WO2018058484A1 - 传输信道信息的方法、终端设备和网络设备 - Google Patents

传输信道信息的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018058484A1
WO2018058484A1 PCT/CN2016/100966 CN2016100966W WO2018058484A1 WO 2018058484 A1 WO2018058484 A1 WO 2018058484A1 CN 2016100966 W CN2016100966 W CN 2016100966W WO 2018058484 A1 WO2018058484 A1 WO 2018058484A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
matrix
information
network device
precoding
Prior art date
Application number
PCT/CN2016/100966
Other languages
English (en)
French (fr)
Inventor
曲秉玉
张瑞齐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100966 priority Critical patent/WO2018058484A1/zh
Publication of WO2018058484A1 publication Critical patent/WO2018058484A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to the field of communications, and more particularly to a method, network device and terminal device for transmitting channel information.
  • the terminal device selects a precoding matrix/vector according to a downlink pilot reference symbol (CSI-RS) delivered by the network device, and corresponds to a precoding matrix/vector.
  • CSI-RS downlink pilot reference symbol
  • the index value (PMI) is reported to the network device.
  • the network device determines a corresponding precoding matrix according to the received PMI.
  • the precoding vector (matrix) W is composed of the first level feedback matrix W 1 and the second level feedback.
  • W 1 without using the oversampled DFT vectors, W 2 W 1 in the pair of beam linear combination of vectors.
  • W 2 W 1 in the pair of beam linear combination of vectors.
  • the vector subspace W 1 represents not well determined precoding vector desired.
  • oversampled DFT vectors result in W 1 matrices being ill-conditioned, precoding of products determined by the product of W 1 and W 2
  • the matrix is very sensitive to noise and easily leads to noise amplification, so that the network device cannot determine the approximation optimal precoding matrix/vector well according to the received W 1 and W 2 .
  • the embodiment of the invention provides a method for transmitting channel information, a terminal device and a network device, which can improve the feedback performance of the channel information related to the precoding matrix and reduce the influence of noise.
  • a method of transmitting channel information comprising:
  • the terminal device receives the reference signal sent by the network device
  • the terminal device determines a precoding matrix according to the reference signal, where the precoding matrix is the first pre-editing a product of a code matrix and a second precoding matrix, the first precoding matrix being an orthogonalization matrix of a third precoding matrix, the third precoding matrix having at least two non-orthogonal column vectors, the first pre Any two column vectors in the coding matrix are orthogonal;
  • the terminal device sends the first information and the second information to the network device, where the first information is used to indicate the first precoding matrix, and the second information is used to indicate the second precoding matrix, so that the network device is configured according to The first precoding matrix and the second precoding matrix determine the precoding matrix.
  • the first information and the second information are sent by the terminal device to the network device, so that the network device can determine the precoding matrix according to the first precoding matrix and the second precoding matrix. Since the first precoding matrix is an orthogonal matrix of a third precoding matrix, thus the present invention can overcome the existing standard, the column vectors W 1 caused embodiment linearly weighted noise amplification problem.
  • the first precoding matrix is a predefined orthogonalization matrix of the third precoding matrix.
  • the orthogonalization mode in the embodiment of the present invention is a pre-defined manner in the system, that is, an orthogonalization manner known to both the network device and the terminal device.
  • the first information is an index of the third precoding matrix, and an index of the third precoding matrix is used to indicate the first Precoding matrix
  • the second information is an index of the second precoding matrix, and an index of the second precoding matrix is used to indicate the second precoding matrix.
  • the third codebook including the third precoding matrix and the second codebook including the second precoding matrix are stored in both the terminal device and the network device.
  • the network device may determine the third precoding matrix by searching the pre-stored third codebook according to the index of the third precoding matrix, and may further perform orthogonalization processing on the third precoding matrix to determine the first precoding matrix.
  • the network device may determine the second precoding matrix by searching the pre-stored second codebook according to the index of the second precoding matrix.
  • the network device may multiply the first precoding matrix and the second precoding matrix to determine the precoding matrix.
  • the transmitted second information is an index of the second precoding matrix, and the amount of data is much smaller than the element information of the second precoding matrix, thereby saving transmission resources and transmission time.
  • the first information is an index of the third precoding matrix, and an index of the third precoding matrix is used to indicate the first Precoding matrix
  • the second information includes respective element information of the second precoding matrix.
  • a third codebook including a third precoding matrix is stored in both the terminal device and the network device.
  • the network device may determine the third precoding matrix by searching the pre-stored third codebook according to the index of the third precoding matrix, and may further perform orthogonalization processing on the third precoding matrix to determine the first precoding matrix.
  • the network device determines a second precoding matrix according to each element information of the second precoding matrix.
  • the network device may multiply the first precoding matrix and the second precoding matrix to determine the precoding matrix.
  • the network device may determine the second precoding matrix according to each element information of the second precoding matrix, and the second codebook may not be stored, and the storage space of the codebook may be reduced.
  • the first information is an index of the first precoding matrix, and an index of the first precoding matrix is used to indicate the first Precoding matrix
  • the second information is an index of the second precoding matrix, and an index of the second precoding matrix is used to indicate the second precoding matrix.
  • the first codebook including the first precoding matrix and the second codebook including the second precoding matrix are stored in both the terminal device and the network device.
  • the network device may determine the first precoding matrix by searching the pre-stored first codebook according to the index of the first precoding matrix.
  • the network device may determine the second precoding matrix by searching the pre-stored second codebook according to the index of the second precoding matrix.
  • the network device may multiply the first precoding matrix and the second precoding matrix to determine the precoding matrix.
  • the network device may directly determine the first precoding matrix according to the first codebook that is pre-stored according to the index of the first precoding matrix according to the network device, and obtain the first after the orthogonal processing of the third precoding matrix.
  • Precoding matrix can reduce complexity.
  • the input second information is an index of the second precoding matrix, and the element information of the second precoding matrix is much smaller than the data amount, and therefore, transmission resources and transmission time can be saved.
  • the first information is an index of the first precoding matrix, and an index of the first precoding matrix is used to indicate the network device Determining the first precoding matrix;
  • the second information includes respective element information of the second precoding matrix.
  • the first codebook including the first precoding matrix is stored in both the terminal device and the network device.
  • the network device may determine the first precoding matrix by searching the pre-stored first codebook according to the index of the first precoding matrix.
  • the network device determines a second precoding matrix according to each element information of the second precoding matrix.
  • the network device may multiply the first precoding matrix and the second precoding matrix to determine the precoding matrix.
  • the network device may directly determine the first precoding matrix according to the first codebook that is pre-stored according to the index of the first precoding matrix according to the network device, and obtain the first after the orthogonal processing of the third precoding matrix.
  • Precoding matrix can reduce complexity.
  • the network device can determine the second precoding matrix according to each element information of the second precoding matrix, and can save the storage space of the codebook without storing the second codebook.
  • the third precoding matrix is a block diagonal matrix of the following structure:
  • the first precoding matrix is a block diagonal matrix of the following structure:
  • W 1 represents the third precoding matrix
  • M represents the number of DFT vectors in matrix X;
  • the matrix X includes greater than or equal to two mutually orthogonal column vectors, the matrix There are at least two column vectors in the matrix vector in matrix X.
  • the antenna of the network device is a one-dimensional antenna
  • N represents the length of the vector x m , 0 ⁇ i m ⁇ NO-1;
  • the antenna of the network device is a two-dimensional antenna
  • O 1 and O 2 are integers
  • N 1 and N 2 represent vectors, respectively. with length
  • a method of transmitting channel information comprising:
  • the network device sends a reference signal to the terminal device, so that the terminal device determines a precoding matrix according to the reference signal, where the precoding matrix is a product of a first precoding matrix and a second precoding matrix, where the first precoding matrix is An orthogonalization matrix of three precoding matrices, wherein the third precoding matrix has at least two non-orthogonal column vectors, and any two column vectors in the first precoding matrix are orthogonal;
  • the network device determines the first precoding matrix and the second precoding matrix according to the first information and the second information, respectively;
  • the network device determines the precoding matrix according to the first precoding matrix and the second precoding matrix.
  • the first precoding matrix and the second precoding matrix are determined by the network device according to the first information and the second information sent by the receiving terminal device, and further, according to the first pre
  • the coding matrix and the second precoding matrix determine a precoding matrix. Since the first precoding matrix in the embodiment of the present invention is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the problem of noise amplification caused by linearly weighting the column vectors in W1 in the existing standard.
  • the execution subject of the first aspect is a terminal device
  • the execution body in the second aspect may be a network device
  • corresponding features of the method on the network device side may refer to the foregoing first aspect.
  • the first precoding matrix is a predefined orthogonalization matrix of the third precoding matrix.
  • the first information is an index of the third precoding matrix
  • the second information is an index of the second precoding matrix.
  • the first information is an index of the third precoding matrix
  • the second information includes respective element information of the second precoding matrix.
  • the first information is an index of the first precoding matrix
  • the second information is an index of the second precoding matrix.
  • the first information is an index of the first precoding matrix
  • the second information includes respective element information of the second precoding matrix.
  • the third precoding matrix is a block diagonal matrix of the following structure:
  • the first precoding matrix is a block diagonal matrix of the following structure:
  • W 1 represents the third precoding matrix
  • M represents the number of DFT vectors in matrix X;
  • the matrix X includes more than or equal to two mutually orthogonal column vectors, the matrix There are at least two column vectors in the matrix vector in matrix X.
  • N represents the length of the vector x m , 0 ⁇ i m ⁇ NO-1;
  • the antenna of the network device is a two-dimensional antenna
  • O 1 and O 2 are integers, and N 1 and N 1 represent vectors, respectively. with length,
  • a terminal device for performing the method in any of the foregoing first aspect, the first aspect of the first aspect.
  • the terminal device comprises means for performing the above method.
  • a network device for performing the method in any of the foregoing possible implementation manners of the second aspect and the second aspect.
  • the network device comprises means for performing the above method.
  • a terminal device comprising a processor and a memory
  • the memory is for storing a computer program
  • the processor is configured to execute a computer program stored in the memory
  • the first aspect, the first aspect are performed The method in any of the possible implementations.
  • a network device comprising a processor and a memory, the memory for storing a computer program, the processor for executing a computer program stored in the memory, performing the second aspect, the second aspect
  • the method in any of the possible implementations.
  • a system comprising the terminal device of the third aspect or the fifth aspect, and the network device of the fourth aspect or the sixth aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect, any of the possible implementations of the first aspect.
  • a ninth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the second aspect, any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow diagram of a method of transmitting channel information in accordance with an implementation of the present invention.
  • FIG. 3 is a schematic diagram of a one-dimensional antenna in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a two-dimensional antenna in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a network device in accordance with one embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a network device according to another embodiment of the present invention.
  • the embodiments of the present invention are applicable to various communication systems, and therefore, the following description is not limited to a specific communication system.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • the terminal device may also be referred to as a user equipment (UE, User Equipment), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal. , a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the network device may be a device for communicating with the mobile device, such as a network side device, and the network side device may be a GSM (Global System of Mobile communication) or a CDMA (Code Division Multiple Access).
  • the BTS (Base Transceiver Station) in the multiple access) may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or may be LTE (Long Term Evolution).
  • the communication system 100 includes a network side device 102, and the network side device 102 may include a plurality of antenna groups.
  • Each antenna group may include multiple antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network side device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include various components associated with signal transmission and reception (eg, processors, modulators, multiplexers, Demodulator, demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain may include various components associated with signal transmission and reception (eg, processors, modulators, multiplexers, Demodulator, demultiplexer or antenna, etc.).
  • the network side device 102 can communicate with a plurality of terminal devices (e.g., the terminal device 116 and the terminal device 122). However, it will be appreciated that the network side device 102 can communicate with any number of terminal devices similar to the terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each set of antennas and/or areas designed for communication is referred to as a sector of the network side device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network side device 102 coverage area.
  • the transmit antenna of the network side device 102 can utilize beamforming to improve the signal to noise ratio of the forward links 118 and 124.
  • the neighboring cell is compared with the manner in which the network side device transmits a signal to all of its terminal devices through a single antenna. Mobile devices in the middle are subject to less interference.
  • the network side device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the transmitting end of the signal obtains channel information between the transmitting end and the receiving end (for example, the terminal device), and then performs precoding processing on the transmitted signal according to the obtained channel information, so that the network device sends the signal.
  • the energy is concentrated in the direction in which the terminal device is located, so that the terminal device can obtain a higher signal reception signal to noise ratio.
  • the network device simultaneously sends multiple layers of data streams to the terminal device, this way Part or all of the interference between the data streams is cancelled in advance at the transmitting end, thereby improving the received signal to interference and noise ratio of each layer of the data stream.
  • the matrix used when the transmitting end performs precoding processing is the precoding matrix.
  • the relationship between the received signal y and the transmitted signal x after the precoding process is used by the transmitting end can be as follows:
  • x is the transmitted signal
  • y is the received signal
  • H is the channel matrix
  • W is the precoding matrix
  • n is the noise.
  • the embodiment of the present invention mainly relates to how a terminal device sends channel information to a network device, so that the network device determines a scheme of the precoding matrix according to the channel information.
  • the precoding vector (matrix) W is composed of the first level feedback matrix W 1 and the second level feedback.
  • W 1 is a first-level feedback matrix
  • the representation form is a block diagonal matrix
  • each sub-block matrix corresponds to one polarization direction, namely:
  • X (k) represents the kth vector cluster selected in the first level of feedback.
  • X (k) and W 2 have different representations for the rank (RANK) of different channel matrices.
  • the beam vector set is defined as:
  • B represents a beam vector set
  • b 0 -b 31 respectively represent beam vectors of the first beam to the 32nd beam (wherein one vector corresponds to one transmitting beam)
  • the number of beam vectors in the beam vector set B can also be
  • embodiments of the invention are not limited thereto.
  • the beam vector set B is divided into 16 beam vector clusters, each beam vector cluster has 4 beam vectors, and two of the two adjacent beam vector clusters are overlapped.
  • X (k) represents the kth beam vector cluster, ie:
  • the manner of dividing the beam vector cluster in the embodiment of the present invention is only schematic, and the embodiment of the present invention is not limited thereto, and in the embodiment of the present invention, when the number of beams changes, the number of corresponding beam vector clusters It can also be changed accordingly.
  • the role of W 2 is to select a beam vector from the beam vector cluster determined by W 1 and select the phase difference between the two polarization directions.
  • W 2 is selected from the second level codebook, namely:
  • W 2 is selected from the second level codebook, namely:
  • the representation is a beam selection column vector with the nth element being 1 and the remaining elements being 0.
  • LTE (Rel-13) defines a two-dimensional (2D) code is a two-dimensional antenna array of this configuration, i.e., W 1 is a block diagonal matrix by the beam vector in the horizontal direction and the vertical direction of the beam by the vector Crowe Kronecker Product (KP) is composed of:
  • the embodiment of the present invention it is skillfully proposed to orthogonalize W 1 to obtain a matrix of any two column vectors orthogonal. Then through the W 2 pair matrix The column vectors in the weight are combined to determine the precoding matrix W. Due to the embodiment of the invention All of the column vectors are orthogonal between each other, and The space of Zhang Cheng is the same as the space of W 1 Zhangcheng. Therefore, the embodiment of the present invention can overcome the problem of noise amplification caused by linearly weighting the column vectors in W 1 in the existing standard.
  • FIG. 2 is a schematic flow chart of an information transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 2 can be applied to the above various communication systems.
  • the communication system in the embodiment of the present invention includes a network device and a terminal device.
  • the method 200 shown in FIG. 2 includes:
  • the network device sends a reference signal to the terminal device.
  • the network device sends a reference signal to the terminal device.
  • the terminal device determines a precoding matrix according to the reference signal.
  • the precoding matrix is a product of a first precoding matrix and a second precoding matrix, where the first precoding matrix is an orthogonalization matrix of a third precoding matrix, and the third precoding matrix has at least two Non-orthogonal column vectors, any two column vectors in the first precoding matrix being orthogonal;
  • the terminal device performs channel estimation based on the reference signal to determine the precoding matrix.
  • the precoding matrix can be represented by W, and according to the method of the present invention, the precoding matrix W can be expressed as:
  • W2 The role of W2 is The column vectors in the line are linearly merged to make Approaching the optimal precoding matrix, W is an orthogonal matrix of 1, W 1 represents the third precoding matrix. among them, Representing the first precoding matrix, W 2 representing the second precoding matrix, and W 1 representing the third precoding matrix, Is the orthogonalization matrix of W 1 .
  • W 2 is a particular example.
  • the terminal device may determine the matrix W 1 according to the downlink reference signal sent by the base station. For example, in the implementation of the present invention, the terminal device may determine, according to the strength of the received downlink signal, a W 1 corresponding to the intensity value from the pre-stored first precoding matrix codebook.
  • the terminal device can obtain the orthogonalization processing of W 1 according to a predefined manner of the network device and the terminal device.
  • the orthogonalization mode in the embodiment of the present invention is a predefined manner in the system, that is, Both the network device and the terminal device are known to be orthogonalized.
  • the terminal device may also determine the channel matrix H according to the reference signal, where the dimension of H is N r ⁇ N t , N r represents the number of receiving antennas of the terminal device, and N t represents the number of transmitting antennas of the network device.
  • the terminal device can approximate V as the optimal precoding matrix, that is, the precoding matrix W determined by the terminal device.
  • the terminal device can determine the first precoding matrix and the second precoding matrix.
  • the terminal device may further determine the first precoding matrix and the second precoding matrix by other manners.
  • the embodiment of the invention is not limited thereto.
  • the terminal device may select W 1 and W 2 from the pre-stored first precoding matrix codebook and the second precoding matrix codebook respectively, so that the formula (W 1 W 2 ) H (H The channel capacity determined by H H)(W 1 W 2 ) is the largest.
  • the pre-stored first precoding matrix codebook includes a plurality of candidate first precoding matrices
  • the pre-stored second precoding matrix codebook includes a plurality of candidate second precoding matrices.
  • the terminal device can perform orthogonalization processing on W 1 according to a predefined manner of the network device and the terminal device.
  • the terminal device can determine the first precoding matrix and the second precoding matrix.
  • the third pre-coding matrix is a block diagonal matrix of the following structure:
  • the first precoding matrix is a block diagonal matrix of the following structure:
  • X is a matrix consisting of discrete Fourier transform DFT vectors
  • X [x 1 x 2 ... x M ]; x 1 x 2 ... x M exists in at least two vectors that are not orthogonal, and M represents matrix X The number of DFT vectors.
  • f( ⁇ ) represents an orthogonalization operation
  • the orthogonalization operation f( ⁇ ) can be performed in various ways.
  • the third precoding matrix may be orthogonalized in various manners, as long as It is the ⁇ matrix Q in the QR decomposition result of the matrix X, for example, Is the Schmitt orthogonalization matrix of matrix X.
  • the embodiments of the present invention are not limited thereto.
  • the matrix X contains more than or equal to two mutually orthogonal column vectors, the matrix There are at least two column vectors in the matrix vector in matrix X.
  • part or all of the column vectors orthogonal to each other in the matrix X may be used as The column vector in .
  • the vector X corresponding to different antenna types may also be different.
  • the following describes an example in which the antenna of the network device is a one-dimensional dual-polarized antenna and a two-dimensional dual-polarized antenna, but Embodiments of the invention are not limited thereto.
  • the antenna of the network device when the antenna of the network device is a one-dimensional dual-polarized antenna, the antenna of the network device is N t , which are antennas 0 to N t -1 respectively.
  • O is an integer, and O can represent a factor that generates an x m vector. Denotes the length of the vector x m, 0 ⁇ i m ⁇ NO-1, i m x m may represent the index vector;
  • the antenna of the network device when the antenna of the network device is a two-dimensional dual-polarized antenna, the antenna of the network device is Nt , which are antennas 0 to Nt -1, respectively.
  • the antenna of the network device is a two-dimensional antenna
  • O 1 and O 2 are integers, and O 1 and O 2 can respectively represent generation with The factors of the vector, N 1 and N 1 represent the vector, respectively with length, with Vector can be represented separately with index of.
  • the terminal device sends the first information and the second information to the network device.
  • the terminal device After determining the first precoding matrix and the second precoding matrix, the terminal device generates and sends, to the network device, first information and second information used by the network device to determine the first matrix and the second matrix.
  • the first information and the second information may have various forms, which will be exemplified below.
  • the first case is a first case:
  • the first information is an index of the third precoding matrix, and an index of the third precoding matrix is used to indicate the first precoding matrix;
  • the second information is an index of the second precoding matrix, and an index of the second precoding matrix is used to indicate the second precoding matrix.
  • both the terminal device and the network device store a third precoding matrix.
  • a third codebook, and a second codebook including a second precoding matrix are included in both the terminal device and the network device.
  • the second case is a first case
  • the first information is an index of the third precoding matrix, and an index of the third precoding matrix is used to indicate the first precoding matrix;
  • the second information includes respective element information of the second precoding matrix.
  • a third codebook including a third precoding matrix is stored in both the terminal device and the network device.
  • the third case is a first case.
  • the first information is an index of the first precoding matrix, and an index of the first precoding matrix is used to indicate the first precoding matrix;
  • the second information is an index of the second precoding matrix, and an index of the second precoding matrix is used to indicate the second precoding matrix.
  • the first information is an index of the first precoding matrix, and an index of the first precoding matrix is used to indicate the first precoding matrix;
  • the second information includes respective element information of the second precoding matrix.
  • each element information of the second precoding matrix included in the second information may be each element in the second precoding matrix, or each element in the second precoding matrix may be quantized. After the information.
  • the amount of data after element quantization in the second precoding matrix is much smaller than that of the element itself. Therefore, the transmitted quantized information can save transmission resources, and the transmission time is reduced due to the small amount of data.
  • first information and the second information sent by the terminal device in the embodiment of the present invention may also be other forms, as long as the network device can determine the first precoding matrix and the second precoding matrix according to the first information and the second information, respectively. Just fine. Embodiments of the invention are not limited thereto.
  • the network device determines a precoding matrix according to the first information and the second information.
  • the network device determines a first precoding matrix according to the first information, determines a second precoding matrix according to the second information, and finally, multiplies the first precoding matrix by the second precoding matrix to determine the precoding matrix.
  • step 230 The four cases in step 230 will be respectively illustrated below.
  • the first case is a first case:
  • a third codebook including a third precoding matrix and a second codebook including a second precoding matrix are stored in both the terminal device and the network device.
  • the network device may determine the third precoding matrix by searching the pre-stored third codebook according to the index of the third precoding matrix, and may further perform orthogonalization processing on the third precoding matrix to determine the first precoding matrix.
  • the network device may determine the second precoding matrix by searching the pre-stored second codebook according to the index of the second precoding matrix.
  • the network device may multiply the first precoding matrix and the second precoding matrix to determine the precoding matrix.
  • the second case is a first case
  • a third codebook including a third precoding matrix is stored in both the terminal device and the network device.
  • the network device may determine the third precoding matrix by searching the pre-stored third codebook according to the index of the third precoding matrix, and may further perform orthogonalization processing on the third precoding matrix to determine the first precoding matrix.
  • the network device determines a second precoding matrix according to each element information of the second precoding matrix.
  • the network device may multiply the first precoding matrix and the second precoding matrix to determine the precoding matrix.
  • the third case is a first case.
  • a first codebook including a first precoding matrix and a second codebook including a second precoding matrix are stored in both the terminal device and the network device.
  • the network device may determine the first precoding matrix by searching the pre-stored first codebook according to the index of the first precoding matrix.
  • the network device may determine the second precoding matrix by searching the pre-stored second codebook according to the index of the second precoding matrix.
  • the network device may multiply the first precoding matrix and the second precoding matrix to determine the precoding matrix.
  • a first codebook including a first precoding matrix is stored in both the terminal device and the network device.
  • the network device may determine the first precoding matrix by searching the pre-stored first codebook according to the index of the first precoding matrix.
  • the network device determines a second precoding matrix according to each element information of the second precoding matrix.
  • the network device may multiply the first precoding matrix and the second precoding matrix to determine the precoding matrix.
  • each element information of the second precoding matrix included in the second information may be each element in the second precoding matrix, or each element in the second precoding matrix may be quantized. After the information.
  • the amount of data after element quantization in the second precoding matrix is much smaller than that of the element itself. Therefore, the transmitted quantized information can save transmission resources, and the transmission time is reduced due to the small amount of data.
  • a third codebook including a third precoding matrix and a second codebook including a second precoding matrix are stored in both the terminal device and the network device. And the network device needs to determine the third precoding matrix according to the third precoding standard codebook according to the index of the third precoding matrix, and the orthogonalization processing is required to obtain the first precoding matrix. Precoding matrix.
  • the network device and the terminal device need to use two storage spaces to store two codebooks, and the network device needs to perform orthogonalization calculation, the process is complicated.
  • the second information transmitted in the first case is an index of the second precoding matrix, and the amount of data is much smaller than the element information of the second precoding matrix. Therefore, transmission resources and transmission time can be saved.
  • a third codebook including a third precoding matrix is stored in both the terminal device and the network device.
  • the network device may determine the second precoding matrix according to each element information of the second precoding matrix. Therefore, in the second case, compared with the first case, the second precoding matrix can be determined according to each element information of the second precoding matrix, and the storage space of the codebook can be reduced without storing the second codebook.
  • the first codebook including the first precoding matrix and the second codebook including the second precoding matrix are stored in both the terminal device and the network device.
  • the first precoding matrix is determined because the network device can directly search the pre-stored first codebook according to the index of the first precoding matrix according to the network device. Therefore, in the third case, it is not necessary to obtain the first precoding matrix after the orthogonal processing of the third precoding matrix as in Case 1 and Case 2, which can reduce the complexity.
  • the second information transmitted in the third case is an index of the second precoding matrix, and the element information of the second precoding matrix is much smaller than the data amount, so that transmission resources and transmission time can be saved.
  • the first codebook including the first precoding matrix is stored in both the terminal device and the network device.
  • the first precoding matrix may be determined by the network device according to the network device according to the first precoding first codebook according to the index of the first precoding matrix; and may be according to the second precoding moment The individual element information of the array determines the second precoding matrix. Therefore, in the fourth case, the first precoding matrix is not acquired after the orthogonal processing of the third precoding matrix, and the complexity can be reduced.
  • the second precoding matrix can be determined according to each element information of the second precoding matrix, and the storage space of the codebook can be reduced without storing the second codebook.
  • first information and the second information sent by the terminal device in the embodiment of the present invention may also be other forms, as long as the network device can determine the first precoding matrix and the second precoding matrix according to the first information and the second information, respectively. Just fine. Embodiments of the invention are not limited thereto.
  • the first information and the second information are sent by the terminal device to the network device, so that the network device can determine the precoding matrix according to the first precoding matrix and the second precoding matrix. Since the first precoding matrix is an orthogonal matrix of a third precoding matrix, thus the present invention can overcome the existing standard, the column vectors W 1 caused embodiment linearly weighted noise amplification problem.
  • FIG. 1 to FIG. 4 are merely for helping those skilled in the art to understand the embodiment of the present invention, instead of The embodiments of the present invention are limited to the specific numerical values or specific scenarios illustrated. A person skilled in the art will be able to make various modifications or changes in the embodiments according to the examples of FIG. 1 to FIG. 4, and such modifications or variations are also within the scope of the embodiments of the present invention.
  • a terminal device according to an embodiment of the present invention will be described below with reference to FIG. 5 and FIG. 7, and a network device according to an embodiment of the present invention will be described with reference to FIG. 6 and FIG.
  • FIG. 5 shows a schematic block diagram of a terminal device 500 according to an embodiment of the present invention. Specifically, as shown in FIG. 5, the terminal device 500 includes:
  • the receiving unit 510 is configured to receive a reference signal sent by the network device.
  • a determining unit 520 configured to determine, according to the reference signal, a precoding matrix, where the precoding matrix is a product of a first precoding matrix and a second precoding matrix, where the first precoding matrix is an orthogonalization of a third precoding matrix a matrix, the third precoding matrix has at least two non-orthogonal column vectors, and any two column vectors in the first precoding matrix are orthogonal;
  • the sending unit 530 is configured to send the first information and the second information to the network device, where the first information is used to indicate the first precoding matrix, and the second information is used to indicate the second precoding matrix, so that the The network device determines the precoding matrix according to the first precoding matrix and the second precoding matrix.
  • the first information and the second information are sent to the network device by using the terminal device.
  • the information enables the network device to determine the precoding matrix based on the first precoding matrix and the second precoding matrix. Since the first precoding matrix is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the noise amplification problem caused by linearly weighting the column vectors in W1 in the existing standard.
  • the first precoding matrix is a predefined orthogonalization matrix of the third precoding matrix.
  • the first information is an index of the third precoding matrix, and an index of the third precoding matrix is used to indicate the first precoding matrix;
  • the second information is an index of the second precoding matrix, and an index of the second precoding matrix is used to indicate the second precoding matrix.
  • the first information is an index of the third precoding matrix, and an index of the third precoding matrix is used to indicate the first precoding matrix;
  • the second information includes respective element information of the second precoding matrix.
  • the first information is an index of the first precoding matrix, and an index of the first precoding matrix is used to indicate the first precoding matrix;
  • the second information is an index of the second precoding matrix, and an index of the second precoding matrix is used to indicate the second precoding matrix.
  • the first information is an index of the first precoding matrix, and an index of the first precoding matrix is used to indicate that the first precoding matrix is indicated;
  • the second information includes respective element information of the second precoding matrix.
  • the third precoding matrix is a block diagonal matrix of the following structure:
  • the first precoding matrix is a block diagonal matrix of the following structure:
  • W 1 represents the third precoding matrix
  • M represents the number of DFT vectors in matrix X.
  • the matrix There are at least two column vectors in the matrix vector in matrix X.
  • the antenna of the network device is a one-dimensional antenna
  • N represents the length of the vector x m , 0 ⁇ i m ⁇ NO-1;
  • the antenna of the network device is a two-dimensional antenna
  • O 1 and O 2 are integers
  • N 1 and N 2 represent vectors, respectively. with length
  • the terminal device 500 shown in FIG. 5 can implement various processes related to the terminal device in the method embodiment of FIG. 2.
  • the operations and/or functions of the various modules in the terminal device 500 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG. 2.
  • the detailed description is omitted here.
  • the first information and the second information are sent by the terminal device to the network device, so that the network device can determine the precoding matrix according to the first precoding matrix and the second precoding matrix. Since the first precoding matrix is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the noise amplification problem caused by linearly weighting the column vectors in W1 in the existing standard.
  • FIG. 6 shows a schematic block diagram of a network device 600 in accordance with an embodiment of the present invention. Specifically, as shown in FIG. 6, the network device 600 includes:
  • the sending unit 610 is configured to send a reference signal to the terminal device, so that the terminal device determines a precoding matrix according to the reference signal, where the precoding matrix is a product of a first precoding matrix and a second precoding matrix, the first pre
  • the coding matrix is an orthogonalization matrix of a third precoding matrix, and the third precoding matrix has at least two non-orthogonal column vectors, and any two columns in the first precoding matrix Vector orthogonal
  • the receiving unit 620 is configured to receive, by the terminal device, the first information and the second information, where
  • a first determining unit 630 configured to determine the first precoding matrix and the second precoding matrix according to the first information and the second information, respectively;
  • the second determining unit 640 is configured to determine the precoding matrix according to the first precoding matrix and the second precoding matrix.
  • the first precoding matrix and the second precoding matrix are determined by the network device according to the first information and the second information sent by the receiving terminal device, and further, according to the first precoding matrix and the second precoding.
  • the matrix determines the precoding matrix. Since the first precoding matrix in the embodiment of the present invention is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the problem of noise amplification caused by linearly weighting the column vectors in W1 in the existing standard.
  • the first precoding matrix is a predefined orthogonalization matrix of the third precoding matrix.
  • the first information is an index of the third precoding matrix
  • the second information is an index of the second precoding matrix.
  • the first information is an index of the third precoding matrix
  • the second information includes respective element information of the second precoding matrix.
  • the first information is an index of the first precoding matrix
  • the second information is an index of the second precoding matrix.
  • the first information is an index of the first precoding matrix
  • the second information includes respective element information of the second precoding matrix.
  • the third precoding matrix is a block diagonal matrix of the following structure:
  • the first precoding matrix is a block diagonal matrix of the following structure:
  • W 1 represents the third precoding matrix
  • M represents the number of DFT vectors in matrix X;
  • the matrix There are at least two column vectors in the matrix vector in matrix X.
  • the antenna of the network device is a one-dimensional antenna
  • N represents the length of the vector x m , 0 ⁇ i m ⁇ NO-1;
  • the antenna of the network device is a two-dimensional antenna
  • O 1 and O 2 are integers
  • N 1 and N 2 represent vectors, respectively. with length
  • the network device 600 shown in FIG. 6 can implement various processes related to the network device in the method embodiment of FIG. 2.
  • the operations and/or functions of the various modules in the network device 600 are respectively implemented to implement the corresponding processes in the method embodiment of FIG. 2.
  • the detailed description is omitted here.
  • the first precoding matrix and the second precoding matrix are determined by the network device according to the first information and the second information sent by the receiving terminal device, and further, according to the first precoding matrix and the second precoding.
  • the matrix determines the precoding matrix. Since the first precoding matrix in the embodiment of the present invention is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the problem of noise amplification caused by linearly weighting the column vectors in W1 in the existing standard.
  • FIG. 7 shows a schematic block diagram of a terminal device 700 in accordance with an embodiment of the present invention.
  • the terminal device 700 includes a processor 710, a receiver 720, and a transmitter 730.
  • the processor 710 is connected to the receiver 720 and the transmitter 730.
  • the terminal device 700 further includes a memory, the memory is coupled to the processor 710, the memory is operative to store instructions, and the processor 710 is configured to execute the memory stored instructions to control the receiver 720 and the transmitter 730, respectively. Receive and send messages or signals.
  • the receiver 720 may correspond to the receiving unit 510 of FIG. 5, which is capable of implementing the actions performed by the receiving unit 510, which may correspond to the transmitting unit 530 of FIG.
  • the transmitter 730 can implement the actions performed by the transmitting unit 530, and the detailed description is omitted as appropriate to avoid repetition.
  • the receiver 720 is configured to receive a reference signal sent by the network device.
  • the processor 710 is configured to determine, according to the reference signal, a precoding matrix, where the precoding matrix is a product of a first precoding matrix and a second precoding matrix, where the first precoding matrix is an orthogonalization matrix of a third precoding matrix
  • the third precoding matrix has at least two non-orthogonal column vectors, and any two column vectors in the first precoding matrix are orthogonal;
  • the transmitter 730 is further configured to send the first information and the first information to the network device.
  • Second information the first information is used to indicate the first precoding matrix, and the second information is used to indicate the second precoding matrix, so that the network device is configured according to the first precoding matrix and the second precoding matrix. Determine the precoding matrix.
  • the first information and the second information are sent by the terminal device to the network device, so that the network device can determine the precoding matrix according to the first precoding matrix and the second precoding matrix. Since the first precoding matrix is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the noise amplification problem caused by linearly weighting the column vectors in W1 in the existing standard.
  • the processor 710 may be a central processing unit (“CPU"), and the processor 710 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor 710.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor 710 reads the information in the memory and completes the steps of the above method in combination with the hardware thereof. To avoid repetition, it will not be described in detail here.
  • the first precoding matrix is a predefined orthogonalization matrix of the third precoding matrix.
  • the first information is an index of the third precoding matrix, and an index of the third precoding matrix is used to indicate the first precoding matrix;
  • the second information is an index of the second precoding matrix, and an index of the second precoding matrix is used to indicate the second precoding matrix.
  • the first information is an index of the third precoding matrix, and an index of the third precoding matrix is used to indicate the first precoding matrix;
  • the second information includes respective element information of the second precoding matrix.
  • the first information is an index of the first precoding matrix, and an index of the first precoding matrix is used to indicate the first precoding matrix;
  • the second information is an index of the second precoding matrix, and an index of the second precoding matrix is used to indicate the second precoding matrix.
  • the first information is an index of the first precoding matrix, and an index of the first precoding matrix is used to indicate that the first precoding matrix is indicated;
  • the second information includes respective element information of the second precoding matrix.
  • the third precoding matrix is a block diagonal matrix of the following structure:
  • the first precoding matrix is a block diagonal matrix of the following structure:
  • W 1 represents the third precoding matrix
  • M represents the number of DFT vectors in matrix X.
  • the matrix There are at least two column vectors in the matrix vector in matrix X.
  • the antenna of the network device is a one-dimensional antenna
  • N represents the length of the vector x m , 0 ⁇ i m ⁇ NO-1;
  • the antenna of the network device is a two-dimensional antenna
  • O 1 and O 2 are integers
  • N 1 and N 2 represent vectors, respectively. with length
  • the terminal device 700 shown in FIG. 7 can implement various processes related to the terminal device in the method embodiment of FIG. 2.
  • the operations and/or functions of the various modules in the terminal device 700 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG. 2.
  • the detailed description is omitted here.
  • the first information and the second information are sent by the terminal device to the network device, so that the network device can determine the precoding matrix according to the first precoding matrix and the second precoding matrix. Since the first precoding matrix is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the noise amplification problem caused by linearly weighting the column vectors in W1 in the existing standard.
  • FIG. 8 shows a schematic block diagram of a network device 800 in accordance with an embodiment of the present invention.
  • the network device 800 includes a processor 810, a receiver 820, and a transceiver 830.
  • the processor 810 is connected to the receiver 820 and the transmitter 803.
  • the network device 800 further includes
  • the memory is coupled to a processor 810 that can be used to store instructions for executing instructions stored by the memory to control the receiver 820 and the transmitter 830 to receive and transmit information or signals, respectively.
  • the receiver 820 may correspond to the receiving unit 620 in FIG. 6, the receiver 820 can implement the action performed by the receiving unit 620.
  • the transmitter 830 can correspond to the sending unit 610 in FIG. 6. The transmitter 830 can implement the actions performed by the sending unit 610. To avoid repetition, the detailed description is omitted as appropriate.
  • the transmitter 830 is configured to send a reference signal to the terminal device, so that the terminal device determines a precoding matrix according to the reference signal, where the precoding matrix is a product of a first precoding matrix and a second precoding matrix, where the A precoding matrix is an orthogonalization matrix of a third precoding matrix, the third precoding matrix has at least two non-orthogonal column vectors, and any two column vectors in the first precoding matrix are orthogonal; receiving The device 820 is further configured to receive, by the terminal device, the first information and the second information, where the processor 810 is configured to determine the first precoding matrix and the second precoding matrix according to the first information and the second information, respectively; And determining the precoding matrix according to the first precoding matrix and the second precoding matrix.
  • the first precoding matrix and the second precoding matrix are determined by the network device according to the first information and the second information sent by the receiving terminal device, and further, according to the first precoding matrix and the second precoding.
  • the matrix determines the precoding matrix. Since the first precoding matrix in the embodiment of the present invention is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the problem of noise amplification caused by linearly weighting the column vectors in W1 in the existing standard.
  • the processor 810 may be a central processing unit (“CPU"), and the processor 810 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor 810.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor 810 reads the information in the memory and completes the steps of the above method in combination with the hardware thereof. To avoid repetition, it will not be described in detail here.
  • the first precoding matrix is a predefined orthogonalization matrix of the third precoding matrix.
  • the first information is an index of the third precoding matrix
  • the second information is an index of the second precoding matrix.
  • the first information is an index of the third precoding matrix
  • the second information includes respective element information of the second precoding matrix.
  • the first information is an index of the first precoding matrix
  • the second information is an index of the second precoding matrix.
  • the first information is an index of the first precoding matrix
  • the second information includes respective element information of the second precoding matrix.
  • the third precoding matrix is a block diagonal matrix of the following structure:
  • the first precoding matrix is a block diagonal matrix of the following structure:
  • W 1 represents the third precoding matrix
  • M represents the number of DFT vectors in matrix X;
  • the matrix There are at least two column vectors in the matrix vector in matrix X.
  • the antenna of the network device is a one-dimensional antenna
  • N represents the length of the vector x m , 0 ⁇ i m ⁇ NO-1;
  • the antenna of the network device is a two-dimensional antenna
  • O 1 and O 2 are integers
  • N 1 and N 2 represent vectors, respectively. with length
  • the network device 800 shown in FIG. 8 can implement various processes related to the network device in the method embodiment of FIG. 2.
  • the operations and/or functions of the various modules in the network device 800 are respectively implemented to implement the corresponding processes in the method embodiment of FIG. 2.
  • the detailed description is omitted here.
  • the first precoding matrix and the second precoding matrix are determined by the network device according to the first information and the second information sent by the receiving terminal device, and further, according to the first precoding matrix and the second precoding.
  • the matrix determines the precoding matrix. Since the first precoding matrix in the embodiment of the present invention is an orthogonalization matrix of the third precoding matrix, the embodiment of the present invention can overcome the problem of noise amplification caused by linearly weighting the column vectors in W1 in the existing standard.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer. Take this as an example but Without limitation, the computer readable medium can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage device, or can be used to carry or store desired program code in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Abstract

本发明实施例提供一种传输信道信息的方法、终端设备和网络设备,该方法包括:终端设备接收网络设备发送的参考信号;终端设备根据参考信号确定预编码矩阵,预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,第一预编码矩阵是第三预编码矩阵的正交化矩阵,第三预编码矩阵存在至少两个不正交的列向量,第一预编码矩阵中的任意两个列向量正交;终端设备向网络设备发送用于指示第一预编码矩阵和第二预编码矩阵的第一信息和第二信息,以使得网络设备根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。

Description

传输信道信息的方法、终端设备和网络设备 技术领域
本发明涉及通信领域,并且更具体地,涉及一种传输信道信息的方法、网络设备和终端设备。
背景技术
在已有的长期演进(Long Term Evolution,LTE)标准中,终端设备根据网络设备下发的下行导频参考符号(CSI-RS)选择预编码矩阵/向量,并将预编码矩阵/向量所对应的索引值(PMI)上报给网络设备。网络设备根据收到的PMI确定对应的预编码矩阵。
例如,在LTE标准版本10中(Rel.10)定义两级码本反馈机制来达到减小反馈负载的目的,即预编码矢量(矩阵)W由第一级反馈矩阵W1和第二级反馈矩阵W2的乘积构成
当前,对于LTE Rel-14目前正在讨论的技术,W1采用没有过采样的DFT向量,W2对W1中的波束矢量进行线性合并。这种方式由W1确定的向量的子空间不能很好的表示需要的预编码向量。鉴于此提出了W1中的多个波束向量采用过采样的DFT向量,然而,过采样的DFT向量导致W1矩阵是病态的(ill-conditioned),W1与W2的乘积确定的预编码矩阵对噪声非常敏感,容易导致噪声放大,使得网络设备根据收到的W1与W2不能很好的确定逼近最优的预编码矩阵/向量。
因此,如何进行提高预编码矩阵相关的信道信息的反馈性能,降低噪声的影响,成为亟待解决的问题。
发明内容
本发明实施例提供了一种传输信道信息的方法、终端设备和网络设备,该方法能够提高提高预编码矩阵相关的信道信息的反馈性能,降低噪声的影响。
第一方面,提供了一种传输信道信息的方法,该方法包括:
终端设备接收网络设备发送的参考信号;
该终端设备根据该参考信号确定预编码矩阵,该预编码矩阵为第一预编 码矩阵和第二预编码矩阵的乘积,该第一预编码矩阵是第三预编码矩阵的正交化矩阵,该第三预编码矩阵存在至少两个不正交的列向量,该第一预编码矩阵中的任意两个列向量正交;
该终端设备向该网络设备发送第一信息和第二信息,该第一信息用于指示该第一预编码矩阵,该第二信息用于指示该第二预编码矩阵,以使得该网络设备根据该第一预编码矩阵和该第二预编码矩阵确定该预编码矩阵。
因此,在本发明实施例中通过终端设备向网络设备发送第一信息和第二信息,进而能够使得网络设备根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
结合第一方面,在第一方面的一种实现方式中,该第一预编码矩阵是该第三预编码矩阵的预先定义的正交化矩阵。
换句话说,本发明实施例中的正交化方式为系统中预先定义的方式,也即网络设备和终端设备均知的正交化方式。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一信息为该第三预编码矩阵的索引,该第三预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息为该第二预编码矩阵的索引,该二预编码矩阵的索引用于指示该第二预编码矩阵。
在这种情况下,终端设备和网络设备中均存储有包括第三预编码矩阵的第三码本,和包括第二预编码矩阵的第二码本。
网络设备可以根据第三预编码矩阵的索引查找预存储的第三码本确定第三预编码矩阵,进而可以对第三预编码矩阵进行正交化处理,确定第一预编码矩阵。
类似地,网络设备可以根据第二预编码矩阵的索引查找预存储的第二码本确定第二预编码矩阵。
最后,网络设备可以将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
在这种情况下,传输的第二信息为第二预编码矩阵的索引,与第二预编码矩阵的元素信息相比数据量会小很多,因此,能够节省传输资源和传输时 间
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一信息为该第三预编码矩阵的索引,该第三预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息包括该第二预编码矩阵的各个元素信息。
在这种情况下终端设备和网络设备中均存储有包括第三预编码矩阵的第三码本。
网络设备可以根据第三预编码矩阵的索引查找预存储的第三码本确定第三预编码矩阵,进而可以对第三预编码矩阵进行正交化处理,确定第一预编码矩阵。
网络设备根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵。
最后,网络设备可以将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
这种情况下,网络设备可以根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵,无需存储第二码本,能够减小码本的存储空间。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一信息为该第一预编码矩阵的索引,该第一预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息为该第二预编码矩阵的索引,该第二预编码矩阵的索引用于指示该第二预编码矩阵。
在这种情况下,终端设备和网络设备中均存储有包括第一预编码矩阵的第一码本,和包括第二预编码矩阵的第二码本。
网络设备可以根据第一预编码矩阵的索引查找预存储的第一码本确定第一预编码矩阵。
网络设备可以根据第二预编码矩阵的索引查找预存储的第二码本确定第二预编码矩阵。
最后,网络设备可以将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
这种情况下网络设备可以直接根据网络设备可以根据第一预编码矩阵的索引查找预存储的第一码本确定第一预编码矩阵,无需对第三预编码矩阵正交处理后才获取第一预编码矩阵,能够降低复杂度。并且,这种情况下传 输的第二信息为第二预编码矩阵的索引,第二预编码矩阵的元素信息相比数据量会小很多,因此,能够节省传输资源和传输时间。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一信息为该第一预编码矩阵的索引,该第一预编码矩阵的索引用于指示该网络设备确定该第一预编码矩阵;
该第二信息包括该第二预编码矩阵的各个元素信息。
在这种情况下,终端设备和网络设备中均存储有包括第一预编码矩阵的第一码本。
网络设备可以根据第一预编码矩阵的索引查找预存储的第一码本确定第一预编码矩阵。
网络设备根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵。
最后,网络设备可以将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
这种情况下网络设备可以直接根据网络设备可以根据第一预编码矩阵的索引查找预存储的第一码本确定第一预编码矩阵,无需对第三预编码矩阵正交处理后才获取第一预编码矩阵,能够降低复杂度。并且,网络设备可以根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵,无需存储第二码本,能够减小码本的存储空间。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第三预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000001
该第一预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000002
Figure PCTCN2016100966-appb-000003
表示该第一预编码矩阵,W1表示该第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数;
Figure PCTCN2016100966-appb-000004
或者
Figure PCTCN2016100966-appb-000005
是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
Figure PCTCN2016100966-appb-000006
其中矩阵Q为该酉矩阵,矩阵R为上三角矩阵。
例如,
Figure PCTCN2016100966-appb-000007
是矩阵X的斯密特正交化矩阵。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,如 果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,该矩阵
Figure PCTCN2016100966-appb-000008
中至少有两个列向量属于矩阵X中的列向量。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,在该网络设备的天线为一维天线时,
Figure PCTCN2016100966-appb-000009
O为整数,N表示向量xm的长度,0≤im≤NO-1;
或者,在该网络设备的天线为二维天线时,
Figure PCTCN2016100966-appb-000010
Figure PCTCN2016100966-appb-000011
Figure PCTCN2016100966-appb-000012
分别表示为该二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
Figure PCTCN2016100966-appb-000013
表示
Figure PCTCN2016100966-appb-000014
Figure PCTCN2016100966-appb-000015
的克罗内克积;
Figure PCTCN2016100966-appb-000016
Figure PCTCN2016100966-appb-000017
其中O1和O2均为整数,N1和N2分别表示向量
Figure PCTCN2016100966-appb-000018
Figure PCTCN2016100966-appb-000019
的长度,
Figure PCTCN2016100966-appb-000020
Figure PCTCN2016100966-appb-000021
第二方面,提供了一种传输信道信息的方法,该方法包括:
网络设备向终端设备发送参考信号,以使得该终端设备根据该参考信号确定预编码矩阵,该预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,该第一预编码矩阵是第三预编码矩阵的正交化矩阵,该第三预编码矩阵存在至少两个不正交的列向量,该第一预编码矩阵中的任意两个列向量正交;
该网络设备接收该终端设备发送第一信息和第二信息,该第一信息用于指示该第一预编码矩阵,该第二信息用于指示该第二预编码矩阵;
该网络设备根据该第一信息和该第二信息分别确定该第一预编码矩阵和该第二预编码矩阵;
该网络设备根据该第一预编码矩阵和该第二预编码矩阵确定该预编码矩阵。
因此,在本发明实施例中通过网络设备根据接收终端设备发送的第一信息和第二信息确定第一预编码矩阵和第二预编码矩阵,进而能够根据第一预 编码矩阵和第二预编码矩阵确定预编码矩阵。由于本发明实施例中的第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
应理解,该第二方面与上述第一方面对应,第一方面的执行主体为终端设备,第二方面中的执行主体可以为网络设备,网络设备侧的方法的相应特征可以参见上述第一方面终端设备侧的相应描述,因此,为了简洁,适当省略详细描述。
结合第二方面,在第二方面的一种实现方式中,该第一预编码矩阵是该第三预编码矩阵的预先定义的正交化矩阵。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第一信息为该第三预编码矩阵的索引,
该第二信息为该第二预编码矩阵的索引。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第一信息为该第三预编码矩阵的索引;
该第二信息包括该第二预编码矩阵的各个元素信息。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第一信息为该第一预编码矩阵的索引;
该第二信息为该第二预编码矩阵的索引。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第一信息为该第一预编码矩阵的索引;
该第二信息包括该第二预编码矩阵的各个元素信息。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第三预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000022
该第一预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000023
Figure PCTCN2016100966-appb-000024
表示该第一预编码矩阵,W1表示该第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数;
Figure PCTCN2016100966-appb-000025
或者
Figure PCTCN2016100966-appb-000026
是矩阵X的QR分解结果中的酉矩阵,即X=Q×R, 且
Figure PCTCN2016100966-appb-000027
其中矩阵Q为该酉矩阵,矩阵R为上三角矩阵。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,该矩阵
Figure PCTCN2016100966-appb-000028
中至少有两个列向量属于矩阵X中的列向量。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,在该网络设备的天线为一维天线时,
Figure PCTCN2016100966-appb-000029
O为整数,N表示向量xm的长度,0≤im≤NO-1;
或者,在该网络设备的天线为二维天线时,
Figure PCTCN2016100966-appb-000030
Figure PCTCN2016100966-appb-000031
Figure PCTCN2016100966-appb-000032
分别表示为该二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
Figure PCTCN2016100966-appb-000033
表示
Figure PCTCN2016100966-appb-000034
Figure PCTCN2016100966-appb-000035
的克罗内克积;
Figure PCTCN2016100966-appb-000036
Figure PCTCN2016100966-appb-000037
其中O1和O2均为整数,N1和N1分别表示向量
Figure PCTCN2016100966-appb-000038
Figure PCTCN2016100966-appb-000039
的长度,
Figure PCTCN2016100966-appb-000040
Figure PCTCN2016100966-appb-000041
第三方面,提供了一种终端设备,用于执行上述第一方面、第一方面的任一可能的实现方式中的方法。具体地,该终端设备包括用于执行上述方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面、第二方面的任一可能的实现方式中的方法。具体地,该网络设备包括用于执行上述方法的单元。
第五方面,提供了一种终端设备,该终端设备包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于执行该存储器中存储的计算机程序,执行上述第一方面、第一方面的任一可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于执行该存储器中存储的计算机程序,执行上述第二方面、第二方面的任一可能的实现方式中的方法。
第七方面,提供了一种系统,该系统包括第三方面或第五方面所述的终端设备,和第四方面或第六方面所述的网络设备。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第一方面的任一可能的实现方式中的方法的指令。
第九方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面、第二方面的任一可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的无线通信系统示意图。
图2是根据本发明实施的传输信道信息的方法流程图。
图3是根据本发明一个实施例的一维天线示意图。
图4是根据本发明一个实施例的二维天线示意图。
图5是根据本发明一个实施例的终端设备的示意性框图。
图6是根据本发明一个实施例的网络设备的示意性框图。
图7是根据本发明另一实施例的终端设备的示意性框图。
图8是根据本发明另一实施例的网络设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。例如,本发明实施例可以应用于全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple  Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称“FDD”)系统、LTE时分双工(Time Division Duplex,简称“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)等。
本发明实施例中,终端设备也可以称为用户设备(UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
本发明实施例中,网络设备可以是网络侧设备等用于与移动设备通信的设备,网络侧设备可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络侧设备。
图1是使用本发明的传输数据的方法的通信系统的示意图。该通信系统可以上述任意一种通信系统。如图1所示,该通信系统100包括网络侧设备102,网络侧设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络侧设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络侧设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络侧设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(FDD,Frequency Division Duplex)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(TDD,Time Division Duplex)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络侧设备102的扇区。例如,可将天线组设计为与网络侧设备102覆盖区域的扇区中的终端设备通信。在网络侧设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络侧设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络侧设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络侧设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络侧设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
为了使得本发明实施例更容易理解,下面首先对本发明实施中涉及的一些描述加以说明,这些说明不应视为对本发明所需要保护的范围的限定。
信号的发送端(例如,网络设备)获得发送端到接收端(例如,终端设备)之间的信道信息,则可以根据获得的信道信息对发送信号进行预编码处理,这样可以使得网络设备发送信号的能量集中在所述终端设备所在的方向,从而使得终端设备可以获得较高的信号接收信噪比,另一方面,如果网络设备同时向终端设备发送多层的数据流,通过这种方式可以在发送端预先消除数据流之间的部分或全部干扰,从而提高了各层数据流的接收信号信干噪比。
发送端进行预编码处理时使用的矩阵即为预编码矩阵。
发送端采用预编码处理后的接收信号y和发送信号x之间的关系可以如下公式所示:
y=HWx+n
其中,x为发送信号,y为接收信号,H为信道矩阵,W为预编码矩阵,n表示噪声。
本发明实施例中主要涉及终端设备如何向网络设备发送信道信息,以使得网络设备根据该信道信息确定该预编码矩阵的方案。
例如,在LTE标准版本10中(Rel.10)定义两级码本反馈机制来达到减小反馈负载的目的,即预编码矢量(矩阵)W由第一级反馈矩阵W1和第二级反馈矩阵W2的乘积构成
W=W1×W2
其中W1是第一级反馈矩阵,表征形式为块对角矩阵,每个子块矩阵对应一个极化方向,即:
Figure PCTCN2016100966-appb-000042
其中X(k)代表第一级反馈中选定的第k个矢量簇。针对不同的信道矩阵的秩(RANK),X(k)和W2有不同的表现形式。比如在信道矩阵的秩(RANK)为1或者2的时候,波束矢量集合定义为:
Figure PCTCN2016100966-appb-000043
其中,B表示波束矢量集合,b0-b31分别表示第1个波束至第32个波束的波束矢量(其中,一个矢量对应一个发射波束),波束矢量集合B中波束 矢量的个数还可以为其他数值,本发明实施例并不限于此。
例如,波束矢量集合B被分为16个波束矢量簇,每个波束矢量簇中有4个波束矢量,两个相邻的波束矢量簇中有两个波束矢量是重叠的。X(k)表示第k个波束矢量簇,即:
X(k)∈{[b2kmod32 b(2k+1)mod32 b(2k+2)mod32 b(2k+3)mod32]:k=0,1,…,15}
应理解,本发明实施例中划分波束矢量簇的方式仅是示意性的,本发明实施例并不限于此,并且本发明实施例中在波束个数变化时,相应的波束矢量簇的个数也可以相应的改变。
对于RANK1或者RANK2,W2的作用是从W1确定的波束矢量簇中选择一个波束矢量以及选择两个极化方向之间的相位差。
对于RANK=1,W2从第二级码本中选择,即:
Figure PCTCN2016100966-appb-000044
其中
Figure PCTCN2016100966-appb-000045
对于RANK=2,W2从第二级码本中选择,即:
Figure PCTCN2016100966-appb-000046
其中
Figure PCTCN2016100966-appb-000047
Figure PCTCN2016100966-appb-000048
表示是一个波束选择列向量,其第n个元素为1,其余元素为0。
LTE第十三版(Rel-13)为二维天线阵列定义了二维(2D)码本结构,即W1的块对角矩阵由水平方向的波束矢量和垂直方向的波束矢量通过克罗内克积(Kronecker Product,简称KP)来组成,即:
Figure PCTCN2016100966-appb-000049
其中
Figure PCTCN2016100966-appb-000050
表示为水平方向第k个波束矢量簇,
Figure PCTCN2016100966-appb-000051
表示为垂直方向的第l个波束矢量簇。
当前,对于LTE Rel-14目前正在讨论的技术,W1采用没有过采样的DFT向量,W2对W1中的波束矢量进行线性合并。这种方式由W1确定的向量的子空间不能很好的表示需要的预编码向量。鉴于此提出了W1中的多个波束向量采用过采样的DFT向量,然而,过采样的DFT向量导致W1矩阵是病态的(ill-conditioned),W1与W2的乘积确定的预编码矩阵对噪声非常敏感,容易导致噪声放大的问题。
基于此问题,本发明实施例中巧妙的提出了将W1进行正交化处理,获得任意两个列向量正交的矩阵
Figure PCTCN2016100966-appb-000052
然后通过W2对矩阵
Figure PCTCN2016100966-appb-000053
中的列向量进行加权组合,进而确定预编码矩阵W。由于本发明实施例中
Figure PCTCN2016100966-appb-000054
中所有的列向量之间是正交的,且
Figure PCTCN2016100966-appb-000055
张成的空间与W1张成的空间相同。因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
以下,为了便于理解和说明,作为示例而非限定,以将本申请的信息传输的方法在通信系统中的执行过程和动作进行说明。
图2是根据本发明一个实施例的信息传输方法的示意性流程图。如图2所示的方法可以应用上述各种通信系统中,本发明实施例中的通信系统中包括网络设备和终端设备。具体地,图2所示的方法200包括:
210,网络设备向终端设备发送参考信号。
例如在下行MIMO场景下,网络设备向终端设备发送参考信号。
220,终端设备根据参考信号确定预编码矩阵。
具体地,该该预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,该第一预编码矩阵是第三预编码矩阵的正交化矩阵,该第三预编码矩阵存在至少两个不正交的列向量,该第一预编码矩阵中的任意两个列向量正交;
换句话说,终端设备根据参考信号进行信道估计,确定该预编码矩阵。
在本发明实施例中,预编码矩阵可以用W来表示,那么根据本发明该方法,预编码矩阵W可以表示为:
Figure PCTCN2016100966-appb-000056
其中W2的作用是将
Figure PCTCN2016100966-appb-000057
中的列向量进行线性合并,来使得
Figure PCTCN2016100966-appb-000058
逼近最优的预编码矩阵,
Figure PCTCN2016100966-appb-000059
是W1的正交化矩阵,W1表示该第三预编码矩阵。其中,
Figure PCTCN2016100966-appb-000060
表示该第一预编码矩阵,W2表示该第二预编码矩阵,W1表示该第三预编码矩阵,
Figure PCTCN2016100966-appb-000061
是W1的正交化矩阵。
下面描述终端设备确定
Figure PCTCN2016100966-appb-000062
和W2的一个具体地例子。
例如,终端设备可以根据基站下发的下行参考信号,确定矩阵W1。例如,本发明实施中终端设备可以根据接收的下行信号的强度中从预存的第一预编码矩阵码本中确定与该强度值对应的一个W1
终端设备可以按照网络设备和终端设备预定义的方式对W1进行正交化处理即可获得
Figure PCTCN2016100966-appb-000063
应理解,本发明实施例中的正交化方式为系统中预先定义的方式,也即 网络设备和终端设备均知的正交化方式。
终端设备也可以根据参考信号确定信道矩阵H,其中H的维度为Nr×Nt,Nr表示终端设备的接收天线个数,Nt表示网络设备发射天线个数。终端设备可以对信道矩阵做特征值分解,其特征向量可以表示为V,即H=UΣV,其中V的维度为R×Nt,其中R为信道矩阵H的秩。信道矩阵的相关矩阵可以表示为R=HHH。
在该实施例中终端设备可以将V作为最优的预编码矩阵,即所述终端设备确定的预编码矩阵W来逼近V。
其中一种实现方式是让W=V,那么在确定W和
Figure PCTCN2016100966-appb-000064
的情况下,预编码矩阵W2可以表示为:
Figure PCTCN2016100966-appb-000065
这样,通过上述过程,终端设备即可确定第一预编码矩阵和第二预编码矩阵。
应理解,上述仅是终端设备确定第一预编码矩阵和第二预编码矩阵的一个例子,在本发明实施例中,终端设备还可以通过其他方式确定第一预编码矩阵和第二预编码矩阵,本发明实施例并不限于此。
例如,本发明实施例中,终端设备可以从预存储的第一预编码矩阵码本和第二预编码矩阵码本中分别选择W1和W2,使得公式(W1W2)H(HHH)(W1W2)所确定的信道容量最大。其中,预存储的第一预编码矩阵码本中包括多个候选的第一预编码矩阵,预存储的第二预编码矩阵码本中包括多个候选的第二预编码矩阵。
之后,终端设备可以按照网络设备和终端设备预定义的方式对W1进行正交化处理即可获得
Figure PCTCN2016100966-appb-000066
这样,通过上述过程,终端设备即可确定第一预编码矩阵和第二预编码矩阵。
在本发明实施例中,在网络设备的天线为双极化天线阵列形态时,该第三预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000067
该第一预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000068
其中,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数。
Figure PCTCN2016100966-appb-000069
其中f(·)表示正交化操作,可选的,正交化操作f(·)可以通过多种方式进行。
例如,
Figure PCTCN2016100966-appb-000070
或者是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
Figure PCTCN2016100966-appb-000072
其中矩阵Q为该酉矩阵,矩阵R为上三角矩阵。
应理解,本发明实施例中,可以通过多种方式对第三预编码矩阵进行正交化处理,只要
Figure PCTCN2016100966-appb-000073
是矩阵X的QR分解结果中的酉矩阵Q即可,例如,
Figure PCTCN2016100966-appb-000074
是矩阵X的斯密特正交化矩阵。但本发明实施例并不对此做限定。
例如,
Figure PCTCN2016100966-appb-000075
是矩阵X的施密特正交化,即:
Figure PCTCN2016100966-appb-000076
应理解,本发明实施例中,如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,该矩阵
Figure PCTCN2016100966-appb-000077
中至少有两个列向量属于矩阵X中的列向量。
换句话说,本发明实施例中可以将矩阵X中互相正交的列向量中的部分或全部作为
Figure PCTCN2016100966-appb-000078
中的列向量。
由于无需对
Figure PCTCN2016100966-appb-000079
中属于矩阵X的至少两个列向量无需进行处理,因此,能够降低正交化预算的复杂度,节省终端设备的计算开销。
在本发明实施例中,不同的天线类型所对应的向量X也会不同的形式,下面将针对网络设备的天线为一维双极化天线和二维双极化天线的例子进行举例说明,但本发明实施例并不限于此。
例如,如图3所示,该网络设备的天线为一维双极化天线时,该网络设备的天线为Nt个,分别为天线0至Nt-1。
在这种情况下:
Figure PCTCN2016100966-appb-000080
O为整数,O可以表示生成xm向量的因子,
Figure PCTCN2016100966-appb-000081
表示向量xm的长度,0≤im≤NO-1,im可以表示向量xm的索引;
再例如,如图4所示,该网络设备的天线为二维双极化天线时,该网络设备的天线为Nt个,分别为天线0至Nt-1。
可替代地,作为另一实施例,在该网络设备的天线为二维天线时,
Figure PCTCN2016100966-appb-000082
Figure PCTCN2016100966-appb-000083
Figure PCTCN2016100966-appb-000084
分别表示为该二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
Figure PCTCN2016100966-appb-000085
表示
Figure PCTCN2016100966-appb-000086
Figure PCTCN2016100966-appb-000087
的克罗内克积。
Figure PCTCN2016100966-appb-000088
Figure PCTCN2016100966-appb-000089
其中O1和O2均为整数,O1和O2可以分别表示生成
Figure PCTCN2016100966-appb-000090
Figure PCTCN2016100966-appb-000091
向量的因子,N1和N1分别表示向量
Figure PCTCN2016100966-appb-000092
Figure PCTCN2016100966-appb-000093
的长度,
Figure PCTCN2016100966-appb-000094
Figure PCTCN2016100966-appb-000095
Figure PCTCN2016100966-appb-000096
可以分别表示向量
Figure PCTCN2016100966-appb-000097
Figure PCTCN2016100966-appb-000098
的索引。
230,终端设备向网络设备发送第一信息和第二信息。
具体地,终端设备在确定第一预编码矩阵和第二预编码矩阵后,终端设备会生成并向网络设备发送用于网络设备确定第一矩阵和第二矩阵的第一信息和第二信息。
在本发明实施例中,第一信息和第二信息可以具有多种形式,下面将分情况举例说明。
第一种情况:
该第一信息为该第三预编码矩阵的索引,该第三预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息为该第二预编码矩阵的索引,该二预编码矩阵的索引用于指示该第二预编码矩阵。
在这种情况下,终端设备和网络设备中均存储有包括第三预编码矩阵的 第三码本,和包括第二预编码矩阵的第二码本。
第二种情况:
该第一信息为该第三预编码矩阵的索引,该第三预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息包括该第二预编码矩阵的各个元素信息。
在这种情况下,终端设备和网络设备中均存储有包括第三预编码矩阵的第三码本。
第三种情况:
该第一信息为该第一预编码矩阵的索引,该第一预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息为该第二预编码矩阵的索引,该第二预编码矩阵的索引用于指示该第二预编码矩阵。
第四种情况,
该第一信息为该第一预编码矩阵的索引,该第一预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息包括该第二预编码矩阵的各个元素信息。
应注意,上述各个情况中,在第二信息包括的第二预编码矩阵的各个元素信息,可以是第二预编码矩阵中的各个元素本身,也可以是第二预编码矩阵中各个元素经过量化后的信息。
第二预编码矩阵中的元素量化之后的数据量比元素本身相比会小很多,因此,传输量化后的信息能够节省传输资源,并且由于数据量较小,降低传输时间。
应理解,本发明实施例中终端设备发送的第一信息和第二信息还可以为其他形式,只要网络设备能够根据第一信息和第二信息分别确定第一预编码矩阵和第二预编码矩阵即可。本发明实施例并不限于此。
240,网络设备根据第一信息和第二信息确定预编码矩阵。
具体地,网络设备根据第一信息确定第一预编码矩阵,根据第二信息确定第二预编码矩阵,最后,将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
下面将针对步骤230中的四种情况分别举例说明。
第一种情况:
终端设备和网络设备中均存储有包括第三预编码矩阵的第三码本,和包括第二预编码矩阵的第二码本。
网络设备可以根据第三预编码矩阵的索引查找预存储的第三码本确定第三预编码矩阵,进而可以对第三预编码矩阵进行正交化处理,确定第一预编码矩阵。
类似地,网络设备可以根据第二预编码矩阵的索引查找预存储的第二码本确定第二预编码矩阵。
最后,网络设备可以将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
第二种情况:
终端设备和网络设备中均存储有包括第三预编码矩阵的第三码本。
网络设备可以根据第三预编码矩阵的索引查找预存储的第三码本确定第三预编码矩阵,进而可以对第三预编码矩阵进行正交化处理,确定第一预编码矩阵。
网络设备根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵。
最后,网络设备可以将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
第三种情况:
终端设备和网络设备中均存储有包括第一预编码矩阵的第一码本,和包括第二预编码矩阵的第二码本。
网络设备可以根据第一预编码矩阵的索引查找预存储的第一码本确定第一预编码矩阵。
网络设备可以根据第二预编码矩阵的索引查找预存储的第二码本确定第二预编码矩阵。
最后,网络设备可以将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
第四种情况,
终端设备和网络设备中均存储有包括第一预编码矩阵的第一码本。
网络设备可以根据第一预编码矩阵的索引查找预存储的第一码本确定第一预编码矩阵。
网络设备根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵。
最后,网络设备可以将第一预编码矩阵与第二预编码矩阵相乘确定该预编码矩阵。
应注意,上述各个情况中,在第二信息包括的第二预编码矩阵的各个元素信息,可以是第二预编码矩阵中的各个元素本身,也可以是第二预编码矩阵中各个元素经过量化后的信息。
第二预编码矩阵中的元素量化之后的数据量比元素本身相比会小很多,因此,传输量化后的信息能够节省传输资源,并且由于数据量较小,降低传输时间。
总的来说,第一种情况下,需要终端设备和网络设备中均存储有包括第三预编码矩阵的第三码本,和包括第二预编码矩阵的第二码本。并且网络设备需要根据第三预编码矩阵的索引查找预存储的第三码本确定第三预编码矩阵,在获得第三预编码矩阵的情况下需要进行正交化处理后才可以获得该第一预编码矩阵。虽然在第一种情况下网络设备和终端设备需要使用较大的存储空间存储两个码本,且网络设备需要进行正交化的计算,过程较复杂。但在第一种情况下传输的第二信息为第二预编码矩阵的索引,与第二预编码矩阵的元素信息相比数据量会小很多,因此,能够节省传输资源和传输时间。
第二种情况下,终端设备和网络设备中均存储有包括第三预编码矩阵的第三码本。网络设备可以根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵。因此,第二种情况与第一种情况相比,可以根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵,无需存储第二码本,能够减小码本的存储空间。
第三种情况下,终端设备和网络设备中均存储有包括第一预编码矩阵的第一码本,和包括第二预编码矩阵的第二码本。由于网络设备可以直接根据网络设备可以根据第一预编码矩阵的索引查找预存储的第一码本确定第一预编码矩阵。因此第三种情况无需像情况一和情况二那样需要对第三预编码矩阵正交处理后才获取第一预编码矩阵,能够降低复杂度。并且,第三种情况下传输的第二信息为第二预编码矩阵的索引,第二预编码矩阵的元素信息相比数据量会小很多,因此,能够节省传输资源和传输时间。
第四种情况,终端设备和网络设备中均存储有包括第一预编码矩阵的第一码本。由于网络设备可以直接根据网络设备可以根据第一预编码矩阵的索引查找预存储的第一码本确定第一预编码矩阵;且可以根据该第二预编码矩 阵的各个元素信息确定第二预编码矩阵。因此,第四种情况无需对第三预编码矩阵正交处理后才获取第一预编码矩阵,能够降低复杂度。并且,第四种情况可以根据该第二预编码矩阵的各个元素信息确定第二预编码矩阵,无需存储第二码本,能够减小码本的存储空间。
应理解,本发明实施例中终端设备发送的第一信息和第二信息还可以为其他形式,只要网络设备能够根据第一信息和第二信息分别确定第一预编码矩阵和第二预编码矩阵即可。本发明实施例并不限于此。
因此,在本发明实施例中通过终端设备向网络设备发送第一信息和第二信息,进而能够使得网络设备根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
上文中,结合图1至4详细描述了本发明实施例的传输信道信息的方法,应注意,图1至图4的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图1至图4的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
下面将结合图5和7描述本发明实施例的终端设备,结合图6和图8描述本发明实施例的网络设备。
图5示出了根据本发明实施例的终端设备500的示意性框图,具体地,如图5所示,该终端设备500包括:
接收单元510,用于接收网络设备发送的参考信号;
确定单元520,用于根据该参考信号确定预编码矩阵,该预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,该第一预编码矩阵是第三预编码矩阵的正交化矩阵,该第三预编码矩阵存在至少两个不正交的列向量,该第一预编码矩阵中的任意两个列向量正交;
发送单元530,用于向该网络设备发送第一信息和第二信息,该第一信息用于指示该第一预编码矩阵,该第二信息用于指示该第二预编码矩阵,以使得该网络设备根据该第一预编码矩阵和该第二预编码矩阵确定该预编码矩阵。
因此,在本发明实施例中通过终端设备向网络设备发送第一信息和第二 信息,进而能够使得网络设备根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
可选地,作为另一实施例,该第一预编码矩阵是该第三预编码矩阵的预先定义的正交化矩阵。
可选地,作为另一实施例,该第一信息为该第三预编码矩阵的索引,该第三预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息为该第二预编码矩阵的索引,该二预编码矩阵的索引用于指示该第二预编码矩阵。
可替代地,作为另一实施例,该第一信息为该第三预编码矩阵的索引,该第三预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息包括该第二预编码矩阵的各个元素信息。
可替代地,作为另一实施例,该第一信息为该第一预编码矩阵的索引,该第一预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息为该第二预编码矩阵的索引,该第二预编码矩阵的索引用于指示该第二预编码矩阵。
可替代地,作为另一实施例,该第一信息为该第一预编码矩阵的索引,该第一预编码矩阵的索引用于指示指示该第一预编码矩阵;
该第二信息包括该第二预编码矩阵的各个元素信息。
可选地,作为另一实施例,该第三预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000099
该第一预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000100
Figure PCTCN2016100966-appb-000101
表示该第一预编码矩阵,W1表示该第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数。
Figure PCTCN2016100966-appb-000102
或者
Figure PCTCN2016100966-appb-000103
是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
Figure PCTCN2016100966-appb-000104
其中矩阵Q为该酉矩阵,矩阵R为上三角矩阵。
可选地,作为另一实施例,如果矩阵X的列向量中包含有大于或者等于 2个相互正交的列向量,该矩阵
Figure PCTCN2016100966-appb-000105
中至少有两个列向量属于矩阵X中的列向量。
可选地,作为另一实施例,在该网络设备的天线为一维天线时,
Figure PCTCN2016100966-appb-000106
O为整数,N表示向量xm的长度,0≤im≤NO-1;
或者,在该网络设备的天线为二维天线时,
Figure PCTCN2016100966-appb-000107
Figure PCTCN2016100966-appb-000108
Figure PCTCN2016100966-appb-000109
分别表示为该二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
Figure PCTCN2016100966-appb-000110
表示
Figure PCTCN2016100966-appb-000111
Figure PCTCN2016100966-appb-000112
的克罗内克积;
Figure PCTCN2016100966-appb-000113
Figure PCTCN2016100966-appb-000114
其中O1和O2均为整数,N1和N2分别表示向量
Figure PCTCN2016100966-appb-000115
Figure PCTCN2016100966-appb-000116
的长度,
Figure PCTCN2016100966-appb-000117
Figure PCTCN2016100966-appb-000118
应理解,图5所示的终端设备500能够实现图2方法实施例中涉及终端设备的各个过程。终端设备500中的各个模块的操作和/或功能,分别为了实现图2中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
因此,在本发明实施例中通过终端设备向网络设备发送第一信息和第二信息,进而能够使得网络设备根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
图6示出了根据本发明实施例的网络设备600的示意性框图。具体地,如图6所示,该网络设备600包括:
发送单元610,用于向终端设备发送参考信号,以使得该终端设备根据该参考信号确定预编码矩阵,该预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,该第一预编码矩阵是第三预编码矩阵的正交化矩阵,该第三预编码矩阵存在至少两个不正交的列向量,该第一预编码矩阵中的任意两个列 向量正交;
接收单元620,用于接收该终端设备发送第一信息和第二信息,
第一确定单元630,用于根据该第一信息和该第二信息分别确定该第一预编码矩阵和该第二预编码矩阵;
第二确定单元640,用于根据该第一预编码矩阵和该第二预编码矩阵确定该预编码矩阵。
因此,在本发明实施例中通过网络设备根据接收终端设备发送的第一信息和第二信息确定第一预编码矩阵和第二预编码矩阵,进而能够根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于本发明实施例中的第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
可选地,作为另一实施例,该第一预编码矩阵是该第三预编码矩阵的预先定义的正交化矩阵。
可选地,作为另一实施例,该第一信息为该第三预编码矩阵的索引,
该第二信息为该第二预编码矩阵的索引。
可替代地,作为另一实施例,该第一信息为该第三预编码矩阵的索引;
该第二信息包括该第二预编码矩阵的各个元素信息。
可选地,作为另一实施例,该第一信息为该第一预编码矩阵的索引;
该第二信息为该第二预编码矩阵的索引。
可选地,作为另一实施例,该第一信息为该第一预编码矩阵的索引;
该第二信息包括该第二预编码矩阵的各个元素信息。
可选地,作为另一实施例,该第三预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000119
该第一预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000120
Figure PCTCN2016100966-appb-000121
表示该第一预编码矩阵,W1表示该第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数;
Figure PCTCN2016100966-appb-000122
或者
Figure PCTCN2016100966-appb-000123
是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
Figure PCTCN2016100966-appb-000124
其中矩阵Q为该酉矩阵,矩阵R为上三角矩阵。
可选地,作为另一实施例,如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,该矩阵
Figure PCTCN2016100966-appb-000125
中至少有两个列向量属于矩阵X中的列向量。
可选地,作为另一实施例,在该网络设备的天线为一维天线时,
Figure PCTCN2016100966-appb-000126
O为整数,N表示向量xm的长度,0≤im≤NO-1;
或者,在该网络设备的天线为二维天线时,
Figure PCTCN2016100966-appb-000127
Figure PCTCN2016100966-appb-000128
Figure PCTCN2016100966-appb-000129
分别表示为该二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
Figure PCTCN2016100966-appb-000130
表示
Figure PCTCN2016100966-appb-000131
Figure PCTCN2016100966-appb-000132
的克罗内克积;
Figure PCTCN2016100966-appb-000133
Figure PCTCN2016100966-appb-000134
其中O1和O2均为整数,N1和N2分别表示向量
Figure PCTCN2016100966-appb-000135
Figure PCTCN2016100966-appb-000136
的长度,
Figure PCTCN2016100966-appb-000137
Figure PCTCN2016100966-appb-000138
应理解,图6所示的网络设备600能够实现图2方法实施例中涉及网络设备的各个过程。网络设备600中的各个模块的操作和/或功能,分别为了实现图2中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
因此,在本发明实施例中通过网络设备根据接收终端设备发送的第一信息和第二信息确定第一预编码矩阵和第二预编码矩阵,进而能够根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于本发明实施例中的第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
图7示出了根据本发明实施例的终端设备700的示意性框图。具体地,如图7所示,该终端设备700包括:处理器710、接收器720和发送器730,处理器710与接收器720和发送器730相连,可选地,该终端设备700还包括存储器,存储器与处理器710相连,该存储器可以用于存储指令,该处理器710用于执行该存储器存储的指令,以控制接收器720和发送器730分别 接收和发送信息或信号。
应理解,该接收器720可以与图5中的接收单元510相对应,该接收器720能够实现接收单元510所执行的动作,该发送器730可以与图5中的发送单元530相对应,该发送器730能够实现发送单元530所执行的动作,为避免重复,适当省略详细描述。
具体地,接收器720用于接收网络设备发送的参考信号;
处理器710用于根据该参考信号确定预编码矩阵,该预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,该第一预编码矩阵是第三预编码矩阵的正交化矩阵,该第三预编码矩阵存在至少两个不正交的列向量,该第一预编码矩阵中的任意两个列向量正交;发送器730还用于向该网络设备发送第一信息和第二信息,该第一信息用于指示该第一预编码矩阵,该第二信息用于指示该第二预编码矩阵,以使得该网络设备根据该第一预编码矩阵和该第二预编码矩阵确定该预编码矩阵。
因此,在本发明实施例中通过终端设备向网络设备发送第一信息和第二信息,进而能够使得网络设备根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
应理解,在本发明实施例中,该处理器710可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器710还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。 该存储介质位于存储器,处理器710读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为另一实施例,该第一预编码矩阵是该第三预编码矩阵的预先定义的正交化矩阵。
可选地,作为另一实施例,该第一信息为该第三预编码矩阵的索引,该第三预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息为该第二预编码矩阵的索引,该二预编码矩阵的索引用于指示该第二预编码矩阵。
可替代地,作为另一实施例,该第一信息为该第三预编码矩阵的索引,该第三预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息包括该第二预编码矩阵的各个元素信息。
可替代地,作为另一实施例,该第一信息为该第一预编码矩阵的索引,该第一预编码矩阵的索引用于指示该第一预编码矩阵;
该第二信息为该第二预编码矩阵的索引,该第二预编码矩阵的索引用于指示该第二预编码矩阵。
可替代地,作为另一实施例,该第一信息为该第一预编码矩阵的索引,该第一预编码矩阵的索引用于指示指示该第一预编码矩阵;
该第二信息包括该第二预编码矩阵的各个元素信息。
可选地,作为另一实施例,该第三预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000139
该第一预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000140
Figure PCTCN2016100966-appb-000141
表示该第一预编码矩阵,W1表示该第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数。
Figure PCTCN2016100966-appb-000142
或者
Figure PCTCN2016100966-appb-000143
是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
Figure PCTCN2016100966-appb-000144
其中矩阵Q为该酉矩阵,矩阵R为上三角矩阵。
可选地,作为另一实施例,如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,该矩阵
Figure PCTCN2016100966-appb-000145
中至少有两个列向量属于矩阵X中的列向量。
可选地,作为另一实施例,在该网络设备的天线为一维天线时,
Figure PCTCN2016100966-appb-000146
O为整数,N表示向量xm的长度,0≤im≤NO-1;
或者,在该网络设备的天线为二维天线时,
Figure PCTCN2016100966-appb-000147
Figure PCTCN2016100966-appb-000148
Figure PCTCN2016100966-appb-000149
分别表示为该二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
Figure PCTCN2016100966-appb-000150
表示
Figure PCTCN2016100966-appb-000151
Figure PCTCN2016100966-appb-000152
的克罗内克积;
Figure PCTCN2016100966-appb-000153
Figure PCTCN2016100966-appb-000154
其中O1和O2均为整数,N1和N2分别表示向量
Figure PCTCN2016100966-appb-000155
Figure PCTCN2016100966-appb-000156
的长度,
Figure PCTCN2016100966-appb-000157
Figure PCTCN2016100966-appb-000158
应理解,图7所示的终端设备700能够实现图2方法实施例中涉及终端设备的各个过程。终端设备700中的各个模块的操作和/或功能,分别为了实现图2中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
因此,在本发明实施例中通过终端设备向网络设备发送第一信息和第二信息,进而能够使得网络设备根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
图8示出了根据本发明实施例的网络设备800的示意性框图。具体地,如图8所示,该网络设备800包括:处理器810、接收器820和收发器830,处理器810与接收器820和发送器803相连,可选地,该网络设备800还包括存储器,存储器与处理器810相连,该存储器可以用于存储指令,该处理器810用于执行该存储器存储的指令,以控制接收器820和发送器830分别接收和发送信息或信号。
应理解,该接收器820可以与图6中的接收单元620相对应,该接收器 820能够实现接收单元620所执行的动作,该发送器830可以与图6中的发送单元610相对应,该发送器830能够实现发送单元610所执行的动作,为避免重复,适当省略详细描述。
具体地,发送器830用于向终端设备发送参考信号,以使得该终端设备根据该参考信号确定预编码矩阵,该预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,该第一预编码矩阵是第三预编码矩阵的正交化矩阵,该第三预编码矩阵存在至少两个不正交的列向量,该第一预编码矩阵中的任意两个列向量正交;接收器820还用于接收该终端设备发送第一信息和第二信息;处理器810用于根据根据该第一信息和该第二信息分别确定该第一预编码矩阵和该第二预编码矩阵;并根据该第一预编码矩阵和该第二预编码矩阵确定该预编码矩阵。
因此,在本发明实施例中通过网络设备根据接收终端设备发送的第一信息和第二信息确定第一预编码矩阵和第二预编码矩阵,进而能够根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于本发明实施例中的第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
应理解,在本发明实施例中,该处理器810可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器810还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器810读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为另一实施例,该第一预编码矩阵是该第三预编码矩阵的预先定义的正交化矩阵。
可选地,作为另一实施例,该第一信息为该第三预编码矩阵的索引,
该第二信息为该第二预编码矩阵的索引。
可替代地,作为另一实施例,该第一信息为该第三预编码矩阵的索引;
该第二信息包括该第二预编码矩阵的各个元素信息。
可选地,作为另一实施例,该第一信息为该第一预编码矩阵的索引;
该第二信息为该第二预编码矩阵的索引。
可选地,作为另一实施例,该第一信息为该第一预编码矩阵的索引;
该第二信息包括该第二预编码矩阵的各个元素信息。
可选地,作为另一实施例,该第三预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000159
该第一预编码矩阵为以下结构的块对角矩阵:
Figure PCTCN2016100966-appb-000160
Figure PCTCN2016100966-appb-000161
表示该第一预编码矩阵,W1表示该第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数;
Figure PCTCN2016100966-appb-000162
或者
Figure PCTCN2016100966-appb-000163
是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
Figure PCTCN2016100966-appb-000164
其中矩阵Q为该酉矩阵,矩阵R为上三角矩阵。
可选地,作为另一实施例,如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,该矩阵
Figure PCTCN2016100966-appb-000165
中至少有两个列向量属于矩阵X中的列向量。
可选地,作为另一实施例,在该网络设备的天线为一维天线时,
Figure PCTCN2016100966-appb-000166
O为整数,N表示向量xm的长度,0≤im≤NO-1;
或者,在所述网络设备的天线为二维天线时,
Figure PCTCN2016100966-appb-000167
Figure PCTCN2016100966-appb-000168
Figure PCTCN2016100966-appb-000169
分别表示为所述二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
Figure PCTCN2016100966-appb-000170
表示
Figure PCTCN2016100966-appb-000171
Figure PCTCN2016100966-appb-000172
的克罗内克积;
Figure PCTCN2016100966-appb-000173
Figure PCTCN2016100966-appb-000174
其中O1和O2均为整数,N1和N2分别表示向量
Figure PCTCN2016100966-appb-000175
Figure PCTCN2016100966-appb-000176
的长度,
Figure PCTCN2016100966-appb-000177
Figure PCTCN2016100966-appb-000178
应理解,图8所示的网络设备800能够实现图2方法实施例中涉及网络设备的各个过程。网络设备800中的各个模块的操作和/或功能,分别为了实现图2中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
因此,在本发明实施例中通过网络设备根据接收终端设备发送的第一信息和第二信息确定第一预编码矩阵和第二预编码矩阵,进而能够根据第一预编码矩阵和第二预编码矩阵确定预编码矩阵。由于本发明实施例中的第一预编码矩阵是第三预编码矩阵的正交化矩阵,因此本发明实施例可以克服对已有标准中W1中列向量进行线性加权而导致的噪声放大问题。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但 不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (29)

  1. 一种传输信道信息的方法,其特征在于,包括:
    终端设备接收网络设备发送的参考信号;
    所述终端设备根据所述参考信号确定预编码矩阵,所述预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,所述第一预编码矩阵是第三预编码矩阵的正交化矩阵,所述第三预编码矩阵存在至少两个不正交的列向量,所述第一预编码矩阵中的任意两个列向量正交;
    所述终端设备向所述网络设备发送第一信息和第二信息,所述第一信息用于指示所述第一预编码矩阵,所述第二信息用于指示所述第二预编码矩阵,以使得所述网络设备根据所述第一预编码矩阵和所述第二预编码矩阵确定所述预编码矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预编码矩阵是所述第三预编码矩阵的预先定义的正交化矩阵。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一信息为所述第三预编码矩阵的索引,所述第三预编码矩阵的索引用于指示所述第一预编码矩阵;
    所述第二信息包括所述第二预编码矩阵的各个元素信息。
  4. 根据权利要求1或2所述的方法,其特征在于,
    所述第一信息为所述第一预编码矩阵的索引,所述第一预编码矩阵的索引用于指示所述网络设备确定所述第一预编码矩阵;
    所述第二信息包括所述第二预编码矩阵的各个元素信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述第三预编码矩阵为以下结构的块对角矩阵:
    Figure PCTCN2016100966-appb-100001
    所述第一预编码矩阵为以下结构的块对角矩阵:
    Figure PCTCN2016100966-appb-100002
    Figure PCTCN2016100966-appb-100003
    表示所述第一预编码矩阵,W1表示所述第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数;
    Figure PCTCN2016100966-appb-100004
    或者
    Figure PCTCN2016100966-appb-100005
    是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
    Figure PCTCN2016100966-appb-100006
    其中矩阵Q为所述酉矩阵,矩阵R为上三角矩阵。
  6. 根据权利要求5所述的方法,其特征在于,
    如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,所述矩阵
    Figure PCTCN2016100966-appb-100007
    中至少有两个列向量属于矩阵X中的列向量。
  7. 根据权利要求5或6所述的方法,其特征在于,
    在所述网络设备的天线为一维天线时,
    Figure PCTCN2016100966-appb-100008
    1≤m≤M,O为整数,N表示向量xm的长度,0≤im≤NO-1;
    或者,在所述网络设备的天线为二维天线时,
    Figure PCTCN2016100966-appb-100009
    1≤m≤M,
    Figure PCTCN2016100966-appb-100010
    Figure PCTCN2016100966-appb-100011
    分别表示为所述二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
    Figure PCTCN2016100966-appb-100012
    表示
    Figure PCTCN2016100966-appb-100013
    Figure PCTCN2016100966-appb-100014
    的克罗内克积;
    Figure PCTCN2016100966-appb-100016
    其中O1和O2均为整数,N1和N2分别表示向量
    Figure PCTCN2016100966-appb-100017
    Figure PCTCN2016100966-appb-100018
    的长度,
    Figure PCTCN2016100966-appb-100019
    Figure PCTCN2016100966-appb-100020
  8. 一种传输信道信息的方法,其特征在于,包括:
    网络设备向终端设备发送参考信号,以使得所述终端设备根据所述参考信号确定预编码矩阵,所述预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,所述第一预编码矩阵是第三预编码矩阵的正交化矩阵,所述第三预编码矩阵存在至少两个不正交的列向量,所述第一预编码矩阵中的任意两个列向量正交;
    所述网络设备接收所述终端设备发送第一信息和第二信息,所述第一信息用于指示所述第一预编码矩阵,所述第二信息用于指示所述第二预编码矩阵;
    所述网络设备根据所述第一信息和所述第二信息分别确定所述第一预编码矩阵和所述第二预编码矩阵;
    所述网络设备根据所述第一预编码矩阵和所述第二预编码矩阵确定所述预编码矩阵。
  9. 根据权利要求8所述的方法,其特征在于,所述第一预编码矩阵是所述第三预编码矩阵的预先定义的正交化矩阵。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述第一信息为所述第三预编码矩阵的索引;
    所述第二信息包括所述第二预编码矩阵的各个元素信息。
  11. 根据权利要求8或9所述的方法,其特征在于,
    所述第一信息为所述第一预编码矩阵的索引;
    所述第二信息包括所述第二预编码矩阵的各个元素信息。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,
    所述第三预编码矩阵为以下结构的块对角矩阵:
    Figure PCTCN2016100966-appb-100021
    所述第一预编码矩阵为以下结构的块对角矩阵:
    Figure PCTCN2016100966-appb-100022
    Figure PCTCN2016100966-appb-100023
    表示所述第一预编码矩阵,W1表示所述第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数;
    Figure PCTCN2016100966-appb-100024
    或者
    Figure PCTCN2016100966-appb-100025
    是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
    Figure PCTCN2016100966-appb-100026
    其中矩阵Q为所述酉矩阵,矩阵R为上三角矩阵。
  13. 根据权利要求12所述的方法,其特征在于,
    如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,所述矩阵
    Figure PCTCN2016100966-appb-100027
    中至少有两个列向量属于矩阵X中的列向量。
  14. 根据权利要求12或13所述的方法,其特征在于,
    在所述网络设备的天线为一维天线时,
    Figure PCTCN2016100966-appb-100028
    1≤m≤M,O为整数,N表示向量xm的长度,0≤im≤NO-1;
    或者,在所述网络设备的天线为二维天线时,
    Figure PCTCN2016100966-appb-100029
    1≤m≤M,
    Figure PCTCN2016100966-appb-100030
    Figure PCTCN2016100966-appb-100031
    分别表示为所述二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
    Figure PCTCN2016100966-appb-100032
    表示
    Figure PCTCN2016100966-appb-100033
    Figure PCTCN2016100966-appb-100034
    的克罗内克积;
    Figure PCTCN2016100966-appb-100035
    Figure PCTCN2016100966-appb-100036
    其中O1和O2均为整数,N1和N1分别表示向量
    Figure PCTCN2016100966-appb-100037
    Figure PCTCN2016100966-appb-100038
    的长度,
    Figure PCTCN2016100966-appb-100039
    Figure PCTCN2016100966-appb-100040
  15. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的参考信号;
    确定单元,用于根据所述参考信号确定预编码矩阵,所述预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,所述第一预编码矩阵是第三预编码矩阵的正交化矩阵,所述第三预编码矩阵存在至少两个不正交的列向量,所述第一预编码矩阵中的任意两个列向量正交;
    发送单元,用于向所述网络设备发送第一信息和第二信息,所述第一信息用于指示所述第一预编码矩阵,所述第二信息用于指示所述第二预编码矩阵,以使得所述网络设备根据所述第一预编码矩阵和所述第二预编码矩阵确定所述预编码矩阵。
  16. 根据权利要求15所述的终端设备,其特征在于,所述第一预编码矩阵是所述第三预编码矩阵的预先定义的正交化矩阵。
  17. 根据权利要求15或16所述的终端设备,其特征在于,
    所述第一信息为所述第三预编码矩阵的索引,所述第三预编码矩阵的索引用于指示所述第一预编码矩阵;
    所述第二信息包括所述第二预编码矩阵的各个元素信息。
  18. 根据权利要求15或16所述的终端设备,其特征在于,
    所述第一信息为所述第一预编码矩阵的索引,所述第一预编码矩阵的索引用于指示所述网络设备确定所述第一预编码矩阵;
    所述第二信息包括所述第二预编码矩阵的各个元素信息。
  19. 根据权利要求15至18中任一项所述的终端设备,其特征在于,
    所述第三预编码矩阵为以下结构的块对角矩阵:
    Figure PCTCN2016100966-appb-100041
    所述第一预编码矩阵为以下结构的块对角矩阵:
    Figure PCTCN2016100966-appb-100042
    Figure PCTCN2016100966-appb-100043
    表示所述第一预编码矩阵,W1表示所述第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数;
    Figure PCTCN2016100966-appb-100044
    或者
    Figure PCTCN2016100966-appb-100045
    是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
    Figure PCTCN2016100966-appb-100046
    其中矩阵Q为所述酉矩阵,矩阵R为上三角矩阵。
  20. 根据权利要求19所述的终端设备,其特征在于,
    如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,所述矩阵
    Figure PCTCN2016100966-appb-100047
    中至少有两个列向量属于矩阵X中的列向量。
  21. 根据权利要求19或20所述的终端设备,其特征在于,
    在所述网络设备的天线为一维天线时,
    Figure PCTCN2016100966-appb-100048
    1≤m≤M,O为整数,N表示向量xm的长度,0≤im≤NO-1;
    或者,在所述网络设备的天线为二维天线时,
    Figure PCTCN2016100966-appb-100049
    1≤m≤M,
    Figure PCTCN2016100966-appb-100050
    Figure PCTCN2016100966-appb-100051
    分别表示为所述二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
    Figure PCTCN2016100966-appb-100052
    表示
    Figure PCTCN2016100966-appb-100053
    Figure PCTCN2016100966-appb-100054
    的克罗内克积;
    Figure PCTCN2016100966-appb-100055
    Figure PCTCN2016100966-appb-100056
    其中O1和O2均为整数,N1和N1分别表示向量
    Figure PCTCN2016100966-appb-100057
    Figure PCTCN2016100966-appb-100058
    的长度,
    Figure PCTCN2016100966-appb-100059
    Figure PCTCN2016100966-appb-100060
  22. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送参考信号,以使得所述终端设备根据所述参考信号确定预编码矩阵,所述预编码矩阵为第一预编码矩阵和第二预编码矩阵的乘积,所述第一预编码矩阵是第三预编码矩阵的正交化矩阵,所述第三预编码矩阵存在至少两个不正交的列向量,所述第一预编码矩阵中的任意两个列向量正交;
    接收单元,用于接收所述终端设备发送第一信息和第二信息,
    第一确定单元,用于根据所述第一信息和所述第二信息分别确定所述第一预编码矩阵和所述第二预编码矩阵;
    第二确定单元,用于根据所述第一预编码矩阵和所述第二预编码矩阵确定所述预编码矩阵。
  23. 根据权利要求22所述的网络设备,其特征在于,所述第一预编码矩阵是所述第三预编码矩阵的预先定义的正交化矩阵。
  24. 根据权利要求22或23所述的网络设备,其特征在于,
    所述第一信息为所述第三预编码矩阵的索引;
    所述第二信息包括所述第二预编码矩阵的各个元素信息。
  25. 根据权利要求22或23所述的网络设备,其特征在于,
    所述第一信息为所述第一预编码矩阵的索引;
    所述第二信息包括所述第二预编码矩阵的各个元素信息。
  26. 根据权利要求22至25中任一项所述的网络设备,其特征在于,
    所述第三预编码矩阵为以下结构的块对角矩阵:
    Figure PCTCN2016100966-appb-100061
    所述第一预编码矩阵为以下结构的块对角矩阵:
    Figure PCTCN2016100966-appb-100062
    Figure PCTCN2016100966-appb-100063
    表示所述第一预编码矩阵,W1表示所述第三预编码矩阵,X为由离散傅里叶变换DFT向量组成的矩阵,X=[x1 x2 … xM];x1 x2 … xM中存在至少两个向量不正交,M表示矩阵X中DFT向量的个数;
    Figure PCTCN2016100966-appb-100064
    或者
    Figure PCTCN2016100966-appb-100065
    是矩阵X的QR分解结果中的酉矩阵,即X=Q×R,且
    Figure PCTCN2016100966-appb-100066
    其中矩阵Q为所述酉矩阵,矩阵R为上三角矩阵。
  27. 根据权利要求26所述的网络设备,其特征在于,
    如果矩阵X的列向量中包含有大于或者等于2个相互正交的列向量,所述矩阵
    Figure PCTCN2016100966-appb-100067
    中至少有两个列向量属于矩阵X中的列向量。
  28. 根据权利要求26或27所述的网络设备,其特征在于,
    在所述网络设备的天线为一维天线时,
    Figure PCTCN2016100966-appb-100068
    1≤m≤M,O为整数,N表示向量xm的长度,0≤im≤NO-1;
    或者,在所述网络设备的天线为二维天线时,
    Figure PCTCN2016100966-appb-100069
    1≤m≤M,
    Figure PCTCN2016100966-appb-100070
    Figure PCTCN2016100966-appb-100071
    分别表示为所述二维天线的第一维度的DFT向量和第二维度的过采样DFT向量,
    Figure PCTCN2016100966-appb-100072
    表示
    Figure PCTCN2016100966-appb-100073
    Figure PCTCN2016100966-appb-100074
    的克罗内克积;
    Figure PCTCN2016100966-appb-100075
    Figure PCTCN2016100966-appb-100076
    其中O1和O2均为整数,N1和N2分别表示向量
    Figure PCTCN2016100966-appb-100077
    Figure PCTCN2016100966-appb-100078
    的长度,
    Figure PCTCN2016100966-appb-100079
    Figure PCTCN2016100966-appb-100080
  29. 一种系统,其特征在于,包括:
    如权利要求15至21中任一项所述的终端设备,和如权利要求22至28中任一项所述的网络设备。
PCT/CN2016/100966 2016-09-29 2016-09-29 传输信道信息的方法、终端设备和网络设备 WO2018058484A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100966 WO2018058484A1 (zh) 2016-09-29 2016-09-29 传输信道信息的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100966 WO2018058484A1 (zh) 2016-09-29 2016-09-29 传输信道信息的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2018058484A1 true WO2018058484A1 (zh) 2018-04-05

Family

ID=61762356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100966 WO2018058484A1 (zh) 2016-09-29 2016-09-29 传输信道信息的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2018058484A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835390A (zh) * 2019-04-16 2020-10-27 华为技术有限公司 一种信道测量方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924612A (zh) * 2010-08-27 2010-12-22 北京航空航天大学 无线通信系统中相关信道下的码本生成方法
WO2011140062A1 (en) * 2010-05-05 2011-11-10 Motorola Mobility, Inc. Method and precoder information feedback in multi-antenna wireless communication systems
CN103780332A (zh) * 2012-10-19 2014-05-07 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN104065448A (zh) * 2013-03-22 2014-09-24 电信科学技术研究院 一种确定预编码矩阵的方法、系统和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140062A1 (en) * 2010-05-05 2011-11-10 Motorola Mobility, Inc. Method and precoder information feedback in multi-antenna wireless communication systems
CN101924612A (zh) * 2010-08-27 2010-12-22 北京航空航天大学 无线通信系统中相关信道下的码本生成方法
CN103780332A (zh) * 2012-10-19 2014-05-07 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN104065448A (zh) * 2013-03-22 2014-09-24 电信科学技术研究院 一种确定预编码矩阵的方法、系统和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835390A (zh) * 2019-04-16 2020-10-27 华为技术有限公司 一种信道测量方法和通信装置
CN111835390B (zh) * 2019-04-16 2021-11-30 华为技术有限公司 一种信道测量方法、通信装置及计算机可读介质

Similar Documents

Publication Publication Date Title
US10742272B2 (en) Channel information feedback method and apparatus, terminal and base station
JP7033205B2 (ja) データ伝送方法、基地局および端末
WO2018171727A1 (zh) 传输信道状态信息的方法、终端设备和网络设备
US11005550B2 (en) Method and apparatus for transmitting downlink control information (DCI)
US11811431B2 (en) Enhanced frequency compression for overhead reduction for CSI reporting and usage
WO2018127151A1 (zh) 一种预编码矩阵指示方法、装置和系统
KR102027075B1 (ko) 프리코딩 정보 송신 및 피드백 방법 및 장치
CN109474315B (zh) 一种指示及确定预编码矩阵的方法和设备
CN108631837B (zh) 信息的传输方法和设备
WO2019149216A1 (zh) 上报信道状态信息csi的方法和装置
WO2018202071A1 (zh) 数据传输方法、终端设备和网络设备
WO2019042177A1 (zh) 数据传输方法和装置
CN112751592B (zh) 上报信道状态信息的方法和通信装置
KR20100133883A (ko) 다중 안테나 시스템에서의 코드북 설계 방법 및 데이터 전송 방법
WO2018228599A1 (zh) 通信方法、通信装置和系统
WO2016183835A1 (zh) 传输信号的方法和设备
WO2018094709A1 (zh) 一种确定预编码矩阵的方法、装置及系统
WO2023160247A1 (zh) 下行传输的方法及装置
WO2018058484A1 (zh) 传输信道信息的方法、终端设备和网络设备
CN111435848A (zh) 指示和确定预编码向量的方法以及通信装置
CN112398516A (zh) 一种码本子集限制的方法和通信装置
WO2018064801A1 (en) Explicit channel state information feedback
CN111756416A (zh) 一种通信方法及装置
CN111934733B (zh) 一种确定测试预编码矩阵的方法、装置、终端和存储介质
CN110999114A (zh) 基于宽带幅度的码本子集限制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917236

Country of ref document: EP

Kind code of ref document: A1