be called an OFDM symbol, a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols.
  • FIG. 2 illustrates a subframe in which one slot includes 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner. 2, each OFDM symbol, in the frequency domain, * Subcarriers are included.
  • the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard band, and direct current (DC) components.
  • the null subcarrier for the DC component is a subcarrier left unused and is mapped to a carrier frequency f0 during an OFDM signal generation process or a frequency upconversion process.
  • the carrier frequency is also called the center frequency.
  • 1 RB in the time domain It is defined as (eg, seven) consecutive OFDM symbols, and is defined by c (for example 12) consecutive subcarriers in the frequency domain.
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is * It consists of three resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot. k is from 0 in the frequency domain * Index given up to -1, where l is from 0 in the time domain Index given up to -1.
  • Two RBs one in each of two slots of the subframe, occupying the same consecutive subcarriers, are called a physical resource block (PRB) pair.
  • PRB physical resource block
  • Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
  • VRB is a kind of logical resource allocation unit introduced for resource allocation.
  • VRB has the same size as PRB.
  • FIG 3 illustrates a downlink (DL) subframe structure used in a 3GPP LTE / LTE-A system.
  • a DL subframe is divided into a control region and a data region in the time domain.
  • up to three (or four) OFDM symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared CHannel
  • a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region.
  • Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a Hybrid Automatic Repeat Request (HARQ) ACK / NACK (acknowledgment / negative-acknowledgment) signal in response to the UL transmission.
  • HARQ Hybrid Automatic Repeat Request
  • DCI downlink control information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • paging channel a downlink shared channel
  • the transmission format and resource allocation information of a downlink shared channel may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH).
  • the transmission format and resource allocation information is also called UL scheduling information or UL grant.
  • the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • various formats such as formats 0 and 4 for uplink and formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, and 3A are defined for uplink.
  • Hopping flag RB allocation, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DMRS Control information such as shift demodulation reference signal (UL), UL index, CQI request, DL assignment index, HARQ process number, transmitted precoding matrix indicator (TPMI), and precoding matrix indicator (PMI) information
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • cyclic shift DMRS Control information such as shift demodulation reference signal (UL), UL index, CQI request, DL assignment index, HARQ process number, transmitted precoding matrix indicator (TPMI), and precoding matrix indicator (PMI) information
  • UL shift demodulation reference signal
  • CQI request UL assignment index
  • HARQ process number transmitted precoding matrix indicator
  • PMI precoding matrix indicator
  • the DCI format that can be transmitted to the UE depends on the transmission mode (TM) configured in the UE.
  • TM transmission mode
  • not all DCI formats may be used for a UE configured in a specific transmission mode, but only certain DCI format (s) corresponding to the specific transmission mode may be used.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
  • REGs resource element groups
  • a CCE set in which a PDCCH can be located is defined for each UE.
  • the set of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS).
  • SS search space
  • An individual resource to which a PDCCH can be transmitted in a search space is called a PDCCH candidate.
  • the collection of PDCCH candidates that the UE will monitor is defined as a search space.
  • a search space for each DCI format may have a different size, and a dedicated search space and a common search space are defined.
  • the dedicated search space is a UE-specific search space and is configured for each individual UE.
  • the common search space is configured for a plurality of UEs.
  • An aggregation level defining the search space is as follows.
  • One PDCCH candidate corresponds to 1, 2, 4 or 8 CCEs depending on the CCE aggregation level.
  • the eNB sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI).
  • monitoring means attempting decoding of each PDCCH in a corresponding search space according to all monitored DCI formats.
  • the UE may detect its own PDCCH by monitoring the plurality of PDCCHs. Basically, since the UE does not know where its PDCCH is transmitted, every Pframe attempts to decode the PDCCH until every PDCCH of the corresponding DCI format has detected a PDCCH having its own identifier. It is called blind detection (blind decoding).
  • the eNB may transmit data for the UE or the UE group through the data area.
  • Data transmitted through the data area is also called user data.
  • a physical downlink shared channel (PDSCH) may be allocated to the data area.
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH.
  • the UE may read data transmitted through the PDSCH by decoding control information transmitted through the PDCCH.
  • Information indicating to which UE or UE group data of the PDSCH is transmitted, how the UE or UE group should receive and decode PDSCH data, and the like are included in the PDCCH and transmitted.
  • a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, a frequency location) of "B” and a transmission of "C".
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identity
  • format information eg, transport block size, modulation scheme, coding information, etc.
  • a reference signal reference signal For demodulation of the signal received by the UE from the eNB, a reference signal reference signal (RS) to be compared with the data signal is required.
  • the reference signal refers to a signal of a predetermined special waveform that the eNB and the UE know each other, which the eNB transmits to the UE or the eNB, and is also called a pilot.
  • Reference signals are divided into a cell-specific RS shared by all UEs in a cell and a demodulation RS (DM RS) dedicated to a specific UE.
  • the DM RS transmitted by the eNB for demodulation of downlink data for a specific UE may be specifically referred to as a UE-specific RS.
  • the DM RS and the CRS may be transmitted together, but only one of the two may be transmitted.
  • the DM RS transmitted by applying the same precoder as the data may be used only for demodulation purposes, and thus RS for channel measurement should be separately provided.
  • an additional measurement RS, CSI-RS is transmitted to the UE.
  • the CSI-RS is transmitted every predetermined transmission period consisting of a plurality of subframes, unlike the CRS transmitted every subframe, based on the fact that the channel state is relatively not changed over time.
  • FIG. 4 illustrates an example of an uplink (UL) subframe structure used in a 3GPP LTE / LTE-A system.
  • the UL subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f0 during frequency upconversion.
  • the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ-ACK A response to a PDCCH and / or a response to a downlink data packet (eg, codeword) on a PDSCH. This indicates whether the PDCCH or PDSCH is successfully received.
  • One bit of HARQ-ACK is transmitted in response to a single downlink codeword, and two bits of HARQ-ACK are transmitted in response to two downlink codewords.
  • HARQ-ACK response includes a positive ACK (simple, ACK), negative ACK (hereinafter, NACK), DTX (Discontinuous Transmission) or NACK / DTX.
  • the term HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • the amount of uplink control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
  • SC-FDMA available for UCI means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of a subframe including a Sounding Reference Signal (SRS), the last SC of the subframe
  • SRS Sounding Reference Signal
  • the -FDMA symbol is also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports various formats according to the transmitted information.
  • Table 4 shows mapping relationship between PUCCH format and UCI in LTE / LTE-A system.
  • the PUCCH format 1 series is mainly used to transmit ACK / NACK information
  • the PUCCH format 2 series is mainly used to carry channel state information (CSI) such as CQI / PMI / RI
  • the PUCCH format 3 series is mainly used to transmit ACK / NACK information.
  • the transmitted packet is transmitted through a wireless channel
  • signal distortion may occur during the transmission process.
  • the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
  • a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
  • the signal is called a pilot signal or a reference signal.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal as an uplink reference signal,
  • DM-RS Demodulation-Reference Signal
  • SRS sounding reference signal
  • DM-RS Demodulation-Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • MBSFN Multimedia Broadcast Single Frequency Network
  • Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. In the former, since the UE can acquire channel information on the downlink, it should be transmitted over a wide band, and even if the UE does not receive downlink data in a specific subframe, it should receive the reference signal. It is also used in situations such as handover.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
  • a user equipment In the 3GPP LTE (-A) system, a user equipment (UE) is defined to report channel state information (CSI) to a base station (BS), and channel state information (CSI) is a radio formed between a UE and an antenna port.
  • information may indicate the quality of a channel (also called a link).
  • a rank indicator RI
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • RI represents rank information of a channel, which means the number of streams that a UE receives through the same time-frequency resource. Since this value is determined dependent on the long term fading of the channel, it is fed back from the UE to the BS with a period that is usually longer than PMI, CQI.
  • PMI is a value reflecting channel spatial characteristics and indicates a precoding index preferred by the UE based on a metric such as SINR.
  • CQI is a value indicating the strength of a channel and generally refers to a reception SINR obtained when a BS uses PMI.
  • the UE Based on the measurement of the radio channel, the UE calculates a preferred PMI and RI that can derive an optimal or highest transmission rate if used by the BS under current channel conditions, and feeds back the calculated PMI and RI to the BS. do.
  • CQI refers to a modulation and coding scheme that provides an acceptable packet error probability for the fed back PMI / RI.
  • the current CSI feedback is defined in LTE and thus does not fully support those newly introduced operations.
  • PMI becomes a long term / wideband PMI (W 1 ) and short term ( It has been agreed to consist of two terms: short term) and subband PMI (W 2 ).
  • W 1 * W 2 W 1 * W 2
  • W W 2 * W 1 .
  • the CSI will consist of RI, W 1 , W 2 and CQI.
  • the uplink channel used for CSI transmission in the 3GPP LTE (-A) system is shown in Table 5 below.
  • the CSI may be transmitted using a physical uplink control channel (PUCCH) at a period determined by a higher layer, and a physical uplink shared channel (Physical Uplink) aperiodically according to the needs of the scheduler. It may be transmitted using a shared channel (PUSCH).
  • the CSI is transmitted in the PUSCH only in case of frequency selective scheduling and aperiodic CSI transmission.
  • a CSI transmission method according to a scheduling method and a periodicity will be described.
  • a control signal for requesting transmission of CSI may be included in a PUSCH scheduling control signal (UL Grant) transmitted through a PDCCH signal.
  • UL Grant PUSCH scheduling control signal
  • the following table shows a mode of a UE when transmitting CQI, PMI, RI through PUSCH.
  • the transmission mode of Table 6 is selected in the upper layer, and all CQI / PMI / RI are transmitted in the same PUSCH subframe.
  • Table 6 an uplink transmission method of a UE according to each mode will be described.
  • Mode 1-2 represents a case in which a precoding matrix is selected on the assumption that data is transmitted only through subbands for each subband.
  • the UE generates a CQI assuming the selected precoding matrix for the entire band (set S) designated by the system band or the upper layer.
  • the UE may transmit the CQI and the PMI value of each subband.
  • the size of each subband may vary depending on the size of the system band.
  • the UE in mode 2-0 may select the preferred M subbands for the designated band set S designated by the system band or the upper layer.
  • the UE may generate one CQI value on the assumption that data is transmitted for the selected M subbands.
  • the UE further preferably reports one wideband CQI (CQI) value for the system band or set S.
  • CQI wideband CQI
  • the UE defines a CQI value for each codeword in a differential format.
  • the differential CQI value is determined as a difference value between an index corresponding to the CQI values for the selected M subbands and a wideband CQI (WB-CQI) index.
  • the UE in mode 2-0 transmits information on the location of the selected M subbands, one CQI value for the selected M subbands, and a CQI value generated for all bands or a set band (set S) to the BS.
  • the size of the subband and the M value may vary depending on the size of the system band.
  • a UE in mode 2-2 transmits data on M preferred subbands, it simultaneously selects the locations of the M preferred subbands and a single precoding matrix for the M preferred subbands. Can be.
  • CQI values for M preferred subbands are defined for each codeword.
  • the UE further generates wideband CQI (wideband CQI) values for the system band or the set band (set S).
  • the UE in mode 2-2 is configured with information on the location of the M preferred subbands, one CQI value for the selected M subbands, a single PMI for the M preferred subbands, a wideband PMI, and a wideband CQI value. Can transmit to BS.
  • the size of the subband and the M value may vary depending on the size of the system band.
  • the UE in mode 3-0 generates a wideband CQI value.
  • the UE generates a CQI value for each subband assuming that data is transmitted on each subband. At this time, even if RI> 1, the CQI value represents only the CQI value for the first codeword.
  • the UE in mode 3-1 generates a single precoding matrix for the system band or the set band (set S).
  • the UE assumes the previously generated single precoding matrix for each subband and generates subband CQI for each codeword.
  • the UE may assume a single precoding matrix and generate a wideband CQI.
  • the CQI value of each subband may be expressed in a difference form.
  • the subband CQI value is calculated as a difference between the subband CQI index and the wideband CQI index.
  • the size of the subband may vary depending on the size of the system band.
  • a UE in mode 3-2 generates a precoding matrix for each subband, instead of a single precoding matrix for the entire band, compared to mode 3-1.
  • the UE may periodically transmit CSI (e.g. CQI / PMI / PTI (precoding type indicator) and / or RI information) to the BS through the PUCCH. If the UE receives a control signal for transmitting user data, the UE may transmit the CQI through the PUCCH. Even if the control signal is transmitted through the PUSCH, the CQI / PMI / PTI / RI may be transmitted by one of the modes defined in the following table.
  • CSI e.g. CQI / PMI / PTI (precoding type indicator) and / or RI information
  • the UE may have a transmission mode as shown in Table 7.
  • the bandwidth part (BP) is a set of subbands continuously located in the frequency domain. It can cover both the system band or the set band (set S).
  • the size of each subband, the size of the BP, and the number of BPs may vary depending on the size of the system band.
  • the UE transmits the CQI in ascending order in the frequency domain for each BP so as to cover the system band or the set band (set S).
  • the UE may have the following PUCCH transmission type.
  • Type 1 transmits subband CQI (SB-CQI) of mode 2-0, mode 2-1.
  • Type 1a transmit subband CQI and second PMI
  • Type 2b transmit wideband CQI and PMI (WB-CQI / PMI).
  • Type 2a transmit wideband PMI.
  • Type 3 transmit RI.
  • Type 4 Send wideband CQI.
  • Type 5 transmit RI and wideband PMI.
  • Type 6 Send RI and PTI.
  • Type 7 Transmit CSI-RS resource indicator (CRI) and RI.
  • Type 8 transmit CRI, RI and wideband PMI.
  • Type 9 send CRI, RI and precode type indication (PTI).
  • Type 10 Send CRI.
  • the CQI / PMI is transmitted in subframes having different periods and offsets.
  • CQI / PMI is not transmitted.
  • a 2-bit CSI request field is used in DCI format 0 or 4 to operate aperiodic CSI feedback.
  • the terminal interprets the CSI request field as 2-bit when receiving multiple serving cells in a CA environment. If one of the TMs 1 through 9 is set for all CCs, aperiodic CSI feedback is triggered according to the values in Table 8 below, and TM 10 is turned on for at least one of all CCs. If set, aperiodic CSI feedback is triggered according to the values in Table 9 below.
  • Table 8 CSI request field value detailed description '00' Aperiodic CSI reporting not triggered '01' Aperiodic CSI reporting is triggered for the serving cell '10' Aperiodic CSI reporting is triggered for the first set of serving cells set by higher layer '11' Aperiodic CSI reporting is triggered for the second set of serving cells set by higher layer
  • Table 9 CSI request field value detailed description '00' Aperiodic CSI reporting not triggered '01' Aperiodic CSI reporting is triggered for a set of CSI processes set up by higher layers for serving cells '10' Aperiodic CSI reporting is triggered for the first set of CSI processes set up by higher layers '11' Aperiodic CSI reporting is triggered for a second set of CSI processes set up by higher layers
  • Latency in packet data is one of the important performance metrics, and reducing it and providing faster Internet access to end users is not only in LTE, but also in the design of next-generation mobile systems, the so-called new RAT.
  • new RAT One of the important tasks.
  • fast CSI update may be an important factor in determining system performance. In other words, faster rate adaptation will be possible using a faster CQI update, which can be expected to improve system performance. If the system supports processing time reduction, faster CSI feedback may allow the network to perform more optimized scheduling.
  • the present invention proposes a method for performing CSI feedback in a situation in which processing time reduction is supported.
  • the invention or the invention described herein will be described based on LTE, but the contents can be applied to a technology in which other waveforms / frame structures such as Newlat are used.
  • the sTTI may be introduced to increase the subcarrier spacing in the next system.
  • Timing advance Timing advance
  • the time consumed for 'UL grant-to-PUSCH' is defined as 4 subframes.
  • UL data scheduled by UL grant in subframe #n is subframe # n + k (where, k may be transmittable).
  • the UE may perform CSI feedback with the PUSCH in subframe # n + k only after the CSI-related calculation is completed by taking relatively less time. Can be.
  • it may be difficult to reduce the time spent in calculating the CSI.
  • CSI feedback may be triggered through a UL grant for an A-CSI request separate from a UL grant for PUSCH scheduling.
  • CSI feedback is defined using a separate 'DL-to-UL Tx timing' (different from the PUSCH) that is predefined, set or signaled. Rules can be defined to perform.
  • a rule may be defined to indicate the transmission timing of the PUSCH and A-CSI in the UL grant transmitted at a particular time. That is, another PUSCH including PUSCH and A-CSI having different transmission timings may be scheduled with one UL grant.
  • the UL grant transmitted in subframe #n causes the PUSCH to be transmitted in subframe # n + k1 and the CSI is transmitted in subframe # n + k2.
  • the rule may be defined to be set via or dynamically indicated via the UL grant.
  • a rule may be defined such that information on k1 and k2 indicates a CSI transmission time point in an offset form compared to a PUSCH transmission timing.
  • the scheduling information for the CSI reuses the scheduling information for the PUSCH, but some of the information may vary.
  • a rule may be defined such that information such as resource allocation for CSI is transmitted to a separate frequency resource through predefined or signaling.
  • a rule may be defined such that the HARQ-ACK for the PUSCH and the CSI are transmitted at different timings by including a separate HARQ process in the UL grant.
  • the aperiodic CSI may be triggered only in a subframe / sTTI / slot corresponding to a certain subframe index or sTTI index (in subframe) or slot index.
  • the definition of this subframe index or sTTI index or slot index will be useful when the processing time ('DL-to-UL Tx timing') is longer than other subframes, sTTIs, slots, etc. until the corresponding (s) PUSCH. For example, it may occur by DL / UL configuration of TDD, by DM-RS sharing of sTTI, or when UL transmission timing is specified.
  • a report may be defined in which a report of a reporting mode for is sent, or to perform broadband reporting (eg, modes 1-0, 1-1) or subband reporting during the aperiodic CSI reporting mode.
  • the subband report may be a previous CSI report (which is characteristically a CSI report transmitted through a long TTI or a report of the closest time point of a periodic CSI report).
  • the subbands on which the calculation will be performed may be assigned. In other words, in the case of aperiodic CSI triggered by sTTI or the like, the reporting of the periodic CSI may go up instead.
  • the CQI and / or PMI and / or RI which are measured by periodic CSI reporting, may be raised.
  • CSI reports to be introduced to support processing time reduction may be limited to CSI reports that can be sent without new calculations.
  • periodic CSI is set and measurement is performed, but the report itself is only triggered aperiodically, such as sTTI.
  • measurement reference resources and the like may be configured based on the sTTI.
  • the subbands or bands for CSI calculation at this time may be limited to BW with (sequential / non-continuous) sTTI set.
  • a rule may be defined such that the UE further re-adjusts the subband size determined by the system BW to reduce overhead for CSI calculation.
  • a rule is defined to set a PMI set limit according to processing time to a terminal and determine a PMI set limit to be used by a terminal according to 'DL-to-UL Tx timing' set or indicated for a corresponding UL grant. Can be.
  • a rule may be defined such that the UE uses a set of fewer PMIs for PMI calculation.
  • the UE may be configured according to the number of triggered CSI processes. Rules may be defined to determine whether to follow the reporting mode set by the network or to perform broadband reporting or reporting based on larger subband size.
  • pre-set multiple reporting modes for each CSI process and determine the reporting mode based on 'DL-to-UL Tx timing' and / or numerology (eg UL TTI length). Rules can be defined.
  • the state indicated by the A-CSI request bit ( A rule may be defined to selectively calculate and / or report CSI only for a certain number of CSI processes among CSI processes linked to a state).
  • CSI feedback may be performed including information on an index.
  • a rule may be defined to perform CSI calculation and / or CSI reporting only for one CSI process in a set triggered by an A-CSI request. Can be.
  • the CSI-RS may be set to OFDM symbols # 5, 6, 9, 10, 12, and 13. If the A-CSI report is triggered by the UL grant DCI in subframe #n, the transmission mode 9/10 UE calculates CSI until the end of the corresponding subframe in consideration of the situation in which the CSI-RS is also transmitted in the corresponding subframe. You can expect to perform channel measurements for. If the UE is previously promised not to set the CSI-RS configuration corresponding to the OFDM symbol of the latter half of the subframe, data and CSI reporting may be performed at shorter 'DL-to-UL Tx timing'.
  • a rule may be defined such that the UE is configured only for a specific CSI-RS configuration.
  • the specific CSI-RS configuration may be a CSI-RS configuration including an OFDM symbol (eg, OFDM symbol # 5, 6 or OFDM symbol # 5, 6, 9, 10) in the first half of a subframe.
  • a rule may be defined such that a specific CSI-RS setting is not set.
  • the specific CSI-RS configuration may be a CSI-RS configuration including OFDM symbols (eg, OFDM symbols # 12 and 13) in the second half of the subframe.
  • the UE when the 'DL-to-UL Tx timing' is set or indicated to be shorter than the legacy timing, the UE sets CSI configuration 4 corresponding to OFDM symbols # 12 and 13.
  • the rule may be defined such that only the CSI-RS configuration except for 9 may be set.
  • a rule may be defined not to be scheduled for the corresponding UE by EPDCCH.
  • the UE when the configuration related to processing time reduction is enabled, the UE expects to be scheduled only by the PDCCH, performs the PDCCH BD, and does not perform the EPDCCH BD.
  • a rule may be defined to report the maximum simultaneous CSI update / calculation capability to the network in units of cell or CSI processes for each newology configured for the UE, for each configured processing time or a combination of the two.
  • a rule may be defined such that the UE reports to the network the maximum number of CSI reports to be reported at the same time according to the numerology set to the UE, the set processing time, or a combination of the two.
  • the terminal may report a time required for CSI processing to the network in a predefined or promised time unit.
  • the terminal may report the time required for CSI processing to the network using a set TTI unit or a real time unit.
  • the maximum TBS may be set differently according to whether the NSI and / or the processing time and / or the UL grant include the aperiodic CSI request to trigger the CSI reporting. In one example, if a UL grant includes an aperiodic CSI request to trigger CSI reporting, a smaller maximum TBS may be set compared to otherwise.
  • the maximum TBS may be set differently according to the number of CSI processes (groups) in consideration of the number of CSI processes (groups) linked to the triggered state. have.
  • the processing time corresponding to the MIMO decoding of the terminal may be reduced. Accordingly, the size of the maximum assignable frequency resource region may be set differently according to whether the CSI report is triggered by including the aperiodic CSI request in the numerology and / or the set process time and / or the UL grant.
  • the "assignable maximum frequency resource region" may be a value determined by the system BW, or may be a value determined by an overall subband size set for a different numerology use for the terminal.
  • the maximum frequency resource region size that can be allocated by the number of CSI processes (groups) in consideration of the number of CSI processes (groups) linked to the triggered state can be set differently.
  • a rule may be defined such that 'DL-to-UL Tx timing' is determined according to the number of CSI processes (groups) linked to the triggered state.
  • 'DL-to-UL Tx timing' includes aperiodic CSI request included in the numerology and / or UL acknowledgment set to the UE, and whether CSI reporting is triggered and / or TBS and / or allocated frequency resource region.
  • the size may be independently set to be different.
  • the UE A rule may be defined to update first for the CSI corresponding to the UL channel having the shorter length of 'DL-to-UL Tx timing'.
  • the transmission timing for multiple CSI reports overlaps a specific TTI (part or all), consider handling the collision length by adding 'DL-to-UL Tx timing' length to the comparison condition for prioritization.
  • Rules can be defined. For example, the length of 'DL-to-UL Tx timing'> CSI reporting mode> CSI process> Cell index> CSI SF set index or CSI reporting mode> Length of 'DL-to-UL Tx timing'> CSI process> The parameters are sequentially considered or compared in the same way as cell index> CSI SF set index, or CSI reporting mode> CSI process> cell index> length of 'DL-to-UL Tx timing'> CSI SF set index. Priority may be determined.
  • the priority between CSIs may be defined as a mode ab> mode cd (a ⁇ c, b ⁇ d), which means that a higher priority of the compact reporting mode is higher. (Eg, mode 1-0 has a higher priority than mode 2-2).
  • a rule may be defined such that information corresponding to the A-CSI report is mapped to only some resources of the UL channel to which the A-CSI is transmitted.
  • a rule may be defined such that information corresponding to the A-CSI report is mapped to only a specific symbol of a back slot or a back of a subframe.
  • the mapping rule may be applied differently according to the numerology and / or the processing time set in the terminal.
  • the mapping rule may be applied only when the number of cells or CSI processes corresponding to the A-CSI request triggered by the UE is greater than or equal to a predetermined number of signals that are previously defined, promised, or signaled.
  • the CSI reference resource is defined as follows in the time domain.
  • the CSI reference resource is a single downlink / specific subframe # n-n_ ⁇ CQI- set to ref ⁇ .
  • n_ ⁇ CQI-ref ⁇ corresponds to the minimum value corresponding to the corresponding CSI subframe set among 4 or more values, and is selected as a valid DL / specific subframe.
  • n_ ⁇ CQI-ref ⁇ is selected such that subframe # n-n_ ⁇ CQI-ref ⁇ is a valid DL / specific subframe in which aperiodic CSI request was sent.
  • aperiodic CSI For aperiodic CSI, follow the CSI SF set of SFs for which aperiodic CSI requests are sent.
  • n_ ⁇ CQI-ref ⁇ has a value of 4, and is limited to a subframe after the subframe that has received a random access grant while being a valid DL / specific subframe.
  • Case 2 When transmission mode 10 of a plurality of CSI processes is set, for a CSI report to be transmitted in subframe #n, the CSI reference resource for a given CSI process is a single downlink / specific subframe # n-n_ ⁇ CQI- set to ref ⁇ .
  • n_ ⁇ CQI-ref ⁇ selects the DL valid subframe of the minimum value corresponding to the corresponding CSI SF set among 5 or more values.
  • aperiodic CSI For aperiodic CSI, follow the CSI SF set of SFs for which aperiodic CSI requests are sent.
  • n_ ⁇ CQI-ref ⁇ has a value of 5 and is valid for DL and n-n_ ⁇ CQI-ref ⁇ is after random access grant.
  • aperiodic CSI For aperiodic CSI, follow the CSI SF set of SFs for which aperiodic CSI requests are sent.
  • n_ ⁇ CQI-ref ⁇ selects the DL valid subframe of the minimum value (closest subframe) corresponding to the corresponding CSI SF set among 4 or more values.
  • aperiodic CSI For aperiodic CSI, follow the CSI SF set of SFs for which aperiodic CSI requests are sent.
  • n_ ⁇ CQI-ref ⁇ has a value of 4
  • DL is valid
  • n-n_ ⁇ CQI-ref ⁇ is after random access grant. Only.
  • n_ ⁇ CQI-ref ⁇ selects the DL valid subframe of the minimum value (closest subframe) corresponding to the corresponding CSI SF set among 5 or more values.
  • aperiodic CSI For aperiodic CSI, follow the CSI SF set of SFs for which aperiodic CSI requests are sent.
  • n_ ⁇ CQI-ref ⁇ has a value of 5
  • DL is valid and only when n-n_ ⁇ CQI-ref ⁇ is after random access grant.
  • the CSI reference resource is defined as a valid DL / specific subframe in which a CSI request is transmitted.
  • the processing time reduction is applied to the 'UL grant-to-PUSCH transmission', the margin between the reference resource and the reporting time of the CSI measurement is further reduced, so that the constraint may be a burden depending on the implementation of the terminal.
  • CSI reference resources may be defined differently for each processing time set in the terminal.
  • a CSI reference resource is transmitted in a single DL / specific subframe for aperiodic CSI reporting to be transmitted in subframe #n.
  • the CSI reference resource is set to a single DL / specific subframe # n-n_ ⁇ CQI-ref ⁇ , where n_ ⁇ CQI-ref ⁇ Among 4 or more values, the minimum value (ie, the nearest subframe) among DL / specific valid subframes included in the corresponding CSI SF set may be defined. That is, a valid subframe configured as a CSI reference resource may be defined differently from a DL / specific valid subframe in which a CSI request is transmitted.
  • n_ ⁇ CQI-ref ⁇ is defined as the minimum value (ie, the nearest subframe) of DL / specific valid subframes among k or more values.
  • a minimum value eg, k in the above description
  • n_ ⁇ CQI-ref ⁇ may be n_ ⁇ CQI-ref ⁇ defined under the existing legacy processing time.
  • n_ ⁇ CQI-ref ⁇ may be previously set or defined in advance by processing time, or may be set through an upper layer signal or a physical layer signal. .
  • n_ ⁇ CQI-ref ⁇ is the minimum (closest) DL of 3 or more values corresponding to the corresponding CSI SF set.
  • the rule may be defined such that a particular special subframe is selected.
  • A-CSI only PUSCH transmission that is, PUSCH transmission including only A-CSI is triggered without a transport block for uplink shared channel (UL-SCH).
  • the CSI request bit field is 2 bits and aperiodic CSI reporting is triggered for one serving cell and N_PRB is 4 or less.
  • the CSI request bit field is 2 bits and aperiodic CSI reporting is triggered for multiple serving cells and N_PRB is 20 or less.
  • the CSI request bit field is 2 bits and aperiodic CSI reporting is triggered for one CSI process and N_PRB is 4 or less.
  • CSI Request Bits field is 2 bits and aperiodic CSI reporting is triggered for many CSI processes and N_PRB is 20 or less.
  • the PRB number condition among the conditions for triggering the A-CSI only PUSCH transmission may be set differently from the existing value for each TTI length (group).
  • the PRB count condition may be determined as a function of "number of sTTIs per 1 ms". For example, two symbols may be defined as 6 times or 7 times the existing PRB threshold, 4 symbols as 4 times the existing PRB threshold, and 7 symbols may be defined as 2 times the existing PRB threshold.
  • the processing related to the reduction of the processing time is enabled and is set to selectively report only a part of the CSI processes linked to the state indicated by the A-CSI request bit, the above rule is not applied and A according to the existing rule is applied.
  • PRB condition for CSI only PUSCH triggering may be determined.
  • the rule may be limited to be applied only when the number of CSI processes linked to the state indicated by the A-CSI request bit is greater than or equal to a predefined value or a predetermined or signaled value in the situation where the sTTI is supported. .
  • FIG. 5 relates to a method for performing channel state reporting based on channel state information-reference signal (CSI-RS) in a wireless communication system.
  • CSI-RS channel state information-reference signal
  • the terminal may transmit terminal capability information regarding the maximum number of CSI processes that the terminal with which a shortened processing time is set may be simultaneously updated or calculated (S510).
  • the terminal may receive an aperiodic CSI request from the base station (S520). Then, according to the aperiodic CSI request, the CSI may be updated or calculated in the CSI reference resource at the time point set for the processing time reduction based on the terminal capability information, and the updated or calculated CSI may be transmitted to the base station. (S530).
  • the terminal capability information may include the maximum number of CSI processes that the terminal can update or calculate at the same time for each newomage set to the terminal and / or for each processing time set to the terminal.
  • the CSI reference resource for which the updated or calculated CSI is measured belongs to subframe nk, where a minimum value of k is a minimum for a terminal for which processing time reduction is not set. Can be set to an integer less than the value.
  • the subframe n-k may be a subframe closest to the subframe n of a set of CSI subframes connected to the subframe n in which the aperiodic CSI request is transmitted.
  • the minimum value of k may be an integer less than 5 for a serving cell for frequency division duplex (FDD).
  • the minimum value of k is an integer smaller than 4 when the serving cell for time division duplex (TDD) is 2 or 3 CSI processes for the terminal; When there are four CSI processes for the terminal, it may be an integer smaller than five.
  • the updated or calculated CSI is transmitted in subframe m + l, and l may be set to an integer less than four.
  • the subframe including the CSI reference resource may be different from the subframe in which the aperiodic CSI request is received.
  • the embodiment related to FIG. 5 may alternatively or additionally include at least some of the above-described embodiment (s).
  • FIG. 6 is a block diagram illustrating the components of a transmitter 10 and a receiver 20 for carrying out embodiments of the present invention.
  • the transmitter 10 and the receiver 20 are associated with transmitters / receivers 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, etc.
  • Memory 12, 22 for storing a variety of information, the transmitter / receiver 13, 23 and the memory 12, 22 and the like is operatively connected to control the components to control the components described above
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
  • the memories 12 and 22 may be utilized as buffers.
  • the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • firmware or software When implementing the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays) may be provided in the processors 11 and 21.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
  • the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the transmitter / receiver (13). For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the transmitter / receiver 13 may include an oscillator for frequency upconversion.
  • the transmitter / receiver 13 may include Nt transmit antennas, where Nt is a positive integer greater than or equal to one.
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the transmitter / receiver 23 of the receiver 20 receives a radio signal transmitted by the transmitter 10.
  • the transmitter / receiver 23 may include Nr receive antennas, and the transmitter / receiver 23 frequency down-converts each of the signals received through the receive antennas to restore baseband signals. do.
  • Transmitter / receiver 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
  • the transmitter / receiver 13, 23 is equipped with one or more antennas.
  • the antenna transmits a signal processed by the transmitter / receiver 13, 23 to the outside or receives a radio signal from the outside under the control of the processors 11 and 21, thereby transmitting / receiving the transmitter / receiver. It performs the function of forwarding to (13, 23).
  • Antennas are also called antenna ports.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the perspective of the receiver 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna.
  • RS reference signal
  • the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
  • MIMO multi-input multi-output
  • the terminal or the UE operates as the transmitter 10 in the uplink and the receiver 20 in the downlink.
  • the base station or eNB operates as the receiving device 20 in the uplink, and operates as the transmitting device 10 in the downlink.
  • the transmitter and / or the receiver may perform at least one or a combination of two or more of the embodiments of the present invention described above.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Abstract

본 발명의 일 실시예에 따른 무선 통신 시스템에서 채널 상태 정보-참조 신호(channel state information-reference signal; CSI-RS) 기반의 채널 상태 보고 방법에 있어서, 상기 방법은 단말에 의해 수행되고, 프로세싱 시간 감소(shortened processing time)가 설정된 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수에 관한 단말 능력(capability) 정보를 기지국으로 전송하는 단계; 상기 기지국으로부터 비주기적 CSI 요청을 수신하는 단계; 및 상기 비주기적 CSI 요청에 따라 상기 단말 능력 정보에 기초하여 상기 프로세싱 시간 감소를 위해 설정된 시점의 CSI 기준 자원에서 CSI를 갱신 또는 계산하고, 상기 갱신 또는 계산된 CSI를 상기 기지국으로 전송하는 단계를 포함할 수 있다.

Description

무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 채널 상태 보고를 위한 방법 및 이를 위한 장치에 관한 것이다.
패킷 데이터의 레이턴시는 중요한 성능 메트릭(metric) 중 하나이며, 이를 줄이고 좀 더 빠른 인터넷 액세스를 최종 사용자(end user)에게 제공하는 것은 LTE 뿐만 아니라 차세대 이동 통신 시스템, 이른바 뉴랫(new RAT)의 설계에서도 중요한 과제 중 하나라고 할 수 있다.
본 발명은 이러한 레이턴시의 감소를 지원하는 무선 통신 시스템에서의 채널 상태 보고에 관한 내용을 다루고자 한다.
본 발명은 채널 상태 보고를 위한 방법을 제안하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 채널 상태 정보-참조 신호(channel state information-reference signal; CSI-RS) 기반의 채널 상태 보고 방법에 있어서, 상기 방법은 단말에 의해 수행되고, 프로세싱 시간 감소(shortened processing time)가 설정된 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수에 관한 단말 능력(capability) 정보를 기지국으로 전송하는 단계; 상기 기지국으로부터 비주기적 CSI 요청을 수신하는 단계; 및 상기 비주기적 CSI 요청에 따라 상기 단말 능력 정보에 기초하여 상기 프로세싱 시간 감소를 위해 설정된 시점의 CSI 기준 자원에서 CSI를 갱신 또는 계산하고, 상기 갱신 또는 계산된 CSI를 상기 기지국으로 전송하는 단계를 포함할 수 있다.
추가로 또는 대안으로, 상기 단말 능력 정보는 상기 단말에게 설정된 뉴멀로지 별 및/또는 상기 단말에게 설정된 프로세싱 시간 별로 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수를 포함할 수 있다.
추가로 또는 대안으로, 상기 갱신 또는 계산된 CSI가 서브프레임 n에서 전송된다면, 상기 갱신 또는 계산된 CSI가 측정된 CSI 기준 자원은 서브프레임 n-k에 속하며, 여기서 k의 최소 값은 프로세싱 시간 감소가 설정되지 않은 단말을 위한 최소 값보다 작은 정수로 설정될 수 있다.
추가로 또는 대안으로, 상기 서브프레임 n-k는 상기 비주기적 CSI 요청이 전송되는 서브프레임 n과 연결된 CSI 서브프레임 집합 중 상기 서브프레임 n과 가장 가까운 서브프레임일 수 있다.
추가로 또는 대안으로, 상기 k의 최소 값은 주파수 분할 듀플렉스(frequency division duplex; FDD)를 위한 서빙 셀에 대해서는 5보다 작은 정수일 수 있다.
추가로 또는 대안으로, 상기 k의 최소 값은 시간 분할 듀플렉스(time division duplex; TDD)를 위한 서빙 셀에 대해서는, 상기 단말을 위한 CSI 프로세스가 2 또는 3개 인 경우 4보다 작은 정수이고; 상기 단말을 위한 CSI 프로세스가 4개인 경우 5보다 작은 정수일 수 있다.
추가로 또는 대안으로, 상기 비주기적 CSI 요청이 서브프레임 m에서 수신된다면, 상기 갱신 또는 계산된 CSI는 서브프레임 m+l에서 전송되고, l은 4보다 작은 정수로 설정될 수 있다.
추가로 또는 대안으로, 상기 CSI 기준 자원을 포함하는 서브프레임은 상기 비주기적 CSI 요청이 수신된 서브프레임과 상이할 수 있다.
본 발명의 또다른 일 실시예에 따른 무선 통신 시스템에서 채널 상태 정보-참조 신호(channel state information-reference signal; CSI-RS) 기반의 채널 상태 보고를 수행하는 단말에 있어서, 송신기 및 수신기; 및 상기 송신기 및 수신기를 제어하는 프로세서를 포함하되, 상기 프로세서는: 프로세싱 시간 감소(shortened processing time)가 설정된 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수에 관한 단말 능력(capability) 정보를 기지국으로 전송하고, 상기 기지국으로부터 비주기적 CSI 요청을 수신하고, 그리고 상기 비주기적 CSI 요청에 따라 상기 단말 능력 정보에 기초하여 상기 프로세싱 시간 감소를 위해 설정된 시점의 CSI 기준 자원에서 CSI를 갱신 또는 계산하고, 상기 갱신 또는 계산된 CSI를 상기 기지국으로 전송하도록 구성될 수 있다.
추가로 또는 대안으로, 상기 단말 능력 정보는 상기 단말에게 설정된 뉴멀로지 별 및/또는 상기 단말에게 설정된 프로세싱 시간 별로 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수를 포함할 수 있다.
추가로 또는 대안으로, 상기 갱신 또는 계산된 CSI가 서브프레임 n에서 전송된다면, 상기 갱신 또는 계산된 CSI가 측정된 CSI 기준 자원은 서브프레임 n-k에 속하며, 여기서 k의 최소 값은 프로세싱 시간 감소가 설정되지 않은 단말을 위한 최소 값보다 작은 정수로 설정될 수 있다.
추가로 또는 대안으로, 상기 서브프레임 n-k는 상기 비주기적 CSI 요청이 전송되는 서브프레임 n과 연결된 CSI 서브프레임 집합 중 상기 서브프레임 n과 가장 가까운 서브프레임일 수 있다.
추가로 또는 대안으로, 상기 k의 최소 값은 주파수 분할 듀플렉스(frequency division duplex; FDD)를 위한 서빙 셀에 대해서는 5보다 작은 정수일 수 있다.
추가로 또는 대안으로, 상기 k의 최소 값은 시간 분할 듀플렉스(time division duplex; TDD)를 위한 서빙 셀에 대해서는, 상기 단말을 위한 CSI 프로세스가 2 또는 3개 인 경우 4보다 작은 정수이고; 상기 단말을 위한 CSI 프로세스가 4개인 경우 5보다 작은 정수일 수 있다.
추가로 또는 대안으로, 상기 비주기적 CSI 요청이 서브프레임 m에서 수신된다면, 상기 갱신 또는 계산된 CSI는 서브프레임 m+l에서 전송되고, l은 4보다 작은 정수로 설정될 수 있다.
추가로 또는 대안으로, 상기 CSI 기준 자원을 포함하는 서브프레임은 상기 비주기적 CSI 요청이 수신된 서브프레임과 상이할 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시예들에 따르면 채널 상태 측정 및 보고가 효율적으로 수행될 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다.
도 3은 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임 구조를 예시한 것이다.
도 4 는 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 단말의 동작을 도시한다.
도 6은 본 발명의 실시예(들)을 구현하기 위한 장치의 블록도를 도시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에 있어서, 사용자기기(user equipment, UE)는 고정되거나 이동성을 가질 수 있으며, 기지국(base station, BS)와 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, BS는 일반적으로 UE 및/또는 다른 BS와 통신하는 고정국(fixed station)을 말하며, UE 및 타 BS와 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point), PS(Processing Server), 전송 포인트(transmission point; TP)등 다른 용어로 불릴 수 있다. 이하의 본 발명에 관한 설명에서는, BS를 eNB로 통칭한다.
본 발명에서 노드(node)라 함은 사용자기기와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 다양한 형태의 eNB들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이, 리피터 등이 노드가 될 수 있다. 또한, 노드는 eNB가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 eNB의 전력 레벨(power level) 보다 낮은 전력 레벨을 갖는다. RRH 혹은 RRU이하, RRH/RRU)는 일반적으로 광 케이블 등의 전용 회선(dedicated line)으로 eNB에 연결되어 있기 때문에, 일반적으로 무선 회선으로 연결된 eNB들에 의한 협력 통신에 비해, RRH/RRU와 eNB에 의한 협력 통신이 원활하게 수행될 수 있다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다. 안테나들이 기지국에 집중되어 위치하여 하나의 eNB 컨트롤러(controller)에 의해 제어되는 기존의(conventional) 중앙 집중형 안테나 시스템(centralized antenna system, CAS)(즉, 단일 노드 시스템)과 달리, 다중 노드 시스템에서 복수의 노드는 통상 일정 간격 이상으로 떨어져 위치한다. 상기 복수의 노드는 각 노드의 동작을 제어하거나, 각 노드를 통해 송/수신될 데이터를 스케줄링(scheduling)하는 하나 이상의 eNB 혹은 eNB 컨트롤러에 의해 관리될 수 있다. 각 노드는 해당 노드를 관리하는 eNB 혹은 eNB 컨트롤러와 케이블(cable) 혹은 전용 회선(dedicated line)을 통해 연결될 수 있다. 다중 노드 시스템에서, 복수의 노드들로의/로부터의 통한 신호 전송/수신에는 동일한 셀 식별자(identity, ID)가 이용될 수도 있고 서로 다른 셀 ID가 이용될 수도 있다. 복수의 노드들이 동일한 셀 ID를 갖는 경우, 상기 복수의 노드 각각은 하나의 셀의 일부 안테나 집단처럼 동작한다. 다중 노드 시스템에서 노드들이 서로 다른 셀 ID를 갖는다면, 이러한 다중 노드 시스템은 다중 셀(예를 들어, 매크로-셀/펨토-셀/피코-셀) 시스템이라고 볼 수 있다. 복수의 노드들 각각이 형성한 다중 셀들이 커버리지에 따라 오버레이되는 형태로 구성되면, 상기 다중 셀들이 형성한 네트워크를 특히 다중-계층(multi-tier) 네트워크라 부른다. RRH/RRU의 셀 ID와 eNB의 셀 ID는 동일할 수도 있고 다를 수도 있다. RRH/RRU가 eNB가 서로 다른 셀 ID를 사용하는 경우, RRH/RRU와 eNB는 모두 독립적인 기지국으로서 동작하게 된다.
이하에서 설명될 본 발명의 다중 노드 시스템에서, 복수의 노드와 연결된 하나 이상의 eNB 혹은 eNB 컨트롤러가 상기 복수의 노드 중 일부 또는 전부를 통해 UE에 동시에 신호를 전송 혹은 수신하도록 상기 복수의 노드를 제어할 수 있다. 각 노드의 실체, 각 노드의 구현 형태 등에 따라 다중 노드 시스템들 사이에는 차이점이 존재하지만, 복수의 노드가 함께 소정 시간-주파수 자원 상에서 UE에 통신 서비스를 제공하는 데 참여한다는 점에서, 이들 다중 노드 시스템들은 단일 노드 시스템(예를 들어, CAS, 종래의 MIMO 시스템, 종래의 중계 시스템, 종래의 리피터 시스템 등)과 다르다. 따라서, 복수의 노드들 중 일부 또는 전부를 사용하여 데이터 협력 전송을 수행하는 방법에 관한 본 발명의 실시예들은 다양한 종류의 다중 노드 시스템에 적용될 수 있다. 예를 들어, 노드는 통상 타 노드와 일정 간격 이상으로 떨어져 위치한 안테나 그룹을 일컫지만, 후술하는 본 발명의 실시예들은 노드가 간격에 상관없이 임의의 안테나 그룹을 의미하는 경우에도 적용될 수 있다. 예를 들어, X-pol(Cross polarized) 안테나를 구비한 eNB의 경우, 상기 eNB가 H-pol 안테나로 구성된 노드와 V-pol 안테나로 구성된 노드를 제어한다고 보고 본 발명의 실시예들이 적용될 수 있다.
복수의 전송(Tx)/수신(Rx) 노드를 통해 신호를 전송/수신하거나, 복수의 전송/수신 노드들 중에서 선택된 적어도 하나의 노드를 통해 신호를 전송/수신하거나, 하향링크 신호를 전송하는 노드와 상향링크 신호를 수신하는 노드를 다르게 할 수 있는 통신 기법을 다중-eNB MIMO 또는 CoMP(Coordinated Multi-Point TX/RX)라 한다. 이러한 노드 간 협력 통신 중 협력 전송 기법은 크게 JP(joint processing)과 스케줄링 협력(scheduling coordination)으로 구분될 수 있다. 전자는 JT(joint transmission)/JR(joint reception)과 DPS(dynamic point selection)으로 나뉘고 후자는 CS(coordinated scheduling)과 CB(coordinated beamforming)으로 나뉠 수 있다. DPS는 DCS(dynamic cell selection)으로 불리기도 한다. 다른 협력 통신 기법에 비해, 노드 간 협력 통신 기법들 중 JP가 수행될 때, 보다 더 다양한 통신환경이 형성될 수 있다. JP 중 JT는 복수의 노드들이 동일한 스트림을 UE로 전송하는 통신 기법을 말하며, JR은 복수의 노드들이 동일한 스트림을 UE로부터 수신하는 통신 기법을 말한다. 상기 UE/eNB는 상기 복수의 노드들로부터 수신한 신호들을 합성하여 상기 스트림을 복원한다. JT/JR의 경우, 동일한 스트림이 복수의 노드들로부터/에게 전송되므로 전송 다이버시티(diversity)에 의해 신호 전송의 신뢰도가 향상될 수 있다. JP 중 DPS는 복수의 노드들 중 특정 규칙에 따라 선택된 일 노드를 통해 신호가 전송/수신되는 통신 기법을 말한다. DPS의 경우, 통상적으로 UE와 노드 사이의 채널 상태가 좋은 노드가 통신 노드로서 선택되게 될 것이므로, 신호 전송의 신뢰도가 향상될 수 있다.
한편, 본 발명에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역을 말한다. 따라서, 본 발명에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다. 3GPP LTE-A 기반의 시스템에서, UE는 특정 노드로부터의 하향링크 채널 상태를 상기 특정 노드의 안테나 포트(들)이 상기 특정 노드에 할당된 채널 CSI-RS(Channel State Information Reference Signal) 자원 상에서 전송하는 CSI-RS(들)을 이용하여 측정할 수 있다. 일반적으로 인접한 노드들은 서로 직교하는 CSI-RS 자원들 상에서 해당 CSI-RS 자원들을 전송한다. CSI-RS 자원들이 직교한다고 함은 CSI-RS를 나르는 심볼 및 부반송파를 특정하는 CSI-RS 자원 구성(resource configuration), 서브프레임 오프셋(offset) 및 전송 주기(transmission period) 등에 의해 CSI-RS가 할당된 서브프레임들을 특정하는 서브프레임 구성(subframe configuration), CSI-RS 시퀀스 중 최소 한가지가 서로 다름을 의미한다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, eNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다. 특히, 도 1(a)는 3GPP LTE/LTE-A 시스템에서 사용되는 주파수분할듀플렉스(frequency division duplex, FDD)용 프레임 구조를 나타낸 것이고, 도 1(b)는 3GPP LTE/LTE-A 시스템에서 사용되는 시분할듀플렉스(time division duplex, TDD)용 프레임 구조를 나타낸 것이다.
도 1을 참조하면, 3GPP LTE/LTE-A 시스템에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
무선 프레임은 듀플레스(duplex) 모드에 따라 다르게 구성(configure)될 수 있다. 예를 들어, FDD 모드에서, 하향링크 전송 및 상향링크 전송은 주파수에 의해 구분되므로, 무선 프레임은 특정 주파수 대역에 대해 하향링크 서브프레임 또는 상향링크 서브프레임 중 하나만을 포함한다. TDD 모드에서 하향링크 전송 및 상향링크 전송은 시간에 의해 구분되므로, 특정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 상향링크 서브프레임을 모두 포함한다.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 구성(configuration)을 예시한 것이다.
표 1
DL-UL configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
표 1에서, D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 특이(special) 서브프레임을 나타낸다. 특이 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 하향링크 전송용으로 유보되는 시간 구간이며, UpPTS는 상향링크 전송용으로 유보되는 시간 구간이다. 표 2는 특이 프레임의 구성(configuration)을 예시한 것이다.
표 2
Special subframe configuration Normal cyclic prefix in downlink Extended cyclic prefix in downlink
DwPTS UpPTS DwPTS UpPTS
Normal cyclic prefix in uplink Extended cyclic prefix in uplink Normal cyclic prefix in uplink Extended cyclic prefix in uplink
0 6592·Ts 2192·Ts 2560·Ts 7680·Ts 2192·Ts 2560·Ts
1 19760·Ts 20480·Ts
2 21952·Ts 23040·Ts
3 24144·Ts 25600·Ts
4 26336·Ts 7680·Ts 4384·Ts *5120·Ts
5 6592·Ts 4384·Ts *5120·Ts 20480·Ts
6 19760·Ts 23040·Ts
7 21952·Ts 12800·Ts
8 24144·Ts - - -
9 13168·Ts - - -
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 2는 3GPP LTE/LTE-A 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
도 2를 참조하면, 슬롯은 시간 도메인에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는
Figure PCTKR2017008433-appb-I000001
*
Figure PCTKR2017008433-appb-I000002
개의 부반송파(subcarrier)와
Figure PCTKR2017008433-appb-I000003
개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서,
Figure PCTKR2017008433-appb-I000004
은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고,
Figure PCTKR2017008433-appb-I000005
은 UL 슬롯에서의 RB의 개수를 나타낸다.
Figure PCTKR2017008433-appb-I000006
Figure PCTKR2017008433-appb-I000007
은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다.
Figure PCTKR2017008433-appb-I000008
은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며,
Figure PCTKR2017008433-appb-I000009
은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다.
Figure PCTKR2017008433-appb-I000010
는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP(cyclic prefix)의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정규(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서,
Figure PCTKR2017008433-appb-I000011
*
Figure PCTKR2017008433-appb-I000012
개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호(reference signal)의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 직류(Direct Current, DC) 성분을 위한 널(null) 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인 채 남겨지는 부반송파로서, OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier frequency, f0)로 맵핑(mapping)된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다.
일 RB는 시간 도메인에서
Figure PCTKR2017008433-appb-I000013
개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 c개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 따라서, 하나의 RB는
Figure PCTKR2017008433-appb-I000014
*
Figure PCTKR2017008433-appb-I000015
개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터
Figure PCTKR2017008433-appb-I000016
*
Figure PCTKR2017008433-appb-I000017
-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터
Figure PCTKR2017008433-appb-I000018
-1까지 부여되는 인덱스이다.
일 서브프레임에서
Figure PCTKR2017008433-appb-I000019
개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 물리자원블록(physical resource block, PRB) 쌍(pair)이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스(index)라고도 함)를 갖는다. VRB는 자원할당을 위해 도입된 일종의 논리적 자원할당 단위이다. VRB는 PRB와 동일한 크기를 갖는다. VRB를 PRB로 맵핑하는 방식에 따라, VRB는 로컬라이즈(localized) 타입의 VRB와 분산(distributed) 타입의 VRB로 구분된다. 로컬라이즈 타입의 VRB들은 PRB들에 바로 맵핑되어, VRB 번호(VRB 인덱스라고도 함)가 PRB 번호에 바로 대응된다. 즉, nPRB=nVRB가 된다. 로컬라이즈 타입의 VRB들에는 0부터
Figure PCTKR2017008433-appb-I000020
-1순으로 번호가 부여되며,
Figure PCTKR2017008433-appb-I000021
=
Figure PCTKR2017008433-appb-I000022
이다. 따라서, 로컬라이즈 맵핑 방식에 의하면, 동일한 VRB 번호를 갖는 VRB가 첫 번째 슬롯과 두 번째 슬롯에서, 동일 PRB 번호의 PRB에 맵핑된다. 반면, 분산 타입의 VRB는 인터리빙을 거쳐 PRB에 맵핑된다. 따라서, 동일한 VRB 번호를 갖는 분산 타입의 VRB는 첫 번째 슬롯과 두 번째 슬롯에서 서로 다른 번호의 PRB에 맵핑될 수 있다. 서브프레임의 두 슬롯에 1개씩 위치하며 동일한 VRB 번호를 갖는 2개의 PRB를 VRB 쌍이라 칭한다.
도 3은 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임 구조를 예시한 것이다.
도 3을 참조하면, DL 서브프레임은 시간 도메인에서 제어영역(control region)과 데이터영역(data region)으로 구분된다. 도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용가능한 자원 영역(resource region)을 PDCCH 영역이라 칭한다. 제어영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용가능한 자원 영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송에 대한 응답으로 HARQ(Hybrid Automatic Repeat Request) ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 상향링크 제어 정보(downlink control information, DCI)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 임의 접속 응답과 같은 상위 계층(upper layer) 제어 메시지의 자원 할당 정보, UE 그룹 내의 개별 UE들에 대한 전송 전력 제어 명령(Transmit Control Command Set), 전송 전력 제어(Transmit Power Control) 명령, VoIP(Voice over IP)의 활성화(activation) 지시 정보, DAI(Downlink Assignment Index) 등을 포함한다. DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷(Transmit Format) 및 자원 할당 정보는 DL 스케줄링 정보 혹은 DL 그랜트(DL grant)라고도 불리며, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보는 UL 스케줄링 정보 혹은 UL 그랜트(UL grant)라고도 불린다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다. 현재 3GPP LTE 시스템에서는 상향링크용으로 포맷 0 및 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A 등의 다양한 포맷이 정의되어 있다. DCI 포맷 각각의 용도에 맞게, 호핑 플래그, RB 할당(RB allocation), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 순환 천이 DMRS(cyclic shift demodulation reference signal), UL 인덱스, CQI(channel quality information) 요청, DL 할당 인덱스(DL assignment index), HARQ 프로세스 넘버, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 정보 등의 제어정보가 취사 선택된 조합이 하향링크 제어정보로서 UE에게 전송된다.
일반적으로, UE에 구성된 전송 모드(transmission mode, TM)에 따라 상기 UE에게 전송될 수 있는 DCI 포맷이 달라진다. 다시 말해, 특정 전송 모드로 구성된 UE를 위해서는 모든 DCI 포맷이 사용될 수 있는 것이 아니라, 상기 특정 전송 모드에 대응하는 일정 DCI 포맷(들)만이 사용될 수 있다.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 부호화율(coding rate)를 제공하기 위해 사용되는 논리적 할당 유닛(unit)이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 4개의 RE에 대응한다. 3GPP LTE 시스템의 경우, 각각의 UE을 위해 PDCCH가 위치할 수 있는 CCE 세트를 정의하였다. UE가 자신의 PDCCH를 발견할 수 있는 CCE 세트를 PDCCH 탐색 공간, 간단히 탐색 공간(Search Space, SS)라고 지칭한다. 탐색 공간 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보(candidate)라고 지칭한다. UE가 모니터링(monitoring)할 PDCCH 후보들의 모음은 탐색 공간으로 정의된다. 3GPP LTE/LTE-A 시스템에서 각각의 DCI 포맷을 위한 탐색 공간은 다른 크기를 가질 수 있으며, 전용(dedicated) 탐색 공간과 공통(common) 탐색 공간이 정의되어 있다. 전용 탐색 공간은 UE-특정(specific) 탐색 공간이며, 각각의 개별 UE를 위해 구성(configuration)된다. 공통 탐색 공간은 복수의 UE들을 위해 구성된다. 상기 탐색 공간을 정의하는 집성 레벨(aggregation level)은 다음과 같다.
표 3
Search Space SK (L) Number of PDCCH candidates M(L)
Type Aggregation Level L Size[in CCEs]
UE-specific 1 6 6
2 12 6
4 8 2
8 16 2
Common 4 16 4
8 16 2
하나의 PDCCH 후보는 CCE 집성 레벨에 따라 1, 2, 4 또는 8개의 CCE에 대응한다. eNB는 탐색 공간 내의 임의의 PDCCH 후보 상에서 실제 PDCCH (DCI)를 전송하고, UE는 PDCCH (DCI)를 찾기 위해 탐색 공간을 모니터링한다. 여기서, 모니터링이라 함은 모든 모니터링되는 DCI 포맷들에 따라 해당 탐색 공간 내의 각 PDCCH의 복호(decoding)를 시도(attempt)하는 것을 의미한다. UE는 상기 복수의 PDCCH를 모니터링하여, 자신의 PDCCH를 검출할 수 있다. 기본적으로 UE는 자신의 PDCCH가 전송되는 위치를 모르기 때문에, 매 서브프레임마다 해당 DCI 포맷의 모든 PDCCH를 자신의 식별자를 가진 PDCCH를 검출할 때까지 PDCCH의 복호를 시도하는데, 이러한 과정을 블라인드 검출(blind detection)(블라인드 복호(blind decoding, BD))이라고 한다.
eNB는 데이터영역을 통해 UE 혹은 UE 그룹을 위한 데이터를 전송할 수 있다. 상기 데이터영역을 통해 전송되는 데이터를 사용자데이터라 칭하기도 한다. 사용자데이터의 전송을 위해, 데이터영역에는 PDSCH(Physical Downlink Shared CHannel)가 할당될 수 있다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. UE는 PDCCH를 통해 전송되는 제어정보를 복호하여 PDSCH를 통해 전송되는 데이터를 읽을 수 있다. PDSCH의 데이터가 어떤 UE 혹은 UE 그룹에게 전송되는지, 상기 UE 혹은 UE 그룹이 어떻게 PDSCH 데이터를 수신하고 복호해야 하는지 등을 나타내는 정보가 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC(cyclic redundancy check) 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 DL 서브프레임을 통해 전송된다고 가정한다. UE는 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A"라는 RNTI를 가지고 있는 UE는 PDCCH를 검출하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
UE가 eNB로부터 수신한 신호의 복조를 위해서는 데이터 신호와 비교될 참조신호 참조신호(reference signal, RS)가 필요하다. 참조신호라 함은 eNB가 UE로 혹은 UE가 eNB로 전송하는, eNB와 UE가 서로 알고 있는, 기정의된 특별한 파형의 신호를 의미하며, 파일럿(pilot)이라고도 불린다. 참조신호들은 셀 내 모든 UE들에 의해 공용되는 셀-특정(cell-specific) RS와 특정 UE에게 전용되는 복조(demodulation) RS(DM RS)로 구분된다. eNB가 특정 UE를 위한 하향링크 데이터의 복조를 위해 전송하는 DM RS를 UE-특정적(UE-specific) RS라 특별히 칭하기도 한다. 하향링크에서 DM RS와 CRS는 함께 전송될 수도 있으나 둘 중 한 가지만 전송될 수도 있다. 다만, 하향링크에서 CRS없이 DM RS만 전송되는 경우, 데이터와 동일한 프리코더를 적용하여 전송되는 DM RS는 복조 목적으로만 사용될 수 있으므로, 채널측정용 RS가 별도로 제공되어야 한다. 예를 들어, 3GPP LTE(-A)에서는 UE가 채널 상태 정보를 측정할 수 있도록 하기 위하여, 추가적인 측정용 RS인 CSI-RS가 상기 UE에게 전송된다. CSI-RS는 채널상태가 상대적으로 시간에 따른 변화도가 크지 않다는 사실에 기반하여, 매 서브프레임마다 전송되는 CRS와 달리, 다수의 서브프레임으로 구성되는 소정 전송 주기마다 전송된다.
도 4는 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.
도 4를 참조하면, UL 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 상향링크 제어 정보(uplink control information, UCI)를 나르기 위해, 상기 제어영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터영역에 할당될 수 있다.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로서, 주파수 상향변환 과정에서 반송파 주파수 f0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ-ACK: PDCCH에 대한 응답 및/또는 PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. PDCCH 혹은 PDSCH가 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송된다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(이하, NACK), DTX(Discontinuous Transmission) 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK이라는 용어는 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보(feedback information)이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
UE가 서브프레임에서 전송할 수 있는 상향링크 제어정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. UCI에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 구성된 서브프레임의 경우에는 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히런트(coherent) 검출에 사용된다. PUCCH는 전송되는 정보에 따라 다양한 포맷을 지원한다.
표 4는 LTE/LTE-A 시스템에서 PUCCH 포맷과 UCI의 맵핑 관계를 나타낸다.
표 4
PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
1 N/A N/A (exist or absent) SR (Scheduling Request)
1a BPSK 1 ACK/NACK orSR + ACK/NACK One codeword
1b QPSK 2 ACK/NACK orSR + ACK/NACK Two codeword
2 QPSK 20 CQI/PMI/RI Joint coding ACK/NACK (extended CP)
2a QPSK+BPSK 21 CQI/PMI/RI + ACK/NACK Normal CP only
2b QPSK+QPSK 22 CQI/PMI/RI + ACK/NACK Normal CP only
3 QPSK 48 ACK/NACK orSR + ACK/NACK orCQI/PMI/RI + ACK/NACK
표 4를 참조하면, PUCCH 포맷 1 계열은 주로 ACK/NACK 정보를 전송하는 데 사용되며, PUCCH 포맷 2 계열은 주로 CQI/PMI/RI 등의 채널상태정보(channel state information, CSI)를 나르는 데 사용되고, PUCCH 포맷 3 계열은 주로 ACK/NACK 정보를 전송하는 데 사용된다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(안테나 포트)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득할 수 있는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드 오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 자원에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
CSI 보고
3GPP LTE(-A) 시스템에서는, 사용자 기기(UE)가 채널상태정보(CSI)를 기지국(BS)으로 보고하도록 정의되었으며, 채널상태정보(CSI)라 함은 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다. 예를 들어, 랭크 지시자(rank indicator, RI), 프리코딩행렬 지시자(precoding matrix indicator, PMI), 채널품질지시자(channel quality indicator, CQI) 등이 이에 해당한다. 여기서, RI는 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 롱 텀 페이딩(fading)에 의해 종속되어 결정되므로, PMI, CQI보다 보통 더 긴 주기를 가지고 UE에서 BS로 피드백된다. PMI는 채널 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다. CQI는 채널의 세기를 나타내는 값으로 일반적으로 BS가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
상기 무선 채널의 측정에 기반하여, UE는 현재 채널 상태 하에서 상기 BS에 의해 사용된다면 최적 또는 최고의 전송 레이트를 도출할 수 있는 선호되는 PMI 및 RI를 계산하고, 계산된 PMI 및 RI를 상기 BS로 피드백한다. 여기서, CQI는 상기 피드백된 PMI/RI에 대한 수용가능한 패킷 에러율(packet error probability)을 제공하는 변조 및 코딩 방식(modulation and coding scheme)을 지칭한다.
한편, 더 정밀한 MU-MIMO와 명시적인 CoMP 동작들을 포함하도록 기대되는LTE-A 시스템에서, 현재의 CSI 피드백은 LTE에서 정의되었으며 따라서 저러한 새롭게 도입될 동작들을 충분하게 지원하지 못한다. CSI 피드백 정확도에 대한 요구사항이 충분한 MU-MIMO 또는 CoMP 스루풋(throughput) 이득을 얻기 위해 점점 까다로워짐에 따라, PMI가 롱 텀(long term)/광대역(wideband) PMI (W1) 그리고 숏 텀(short term)/서브밴드(subband) PMI (W2), 두 가지로 구성되도록 합의되었다. 다시 말해서, 최종 PMI는 W1과 W2의 함수로서 표현된다. 예컨대, 최종 PMI W는 다음과 같이 정의될 수 있다: W=W1*W2 or W=W2*W1. 따라서, LTE-A에서 CSI는 RI, W1, W2 및 CQI로 구성될 것이다.
3GPP LTE(-A)시스템에서 CSI 전송을 위해 사용되는 상향링크 채널은 다음 표 5와 같다.
표 5
스케줄링 방식 주기적 CSI 전송 비주기적 CSI 전송
주파수 비선택적 PUCCH -
주파수 선택적 PUCCH PUSCH
표 5를 참조하면, CSI는 상위 계층에서 정한 주기로 물리상향링크 제어채널(Physical Uplink Control Channel, PUCCH)을 이용하여 전송될 수 있고, 스케줄러의 필요에 따라 비주기적으로 물리상향링크 공유채널(Physical Uplink Shared Channel, PUSCH)을 이용하여 전송될 수 있다. CSI가 PUSCH로 전송되는 경우는 주파수 선택적인 스케줄링 방식 및 비주기적 CSI 전송인 경우에만 가능하다. 이하에서는 스케줄링 방식 및 주기성에 따른 CSI 전송 방식에 대해서 설명한다.
1) CSI 전송 요청 제어 신호(CSI request) 수신 후 PUSCH를 통한 CQI/PMI/RI 전송
PDCCH 신호로 전송되는 PUSCH 스케줄링 제어신호(UL Grant)에 CSI를 전송하도록 요청하는 제어 신호가 포함될 수 있다. 다음 표는 PUSCH를 통해 CQI, PMI, RI를 전송할 때의 UE의 모드를 나타낸다.
표 6
PMI Feedback Type
No PMI Single PMI Multiple PMIs
PUSCH CQI Feedback Type Wideband(Wideband CQI) Mode 1-2 RI 1st wideband CQI(4bit) 2nd wideband CQI(4bit) if RI>1 N*Subband PMI(4bit) (N is the total # of subbands)(if 8Tx Ant, N*subband W2 + wideband W1)
UE selected(Subband CQI) Mode 2-0 RI (only for Open-loop SM) 1st wideband CQI(4bit) + Best-M CQI(2bit) (Best-M CQI: 총 N개의 SB중 선택된 M개의 SB에 대한 평균 CQI) Best-M index (L bit) Mode 2-2 RI 1st wideband CQI(4bit) + Best-M CQI(2bit) 2nd wideband CQI(4bit) + Best-M CQI(2bit) if RI>1* Best-M index (L bit) Wideband PMI(4bit)+ Best-M PMI(4bit) (if 8Tx Ant, wideband W2 + Best-M W2 + wideband W1)
Higher Layer-configured(Subband CQI) Mode 3-0 RI (only for Open-loop SM) 1st wideband CQI(4bit)+N*subbandCQI(2bit) Mode 3-1 RI 1st wideband CQI(4bit)+ N*subbandCQI(2bit) 2nd wideband CQI(4bit)+ N*subbandCQI(2bit) if RI>1 Wideband PMI(4bit) (if 8Tx Ant, wideband W2 + wideband W1) Mode 3-2 RI 1st wideband CQI(4bit)+ N*subbandCQI(2bit) 2nd wideband CQI(4bit)+ N*subbandCQI(2bit) if RI>1N*Subband PMI(4bit) (N is the total # of subbands)(if 8Tx Ant, N*subband W2 + wideband W1)
표 6의 전송 모드는 상위 레이어에서 선택되며, CQI/PMI/RI는 모두 같은 PUSCH 서브프레임에서 전송된다. 이하에서는, 각 모드에 따른 UE의 상향링크 전송 방법에 대해서 설명한다.
모드 1-2(Mode 1-2)는 각각의 서브밴드에 대해서 데이터가 서브밴드만을 통해서 전송된다는 가정하에 프리코딩 행렬을 선택하는 경우를 나타낸다. UE는 시스템 대역 또는 상위 레이어에서 지정한 대역(set S) 전체에 대해서 선택한 프리코딩 행렬을 가정하여 CQI를 생성한다. 모드 1-2에서 UE는 CQI와 각 서브밴드의 PMI 값을 전송할 수 있다. 이때, 각 서브밴드의 크기는 시스템 대역의 크기에 따라 달라질 수 있다.
모드 2-0(Mode 2-0)인 UE는 시스템 대역 또는 상위 레이어에서 지정한 지정 대역(set S)에 대해서 선호하는 M개의 서브밴드를 선택할 수 있다. UE는 선택한 M개의 서브밴드에 대해서 데이터를 전송한다는 가정하에 하나의 CQI 값을 생성할 수 있다. UE는 추가로 시스템 대역 또는 set S에 대해서 하나의 CQI (wideband CQI) 값을 보고하는 것이 바람직하다. UE는 선택한 M개의 서브밴드들에 대해서 다수 개의 코드워드가 있을 경우, 각 코드워드에 대한 CQI 값을 차분 형식으로 정의한다.
이때, 차분 CQI 값은 선택한 M개의 서브밴드에 대한 CQI 값에 해당하는 인덱스와 광대역 CQI(WB-CQI: Wideband CQI) 인덱스의 차이값으로 결정된다.
모드 2-0인 UE는 선택한 M개의 서브밴드의 위치에 대한 정보, 선택한 M개의 서브밴드들에 대한 하나의 CQI 값 및 전 대역 또는 지정 대역(set S)에 대해서 생성한 CQI 값을 BS로 전송할 수 있다. 이때, 서브밴드의 크기 및 M값은 시스템 대역의 크기에 따라 달라질 수 있다.
모드 2-2(Mode 2-2)인 UE는 M개의 선호하는 서브밴드를 통하여 데이터를 전송한다는 가정하에, M개의 선호 서브밴드의 위치와 M개의 선호 서브밴드에 대한 단일 프리코딩 행렬을 동시에 선택할 수 있다. 이때, M개의 선호 서브밴드에 대한CQI 값은 코드워드마다 정의된다. 또한, UE는 추가로 시스템 대역 또는 지정 대역(set S)에 대해서 광대역 CQI(wideband CQI) 값을 생성한다.
모드 2-2인 UE는 M개의 선호하는 서브밴드의 위치에 대한 정보, 선택된 M개의 서브밴드들에 대한 하나의 CQI 값, M개의 선호하는 서브밴드에 대한 단일 PMI, 광대역 PMI, 광대역 CQI 값을 BS로 전송할 수 있다. 이때, 서브밴드의 크기 및 M 값은 시스템 대역의 크기에 따라 달라질 수 있다.
모드 3-0(Mode 3-0)인 UE는 광대역 CQI 값을 생성한다. UE는 각 서브밴드를 통해서 데이터를 전송한다는 가정하에 각 서브밴드에 대한 CQI 값을 생성한다. 이때, RI > 1이더라도 CQI 값은 첫 번째 코드워드에 대한 CQI 값만을 나타낸다.
모드 3-1(Mode 3-1)인 UE는 시스템 대역 또는 지정대역(set S)에 대해서 단일 프리코딩 행렬(precoding matrix)을 생성한다. UE는 각 서브밴드에 대해서 앞서 생성한 단일 프리코딩 행렬을 가정하고, 코드워드 별로 서브밴드 CQI를 생성한다. 또한, UE는 단일 프리코딩 행렬을 가정하고 광대역 CQI를 생성할 수 있다. 각 서브밴드의 CQI 값은 차분 형식으로 표현될 수 있다. 서브밴드 CQI 값은 서브밴드 CQI 인덱스와 광대역 CQI 인덱스의 차이값으로 계산된다. 이때, 서브밴드의 크기는 시스템 대역의 크기에 따라 달라질 수 있다.
모드 3-2(Mode 3-2)인 UE는 모드 3-1와 비교하여, 전체 대역에 대한 단일 프리코딩 행렬 대신, 각 서브밴드에 대한 프리코딩 행렬을 생성한다.
2) PUCCH를 통한 주기적인 CQI/PMI/RI 전송
UE는 CSI(e.g. CQI/PMI/PTI(precoding type indicator) 및/또는 RI 정보)를 PUCCH를 통해 BS에 주기적으로 전송할 수 있다. 만약, UE가 사용자 데이터를 전송하라는 제어신호를 수신하였을 경우에는, UE는 PUCCH를 통하여 CQI를 전송할 수 있다. 제어신호가 PUSCH를 통하여 전송되더라도 CQI/PMI/PTI/RI는 다음 표에서 정의된 모드들 중 하나의 방식에 의해 전송될 수 있다.
표 7
PMI 피드백 타입
No PMI 단일 PMI
PUCCH CQI 피드백 타입 광대역(광대역 CQI) Mode 1-0 Mode 1-1
UE 선택(서브밴드 CQI) Mode 2-0 Mode 2-1
UE는 표 7과 같은 전송 모드를 가질 수 있다. 표 7을 참조하면, 모드 2-0(Mode 2-0) 및 모드 2-1(Mode 2-1)의 경우, 대역폭 파트(BP: Bandwidth Part)는 주파수 영역에서 연속적으로 위치한 서브밴드들의 집합이며 시스템 대역 또는 지정대역(set S)를 모두 커버할 수 있다. 표 7에서 각 서브밴드의 크기, BP의 크기 및 BP의 개수는 시스템 대역의 크기에 따라 달라질 수 있다. 또한, UE는 시스템 대역 또는 지정대역(set S)을 커버할 수 있도록 BP 별로 CQI를 주파수 영역에서 오름차순으로 전송한다.
CQI/PMI/PTI/RI의 전송 조합에 따라, UE는 다음과 같은 PUCCH 전송 타입을 가질 수 있다.
i) 타입1 (Type 1): 모드 2-0(Mode 2-0), 모드 2-1(Mode 2-1)의 서브밴드 CQI(SB-CQI)를 전송한다.
ii) 타입1a: 서브밴드 CQI 및 제2 PMI를 전송한다
iii) 타입2, 타입 2b, 타입 2c: 광대역 CQI 및 PMI(WB-CQI/PMI)를 전송한다.
iv) 타입2a: 광대역 PMI를 전송한다.
v) 타입3: RI를 전송한다.
vi) 타입 4: 광대역 CQI를 전송한다.
vii) 타입 5: RI 및 광대역 PMI를 전송한다.
viii) 타입 6: RI 및 PTI를 전송한다.
ix) 타입 7: CRI(CSI-RS resource indicator) 및 RI를 전송한다.
x) 타입 8: CRI, RI 및 광대역 PMI를 전송한다.
xi) 타입 9: CRI, RI 및 PTI(precode type indication)를 전송한다.
xii) 타입 10: CRI를 전송한다.
UE가 RI와 광대역 CQI/PMI를 전송하는 경우, CQI/PMI는 서로 다른 주기와 오프셋을 가지는 서브프레임에 전송된다. 또한, RI와 광대역 CQI/PMI가 같은 서브프레임에 전송되어야 하는 경우에는 CQI/PMI는 전송되지 않는다.
비주기적 CSI 요청
현재 LTE 표준에서는 CA(carrier aggregation) 환경을 고려하는 경우 비주기적 CSI 피드백을 동작시키기 위해서는 DCI 포맷 0 또는 4에서 2-비트 CSI 요청 필드를 사용하고 있다. 단말은 CA 환경에서 여러 개의 서빙 셀을 설정받은 경우 CSI 요청 필드를 2-비트로 해석하게 된다. 만약 모든 CC(Component Carrier)에 대해 TM 1에서 9 사이의 TM 중 하나가 설정된 경우는, 아래 표 8의 값에 따라서 비주기적 CSI 피드백이 트리거링되고, 모든 CC 중 적어도 하나의 CC에 대해 TM 10이 설정된 경우는, 아래 표 9의 값에 따라서 비주기적 CSI 피드백이 트리거링된다.
표 8
CSI 요청 필드 값 상세 설명
'00' 비주기적 CSI 보고가 트리거링되지 않음
'01' 비주기적 CSI 보고가 서빙 셀에 대해 트리거링됨
'10' 비주기적 CSI 보고가 상위 계층에 의해 설정된 제1 집합의 서빙 셀들에 대해 트리거링됨
'11' 비주기적 CSI 보고가 상위 계층에 의해 설정된 제2 집합의 서빙 셀들에 대해 트리거링됨
표 9
CSI 요청 필드 값 상세 설명
'00' 비주기적 CSI 보고가 트리거링되지 않음
'01' 비주기적 CSI 보고가 서빙 셀을 위해 상위 계층에 의해 설정된 CSI 프로세스 집합에 대해 트리거링됨
'10' 비주기적 CSI 보고가 상위 계층에 의해 설정된 제1 집합의 CSI 프로세스에 대해 트리거링됨
'11' 비주기적 CSI 보고가 상위 계층에 의해 설정된 제2 집합의 CSI 프로세스에 대해 트리거링됨
패킷 데이터의 레이턴시는 중요한 성능 메트릭(metric) 중 하나이며, 이를 줄이고 좀 더 빠른 인터넷 액세스를 최종 사용자(end user)에게 제공하는 것은 LTE 뿐만 아니라 차세대 이동 통신 시스템, 이른바 뉴랫(new RAT)의 설계에서도 중요한 과제 중 하나라고 할 수 있다.
LTE의 최근 표준에서는 데이터 레이트를 증가시키기 위한 노력으로 이미 반송파 병합, 대규모 MIMO, 더 높은 변조 차수 등과 같은 여러 가지 기술들이 도입되었다. 하지만, 사용자 플레인(user plane)의 레이턴시를 극적으로 감소시키면서 동시에 TCP(Transmission Control Protocol) 스루풋을 향상시키기 위해 프로세싱 시간을 감소시키는 것은 매우 핵심적인 기술 중 하나라고 볼 수 있다. 최근 LTE 표준에서는 프로세싱 시간 감소를 위하여 'UL 승인-to-PUSCH', 'DL 데이터-to-DL HARQ 피드백'의 DL 수신-UL 송신간 타이밍을 줄이는 방안이 논의되고 있다.
한편, 빠른 CSI 갱신(update)이 가능한지 여부는 시스템 성능 결정에 중요한 요인이 될 수도 있다. 다시 말해, 더 빠른 CQI 갱신을 이용하여 좀 더 신속한 레이트 적응(rate adaptation)이 가능해 질 것이고, 이로부터 시스템 성능의 향상을 기대할 수 있다. 만약 프로세싱 시간 감소가 지원되는 시스템의 경우 좀 더 빠른 CSI 피드백을 통해 네트워크는 좀 더 최적화된 스케줄링을 수행할 수도 있다.
본 발명에서는 프로세싱 시간 감소가 지원되는 상황에서 CSI 피드백을 수행하기 위한 방안을 제안한다. 편의상 본 명세서에서 설명한 발명 또는 제안을 LTE에 기반하여 설명하나 해당 내용은 뉴랫 등 다른 파형/프레임 구조가 사용되는 기술에도 적용 가능하다. 본 발명의 실시예에서는 설명의 편의상 특정 TTI 길이를 가정하였으나, 상이한 TTI 길이 구성(예컨대, sTTI(<1msec), longTTI (=1msec), longerTTI (>1msec))에 대해서도 본 발명이 적용 될 수 있음은 당연하다. 예를 들면, 차기 시스템에서 서브캐리어 간격을 증가하는 형태로 sTTI가 도입되는 것일 수도 있다.
[Proposal 1] 감소된 프로세싱 시간에 따른 CSI 피드백
[1-1] UL 데이터 및 CSI 간 상이한 프로세싱 시간의 경우의 CSI 피드백
단말이 UL 데이터를 송신하기 위해서는 다음과 같은 타이밍이 고려되어야 한다.
● PDCCH에 대한 채널 추정
● PDCCH 블라인드 검출 수행
● PUSCH에 대한 전력 제어 수행
● PUSCH에 대한 터보 코딩
● 타이밍 어드밴스(Timing advance)
현재 LTE rel-13 표준에 따르면 'UL 승인-to-PUSCH'에 소모되는 시간은 4 서브프레임으로 규정되어 있다. 프로세싱 시간 감소를 지원하는 단말의 경우, 상기의 동작에 대해 상대적으로 더 적은 시간을 소요하게 될 것이고, 따라서 서브프레임 #n에서 UL 승인에 의해 스케줄링된 UL 데이터가 서브프레임 #n+k(여기서, k는 4보다 작은 정수)에 전송 가능할 수도 있다. 만약 UL 승인에 비주기적 CSI 요청에 의해 CSI 보고가 트리거(trigger)되는 경우, 단말은 CSI 관련 계산 또한 상대적으로 더 적은 시간을 소요하여 완료해야만 서브프레임 #n+k에 PUSCH로 CSI 피드백을 수행할 수 있다. 다만, 단말의 능력(capability)에 따라서는 CSI 계산에 소모되는 시간을 감소시키기 어려울 수도 있다.
PUSCH 스케줄링을 위한 UL 승인과는 별도의 A-CSI 요청을 위한 UL 승인을 통해 CSI 피드백을 트리거할 수도 있다. 한 가지 방안으로, 'A-CSI only PUSCH'를 트리거하는 UL 승인에 대해서는 사전에 정의된 혹은 설정된 혹은 시그널링된 (PUSCH와 상이한) 별도의 'DL-to-UL Tx 타이밍'을 이용하여 CSI 피드백을 수행하도록 규칙이 정의될 수 있다.
또 다른 방안으로는, 특정 시점에서 전송되는 UL 승인에서 PUSCH와 A-CSI의 전송 타이밍을 지시하도록 규칙이 정의될 수도 있다. 즉, 하나의 UL 승인으로 서로 다른 전송 타이밍을 갖는, PUSCH와 A-CSI를 포함하는 또 하나의 PUSCH를 스케줄링할 수 있다. 일례로, 서브프레임 #n에서 전송된 UL 승인에 의해 PUSCH는 서브프레임 #n+k1, CSI는 서브프레임 #n+k2에서 전송되도록 k1과 k2에 대한 정보가 사전에 정의되거나 혹은 상위 계층 신호를 통해 설정되거나 혹은 상기 UL 승인을 통해 동적으로 지시되도록 규칙이 정의될 수 있다. 특징적으로, k1과 k2에 대한 정보는 PUSCH 전송 타이밍 대비 CSI 전송 시점을 오프셋 형태로 지시되도록 규칙이 정의될 수도 있다.
이 때, CSI에 대한 스케줄링 정보는 PUSCH에 대한 스케줄링 정보를 재사용하되 일부의 정보는 변동을 줄 수도 있다. 일례로, CSI에 대한 자원 할당과 같은 정보는 사전에 정의된 혹은 시그널링을 통해 별도의 주파수 자원으로 전송되도록 규칙이 정의될 수도 있다. 또한, UL 승인에 별도의 HARQ 프로세스를 포함하여 PUSCH와 CSI에 대한 HARQ-ACK이 상이한 타이밍으로 전송되도록 규칙이 정의될 수 있다.
또는, 일정한 서브프레임 인덱스 혹은 sTTI 인덱스(서브프레임 내) 혹은 슬롯 인덱스에 해당하는 서브프레임/sTTI/슬롯 등에서만 비주기적 CSI가 트리거될 수 있도록 규정될 수 있다. 이러한 서브프레임 인덱스 혹은 sTTI 인덱스 혹은 슬롯 인덱스의 규정은 이에 대응하는 (s)PUSCH까지 프로세싱 시간('DL-to-UL Tx timing')이 다른 서브프레임, sTTI, 슬롯 등에 비해서 긴 경우에 유용할 것이고, 예를 들면, TDD의 DL/UL 설정에 의해서 생기거나, sTTI의 DM-RS 공유에 의해서 생기거나, UL 전송 타이밍이 지정될 때 생길 수 있다.
[1-2] CSI 계산의 간략화
만약 프로세싱 시간 감소가 지원되는 것과 동일한 수준의 CSI 요청 및 보고 타임 라인을 지원하고자 한다면 CSI 계산의 간략화가 필요할 수도 있다. 한 가지 방안으로, 프로세싱 시간 감소 관련 설정이 활성화된 경우(일례로, 'DL-to-UL Tx timing'이 레가시 타이밍에 비해 짧게 설정/지시된 경우), 단말에게 설정된 보고 모드를 무시하고 주기적 CSI를 위한 보고 모드의 보고가 전송되거나, 비주기적 CSI 보고 모드 중 광대역 보고(예컨대, 모드 1-0, 1-1) 또는 부대역(subband) 보고를 수행하도록 규칙이 정의될 수 있다.
이 때, 부대역의 개수가 증가하면 복잡도가 증가될 수 있으므로, 상기 부대역 보고는 이전의 CSI 보고(이는 특징적으로 long TTI를 통해 전송된 CSI 보고이거나 주기적 CSI 보고 중 가장 가까운 시점의 보고일 수 있음)를 통해 베스트(best)로 선정된 부대역과 두번째 베스트 부대역, 혹은 사전에 정의되었거나 시그널링된 개수만큼의 베스트 부대역으로 한정되거나, 반 정적(semi-static) 그리고/혹은 동적 시그널링을 통해 CSI 계산이 수행될 부대역을 지정받을 수 있다. 다시 말하면, sTTI등을 통해 트리거되는 비주기적 CSI의 경우에는 주기적 CSI의 보고가 대신 올라갈 수 있다. 또는, 주기적 CSI 보고로 측정되는 CQI 및/또는 PMI 및/또는 RI가 모두 올라가는 형태일 수 있다.
즉, 프로세싱 시간 감소의 지원을 위해 도입될 CSI 보고는 새로운 계산 없이 전송될 수 있는 CSI 보고에 한정될 수 있다. 이러한 설정을 위해서 주기적 CSI가 설정되고 측정은 수행되나, 보고 자체는 sTTI 등으로 비주기적으로만 트리거되는 것을 가정할 수 있다. 또한, 이러한 CSI의 경우 측정 참조 자원 등이 sTTI를 기준으로 구성될 수 있다. 특징적으로, 이 때 CSI 계산을 위한 부대역 또는 대역은 sTTI가 설정된 (연속적/비-연속적) BW로 한정될 수도 있다. 또는, 프로세싱 시간 감소 관련 설정이 인에이블(enable)된 경우, 단말은 CSI 계산에 대한 오버헤드를 경감시키기 위해 시스템 BW에 의해 결정된 부대역 크기를 좀 더 크게 재조정하도록 규칙이 정의될 수도 있다.
또 다른 방안으로, 프로세싱 시간에 따른 PMI 집합 제한을 단말에게 설정해주고, 해당 UL 승인에 대해 설정 또는 지시된 'DL-to-UL Tx timing'에 따라 단말이 사용할 PMI 집합 제한을 결정하도록 규칙이 정의될 수 있다. 특징적으로, 프로세싱 시간이 줄어들수록 단말이 PMI 계산에 대해 좀더 적은 수의 PMI로 구성된 집합을 사용하도록 규칙이 정의될 수 있다.
또 다른 방안으로, 프로세싱 시간 감소 관련 설정이 인에이블된 경우(일례로, 'DL-to-UL Tx timing'이 레가시 타이밍에 비해 짧게 설정 또는 지시된 경우), 트리거된 CSI 프로세스 개수에 따라서 단말이 네트워크에게 설정받은 보고 모드를 따를지 아니면 광대역 보고 혹은 좀더 큰 부대역 크기 기반의 보고를 수행할지 결정하도록 규칙이 정의될 수 있다.
또 다른 방안으로, CSI 프로세스 별로 복수으 보고 모드를 사전에 설정하고, 'DL-to-UL Tx timing' 그리고/혹은 뉴멀로지(numerology)(예컨대, UL TTI 길이)에 따라서 보고 모드가 결정되도록 규칙이 정의될 수 있다.
또 다른 방안으로, 프로세싱 시간 감소 관련 설정이 인에이블된 경우(일례로, 'DL-to-UL Tx timing'이 레가시 타이밍에 비해 짧게 설정 또는 지시된 경우), A-CSI 요청 비트가 가리키는 상태(state)에 연동된 CSI 프로세스 중 일부 개수의 CSI 프로세스에 대해서만 선택적으로 CSI를 계산 및/또는 보고하도록 규칙이 정의될 수 있다. 이 때, 몇 개의 CSI 프로세스에 대한 CSI를 계산 및/또는 보고할 지는 뉴멀로지(예컨대, TTI 길이) 및/또는 프로세싱 시간 및/또는 단말이 보고한 최대 동시 CSI 갱신/계산 능력 등을 고려하여 사전에 약속/정의되거나 네트워크가 상기 사항들을 고려하여 시그널링해 주거나 혹은 단말이 자의적으로 판단한 후 보고하되, 상기 A-CSI 요청 비트에 의해 트리거된 CSI 보고 집합 중 단말이 보고할 CSI 프로세스의 개수 및/또는 인덱스 등에 대한 정보를 포함하여 CSI 피드백을 수행할 수 있다. 일례로, 'DL-to-UL Tx timing'이 2ms로 설정된 단말의 경우, A-CSI 요청에 의해 트리거된 집합 내 1개의 CSI 프로세스에 대해서만 CSI 계산 및/또는 CSI 보고를 수행하도록 규칙이 정의될 수 있다.
현재 LTE 표준에 따르면, CSI-RS는 OFDM 심볼 #5, 6, 9, 10, 12, 13에 설정될 수 있다. 만약 서브프레임 #n에서 UL 승인 DCI에 의해 A-CSI 보고가 트리거되는 경우, 전송 모드 9/10 단말은 CSI-RS 또한 해당 서브프레임에서 전송되는 상황을 고려해서 해당 서브프레임이 끝날 때까지 CSI 계산을 위한 채널 측정 수행을 기대할 수 있다. 만약 단말에게 서브프레임 내 후반부의 OFDM 심볼에 해당하는 CSI-RS 설정을 설정하지 않도록 사전에 약속될 경우, 보다 짧은 'DL-to-UL Tx timing'에 데이터와 CSI 보고를 수행할 수 있다. 따라서, 프로세싱 시간 감소 관련 설정이 인에이블된 경우, 특정 CSI-RS 설정에 한해서만 단말에게 설정되도록 규칙이 정의될 수 있다. 여기서 특정 CSI-RS 설정이라 함은, 서브프레임 내 전반부의 OFDM 심볼(예컨대, OFDM 심볼 #5, 6 혹은 OFDM 심볼 #5, 6, 9, 10)을 포함하는 CSI-RS 설정일 수 있다. 또는, 프로세싱 시간 감소 관련 설정이 인에이블된 경우, 특정 CSI-RS 설정이 설정되지 않도록 규칙이 정의될 수 있다. 여기서, 특정 CSI-RS 설정이라 함은, 서브프레임 내 후반부의 OFDM 심볼(예컨대, OFDM 심볼 #12, 13)을 포함하는 CSI-RS 설정일 수 있다.
구체적인 일례로, FDD, 4 포트, 일반 CP를 가정했을 때, 'DL-to-UL Tx timing'이 레가시 타이밍에 비해 짧게 설정 또는 지시된 경우 단말은 OFDM 심볼 #12, 13에 해당하는 CSI 설정 4, 9를 제외한 나머지 CSI-RS 설정만을 설정받을 수 있도록 규칙이 정의될 수 있다.
유사하게, EPDCCH BD 수행을 위해 특정 서브프레임이 끝날 때까지 CSI 계산을 위한 채널 측정 수행을 기대할 수도 있다. 따라서, 프로세싱 시간 감소 관련 설정이 인에이블된 경우, EPDCCH에 의해서 해당 단말에 대해서는 스케줄링되지 않도록 규칙이 정의될 수 있다. 다시 말해, 프로세싱 시간 감소 관련 설정이 인에이블된 경우, 해당 단말은 PDCCH에 의해서만 스케줄링될 것을 기대하고 PDCCH BD를 수행하며 EPDCCH BD는 수행하지 않는다.
[1-3] CSI 갱신/계산/보고 관련 능력 시그널링
위에서 설명한 프로세싱 시간 감소에 대응하는 적절한 양의 CSI 피드백 트리거 또는 보고 동작을 지원하기 위해서 단말이 네트워크에게 최대 동시 CSI 갱신/계산 능력을 보고하는 것이 유익할 수 있다. 특징적으로, 단말에게 설정된 뉴멀로지 별로 혹은 설정된 프로세싱 시간 별로 혹은 이 둘의 조합 별로 최대 동시 CSI 갱신/계산 능력을 셀 혹은 CSI 프로세스 개수 단위로 네트워크에게 보고하도록 규칙이 정의될 수 있다. 혹은, 단말에게 설정된 뉴멀로지 별로 혹은 설정된 프로세싱 시간 별로 혹은 이 둘의 조합 별로 동시에 보고할 최대 CSI 보고 개수를 단말이 네트워크에게 보고하도록 규칙이 정의될 수 있다.
혹은, 단말은 CSI 프로세싱에 소요되는 시간을 사전에 정의 또는 약속된 시간 단위로 네트워크에게 보고할 수 있다. 일례로, 단말은 CSI 프로세싱에 소요되는 시간을 설정된 TTI 단위 혹은 실제 시간 단위를 사용해 네트워크에게 보고할 수 있다.
즉, 특징적인 일례로 프로세싱 시간 감소를 설정받은 단말의 경우, 해당 감소된 프로세싱 시간에 대응되는 최대 동시 CSI 갱신/계산 능력 이상의 셀 혹은 CSI 프로세스에 대한 갱신을 요구받지는 않는다.
[1-4] 최대 전송 블록 크기(transport block size; TBS)에 관한 제한
단말이 일정 시간 동안 처리할 수 있는 데이터와 CSI 보고의 양은 한정적이다. 따라서, 단말에게 설정된 뉴멀로지 및/또는 설정된 프로세싱 시간 및/또는 UL 승인에 비주기적 CSI 요청이 포함되어 CSI 보고가 트리거되는지 여부 별로, 최대 TBS가 상이하게 설정될 수 있다. 일례로, UL 승인에 비주기적 CSI 요청이 포함되어 CSI 보고가 트리거되는 경우, 그렇지 않은 경우와 비교하여 좀더 작은 최대 TBS가 설정될 수 있다.
추가적으로, UL 승인에 비주기적 CSI 요청이 포함되어 CSI 보고가 트리거되었을 경우, 트리거된 상태에 연동된 CSI 프로세스 (그룹) 개수를 고려하여, CSI 프로세스 (그룹) 개수 별로 최대 TBS가 상이하게 설정될 수 있다.
[1-5] 최대 자원 할당에 대한 제한
단말에게 스케줄링되는 주파수 자원의 크기가 줄어들수록 단말의 MIMO 디코딩에 해당하는 프로세싱 시간을 줄일 수 있다. 따라서, 단말에게 설정된 뉴멀로지 및/또는 설정된 프로세승 시간 및/또는 UL 승인에 비주기적 CSI 요청이 포함되어 CSI 보고가 트리거되는지 여부 별로, 할당 가능한 최대 주파수 자원 영역의 크기가 상이하게 설정될 수 있다. 여기서, "할당 가능한 최대 주파수 자원 영역"이라 함은 시스템 BW에 의해 결정되는 값일 수 있고, 또는 단말에게 상이한 뉴멀로지 용도로 설정되는 전체 부대역 크기에 의해 결정되는 값일 수 있다.
추가적으로, UL 승인에 비주기적 CSI 요청이 포함되어 CSI 보고가 트리거되었을 경우, 트리거된 상태에 연동된 CSI 프로세스(그룹) 개수를 고려하여, CSI 프로세스(그룹) 개수 별로 할당가능한 최대 주파수 자원 영역의 크기가 상이하게 설정될 수 있다.
[1-6] CSI 프로세스 수에 관한 제한
UL 승인에 비주기적 CSI 요청이 포함되어 CSI 보고가 트리거되었을 경우, 트리거된 상태에 연동된 CSI 프로세스 (그룹) 개수에 따라서 'DL-to-UL Tx timing'이 결정되도록 규칙의 정의될 수 있다. 여기서, 'DL-to-UL Tx timing'은 단말에게 설정된 뉴멀로지 및/또는 UL 승인에 비주기적 CSI 요청이 포함되어 CSI 보고가 트리거되는지의 여부 및/또는 TBS 및/또는 할당된 주파수 자원 영역의 크기 별로 상이하게 독립적으로 설정될 수 있다.
[1-7] CSI 보고/갱신의 우선순위
'DL-to-UL Tx timing'의 길이가 상이한 복수의 UL 승인의 A-CSI 요청에 의해 CSI 보고가 트리거되고 복수의 CSI 보고가 동일한 UL 채널(예컨대, PUSCH) 송신 시점을 갖는 경우, 단말은 'DL-to-UL Tx timing'의 길이가 더 짧은 쪽의 UL 채널에 해당하는 CSI에 대해 먼저 갱신하도록 규칙이 정의될 수 있다.
복수의 CSI 보고에 대한 전송 타이밍이 (일부 혹은 전체에 해당하는) 특정 TTI에 겹치는 경우, 충돌 핸들링시 'DL-to-UL Tx timing'의 길이를 우선 순위 결정을 위한 비교 조건에 추가하여 고려하도록 규칙이 정의될 수 있다. 일례로, 'DL-to-UL Tx timing'의 길이 > CSI 보고 모드 > CSI 프로세스 > 셀 인덱스 > CSI SF 집합 인덱스, 혹은 CSI 보고 모드 > 'DL-to-UL Tx timing'의 길이 > CSI 프로세스 > 셀 인덱스 > CSI SF 집합 인덱스, 혹은 CSI 보고 모드 > CSI 프로세스 > 셀 인덱스 > 'DL-to-UL Tx timing'의 길이 > CSI SF 집합 인덱스와 같은 방식으로 파라미터들이 순차적으로 고려 또는 비교되어 CSI 보고의 우선 순위가 결정될 수 있다. 여기서, CSI 보고 모드가 동일한 경우 CSI 간의 우선 순위는, 모드 a-b> 모드 c-d (a<c, b<d)로 정의될 수 있고, 이는 좀더 간단한(compact) 보고 모드의 우선 순위가 높음을 의미한다(예컨대, 모드 1-0이 모드 2-2보다 우선 순위가 높다).
[1-8] 부분 A-CSI 보고
CSI 프로세싱에 소요되는 시간에 대한 마진(margin)을 주기 위해, A-CSI 보고에 해당하는 정보를 A-CSI가 전송될 UL 채널의 일부 자원에만 맵핑되도록 규칙이 정의될 수 있다. 일례로, A-CSI 보고에 해당하는 정보를 서브프레임 내 뒤쪽 슬롯 혹은 뒤쪽 몇 개의 특정 심볼에만 맵핑되도록 규칙이 정의될 수 있다. 상기 맵핑 규칙은 단말에게 설정된 뉴멀로지 및/또는 설정된 프로세싱 시간에 따라 상이하게 적용될 수 있다. 또한, 상기 맵핑 규칙은 단말에게 트리거된 A-CSI 요청에 해당하는 셀 혹은 CSI 프로세스의 개수가 사전에 정의 또는 약속되었거나 시그널링된 일정 개수 이상인 경우에만 적용될 수 있다.
[1-9] CSI 기준 자원 정의
기존 LTE 표준에 따르면, CSI 참조 자원은 시간 도메인에서 다음과 같이 정의된다.
●서빙 셀을 위한 CSI 기준 자원 설정
■케이스 1: 전송 모드 1-9 혹은 단일 CSI 프로세스의 전송 모드 10이 설정될 경우, 서브프레임 #n에서 전송할 CSI 보고에 대해서 CSI 참조 자원은 단일 하향링크/특이 서브프레임 #n-n_{CQI-ref}로 설정됨.
◆주기적 CSI 보고에 대해서 n_{CQI-ref}는 4 이상의 값들 중에서 해당 CSI 서브프레임 집합에 해당하는 최소 값에 해당하고, 유효 DL/특이 서브프레임으로 선택됨.
◆ 비주기적 CSI 보고에 대해서 n_{CQI-ref}는 서브프레임 #n-n_{CQI-ref}이 비주기적 CSI 요청이 전송된 유효 DL/특이 서브프레임이 되도록 선택됨.
● 비주기적 CSI의 경우, 비주기적 CSI 요청이 전송되는 SF의 CSI SF 집합을 따름.
◆ 랜덤 액세스 승인에 의한 비주기적 CSI 보고에 대해서 n_{CQI-ref}는 4의 값을 가지며, 유효 DL/특이 서브프레임이면서 랜덤 액세스 승인을 수신한 서브프레임 이후의 서브프레임으로 한정됨.
■케이스 2: 복수의 CSI 프로세스의 전송 모드 10이 설정될 경우, 서브프레임 #n에서 전송할 CSI 보고에 대해서 주어진 CSI 프로세스에 대한 CSI 참조 자원은 단일 하향링크/특이 서브프레임 #n-n_{CQI-ref}로 설정됨.
◆ FDD 주기적/비주기적 CSI 보고에 대해서 n_{CQI-ref}는 5 이상의 값들 중에서 해당 CSI SF 집합에 해당하는 최소값의 DL 유효 서브프레임으로 선택.
● 단일 CSI 프로세스에 비해서 오래 걸릴 것으로 기대됨.
● 비주기적 CSI의 경우, 비주기적 CSI 요청이 전송되는 SF의 CSI SF 집합을 따름.
◆ FDD에서 랜덤 액세스 승인에 의한 비주기적 CSI 보고에 대해서 n_{CQI-ref}는 5의 값을 가지며, DL 유효하며 n-n_{CQI-ref}가 랜덤 액세스 승인 이후일 때 한함.
● 비주기적 CSI의 경우, 비주기적 CSI 요청이 전송되는 SF의 CSI SF 집합을 따름.
◆ TDD 2 또는 3 CSI 프로세스들의 주기적/비주기적 CSI 보고에 대해서 n_{CQI-ref}는 4 이상의 값들 중에서 해당 CSI SF 집합에 해당하는 최소 값(제일 가까운 서브프레임)의 DL 유효 서브프레임으로 선택.
● 비주기적 CSI의 경우, 비주기적 CSI 요청이 전송되는 SF의 CSI SF 집합을 따름.
◆ TDD 2 또는 3 CSI 프로세스들의 랜덤 액세스 승인에 의한 비주기적 CSI 보고에 대해서 n_{CQI-ref}는 4의 값을 가지며, DL 유효하며 n-n_{CQI-ref}가 랜덤 액세스 승인 이후일 때 한함.
● 비주기적 CSI 요청이 전송되는 SF의 CSI SF 집합을 따름.
◆ TDD 4 CSI 프로세스들의 주기적/비주기적 CSI 보고에 대해서 n_{CQI-ref}는 5 이상의 값들 중에서 해당 CSI SF 집합에 해당하는 최소 값(제일 가까운 서브프레임)의 DL 유효 서브프레임으로 선택.
● 비주기적 CSI의 경우, 비주기적 CSI 요청이 전송되는 SF의 CSI SF 집합을 따름.
◆ TDD 4 CSI 프로세스들의 랜덤 액세스 승인에 의한 비주기적 CSI 보고에 대해서 n_{CQI-ref}는 5의 값을 가지며, DL 유효하며 n-n_{CQI-ref}가 랜덤 액세스 승인 이후일 때 한함.
● 비주기적 CSI 요청이 전송되는 SF의 CSI SF 집합을 따름.
상기 케이스 1의 비주기적 CSI 보고의 경우, CSI 참조 자원이 CSI 요청이 전송된 유효 DL/특이 서브프레임으로 정의되어 있다. 그러나, 'UL 승인-to-PUSCH 전송'에 대해 프로세싱 시간 감소가 적용된 경우, CSI 측정의 참조 자원과 보고 시간 사이의 마진이 더 줄어들게 되어 단말의 구현에 따라서는 상기 제약이 부담이 될 수 있다.
따라서, 단말에게 설정된 프로세싱 시간 별로 (시간 도메인 상의) CSI 참조 자원이 상이하게 정의될 수 있다. 특징적으로, 프로세싱 시간 감소가 설정된 단말에게 전송 모드 1-9 또는 단일 CSI 프로세스의 전송 모드 10이 설정되었을 경우, 서브프레임 #n에서 전송할 비주기적 CSI 보고에 대해서는 CSI 참조 자원이 단일 DL/특이 서브프레임 #n-n_{CQI-ref}로 설정되고, 이 때, n_{CQI-ref}는 k 이상의 값들 중에서 해당 CSI SF 집합에 포함되는 DL/특이 서브프레임 중 최소 값(즉, 제일 가까운 서브프레임)으로 정의될 수 있다.
여기서, k는 4로 정의/약속될 수 있고 또는 사전에 정의 또는 약속되거나 상위 계층 또는 물리 계층 신호를 통해 프로세싱 시간 별로 상이하게 지시된 특정 값일 수 있다. 일례로, k=4로 정의될 경우, 프로세싱 시간 감소가 설정된 단말에게 전송 모드 1-9 또는 단일 CSI 프로세스의 전송 모드 10이 설정되었을 경우, CSI 요청이 전송된 DL/특이 유효 서브프레임이 서브프레임 #n-3이더라도, 서브프레임 #n에서 전송할 비주기적 CSI 보고에 대해서 CSI 참조 자원이 단일 DL/특이 서브프레임 #n-n_{CQI-ref}로 설정되고, 이 때 n_{CQI-ref}는 4 이상의 값들 중에서 해당 CSI SF 집합에 포함되는 DL/특이 유효 서브프레임 중 최소 값(즉, 제일 가까운 서브프레임)으로 정의될 수 있다. 즉, CSI 참조 자원으로 설정되는 유효 서브프레임이 CSI 요청이 전송된 DL/특이 유효 서브프레임과 상이하게 정의될 수 있다.
또는 이와 달리, 프로세싱 시간이 감소함에 따라, CSI 측정의 참조 자원과 보고 시간 사이의 마진 역시 작게 설정되도록 규칙이 정의될 수 있다. 위에서 설명했듯이, n_{CQI-ref}가 k 이상의 값들 중에서 DL/특이 유효 서브프레임 중 최소값(즉, 제일 가까운 서브프레임)으로 정의된다고 하자. 특징적으로, 프로세싱 시간 감소가 설정된 단말의 경우, n_{CQI-ref}가 될 수 있는 최소 값(예컨대, 상기 설명에서 k)이 기존의 레가시 프로세싱 시간 하에 정의된 n_{CQI-ref}가 될 수 있는 최소 값보다 작게 설정될 수 있고, 상기 "n_{CQI-ref}가 될 수 있는 최소 값"은 프로세싱 시간 별로 상이하게 사전에 약속 또는 정의되거나 상위 계층 신호 또는 물리 계층 신호를 통해 설정될 수 있다. 예를 들어, 'DL-to-UL Tx timing'이 3ms로 설정된 경우, 주기적 CSI 보고에 대해 n_{CQI-ref}는 3 이상의 값들 중에서 해당 CSI SF 집합에 해당하는 최소 값(제일 가까운)의 DL/특이 유효 서브프레임으로 선택되도록 규칙이 정의될 수 있다.
[Proposal 2] A-CSI only PUSCH에 대한 트리거 조건
현재 LTE 표준에 따르면 아래의 조건이 만족될 경우, A-CSI only PUSCH 전송, 즉 UL-SCH(uplink shared channel)를 위한 전송 블록(transport block)은 없고 A-CSI만을 포함하는 PUSCH 전송이 트리거된다.
● DCI 포맷 0이 사용되고, I_MCS=29 또는 DCI 포맷 4가 사용되고, 1 전송 블록(TB)만 인에이블(enable)되고 그 TB의 I_MCS=29이고 전송 레이어 수는 1개일 때,
■ CSI 요청 비트 필드가 1비트이면서 비주기적 CSI 보고가 트리거되고 N_PRB가 4 이하인 경우
■ 또는 CSI 요청 비트 필드가 2비트이면서 하나의 서빙 셀에 대해 비주기적 CSI 보고가 트리거되고 N_PRB가 4 이하인 경우
■ 또는 CSI 요청 비트 필드가 2비트이면서 다수의 서빙 셀에 대해 비주기적 CSI 보고가 트리거되고 N_PRB가 20 이하인 경우
■ 또는 CSI 요청 비트 필드가 2비트이면서 하나의 CSI 프로세스에 대해 비주기적 CSI 보고가 트리거되고 N_PRB가 4 이하인 경우
■ 또는 CSI 요청 비트 필드가 2비트이면서 다수의 CSI 프로세스에 대해 비주기적 CSI 보고가 트리거되고 N_PRB가 20 이하인 경우.
만약 sTTI가 지원되는 경우 해당 sTTI에서 동일 수준의 코딩 레이트를 유지하면서 A-CSI를 전송하기 위해서는 좀더 많은 주파수 자원이 필요할 수 있다. 특징적으로 상기 A-CSI only PUSCH 전송이 트리거되기 위한 조건 중 PRB 개수 조건이 TTI 길이 (그룹) 별로 기존 값과 상이하게 설정될 수 있다. 특징적으로, PRB 개수 조건이 "1ms 당 sTTI의 개수"의 함수로 결정될 수 있다. 예를 들어, TTI 길이에 따라 2 심볼의 경우 기존 PRB 임계치의 6배 혹은 7배로, 4 심볼의 경우 기존 PRB 임계치의 4배로, 7 심볼의 경우 기존 PRB 임계치의 2배로 정의될 수 있다.
만약 프로세싱 시간 감소 관련 걸정이 인에이블되어, A-CSI 요청 비트가 가르키는 상태에 연동된 CSI 프로세스 중 일부 개수에 대해서만 선택적으로 보고하도록 설정되는 경우에는 상기 규칙이 적용되지 않고 기존의 규칙에 따라 A-CSI only PUSCH 트리거링을 위한 PRB 조건이 결정될 수 있다. 다시 말해, 상기 규칙은 sTTI가 지원되는 상황에서, A-CSI 요청 비트가 가리키는 상태에 연동된 CSI 프로세스의 개수가 사전에 정의 또는 약속 혹은 시그널링된 일정값 이상인 경우에만 적용되도록 규칙이 제한될 수 있다.
도 5는 본 발명의 일 실시예예 따른 동작을 도시한다.
도 5는 무선 통신 시스템에서 채널 상태 정보-참조 신호(channel state information-reference signal; CSI-RS) 기반의 채널 상태 보고를 수행하는 방법에 관한 것이다.
단말은 프로세싱 시간 감소(shortened processing time)가 설정된 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수에 관한 단말 능력(capability) 정보를 기지국으로 전송할 수 있다(S510). 상기 단말은 상기 기지국으로부터 비주기적 CSI 요청을 수신할 수 있다(S520). 그리고나서, 상기 비주기적 CSI 요청에 따라 상기 단말 능력 정보에 기초하여 상기 프로세싱 시간 감소를 위해 설정된 시점의 CSI 기준 자원에서 CSI를 갱신 또는 계산하고, 상기 갱신 또는 계산된 CSI를 상기 기지국으로 전송할 수 있다(S530).
또한, 상기 단말 능력 정보는 상기 단말에게 설정된 뉴멀로지 별 및/또는 상기 단말에게 설정된 프로세싱 시간 별로 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수를 포함할 수 있다.
상기 갱신 또는 계산된 CSI가 서브프레임 n에서 전송된다면, 상기 갱신 또는 계산된 CSI가 측정된 CSI 기준 자원은 서브프레임 n-k에 속하며, 여기서 k의 최소 값은 프로세싱 시간 감소가 설정되지 않은 단말을 위한 최소 값보다 작은 정수로 설정될 수 있다.
상기 서브프레임 n-k는 상기 비주기적 CSI 요청이 전송되는 서브프레임 n과 연결된 CSI 서브프레임 집합 중 상기 서브프레임 n과 가장 가까운 서브프레임일 수 있다.
또한, 상기 k의 최소 값은 주파수 분할 듀플렉스(frequency division duplex; FDD)를 위한 서빙 셀에 대해서는 5보다 작은 정수일 수 있다. 또한, 상기 k의 최소 값은 시간 분할 듀플렉스(time division duplex; TDD)를 위한 서빙 셀에 대해서는, 상기 단말을 위한 CSI 프로세스가 2 또는 3개 인 경우 4보다 작은 정수이고; 상기 단말을 위한 CSI 프로세스가 4개인 경우 5보다 작은 정수일 수 있다.
또한, 상기 비주기적 CSI 요청이 서브프레임 m에서 수신된다면, 상기 갱신 또는 계산된 CSI는 서브프레임 m+l에서 전송되고, l은 4보다 작은 정수로 설정될 수 있다.
또한, 상기 CSI 기준 자원을 포함하는 서브프레임은 상기 비주기적 CSI 요청이 수신된 서브프레임과 상이할 수 있다.
이상으로 도 5를 참조하여 본 발명에 따른 실시예들을 간략히 설명하였으나, 도 5와 관련된 실시예는 앞서 설명한 실시예(들) 중 적어도 일부를 대안적으로 또는 추가적으로 포함할 수 있을 것이다.
도 6은 본 발명의 실시예들을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다. 전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 송신기/수신기(13, 23)와, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 송신기/수신기(13, 23) 및 메모리(12, 22)등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 송신기/수신기(13,23)을 제어하도록 구성된 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다. 프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 송신기/수신기(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 송신기/수신기(13)는 오실레이터(oscillator)를 포함할 수 있다. 송신기/수신기(13)는 Nt개(Nt는 1보다 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 송신기/수신기(23)는 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 송신기/수신기(23)는 Nr개의 수신 안테나를 포함할 수 있으며, 상기 송신기/수신기(23)는 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. 송신기/수신기(23)는 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
송신기/수신기(13, 23)는 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, 송신기/수신기(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 송신기/수신기(13, 23)로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 송신기/수신기의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명의 실시예들에 있어서, 단말 또는 UE는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, 기지국 또는 eNB는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다.
상기 전송장치 및/또는 상기 수신장치는 앞서 설명한 본 발명의 실시예들 중 적어도 하나 또는 둘 이상의 실시예들의 조합을 수행할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있다.

Claims (16)

  1. 무선 통신 시스템에서 채널 상태 정보-참조 신호(channel state information-reference signal; CSI-RS) 기반의 채널 상태 보고 방법에 있어서, 상기 방법은 단말에 의해 수행되고,
    프로세싱 시간 감소(shortened processing time)가 설정된 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수에 관한 단말 능력(capability) 정보를 기지국으로 전송하는 단계;
    상기 기지국으로부터 비주기적 CSI 요청을 수신하는 단계; 및
    상기 비주기적 CSI 요청에 따라 상기 단말 능력 정보에 기초하여 상기 프로세싱 시간 감소를 위해 설정된 시점의 CSI 기준 자원에서 CSI를 갱신 또는 계산하고, 상기 갱신 또는 계산된 CSI를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는, 채널 상태 보고 방법.
  2. 제1항에 있어서, 상기 단말 능력 정보는 상기 단말에게 설정된 뉴멀로지 별 및/또는 상기 단말에게 설정된 프로세싱 시간 별로 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수를 포함하는 것을 특징으로 하는, 채널 상태 보고 방법.
  3. 제1항에 있어서, 상기 갱신 또는 계산된 CSI가 서브프레임 n에서 전송된다면, 상기 갱신 또는 계산된 CSI가 측정된 CSI 기준 자원은 서브프레임 n-k에 속하며, 여기서 k의 최소 값은 프로세싱 시간 감소가 설정되지 않은 단말을 위한 최소 값보다 작은 정수로 설정되는 것을 특징으로 하는, 채널 상태 보고 방법.
  4. 제3항에 있어서, 상기 서브프레임 n-k는 상기 비주기적 CSI 요청이 전송되는 서브프레임 n과 연결된 CSI 서브프레임 집합 중 상기 서브프레임 n과 가장 가까운 서브프레임인 것을 특징으로 하는, 채널 상태 보고 방법.
  5. 제3항에 있어서, 상기 k의 최소 값은 주파수 분할 듀플렉스(frequency division duplex; FDD)를 위한 서빙 셀에 대해서는 5보다 작은 정수인 것을 특징으로 하는, 채널 상태 보고 방법.
  6. 제3항에 있어서, 상기 k의 최소 값은 시간 분할 듀플렉스(time division duplex; TDD)를 위한 서빙 셀에 대해서는, 상기 단말을 위한 CSI 프로세스가 2 또는 3개 인 경우 4보다 작은 정수이고; 상기 단말을 위한 CSI 프로세스가 4개인 경우 5보다 작은 정수인 것을 특징으로 하는, 채널 상태 보고 방법.
  7. 제1항에 있어서, 상기 비주기적 CSI 요청이 서브프레임 m에서 수신된다면, 상기 갱신 또는 계산된 CSI는 서브프레임 m+l에서 전송되고, l은 4보다 작은 정수로 설정되는 것을 특징으로 하는, 채널 상태 보고 방법.
  8. 제1항에 있어서, 상기 CSI 기준 자원을 포함하는 서브프레임은 상기 비주기적 CSI 요청이 수신된 서브프레임과 상이한 것을 특징으로 하는, 채널 상태 보고 방법.
  9. 무선 통신 시스템에서 채널 상태 정보-참조 신호(channel state information-reference signal; CSI-RS) 기반의 채널 상태 보고를 수행하는 단말에 있어서,
    송신기 및 수신기; 및
    상기 송신기 및 수신기를 제어하는 프로세서를 포함하되,
    상기 프로세서는:
    프로세싱 시간 감소(shortened processing time)가 설정된 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수에 관한 단말 능력(capability) 정보를 기지국으로 전송하고,
    상기 기지국으로부터 비주기적 CSI 요청을 수신하고, 그리고
    상기 비주기적 CSI 요청에 따라 상기 단말 능력 정보에 기초하여 상기 프로세싱 시간 감소를 위해 설정된 시점의 CSI 기준 자원에서 CSI를 갱신 또는 계산하고, 상기 갱신 또는 계산된 CSI를 상기 기지국으로 전송하도록 구성되는 것을 특징으로 하는, 단말.
  10. 제9항에서, 상기 단말 능력 정보는 상기 단말에게 설정된 뉴멀로지 별 및/또는 상기 단말에게 설정된 프로세싱 시간 별로 상기 단말이 동시에 갱신 또는 계산할 수 있는 최대 CSI 프로세스의 수를 포함하는 것을 특징으로 하는, 단말.
  11. 제9항에 있어서, 상기 갱신 또는 계산된 CSI가 서브프레임 n에서 전송된다면, 상기 갱신 또는 계산된 CSI가 측정된 CSI 기준 자원은 서브프레임 n-k에 속하며, 여기서 k의 최소 값은 프로세싱 시간 감소가 설정되지 않은 단말을 위한 최소 값보다 작은 정수로 설정되는 것을 특징으로 하는, 단말.
  12. 제11항에 있어서, 상기 서브프레임 n-k는 상기 비주기적 CSI 요청이 전송되는 서브프레임 n과 연결된 CSI 서브프레임 집합 중 상기 서브프레임 n과 가장 가까운 서브프레임인 것을 특징으로 하는, 단말.
  13. 제11항에 있어서, 상기 k의 최소 값은 주파수 분할 듀플렉스(frequency division duplex; FDD)를 위한 서빙 셀에 대해서는 5보다 작은 정수인 것을 특징으로 하는, 단말.
  14. 제11항에 있어서, 상기 k의 최소 값은 시간 분할 듀플렉스(time division duplex; TDD)를 위한 서빙 셀에 대해서는, 상기 단말을 위한 CSI 프로세스가 2 또는 3개 인 경우 4보다 작은 정수이고; 상기 단말을 위한 CSI 프로세스가 4개인 경우 5보다 작은 정수인 것을 특징으로 하는, 단말.
  15. 제9항에 있어서, 상기 비주기적 CSI 요청이 서브프레임 m에서 수신된다면, 상기 갱신 또는 계산된 CSI는 서브프레임 m+l에서 전송되고, l은 4보다 작은 정수로 설정되는 것을 특징으로 하는, 단말.
  16. 제9항에 있어서, 상기 CSI 기준 자원을 포함하는 서브프레임은 상기 비주기적 CSI 요청이 수신된 서브프레임과 상이한 것을 특징으로 하는, 단말.
PCT/KR2017/008433 2016-08-11 2017-08-04 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치 WO2018030714A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197000522A KR102188271B1 (ko) 2016-08-11 2017-08-04 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
CN201780043278.9A CN109478971B (zh) 2016-08-11 2017-08-04 用于报告无线通信系统中的信道状态的方法及其设备
EP17839732.9A EP3471314B1 (en) 2016-08-11 2017-08-04 Method for reporting channel state in wireless communication system and device therefor
JP2019507792A JP2019532545A (ja) 2016-08-11 2017-08-04 無線通信システムにおいてチャンネル状態報告のための方法及びそのための装置
US16/251,837 US10547430B2 (en) 2016-08-11 2019-01-18 Method for reporting channel state in wireless communication system and device therefor
US16/710,446 US11050540B2 (en) 2016-08-11 2019-12-11 Method for reporting channel state in wireless communication system and device therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662373982P 2016-08-11 2016-08-11
US62/373,982 2016-08-11
US201662398528P 2016-09-23 2016-09-23
US62/398,528 2016-09-23
US201762520547P 2017-06-15 2017-06-15
US62/520,547 2017-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/251,837 Continuation US10547430B2 (en) 2016-08-11 2019-01-18 Method for reporting channel state in wireless communication system and device therefor

Publications (1)

Publication Number Publication Date
WO2018030714A1 true WO2018030714A1 (ko) 2018-02-15

Family

ID=61162897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008433 WO2018030714A1 (ko) 2016-08-11 2017-08-04 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (2) US10547430B2 (ko)
EP (1) EP3471314B1 (ko)
JP (1) JP2019532545A (ko)
KR (1) KR102188271B1 (ko)
CN (1) CN109478971B (ko)
WO (1) WO2018030714A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011083A1 (zh) * 2018-07-11 2020-01-16 维沃移动通信有限公司 配置方法和设备
KR20200118184A (ko) * 2018-03-02 2020-10-14 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법과 장치
US20210242926A1 (en) * 2018-10-30 2021-08-05 Vivo Mobile Communication Co., Ltd. Method for configuring aperiodic channel state information-reference signal, network device, and terminal
CN114731595A (zh) * 2019-11-07 2022-07-08 株式会社Ntt都科摩 通信装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532545A (ja) * 2016-08-11 2019-11-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャンネル状態報告のための方法及びそのための装置
US10985891B2 (en) * 2016-09-30 2021-04-20 Motorola Mobility Llc Method and apparatus for reporting channel state information
EP3316534A1 (en) * 2016-10-27 2018-05-02 Fraunhofer Gesellschaft zur Förderung der Angewand Channel estimation of frequency sub bands
CN108365915B (zh) * 2017-01-26 2023-04-07 北京三星通信技术研究有限公司 信道状态信息传输的方法及用户设备
WO2018208302A1 (en) * 2017-05-11 2018-11-15 Intel IP Corporation Device and method for csi processing based on multi-service priority queue
CN109818723B (zh) * 2017-11-21 2020-12-29 中国移动通信有限公司研究院 一种进行数据传输的方法、网络侧设备及终端
JP7422163B2 (ja) * 2019-11-15 2024-01-25 株式会社Nttドコモ 端末、基地局、及び通信方法
CN111278047B (zh) * 2020-01-20 2022-08-26 北京紫光展锐通信技术有限公司 非服务小区的csi的处理方法、系统、电子设备和介质
US20230275636A1 (en) * 2020-07-28 2023-08-31 Telefonaktiebolaget Lm Ericsson (Publ) On subband configuration for reduced csi computation time
US20230275787A1 (en) * 2020-08-18 2023-08-31 Qualcomm Incorporated Capability and configuration of a device for providing channel state feedback
US20230328510A1 (en) * 2020-09-16 2023-10-12 Lg Electronics Inc. Method for transmitting/receiving data in wireless communication system, and apparatus therefor
CN113852986B (zh) * 2021-09-28 2023-08-18 星思连接(上海)半导体有限公司 信息上报方法、装置、电子设备及可读存储介质
WO2023218657A1 (ja) * 2022-05-13 2023-11-16 株式会社Nttドコモ 端末、無線通信方法及び基地局

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677671A1 (en) * 2012-06-18 2013-12-25 Samsung Electronics Co., Ltd Aperiodic and periodic csi feedback modes for coordinated multi-point transmission
WO2015160198A1 (en) * 2014-04-16 2015-10-22 Lg Electronics Inc. Method and apparatus for processing aperiodic channel state information in wireless communication system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8634345B2 (en) * 2010-06-18 2014-01-21 Sharp Laboratories Of America, Inc. Uplink control information (UCI) multiplexing on the physical uplink shared channel (PUSCH)
US9155098B2 (en) * 2012-03-29 2015-10-06 Qualcomm Incorporated Channel state information reference signal (CSI-RS) configuration and CSI reporting restrictions
EP4002743A1 (en) * 2012-05-10 2022-05-25 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for csi reporting
IN2014KN02949A (ko) * 2012-07-02 2015-05-08 Lg Electronics Inc
US9912430B2 (en) * 2012-07-06 2018-03-06 Samsung Electronics Co. Ltd. Method and apparatus for channel state information feedback reporting
CN104620516B (zh) * 2012-09-09 2018-05-15 Lg 电子株式会社 发射和接收数据的方法和设备
US9667391B2 (en) * 2012-09-20 2017-05-30 Samsung Electronics Co., Ltd Channel estimation method and apparatus for cooperative communication in cellular mobile communication system
EP2894920B1 (en) * 2012-09-28 2016-12-21 Huawei Technologies Co., Ltd. Method for processing channel state information process, network device and user equipment
CN103780358B (zh) * 2012-10-24 2018-08-21 中兴通讯股份有限公司 一种确定信道状态信息的方法及终端
KR102218914B1 (ko) * 2013-01-07 2021-02-23 엘지전자 주식회사 신호를 송수신하는 방법 및 장치
CN104113397B (zh) * 2013-04-16 2019-09-24 北京三星通信技术研究有限公司 灵活tdd重配置系统中非周期csi反馈的方法及设备
US10237879B2 (en) * 2013-07-09 2019-03-19 Lg Electronics Inc. Method for channel state report in wireless communication system and apparatus therefor
JP6078208B2 (ja) * 2013-08-15 2017-02-08 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Csi報告を処理するための方法及び無線ノード
US9819471B2 (en) * 2013-11-04 2017-11-14 Texas Instruments Incorporated Method and apparatus for configuration, measurement and reporting of channel state information for LTE TDD with dynamic UL/DL configuration
EP3817270B1 (en) * 2014-11-20 2023-09-20 Panasonic Intellectual Property Corporation of America Improved csi reporting for unlicensed carriers from a mobile station to a base station
KR102034592B1 (ko) * 2014-12-24 2019-10-21 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2016186077A1 (ja) * 2015-05-15 2016-11-24 シャープ株式会社 端末装置
WO2017034238A1 (ko) * 2015-08-21 2017-03-02 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2017078338A1 (ko) * 2015-11-03 2017-05-11 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
CN109644068B (zh) * 2016-03-27 2020-04-21 欧芬诺有限责任公司 无线网络中的信道状态信息传输
US20180048447A1 (en) * 2016-08-11 2018-02-15 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
JP2019532545A (ja) * 2016-08-11 2019-11-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャンネル状態報告のための方法及びそのための装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677671A1 (en) * 2012-06-18 2013-12-25 Samsung Electronics Co., Ltd Aperiodic and periodic csi feedback modes for coordinated multi-point transmission
WO2015160198A1 (en) * 2014-04-16 2015-10-22 Lg Electronics Inc. Method and apparatus for processing aperiodic channel state information in wireless communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Hybrid CSI Reporting with One and Two CSI Processes", RL-165098, 3GPP TSG-RAN WG1#85, 14 May 2016 (2016-05-14), XP051096266 *
LG ELECTRONICS: "Discussion on CSI Reporting Enhancements for Hybrid CSI-RS", R1-164526, 3GPP TSG RAN WG1 MEETING #85, 14 May 2016 (2016-05-14), XP051096406 *
See also references of EP3471314A4 *
X INWEI: "Discussion on CSI Reporting for Hybrid CSI-RS", R1 -164895, 3GPP TSG RAN WG1 MEETING #85, 13 May 2016 (2016-05-13), XP051090230 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200118184A (ko) * 2018-03-02 2020-10-14 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법과 장치
CN111934833A (zh) * 2018-03-02 2020-11-13 Oppo广东移动通信有限公司 无线通信方法和设备
EP3737144A4 (en) * 2018-03-02 2020-11-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD AND DEVICE
AU2018411307B2 (en) * 2018-03-02 2021-09-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
KR102392463B1 (ko) * 2018-03-02 2022-04-28 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법과 장치
US11539414B2 (en) 2018-03-02 2022-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CN111934833B (zh) * 2018-03-02 2023-01-17 Oppo广东移动通信有限公司 无线通信方法和设备
WO2020011083A1 (zh) * 2018-07-11 2020-01-16 维沃移动通信有限公司 配置方法和设备
US11716684B2 (en) 2018-07-11 2023-08-01 Vivo Mobile Communication Co., Ltd. Configuration method and device
US20210242926A1 (en) * 2018-10-30 2021-08-05 Vivo Mobile Communication Co., Ltd. Method for configuring aperiodic channel state information-reference signal, network device, and terminal
CN114731595A (zh) * 2019-11-07 2022-07-08 株式会社Ntt都科摩 通信装置

Also Published As

Publication number Publication date
US20200127789A1 (en) 2020-04-23
KR20190016553A (ko) 2019-02-18
JP2019532545A (ja) 2019-11-07
KR102188271B1 (ko) 2020-12-08
EP3471314A1 (en) 2019-04-17
EP3471314B1 (en) 2021-10-27
US11050540B2 (en) 2021-06-29
US20190229874A1 (en) 2019-07-25
US10547430B2 (en) 2020-01-28
EP3471314A4 (en) 2020-02-19
CN109478971B (zh) 2022-01-07
CN109478971A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2018030714A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2017171516A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 전송 또는 수신 방법 및 이를 위한 장치
WO2018174450A1 (ko) 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격, 또는 복수의 프로세싱 시간을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2018208087A1 (ko) 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2017135745A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 맵핑, 전송, 또는 수신 방법 및 이를 위한 장치
WO2017078326A1 (ko) 무선 통신 시스템에서 상향링크 제어 채널 전송 방법 및 이를 위한 장치
WO2018128340A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2018038418A1 (ko) 무선 통신 시스템에서 상향링크 전송을 위한 방법 및 이를 위한 장치
WO2018164452A1 (ko) 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2017105135A2 (ko) 무선 통신 시스템에서 상향링크 참조 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2016126063A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2017078338A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2017222329A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016105121A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2018236117A1 (ko) 무선 통신 시스템에서 harq-ack/nack 피드백을 위한 방법 및 이를 위한 장치
WO2016144050A1 (ko) 무선 통신 시스템에서 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2018203732A1 (ko) 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2018021815A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2019156466A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2019143131A1 (ko) 무선 통신 시스템에서 상향링크 신호를 송신하는 방법 및 장치
WO2016163819A1 (ko) 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016148450A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2018199681A1 (ko) 무선 통신 시스템에서 채널 및 간섭 측정을 위한 방법 및 이를 위한 장치
WO2018203624A1 (ko) 무선 통신 시스템에서 참조 신호를 수신하기 위한 방법 및 이를 위한 장치
WO2019017753A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000522

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017839732

Country of ref document: EP

Effective date: 20190108

ENP Entry into the national phase

Ref document number: 2019507792

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE