WO2018228599A1 - 通信方法、通信装置和系统 - Google Patents
通信方法、通信装置和系统 Download PDFInfo
- Publication number
- WO2018228599A1 WO2018228599A1 PCT/CN2018/091885 CN2018091885W WO2018228599A1 WO 2018228599 A1 WO2018228599 A1 WO 2018228599A1 CN 2018091885 W CN2018091885 W CN 2018091885W WO 2018228599 A1 WO2018228599 A1 WO 2018228599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pmi
- antenna port
- antenna
- matrix
- codebook
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/0486—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
Definitions
- the present application relates to the field of wireless communications and, more particularly, to communication methods, communication devices and systems.
- Massive multiple-input multiple-output is one of the key technologies recognized by the industry as the 5th Generation mobile communication (5G).
- 5G 5th Generation mobile communication
- the signal can usually be processed by precoding, thereby realizing space division multiplexing and greatly improving spectrum utilization.
- the network device can obtain the channel state information fed back by the terminal device by sending, for example, a channel state information reference signal (CSI-RS), thereby determining the channel state information that is compatible with the downlink channel.
- CSI-RS channel state information reference signal
- Precoding matrix The number of rows of the precoding matrix may represent the number of antenna ports, and the number of columns of the precoding matrix may represent a rank corresponding to the codebook.
- the number of antenna ports has also increased. Due to the increase in the number of antenna ports, multiple antenna panels may be configured for the same network device, and multiple antenna ports may be configured on multiple antenna panels. Thus, a multi-panel codebook has been introduced.
- a method has not been provided in the prior art to provide a higher order (e.g., rank greater than 4) codebook for the purpose of orthogonalizing column vectors in a precoding matrix.
- the present application provides a communication method, communication device and system capable of providing a higher order codebook.
- a communication method comprising:
- the first device receives a reference signal for channel measurement
- the first device sends a precoding matrix indicator (PMI) and a rank indication (RI) according to the reference signal, where the PMI is used to indicate a precoding matrix in the codebook corresponding to the RI, the code
- the precoding matrix in the present embodiment includes a plurality of matrices corresponding to a plurality of antenna port groups, and a matrix corresponding to each antenna port group of one antenna port group or at least two antenna port groups has two different antenna port groups.
- An interphase factor, and any two column vectors in the precoding matrix are orthogonal to each other.
- the present application provides a precoding matrix for a high-order codebook such that any two precoding column vectors of the precoding matrix are orthogonal to each other, and thus, a larger number of layers of data streams can be transmitted. Thereby, it is beneficial to increase the rate of MIMO transmission, improve the data transmission capability of the communication system, and improve the throughput.
- the method further includes:
- the second device sends codebook indication information to the first device, where the codebook indication information is used to indicate the type of the codebook used.
- the codebook type includes: a single panel codebook or a multi-panel codebook.
- the first device may select a corresponding codebook according to the type of the codebook indicated.
- the method further includes:
- the first device receives the codebook configuration parameter.
- the codebook configuration parameter includes any one of the following:
- the number of antenna port groups and the total number of antenna ports are The number of antenna port groups and the total number of antenna ports;
- the total number of antenna ports and the number of antenna ports included in each antenna port group are the total number of antenna ports and the number of antenna ports included in each antenna port group.
- the number of horizontal antenna ports, the number of vertical antenna ports, and the number of antenna port groups included in each antenna port group is the number of horizontal antenna ports, the number of vertical antenna ports, and the number of antenna port groups included in each antenna port group.
- the vector length of the precoding matrix that is, the number of rows of the precoding matrix, can be determined.
- the first device may determine the channel matrix according to the reference signal to determine the rank, and thus, the number of columns of the precoding matrix may be determined.
- a communication method including:
- the second device transmits a reference signal for channel measurement
- the second device receives a PMI and an RI, and the PMI and the RI are related to the reference signal, where the PMI is used to indicate a precoding matrix in a codebook corresponding to the RI, where the precoding matrix includes multiple antennas a plurality of matrices corresponding to the port group one by one, a matrix corresponding to each antenna port group of one antenna port group or at least two antenna port groups having two different antenna port group phase factors, and the precoding matrix Any two column vectors are orthogonal to each other.
- the present application provides a precoding matrix for a high-order codebook such that any two precoding column vectors of the precoding matrix are orthogonal to each other, and thus, a larger number of layers of data streams can be transmitted. Thereby, it is beneficial to increase the rate of MIMO transmission, improve the data transmission capability of the communication system, and improve the throughput.
- the method further includes:
- the second device sends codebook indication information to the first device, where the codebook indication information is used to indicate the type of the codebook used.
- the codebook type includes: a single panel codebook or a multi-panel codebook.
- the first device may select a corresponding codebook according to the type of the codebook indicated.
- the method further includes:
- the first device receives the codebook configuration parameter.
- the codebook configuration parameter includes any one of the following:
- the number of antenna port groups and the total number of antenna ports are The number of antenna port groups and the total number of antenna ports;
- the total number of antenna ports and the number of antenna ports included in each antenna port group are the total number of antenna ports and the number of antenna ports included in each antenna port group.
- the number of horizontal antenna ports, the number of vertical antenna ports, and the number of antenna port groups included in each antenna port group is the number of horizontal antenna ports, the number of vertical antenna ports, and the number of antenna port groups included in each antenna port group.
- the vector length of the precoding matrix that is, the number of rows of the precoding matrix, can be determined.
- the first device may determine the channel matrix according to the reference signal to determine the rank, and thus, the number of columns of the precoding matrix may be determined.
- the present application also provides a communication device.
- the communication device may be any device at the transmitting end or a device at the receiving end that performs data transmission in a wireless manner.
- a communication chip, a terminal device, or a network device for example, a base station or the like.
- the device at the transmitting end and the device at the receiving end are opposite.
- the communication device can function as the first device described above, and in some communication processes, the communication device can function as the second device.
- the device at the transmitting end is a base station, and the device at the corresponding receiving end is a terminal device; for uplink data transmission, the device at the transmitting end is a terminal device, and the device at the corresponding receiving end is a base station; for D2D (device to device) Data transmission, the device at the transmitting end is a terminal device, and the device at the corresponding receiving end may also be a terminal device.
- This application does not limit the communication method.
- the reference signal may be a reference signal used for uplink channel measurement, a reference signal used for downlink channel measurement, or a reference signal that is the same as other communication methods.
- the first device may be a terminal device or a communication chip usable for the terminal device
- the second device is a network device or a communication chip usable for the network device.
- the first device may be a network device or a communication chip applicable to the network device
- the second device may be a terminal device or may be used for the terminal device. Communication chip.
- a communication apparatus comprising a transmitting unit and a receiving unit to perform the method of any of the possible implementations of the first or second aspect described above.
- the transmitting unit is configured to perform a function related to transmission
- the receiving unit is configured to perform a function related to receiving.
- the communication device is a communication chip
- the transmission unit may be an input circuit or an interface of the communication chip
- the transmission unit may be an output circuit or an interface of the communication chip.
- the communication device is a terminal device, and the transmitting unit may be a transmitter or a transmitter.
- the communication device is a network device and the transmitting unit can be a receiver or a receiver.
- the communication device further includes various modules that can be used to perform the communication method in any of the foregoing first aspect or the second aspect.
- a communication device comprising: a processor, a memory for storing a computer program, the processor for calling and running the computer program from a memory, such that the communication device performs the first or second Aspect of any of the possible implementations.
- the processor is one or more, and the memory is one or more.
- the memory may be integrated with the processor, or the memory may be separate from the processor.
- the communication device further includes a transmitter (transmitter) and a receiver (receiver).
- a terminal device including a transceiver, a processor, and a memory.
- the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the terminal device performs the first aspect or any of the possible implementations of the first aspect The method in .
- a network device in another possible design, includes a transceiver, a processor, and a memory.
- the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs any of the second aspect or the second aspect The method in .
- a system comprising the above terminal device and a network device.
- a computer program product comprising: a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
- a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
- a computer readable medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
- a computer program which may also be referred to as a code, or an instruction
- the number of columns of the precoding matrix corresponds to a rank
- the number of rows of the precoding matrix corresponds to a total number of the antenna ports
- the rank is M
- the number of the antenna port groups is N
- the precoding The matrix corresponding to the N/2 antenna port groups in the matrix includes a first column vector set and a second column vector set, an antenna port group phase factor of the first column vector set and an antenna port group of the second column vector set
- M is an integer greater than 1
- N is an even number greater than or equal to 2.
- each antenna port group (such as one antenna port group for each antenna panel) includes 2N 1 N 2 CSI-RS antenna ports, N 1 represents the number of horizontal CSI-RS antenna ports, and N 2 represents a vertical direction.
- An integer of N 2 is an integer greater than or equal to 1. Where N is N.
- the precoding matrix provides a possible form for a codebook of order 8.
- the M is 8, and N is 2.
- the precoding matrix in the codebook corresponding to the rank is, or, satisfies:
- the product of W 1 and a constant coefficient such as a constant coefficient, may be
- a matrix having a row and/or column transformation relationship with the W 1 and a product of a constant coefficient, such as a constant coefficient may be
- b 1 and b 2 are discrete Fourier transform DFT vectors
- c is a polarized antenna phase factor. a phase factor between two antenna port groups corresponding to one antenna port group, and
- the M ⁇ 8, N is 2, and the precoding matrix in the codebook corresponding to the rank includes M column vectors, where the M column vectors are the following precoding matrix or A subset of the column vectors in the precoding matrix that satisfy the following equation:
- a matrix having a row and/or column transformation relationship with the W 1 and a product of a constant coefficient, such as a constant coefficient may be
- b 1 and b 2 are discrete Fourier transform DFT vectors
- c is a polarized antenna phase factor. a phase factor between two antenna port groups corresponding to one antenna port group, and
- the precoding matrix provides a possible form for a codebook of order 5-7.
- the precoding matrix in the corresponding codebook when the rank takes the maximum value may have a nesting property.
- the M is 8, and N is 4, and the precoding matrix in the codebook corresponding to the rank is, or, satisfies:
- the product of W 2 and a constant coefficient such as a constant coefficient, may be
- a product of a matrix having a row and/or column transformation relationship with the W 2 and a constant coefficient, such as a constant coefficient, may be
- b 1 and b 2 are DFT vectors
- c is a polarized antenna phase factor. versus versus versus The phase factor between the three sets of antenna port groups corresponding to the three antenna port groups, wherein the values of the phase factors between the two sets of antenna port groups satisfy The value of the phase factor between the other set of antenna port groups is satisfied, i is 1, 2 or 3.
- the precoding matrix provides yet another possible form for a codebook of order 8.
- the M is 8, and N is 4, and the precoding matrix in the codebook corresponding to the rank is, or, satisfies:
- the product of W 2 ' and a constant coefficient, such as a constant coefficient may be
- a product of a matrix having a row and/or column transformation relationship with W 2 'and a constant coefficient for example, a constant coefficient
- b 1 and b 2 are discrete Fourier transform DFT vectors, and c is a polarized antenna phase factor.
- Two of ⁇ 11 , ⁇ 12 , ⁇ 13 , and ⁇ 14 are +1, and the other two are -1;
- Two of ⁇ 21 , ⁇ 22 , ⁇ 23 , and ⁇ 24 are +1, and the other two are -1;
- Two of ⁇ 11 , ⁇ 12 , ⁇ 13 , and ⁇ 14 have a value of +1, and the other two have a value of -1;
- Two of ⁇ 21 , ⁇ 22 , ⁇ 23 , and ⁇ 24 have a value of +1, and the other two have a value of -1.
- the two parameters taking 1 and the two parameters taking -1 can be defined by a protocol and stored in advance in the corresponding device. It can also be configured to the terminal device through the network device.
- the precoding matrix provides yet another possible form for a codebook of order 8.
- the M ⁇ 8, N is 4, and the precoding matrix in the codebook corresponding to the rank includes M column vectors, where the M column vectors are the following precoding matrix or A subset of the column vectors in the precoding matrix that satisfy the following equation:
- the product of W 2 and a constant coefficient such as a constant coefficient, may be
- a product of a matrix having a row and/or column transformation relationship with the W 2 and a constant coefficient, such as a constant coefficient, may be
- b 1 and b 2 are DFT vectors
- c is a polarized antenna phase factor. versus versus versus The phase factor between the three sets of antenna port groups corresponding to the three antenna port groups, wherein the values of the phase factors between the two sets of antenna port groups satisfy The value of the phase factor between the other set of antenna port groups is satisfied.
- i is 1, 2 or 3.
- the precoding matrix provides yet another possible form for a codebook having an order of 5-7.
- the precoding matrix in the codebook corresponding to the rank is, or, satisfies:
- the product of W 8 and a constant coefficient, such as a constant coefficient may be
- the product of a matrix having a row and/or column transformation relationship with W 8 and a constant coefficient, such as a constant coefficient, may be
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ ; with
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 1 is the value in ⁇ 0, 1 , 2, 3 ⁇ .
- the precoding matrix provides yet another possible form for a codebook of order 4.
- the precoding matrix in the codebook corresponding to the rank includes three column vectors, wherein the three The column vector is a subset of the following precoding matrices or column vectors in a precoding matrix that satisfies the following equation:
- the product of W 8 and a constant coefficient, such as a constant coefficient may be
- the product of a matrix having a row and/or column transformation relationship with W 8 and a constant coefficient, such as a constant coefficient, may be
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ ; with
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 1 is the value in ⁇ 0, 1 , 2, 3 ⁇ .
- the precoding matrix provides yet another possible form for a codebook of order 3.
- the precoding matrix in the codebook corresponding to the rank is, or, satisfies:
- the product of W 10 and a constant coefficient such as a constant coefficient, may be
- the product of a matrix having a row and/or column transformation relationship with W 10 and a constant coefficient, such as a constant coefficient, may be
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ ;
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 1 is the value in ⁇ 0, 1 , 2, 3 ⁇ ;
- the antenna port group phase factor For the antenna port group phase factor,
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 2 is the value in ⁇ 0, 1, 2 , 3 ⁇ ;
- the antenna port group phase factor For the antenna port group phase factor,
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 3 is the value in ⁇ 0, 1, 2, 3 ⁇ .
- the precoding matrix in the codebook corresponding to the rank includes three column vectors, wherein the three The column vector is a subset of the following precoding matrices or column vectors in a precoding matrix that satisfies the following equation:
- the product of W 10 and a constant coefficient such as a constant coefficient, may be
- the product of a matrix having a row and/or column transformation relationship with W 10 and a constant coefficient, such as a constant coefficient, may be
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ ;
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 1 is the value in ⁇ 0, 1 , 2, 3 ⁇ ;
- the antenna port group phase factor For the antenna port group phase factor,
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 2 is the value in ⁇ 0, 1, 2 , 3 ⁇ ;
- the antenna port group phase factor For the antenna port group phase factor,
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 3 is the value in ⁇ 0, 1, 2, 3 ⁇ .
- the precoding matrix in the codebook corresponding to the rank is, or, satisfies:
- a product of a matrix having a row/column transformation relationship with W 9 and a constant coefficient for example, a constant coefficient
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ .
- the precoding matrix in the codebook corresponding to the rank includes three column vectors, where the three column vectors are as follows.
- a product of a matrix having a row/column transformation relationship with W 9 and a constant coefficient for example, a constant coefficient
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ .
- the design when the codebook mode is codebook mode 2, the design also satisfies an antenna port group or a matrix corresponding to each antenna port group of the at least two antenna port groups, and has two different antenna port group phases.
- a factor, and any two column vectors in the precoding matrix are orthogonal to each other. Due to the complexity of the deformation, the specific form of the phase factor between the antenna port groups is not given in the above description, but this does not affect the implementation of the scheme.
- the form of the precoding matrix in the above possible designs may be separately protected if necessary, without being limited to the foregoing first aspect or the description of the second aspect.
- the value of each of the foregoing parameters may be predefined by a protocol, or may be determined by a configuration between the network device and the terminal device.
- the corresponding PMI feedback mechanism can also include the following possible designs:
- One possible design is to quantize only the phase factor between antenna port groups, or only quantize the polarization antenna phase factor.
- the PMI includes a first PMI, a second PMI, or a third PMI, where the first PMI is used to indicate a DFT vector, and the second PMI is used to indicate a phase factor between the antenna port groups.
- the third PMI is used to indicate the polarization antenna phase factor.
- the PMI includes a first PMI and a tenth PMI. The first PMI is used to indicate a DFT vector, and the tenth PMI is used to indicate a phase factor between the antenna port groups, or to indicate a polarization antenna phase factor.
- the PMI includes an eleventh PMI, where the eleventh PMI corresponds to multiple indication domains (including multiple indication domains), where one indication domain is used to indicate a DFT vector, and another indication domain is used to indicate an antenna port.
- the inter-group phase factor or, is used to indicate the polarized antenna phase factor.
- phase factor between the antenna ports and the phase factor of the polarized antenna are simultaneously quantized.
- the PMI includes a first PMI, a second PMI, and a third PMI, where the first PMI is used to indicate a DFT vector, and the second PMI is used to indicate a phase factor between the antenna port groups.
- the third PMI is used to indicate the polarization antenna phase factor.
- the PMI includes a first PMI and a fourth PMI, where the first PMI is used to indicate a DFT vector, and the fourth PMI is used to indicate the antenna port group phase factor and a polarized antenna phase factor.
- the PMI includes a twelfth PMI and a third PMI.
- the twelfth PMI corresponds to multiple indication domains (including multiple indication domains), where one indication domain is used to indicate a DFT vector, and another indication domain is used to indicate an antenna port inter-group phase factor, and the third PMI is used by the third PMI. Indicates the polarization antenna phase factor.
- This feedback mechanism can carry multiple signals through one PMI to indicate multiple factors, which can save signaling overhead.
- the M is 8, and N is 2.
- the precoding matrix in the codebook corresponding to the rank is, or, satisfies:
- the product of W 3 and a constant coefficient, such as a constant coefficient may be
- a product of a matrix having a row and/or column transformation relationship with the W 3 and a constant coefficient for example, a constant coefficient
- the precoding matrix provides yet another possible form for a codebook of order 8.
- the M ⁇ 8, N is 2, and the precoding matrix in the codebook corresponding to the rank includes M column vectors, where the M column vectors are the following precoding matrix or satisfy the following equation a subset of the column vectors in the precoding matrix:
- the product of W 3 and a constant coefficient, such as a constant coefficient may be
- a product of a matrix having a row and/or column transformation relationship with the W 3 and a constant coefficient for example, a constant coefficient
- the precoding matrix provides a possible form for a codebook of order 8.
- the value of z k can be solidified or quantized, and k is a value of 2, 3, or 4.
- the value of z k is a value in ⁇ +1, -1, +j, -j ⁇ , and k is a value of 2, 3, 4.
- the PMI comprises a first PMI for indicating a DFT vector and a fifth PMI for indicating at least one of z 2 , z 3 , z 4 .
- the z m x m ⁇ y m , x m and y m are two components of z m , and m takes one or more of 2, 3, 4.
- x m is a component associated with a wideband and y m is a component associated with a subband.
- the PMI includes a first PMI, a sixth PMI, and a seventh PMI
- the first PMI is used to indicate a DFT vector
- the sixth PMI is used to indicate x m
- the seventh PMI is used to Indicates y m .
- the seventh PMI may include a plurality of pieces of information for indicating y m .
- the PMI includes an eighth PMI and a ninth PMI for indicating a DFT vector and x m , and a ninth PMI is used to indicate y m .
- the information of the DFT vector and the x m indicating the broadband feedback are carried in the same PMI, and the information of the y m used to indicate the subband feedback is carried in a PMI, which can reduce the PMI. Quantity, saving signaling overhead.
- the present application provides a precoding matrix for a high-order codebook such that any two precoding column vectors of the precoding matrix are orthogonal to each other, and thus, a larger number of layers of data streams can be transmitted. Thereby, it is beneficial to increase the rate of MIMO transmission, improve the data transmission capability of the communication system, and improve the throughput.
- FIG. 1 is a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
- FIG. 2 is a schematic diagram of a downlink physical channel processing procedure used in an existing LTE system
- FIG. 3 is a schematic diagram showing a plurality of antenna ports arranged in a plurality of antenna panels
- FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
- FIG. 5 is a schematic flowchart of a communication method according to another embodiment of the present disclosure.
- FIG. 6 is a schematic diagram of a communication apparatus according to an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
- FIG. 8 is another schematic diagram of a communication apparatus according to an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- LTE-A Advanced Long Term Evolution
- UMTS Universal Mobile Telecommunications System
- 5G fifth-generation
- converged systems for multiple access systems or evolved systems.
- the 5G system can also be called a new generation wireless access technology (NR) system.
- NR wireless access technology
- FIG. 1 shows a schematic diagram of a communication system suitable for a method and apparatus for data transmission in accordance with an embodiment of the present application.
- the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
- the network device may be any device having a wireless transceiving function or a chip that can be disposed on the device, including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a fifth generation (the fifth) Generation, 5G) Network equipment in the communication system (such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.), network equipment in the future communication system, WiFi system An access node, a wireless relay node, a wireless backhaul node, and the like.
- a base station eg, a base station NodeB, an evolved base station eNodeB, a fifth generation (the fifth) Generation, 5G)
- Network equipment in the communication system such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.
- TP transmission point
- TRP transmission reception point
- base station small base station equipment, etc.
- WiFi system An access node
- a wireless relay node
- Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122.
- Network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
- the terminal device may also be referred to as a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
- Device user agent, or user device.
- the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
- VR virtual reality
- AR augmented reality
- the embodiment of the present application does not limit the application scenario.
- the foregoing terminal device and a chip that can be disposed in the foregoing terminal device are collectively referred to as a terminal device.
- terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
- terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
- the embodiments of the present application can be applied to downlink data transmission, and can also be applied to uplink data transmission, and can also be applied to device to device (D2D) data transmission.
- D2D device to device
- the device at the transmitting end is a base station, and the device at the corresponding receiving end is a UE;
- the device at the transmitting end is a UE, and the device at the corresponding receiving end is a base station;
- the transmitting device is a UE.
- the corresponding receiving device is also a UE.
- the embodiment of the present application does not limit this.
- the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
- FDD frequency division duplex
- the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
- Link 126 can use a common frequency band.
- Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
- the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
- the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
- the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
- Network device 102, terminal device 116 or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
- the wireless communication transmitting device can encode the data for transmission.
- the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
- Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
- the communication system 100 may be a public land mobile network (PLMN) network or a device to device (D2D) network or a machine to machine (M2M) network or other network, and FIG. 1 is only for easy understanding.
- PLMN public land mobile network
- D2D device to device
- M2M machine to machine
- FIG. 1 is only for easy understanding.
- other network devices may also be included in the network, which are not shown in FIG.
- FIG. 2 is a schematic diagram of a downlink physical channel processing procedure used in an existing LTE system.
- the processing object of the downlink physical channel processing is a codeword, and the codeword is usually a bitstream that is encoded (including at least channel coding).
- the code word is scrambling to generate a scrambled bit stream.
- the scrambled bit stream is subjected to modulation mapping to obtain a stream of modulation symbols.
- the modulation symbol stream is mapped to a plurality of layers by layer mapping.
- the symbol stream after layer mapping may be referred to as a layer mapping space layer.
- the layer mapping spatial layer is precoded to obtain a plurality of precoded data streams (or precoded symbol streams).
- the precoded symbol stream is mapped through a resource element (RE) and mapped to multiple REs. These REs are then subjected to orthogonal frequency division multiplexing (OFDM) modulation to generate an OFDM symbol stream.
- OFDM orthogonal frequency division multiplexing
- the precoding technique may be that, in the case of a known channel state, the pre-processing is performed on the signal to be transmitted at the transmitting end, that is, the signal to be transmitted is processed by means of a precoding matrix matched with the channel resource, so that the pre-preprocessing is performed.
- the coded signal to be transmitted is adapted to the channel such that the complexity of the interference between channels at the receiving end is reduced. Therefore, the received signal quality (for example, signal to interference plus noise ratio (SINR)) is improved by precoding processing of the transmitted signal. Therefore, by using the precoding technology, the transmitting end device and the multiple receiving end devices can be transmitted on the same time-frequency resource, that is, multiple user multiple input multiple output (MU-MIMO) is implemented.
- SINR signal to interference plus noise ratio
- precoding technology is for example only, and is not intended to limit the scope of protection of the embodiments of the present application.
- precoding may also be performed by other means (for example, when the channel matrix cannot be known).
- the precoding is performed by using a pre-set precoding matrix or a weighting processing method, and the details are not described herein.
- the transmitting end In order to obtain a precoding matrix that can be adapted to the channel, the transmitting end generally performs channel estimation by transmitting a reference signal, and obtains feedback of the receiving end, thereby determining a relatively accurate precoding matrix to perform precoding processing on the data to be transmitted.
- the transmitting end may be a network device
- the receiving end may be a terminal device
- the reference signal may be a reference signal used for downlink channel measurement, for example, a channel state information reference signal (CSI-RS).
- CSI-RS channel state information reference signal
- the terminal device may perform CSI measurement according to the received CSI-RS, and feed back the CSI of the downlink channel to the network device; the transmitting end may also be a terminal device, and the receiving end may be a network device, and the reference signal may be used for uplink.
- a reference signal for channel measurement for example, a sounding reference signal (SRS).
- the network device may perform CSI measurement according to the received RSR, and indicate the CSI of the uplink channel to the terminal device.
- the CSI may include, for example, a precoding matrix indicator (PMI), a rank indication (RI), and a channel quality indicator (CQI).
- PMI precoding matrix indicator
- RI rank indication
- CQI channel quality indicator
- the number of antenna ports has also increased. Due to the increase in the number of antenna ports, multiple antenna panels may be configured for the same network device, and multiple antenna ports may be configured on multiple antenna panels. For example, at least one antenna port is disposed on each antenna panel, and at least one antenna port of each antenna panel configuration may be referred to as one antenna port group.
- FIG. 3 shows a schematic diagram of a plurality of antenna ports arranged in a plurality of antenna panels. Specifically, a schematic diagram in which a plurality of antenna ports are arranged in two antenna panels is shown in FIG. Each antenna panel is configured with four antenna ports, and each of the figures represents two antenna ports of different polarization directions. Each antenna panel in the figure is configured with 4 antenna ports.
- antenna port 0 and antenna port 1 are antenna ports of the same polarization direction, corresponding to one same beam vector (or precoding vector), for example, as b 1 , antenna port 4 and antenna.
- Port 5 is an antenna port of the same polarization direction, corresponding to another identical beam vector, for example, referred to as b 2 .
- antenna port 2 and antenna port 3 correspond to beam vector b 1
- antenna port 6 and antenna port 7 correspond to beam vector b 2
- the b 1 and b 2 may be two orthogonal discrete Fourier transform (DFT) vectors, or may be a mathematical vector that characterizes the characteristics of the spatial electromagnetic wave, which is not specifically limited in this embodiment of the present application. .
- DFT discrete Fourier transform
- an antenna port can be understood as a transmit antenna that is recognized by the receiving device or a spatially distinguishable transmit antenna.
- One antenna port is configured for each virtual antenna, and each virtual antenna may be a weighted combination of multiple physical antennas, and each antenna port corresponds to one reference signal.
- a precoding matrix in a multi-panel codebook can be formed by splicing a precoding matrix in a plurality of single-panel codebooks, and different antenna panels are distinguished by an antenna panel phase factor. For example, one antenna panel corresponds to one antenna panel phase factor. Any two column vectors in the precoding matrix satisfy a mutually orthogonal relationship. Therefore, the number of columns of the precoding matrix is limited by the number of antenna ports. For example, when the number of antenna ports configured for each antenna panel is 4, at most four mutually orthogonal column vectors can be formed, that is, the rank is at most 4.
- the structure of the precoding vector corresponding to the rank 1 corresponding to the antenna port configured on one antenna panel may be:
- c is the polarization antenna phase factor, which can be arbitrarily selected in ⁇ +1, -1, +j, -j ⁇ .
- the polarization antenna phase factor can be understood as a phase factor for distinguishing antenna ports of different polarization directions.
- phase factor between antenna port groups may also be referred to as an inter-antenna panel phase factor, which can be understood as a phase factor for distinguishing antenna ports in different antenna port groups (or antenna panels).
- the specific value can be determined according to the spacing or calibration error between the antenna panel.
- the prior art has not provided a method capable of providing a higher order (for example, a rank greater than 4) codebook to achieve the purpose of orthogonalizing column vectors in a precoding matrix, thereby failing to provide A higher order precoding matrix is used to precode the data.
- a higher order precoding matrix is used to precode the data.
- the number of antenna ports configured for each antenna panel shown in FIG. 3 is 4, and only a precoding matrix with a rank of 1 to 4 can be provided, and a precoding matrix with a rank of 5 to 8 cannot be provided.
- the number of layers of data is less than or equal to the maximum number of antenna ports supported by the communication system.
- the maximum number of antenna ports supported by current communication systems is 8, but as the 5G evolves, the maximum number of antenna ports may tend to be larger, for example, it may be 16, 32 or even 64. If the higher order precoding matrix cannot be provided to precode the data, the number of data streams in the MIMO transmission will be greatly limited, thereby limiting the data transmission capability of the communication system and affecting the throughput.
- the present application provides a communication method capable of providing a higher order codebook, thereby facilitating improvement of data transmission capability of the communication system and improvement of throughput.
- the communication method provided by the present application can be applied to uplink transmission and downlink transmission.
- the first device in the embodiment of the present application may be a terminal device, and the second device may be an access network device, and the reference signal may be a reference signal used for downlink channel measurement, for example, CSI-RS;
- the first device in the embodiment of the present application may be an access network device, the second device may be a terminal device, and the reference signal may be a reference signal used for uplink channel measurement, such as SRS.
- SRS uplink channel measurement
- the reference signals for the uplink channel measurement and the downlink channel measurement listed above are merely exemplary descriptions, and should not be construed as limiting the embodiments of the present application.
- the present application does not exclude existing protocols (for example, the LTE protocol). Or other future protocols define the possibility of other reference signals used for uplink or downlink channel measurements.
- FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application, which is shown from the perspective of device interaction. Specifically, FIG. 4 shows a scenario of downlink channel measurement. As shown, the method illustrated in FIG. 4 can include steps 410 through 460.
- step 410 the network device transmits a reference signal.
- the terminal device receives a reference signal from the network device.
- the network device may be configured with multiple antenna panels, each antenna panel is configured with one antenna port group, and each antenna port group includes at least one antenna port.
- the antenna panel may be an antenna panel as shown in FIG. 3 .
- the antenna panel may be configured with more antenna ports, or the network device may be configured with more antenna panels. It is not particularly limited.
- the network device may also be configured with only one antenna panel, and at least one antenna port may be configured in the antenna panel.
- codebook corresponding to the network device configuring multiple antenna panels and configuring only one antenna panel may be different.
- the difference between the multi-panel codebook and the single-panel codebook has been described above with reference to the schematic diagram of the antenna panel in FIG. 3. To avoid repetition, details are not described herein again.
- the network device may also notify the terminal device of the information of the codebook type, the codebook configuration parameter, and the like, so that the network device and the terminal device adopt the same codebook, so that the precoding matrix is determined based on the same codebook.
- the method 400 further includes: Step 420: The network device sends codebook indication information to the terminal device, where the codebook indication information is used to indicate a type of the codebook.
- the codebook indication information can be configured in higher layer signaling.
- the codebook indication information is configured in a radio resource control (RRC) message.
- RRC radio resource control
- the codebook indication information may be carried by an indication field in the RRC message.
- the indication field may be a 1-bit indicator bit, and the multi-panel codebook or the single panel is indicated by “1” or “0”. Codebook.
- the terminal device can determine that the PMI required for channel measurement feedback is the PMI of the multi-panel codebook when receiving the reference signal sent by the network device.
- step 430 the terminal device transmits the PMI and the RI to the network device according to the reference signal.
- the terminal device can estimate the channel matrix according to the received reference signal, determine the rank of the channel matrix, that is, the number of columns of the precoding matrix, so that the codebook corresponding to the rank can be determined.
- the singular value decomposition (SVD) of the channel matrix H may be used to determine and ideal precoding from the codebook.
- the closest precoding matrix of the matrix may be used to determine and ideal precoding from the codebook.
- U and V H are ⁇ matrices
- S is a diagonal matrix
- its non-zero elements ie, elements on the diagonal
- singular values can usually be in descending order arrangement.
- the conjugate transpose V of the right chirp matrix V H is an ideal precoding matrix.
- the ideal precoding matrix is the precoding matrix calculated from the channel matrix H.
- the terminal device may compare the precoding matrix of each candidate in the determined codebook with the ideal precoding matrix, and determine the precoding matrix closest to the ideal precoding matrix.
- the closest precoding matrix is the precoding matrix that the terminal device feeds back to the network device through the PMI (for the sake of distinction and description, it is recorded as the first precoding matrix. It can be understood that the first precoding matrix is also ideally precoding. The closest precoding matrix of the matrix).
- the method for the terminal device to determine the precoding matrix closest to the ideal precoding matrix may be various.
- the closest pre-determination may be determined by determining the Euclidean distance between each candidate precoding matrix and the ideal precoding matrix. Encoding matrix.
- the terminal device can also utilize receiver algorithms such as minimum mean square error (MMSE), zero-forcing (ZF), and maximum ratio combining (MRC), maximizing throughput, and maximizing SINR. Or other criteria to determine the rank and precoding matrix to determine the RI and PMI fed back to the network device.
- MMSE minimum mean square error
- ZF zero-forcing
- MRC maximum ratio combining
- the terminal device determines the channel matrix according to the reference signal and determines the rank and precoding matrix according to the channel matrix may be the same as the prior art, and a detailed description of the specific process thereof is omitted herein for the sake of brevity.
- the PMI corresponding to the first precoding matrix may be sent to the network device, so that the network device determines a precoding matrix for precoding the downlink data to be sent. Easy to distinguish and explain, recorded as the second precoding matrix).
- the first precoding matrix determined by the terminal device from the codebook may include multiple matrices corresponding to the plurality of antenna port groups.
- the matrix corresponding to one antenna port group has two different antenna port group phase factors, or the matrix corresponding to each of the at least two antenna port groups has two different antenna port group phase factors; Any two column vectors in the precoding matrix are orthogonal to each other.
- the number of columns of the first precoding matrix corresponds to a rank
- the number of rows corresponds to a total number of antenna ports
- the number of columns of the first precoding matrix represents a value of a rank
- the number of rows represents an antenna port. The total number.
- the rank is denoted as M (M is greater than 1, and M is an integer), and the number of antenna port groups is denoted as N (N ⁇ 2, N is an even number), and the first precoding matrix satisfies the following condition:
- a matrix corresponding to N/2 antenna port groups in a precoding matrix includes a first column vector set and a second column vector set, an antenna port phase factor of the first column vector set and an antenna port of the second column vector set The phase factors are opposite to each other.
- the column vector in the first column vector set and the second column vector set have the same number of rows, that is, the total number of antenna ports. Moreover, the embodiment of the present application does not limit the arrangement order of each column vector in the first column vector set and each column vector in the second column vector set in the first precoding matrix, and the first precoding matrix After the row/or column transformation, it is still possible to satisfy any two column vectors that are orthogonal to each other.
- the precoding matrix proposed by the present application will be described in detail later with reference to a specific precoding matrix.
- the terminal device may further determine the codebook corresponding to the rank according to the codebook configuration parameter received in step 430.
- the method 400 further includes: Step 440, the network device sends a codebook configuration parameter to the terminal device.
- the network device may further notify the terminal device of the codebook configuration parameter, so that the terminal device determines the vector length of the precoding matrix, that is, the number of rows of the precoding matrix, according to the codebook configuration parameter.
- step 420 can be before step 430 or after step 430.
- the antenna ports configured on the antenna panel are equally distributed, that is, the number of antenna ports allocated on each antenna panel may be the same. Therefore, when the terminal device knows the codebook configuration listed below When any of the parameters is used, the total number of antenna ports, the number of antenna panels, and the number of antenna ports included in each antenna panel can be determined.
- the codebook configuration parameter may include any one of the following:
- the number of antenna port groups and the total number of antenna ports are The number of antenna port groups and the total number of antenna ports;
- the total number of antenna ports and the number of antenna ports included in each antenna port group are the total number of antenna ports and the number of antenna ports included in each antenna port group.
- the number of horizontal antenna ports, the number of vertical antenna ports, and the number of antenna port groups included in each antenna port group is the number of horizontal antenna ports, the number of vertical antenna ports, and the number of antenna port groups included in each antenna port group.
- the codebook configuration parameter may be configured in high layer signaling.
- the codebook indication information is configured in an RRC message.
- the method further includes: Step 450: The network device may determine the precoding matrix according to the received PMI and the RI, and precode the downlink data to be sent.
- the network device may determine the precoding matrix W corresponding to the PMI according to the received PMI and the RI, or may perform mathematical transformation according to the precoding matrix corresponding to the PMI, for example, may be in the orthogonal subspace of W.
- the precoding matrix preprocesses the downlink data to be transmitted.
- the method 400 further includes: Step 460: The network device sends the pre-coded downlink data.
- step 460 the terminal device receives the pre-coded downlink data.
- the network device may send the pre-coded demodulation reference signal (DMRS) to the terminal device, so that the terminal device determines the equivalent channel matrix according to the DMRS. And demodulating to obtain downlink data sent by the network device.
- DMRS demodulation reference signal
- each antenna panel can form up to two beam directions of polarization directions, denoted as b 1 and b 2 , and the beam vectors of the two polarization directions are orthogonal to each other. More specifically, b 1 and b 2 are mutually orthogonal one- or two-dimensional DFT vectors with oversampling.
- b 1 and b 2 can each be:
- i 1,1 , i 1,2 are the index of the beam vector, which can be indicated by a PMI, where N 1 and N 2 are the number of antenna ports of different polarization directions, and O 1 and O 2 are different polarization directions.
- the oversampling factor corresponding to the antenna port, e represents a natural constant, and j represents a unit imaginary number.
- the phase factor between the antenna port groups is The basic form of the precoding matrix in the codebook corresponding to the rank proposed by the embodiment of the present application may be expressed as:
- the basic form refers to a code that is performed on the basis of the basic form of the precoding matrix, such as a normalization process, and the precoding matrix is also a code corresponding to the rank proposed in the embodiment of the present application.
- the precoding matrix satisfies the above equation relationship of W 0 .
- the "basic form" may be omitted, but in view of the modification of the precoding matrix, such as normalization processing, and/or row/column relationship transformation, there is no substantial influence on the application of the precoding matrix.
- the precoding matrix of the precoding matrix given in the embodiment is modified, such as the normalization process, and/or the precoding matrix obtained by the row/column relationship transformation should also be understood to correspond to the rank proposed in the embodiment of the present application.
- the codebook is within the scope of the precoding matrix.
- the precoding matrix in the codebook corresponding to the rank may be W 0 , or a matrix having a row/column transformation relationship with the W 0 , or a product of W 0 and a constant coefficient, for example, the constant coefficient may be Alternatively, the product of the matrix having a row/column transformation relationship with the W 0 and a constant coefficient, for example, the constant coefficient may be
- the phase factor between the same antenna port groups Defined as versus (n ⁇ 1, n is an integer), n is used to distinguish between different antenna port groups.
- the phase factors between the antenna ports corresponding to the same antenna port group are opposite to each other, so the phase factor between the antenna port groups corresponding to the antenna port group at W 0 ,
- the term "cure” as used below can be understood as the parameter is fixed, and the value can be defined in the protocol; "quantization” can be understood as the parameter is determined according to different channel states, As the channel state changes, this parameter may change and needs to be indicated by the PMI feedback of the terminal device.
- the curable parameter includes a polarization antenna phase factor and an antenna port group phase factor, and the phase factor between the polarization antenna phase factor and the antenna port group can be ⁇ +1, - whether or not curing. 1, +j, -j ⁇ take the value.
- the phase factor between the antenna port groups of one antenna port group may be 1 and the phase factor between the other antenna port groups may be two values opposite to each other, for example, ⁇ +1,-1 ⁇ , or, ⁇ +j,-j ⁇ .
- the precoding matrix in the codebook corresponding to the rank may be any one of the following precoding matrices, or a matrix having a row/column transform relationship with any one of the following precoding matrices, or a codebook corresponding to the rank
- the precoding matrix may satisfy any one of the following precoding matrices, or a matrix having a row/column transform relationship with any one of the following precoding matrices:
- the product of W 4 /W 5 and a constant coefficient, such as a constant coefficient may be
- a product having a row/column transformation relationship with W 4 /W 5 and a constant coefficient for example, a constant coefficient
- c is the polarization antenna phase factor and takes values in ⁇ +1, -1, +j, -j ⁇ .
- c(d) e j ⁇ d/2 , where d is the index of the phase factor of the polarized antenna, which can be indicated by another PMI.
- the upper two rows correspond to the first antenna port group
- the lower two rows correspond to the second antenna port group
- the phase factor values between the antenna port groups are respectively ⁇ +1 ,-1 ⁇ .
- the beam addresses corresponding to the antenna ports of the same layer in different antenna port groups are the same, and the beam vectors of the first column vector shown in W 4 are all b 1 ; in W 5 , the same layer is in different antennas.
- the beam vector corresponding to the antenna port in the port group is different.
- the first column vector shown in W 5 corresponds to the beam vector of the first antenna port group being b 1
- the beam vector corresponding to the second antenna port group For b 2 .
- the PMI may include a first PMI and a second PMI, wherein the first PMI indicates a DFT vector and the second PMI is used to indicate a polarized antenna phase factor.
- the PMI includes a first PMI and a tenth PMI.
- the first PMI is used to indicate a DFT vector
- the tenth PMI is used to indicate a polarized antenna phase factor.
- the PMI includes an eleventh PMI, where the eleventh PMI corresponds to multiple indication domains (including multiple indication domains), where one indication domain is used to indicate a DFT vector, and another indication domain is used to indicate polarization.
- Antenna phase factor is used to indicate polarization.
- the first PMI may include an index i 1,1 , i 1,2 of the beam vector
- the second PMI may include an index d of the polarization antenna phase factor
- step 430 specifically includes:
- the terminal device sends the first PMI, the second PMI, and the RI to the network device according to the reference signal.
- the terminal device sends the first PMI, the tenth PMI, and the RI to the network device according to the reference signal.
- the terminal device sends the eleventh PMI and the RI to the network device according to the reference signal.
- the phase factor between the antenna port groups of one antenna port group may be 1 and the phase factor between the other antenna port groups may be two values opposite to each other for convenience. Distinguish versus And And You can take values in ⁇ +1, -1, +j, -j ⁇ .
- the precoding matrix in the codebook corresponding to the rank may be, or, satisfy:
- the product of W 6 and a constant coefficient such as a constant coefficient, may be
- a product of a matrix having a row/column transformation relationship with W 6 and a constant coefficient for example, a constant coefficient
- the phase factor between the antenna port groups of one antenna port group may be 1 and the phase factor between the other antenna port groups may be two values opposite to each other.
- the phase factor between the antenna port groups corresponding to the same antenna port group, and And You can take values in ⁇ +1, -1, +j, -j ⁇ .
- p is an index of the phase factor between antenna port groups, which can be indicated by PMI.
- the antenna beam vectors corresponding to the same port in different antenna ports layer groups may be the same or different.
- the PMI may include a first PMI and a third PMI, wherein the first PMI is used to indicate a DFT vector, and the third PMI is used to indicate an antenna port inter-group phase factor.
- the first PMI may include an index i 1,1 , i 1,2 of the beam vector
- the third PMI may include an index p of the phase factor between the antenna port groups.
- the PMI includes a first PMI and a tenth PMI.
- the first PMI is used to indicate a DFT vector
- the tenth PMI is used to indicate a phase factor between antenna port groups.
- the PMI includes an eleventh PMI, where the eleventh PMI corresponds to multiple indication domains (including multiple indication domains), where one indication domain is used to indicate a DFT vector, and another indication domain is used to indicate an antenna port. Phase factor between groups.
- step 420 specifically includes:
- the terminal device sends the first PMI, the third PMI, and the RI to the network device according to the reference signal.
- the terminal device sends the first PMI, the tenth PMI and the RI to the network device according to the reference signal.
- the terminal device sends the eleventh PMI and the RI to the network device according to the reference signal.
- the precoding matrix in the codebook corresponding to the rank may be, or, satisfy:
- the product of W 1 and a constant coefficient such as a constant coefficient, may be
- a product of a matrix having a row/column transformation relationship with W 1 and a constant coefficient for example, a constant coefficient
- d is the index of the phase factor of the polarized antenna, Can be indicated by a PMI.
- p is an index of the phase factor between antenna port groups, which can be indicated by another PMI.
- the antenna beams corresponding to the same port in different antenna ports layer groups may be the same or different.
- the PMI may include a first PMI, a second PMI, and a third PMI.
- the first PMI is used to indicate a DFT vector
- the second PMI is used to indicate a polarized antenna phase factor
- the third PMI is used to indicate an antenna port inter-group phase factor.
- the PMI may include a twelfth PMI and a third PMI, where the twelfth PMI corresponds to multiple indication domains (eg, including multiple indication domains), where one indication domain is used to indicate a DFT vector, and the other indication domain is used.
- the third PMI is used to indicate the polarization antenna phase factor.
- step 420 specifically includes:
- the terminal device transmits the first PMI, the second PMI, the third PMI, and the RI according to the reference signal.
- the terminal device sends the twelfth PMI, the third PMI, and the RI to the network device according to the reference signal.
- the PMI may include a first PMI and a fourth PMI.
- the first PMI is used to indicate a DFT vector
- the fourth PMI is used to indicate a polarization antenna phase factor and an antenna port group phase factor.
- the first PMI may include an index i 1,1 , i 1,2 of the beam vector, the index d of the fourth PMI including the polarization antenna phase factor and the index p between the antenna port group phase factors.
- the polarization antenna phase factor and the antenna port group phase factor may have a binding relationship when one of the polarization antenna phase factor and the antenna port group phase factor is used, and the other The value may be determined according to the binding relationship.
- the polarization antenna phase factor or the antenna port group phase factor may be indicated in the one PMI. That is, the first PMI may include an index i 1,1 , i 1,2 of the beam vector, the index d containing the phase factor of the polarized antenna in the fourth PMI or the index p of the phase factor between the antenna port groups.
- step 420 specifically includes:
- the terminal device transmits the first PMI, the fourth PMI, and the RI according to the reference signal.
- the precoding matrix in the codebook corresponding to the rank may be or satisfy: W 3 , or a matrix having a row/column transformation relationship with the W 3 precoding matrix, or a product of W 3 and a constant coefficient, for example,
- the constant coefficient can be Alternatively, the product of the matrix having a row/column transformation relationship with the W 3 precoding matrix and a constant coefficient, for example, the constant coefficient may be
- z 1 1
- z 2 is the polarized antenna phase factor
- z 3 and -z 3 are the phase factors between the antenna port groups
- z 4 is the product of the phase factor of the polarized antenna and the phase factor between the antenna port groups .
- Some or all of the above z 2 , z 3 and z 4 may be cured or quantified.
- z 2 , z 3 and z 4 are all in ⁇ +1, -1, +j, -j ⁇ , and the specific values can be fixed in the protocol in advance, and do not need to be quantified by PMI. .
- the values of z 2 , z 3 and z 4 are in the range of ⁇ +1, -1, +j, -j ⁇ , but the specific value can be indicated by PMI.
- the PMI may include a first PMI for indicating a beam vector, and a fifth PMI for indicating at least one of z 2 , z 3 , and z 4 .
- the first PMI may include an index i 1,1 , i 1,2 of the beam vector
- the fifth PMI may include an index p for the antenna phase factor and an index p of the phase factor between the antenna port groups.
- step 420 specifically includes:
- the terminal device transmits the first PMI, the fifth PMI, and the RI according to the reference signal.
- the values of the plurality of z k may also be indicated by multiple PMIs, that is, multiple indexes are carried in multiple PMIs.
- the values of z 2 , z 3 , and z 4 can be indicated by a wideband PMI and a subband PMI, respectively.
- This feedback mechanism can more accurately feedback the CSI, and thus can determine a more accurate precoding matrix to match the channel state.
- the PMI may include a first PMI, a sixth PMI, and a seventh PMI, where the first PMI is used to indicate a beam vector, and each sixth PMI is used to indicate a value of x m , each of the first Seven PMIs are used to indicate the value of a y m .
- the first PMI may include an index i 1,1 , i 1,2 of the beam vector
- the sixth PMI may include an index for indicating x m
- the seventh PMI may include an index for indicating y m .
- step 420 specifically includes:
- the terminal device transmits the first PMI, the sixth PMI, and the seventh PMI and RI according to the reference signal.
- the PMI may include a seventh PMI and an eighth PMI,
- the seventh PMI may include an index for indicating y m
- the eighth PMI may include an index i 1,1 , i 1,2 of the beam vector and an index for indicating x m .
- PMI is used to achieve the same or similar functionality.
- the PMI may also include only two PMIs, which are respectively used to indicate any two of the three factors of a beam vector, a polarized antenna phase factor, and an antenna port group phase factor.
- the precoding matrix in the codebook corresponding to the rank may include M column vectors, wherein the M column vectors are the precoding matrices W 0 , W 1 , W shown above.
- the M column vectors satisfy any one of the precoding matrices W 0 , W 1 , W 3 , W 4 , W 5 , and W 6 shown above or have a row/column transformation relationship with any one of the above. a subset of the column vectors in the matrix, or the M column vectors satisfying any one of the precoding matrices W 0 , W 1 , W 3 , W 4 , W 5 , and W 6 shown above and the constant coefficients a subset of the column vectors in the product matrix, or the M column vectors satisfying and having any one of the precoding matrices W 0 , W 1 , W 3 , W 4 , W 5 , and W 6 Matrix and constant coefficient of column transformation relationship A subset of the column vectors in the product matrix.
- the precoding matrix in the codebook corresponding to the rank includes 5 column vectors, which may be W 0 , W 1 , W 3 , W 4 , W 5 , and W 6 described above. Any five column vectors in any one of the precoding matrices, and the five column vectors may also perform row/column transformation, or the five column vectors may be the above W 0 , W 1 , W 3 , W 4 Multiply any one of W 5 and W 6 by a constant coefficient 5 column vectors in the formed precoding matrix (or the 5 column vectors may be any 5 of the above precoding matrices of W 0 , W 1 , W 3 , W 4 , W 5 , and W 6 Column vector multiplied by a constant coefficient The five column vectors included in the formed precoding matrix), or the five column vectors may be performed on any one of the foregoing W 0 , W 1 , W 3 , W 4 , W 5 , and W 6 / Column transformation
- the phase factor between the antenna port groups is The basic form of the precoding matrix in the codebook corresponding to the rank proposed by the embodiment of the present application may be expressed as:
- the precoding matrix in the codebook corresponding to the rank may be W 2 , or a matrix having a row/column transformation relationship with the above W 2 , or a product of W 2 and a constant coefficient, for example, the constant coefficient may be Alternatively, the product of the matrix having the row/column transformation relationship with the W 2 and a constant coefficient, for example, the constant coefficient may be
- the phase factor between the same antenna port groups Defined as versus (n ⁇ 1, n is an integer), n is used to distinguish between different antenna port groups.
- W 2 versus versus versus For the phase factor between the three sets of antenna port groups corresponding to the three antenna port groups, the two values of the phase factor between each group of the antenna port groups of any two groups of antenna port groups are opposite to each other. In other words, the value of the phase factor between any two sets of antenna port groups is satisfied. The value of the phase factor between the other set of antenna port groups is satisfied. i is 1, 2 or 3.
- the phase factor between the two antenna port groups in W 2 can be ⁇ +1, +1, +1, + 1, +1, +1, +1 ⁇
- the phase factor between the other two antenna port groups can be ⁇ +1, +1, +1, +1, -1, -1, -1, - 1 ⁇ .
- the basic form of the precoding matrix in the codebook corresponding to the rank proposed by the embodiment of the present application may be expressed as:
- the precoding matrix in the codebook corresponding to the rank may be W 2 ', or a matrix having a row/column transformation relationship with the above W 2 ', or a product of W 2 ' and a constant coefficient, for example, a constant coefficient may Yes
- the product of the matrix having the row/column transformation relationship with the W 2 'and a constant coefficient for example, the constant coefficient may be
- b 1 and b 2 are discrete Fourier transform DFT vectors, and c is a polarized antenna phase factor.
- Two of ⁇ 11 , ⁇ 12 , ⁇ 13 , and ⁇ 14 are +1, and the other two are -1;
- Two of ⁇ 21 , ⁇ 22 , ⁇ 23 , and ⁇ 24 are +1, and the other two are -1;
- Two of ⁇ 11 , ⁇ 12 , ⁇ 13 , and ⁇ 14 have a value of +1, and the other two have a value of -1;
- Two of ⁇ 21 , ⁇ 22 , ⁇ 23 , and ⁇ 24 have a value of +1, and the other two have a value of -1.
- the two parameters taking 1 and the two parameters taking -1 can be defined by a protocol and stored in advance in the corresponding device. It can also be configured to the terminal device through the network device.
- ⁇ 11 , ⁇ 12 , ⁇ 13 , ⁇ 14 , ⁇ 21 , ⁇ 22 , ⁇ 23 , ⁇ 24 , ⁇ 11 , ⁇ 12 , ⁇ 13 , ⁇ 14 , ⁇ 21 , ⁇ 22 , ⁇ 23 , ⁇ 24 may correspond to a phase factor between antenna port groups.
- the antenna polarization phase factor c can be arbitrarily selected in ⁇ +1, -1, +j, -j ⁇ , and the phase factor between the antenna port groups can also be in ⁇ +1, -1, + Any value in j, -j ⁇ .
- the precoding matrix in the codebook corresponding to the rank may be, or, satisfy: W 7 , or a matrix having a row/column transformation relationship with the W 7 , or a product of W 7 and a constant coefficient, for example,
- the constant coefficient can be Alternatively, the product of the matrix having the row/column transformation relationship with the W 7 and a constant coefficient, for example, the constant coefficient may be
- phase factor between the antenna port groups And with Both can take values in ⁇ +1, -1, +j, -j ⁇ . and p is the index of the phase factor between the antenna port groups.
- the PMI may include a first PMI and a second PMI, where the first PMI is used to indicate a beam vector, and the second PMI is used to indicate a polarized antenna phase factor;
- the PMI may include an eleventh PMI, where the eleventh PMI corresponds to multiple indication domains (eg, including multiple indication domains), one of the indication domains is used to indicate a beam vector, and the other indication domain is used to indicate a polarization antenna phase factor.
- the eleventh PMI corresponds to multiple indication domains (eg, including multiple indication domains)
- one of the indication domains is used to indicate a beam vector
- the other indication domain is used to indicate a polarization antenna phase factor.
- the PMI may include a first PMI and a third PMI, where the first PMI is used to indicate a beam vector, and the third PMI is used to indicate a phase factor between the antenna port groups;
- the PMI may include an eleventh PMI, where the eleventh PMI corresponds to multiple indication domains (eg, including multiple indication domains), where one indication domain is used to indicate a beam vector, and another indication domain is used to indicate an antenna port inter-group phase factor. .
- the PMI may include a first PMI, a second PMI, and a third PMI, where the first PMI is used to indicate a beam vector, the second PMI is used to indicate a polarized antenna phase factor, and the third PMI is used to indicate an antenna port inter-group phase factor;
- the PMI may include a first PMI for indicating a beam vector and a fourth PMI for indicating a polarization antenna phase factor and an antenna port group phase factor.
- the PMI may include a twelfth PMI and a third PMI, where the twelfth PMI corresponds to multiple indication domains, where one indication field is used to indicate a beam vector, and another indication field is used to indicate a phase factor between antenna port groups, and third The PMI is used to indicate the polarization antenna phase factor.
- the above-listed quantization schemes and feedback mechanisms are merely exemplary and should not be construed as limiting the present application.
- the present application does not exclude feedback on other PMIs based on the precoding matrix provided by the present application and its mathematical variants.
- the PMI may also include only two PMIs, which are respectively used to indicate any two of the three factors of a beam vector, a polarized antenna phase factor, and an antenna port group phase factor.
- the precoding matrix in the codebook corresponding to the rank may include M column vectors, wherein the M column vectors are the precoding matrices W 2 , W 2 ' and shown above.
- any one of W 7 or a subset of column vectors in a matrix having a row/column transformation relationship with any of the above, or the M column vectors are the precoding matrices W 2 , W 2 ' and shown above Any one of W 7 and constant coefficient a subset of the column vectors in the product matrix, or the M column vectors are a matrix having a row/column transformation relationship with any one of the precoding matrices W 2 , W 2 ' and W 7 shown above Constant coefficient A subset of the column vectors in the matrix of the product.
- the M column vectors are subsets of column vectors in a matrix satisfying any one of the precoding matrices W 2 , W 2 ' and W 7 shown above or a matrix having a row/column transformation relationship with any one of the above
- the M column vectors are any one of the precoding matrix W 2 , W 2 ' and W 7 satisfying the above and the constant coefficient a subset of the column vectors in the product matrix
- the M column vectors are matrices satisfying the row/column transformation relationship with any one of the precoding matrices W 2 , W 2 ' and W 7 shown above Constant coefficient A subset of the column vectors in the matrix of the product.
- the network device can configure codebook mode 1 or codebook mode 2 using higher layer signaling.
- the codebook mode 1 and the codebook mode 2 may correspond to different precoding matrix forms.
- the basic form of the precoding matrix in the codebook corresponding to rank 4 can be expressed as:
- the precoding matrix in the codebook corresponding to the rank may be W 8 , or a matrix having a row/column transformation relationship with the W 8 , or a product of W 8 and a constant coefficient, for example, the constant coefficient may be Alternatively, the product of the matrix having the row/column transformation relationship with the W 8 and a constant coefficient, for example, the constant coefficient may be
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ ; with
- the value may be taken in ⁇ +1, -1, +j, -j ⁇ , the value of p 1 is a value in ⁇ 0, 1 , 2, 3 ⁇ ;
- the precoding matrix in the codebook corresponding to rank 3 contains 3 column vectors, which are the precoding matrix W 8 in the codebook of rank 4 shown above or any one of the column vectors in the matrix having a row and/or column transformation relationship with W 8 a set, or a subset of the column vectors in the product matrix of W 8 and a constant coefficient, such as a constant coefficient, Alternatively, a subset of the column vectors in the product matrix having a row and/or column transformation relationship with W 8 and a constant coefficient, such as a constant coefficient, may be Alternatively,
- the PMI may include the thirteenth PMI and the third PMI.
- the thirteenth PMI can be used to indicate the phase factor between the antenna port groups
- the third PMI is used to indicate the polarization antenna phase factor
- the PMI may include a fourteenth PMI.
- the fourteenth PMI can be used to indicate with
- the fourteenth PMI may include multiple indication domains, one of which indicates the domain is used to indicate Another indicator field is used to indicate
- the basic form of the precoding matrix in the codebook corresponding to rank 4 can be expressed as:
- Rank corresponding to the codebook may be a precoding matrix W 9, or having a row / column matrix of the transformation relationship W 9, or a product of a constant coefficient of W 9 and, for example, may be a constant coefficient
- the product of the matrix having the row/column transformation relationship with the W 9 and a constant coefficient for example, the constant coefficient may be
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ .
- Value The value of p 1 is the value in ⁇ 0, 1, 2, 3 ⁇ ; Value The value of p 2 is the value in ⁇ 0, 1, 2, 3 ⁇ ; the value of b n1 is the value of b n1 The value of n 1 is the value in ⁇ 0, 1 ⁇ ; the value of b n2 is the value of b n2 The value of n 2 is a value in ⁇ 0, 1 ⁇ ; the precoding matrix in the codebook corresponding to rank 3 contains 3 column vectors, which are in the codebook of rank 4 shown above.
- a precoding matrix W 9 or a subset of any column vector in a matrix having a row/column transformation relationship with W 9 or a subset of column vectors in a product matrix of W 9 and a constant coefficient, such as a constant coefficient Yes
- a subset of the column vectors in the product matrix having a row/column transformation relationship with W 9 and a constant coefficient, such as a constant coefficient may be Alternatively, the three column vectors are a subset of the precoding matrix W 9 in the codebook satisfying the rank 4 shown above or any one of the column vectors in the matrix having the row/column transformation relationship with W 9 , or
- the three column vectors are a subset of the column vectors in the product matrix satisfying W 9 and a constant coefficient, for example, the constant coefficient may be Alternatively, the three column vectors are a subset of column vectors in a product matrix satisfying a matrix having a row/column transformation relationship with W 9 and a constant coefficient, for example, the constant coefficient may be
- the PMI may include a fifteenth PMI and a sixteenth PMI.
- the fifteenth PMI can be used to indicate with
- the fifteenth PMI may include multiple indication domains, one of which indicates the domain is used to indicate Another indicator field is used to indicate
- the sixteenth PMI is used to indicate the polarization antenna phase factor as well as with
- the sixteenth PMI may include multiple indication domains, one of which indicates the domain is used to indicate An indicator field is used to indicate Another indicator field is used to indicate
- the network device can use the high-level signaling configuration codebook mode 1,
- the basic form of the precoding matrix in the codebook corresponding to rank 4 may be:
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ ;
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 1 is the value in ⁇ 0, 1 , 2, 3 ⁇ ;
- the antenna port group phase factor For the antenna port group phase factor, It may be possible to take a value in ⁇ +1, -1, +j, -j ⁇ , and the value of p 2 is a value in ⁇ 0, 1, 2 , 3 ⁇ ;
- For the antenna port group phase factor For the antenna port group phase factor, It can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 3 is the value in ⁇ 0, 1, 2, 3 ⁇ .
- the precoding matrix in the codebook corresponding to the rank 3 includes three column vectors which are the precoding matrix W 10 in the codebook of rank 4 shown above or any one of which has rows/columns with W 10 a subset of the column vectors in the matrix of the transformed relationship, or a subset of the column vectors in the product matrix of W 10 and a constant coefficient, such as a constant coefficient may be Alternatively, a subset of the column vectors in the product matrix having a row/column transformation relationship with W 10 and a constant coefficient, such as a constant coefficient, may be Alternatively, the three column vectors are a subset of the precoding matrix W 10 in the codebook satisfying the rank 4 shown above or any one of the column vectors in the matrix having the row/column transformation relationship with W 10 , or The three column vectors are a subset of the column vectors in the product matrix satisfying W 10 and a constant coefficient, for example, the constant coefficient may be Alternatively, the three column vectors are a subset of the column vectors in
- the precoding matrix in the codebook corresponding to the rank may be W 10 , or a matrix having a row/column transformation relationship with the W 10 , or a product of W 10 and a constant coefficient, for example, the constant coefficient may be Alternatively, the product of the matrix having the row/column transformation relationship with the W 10 and a constant coefficient, for example, the constant coefficient may be
- two of ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are +1, and the other two are -1; two of ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are + 1, the other two values are -1;
- the two parameters taking 1 and the two parameters taking -1 can be defined by a protocol and stored in advance in the corresponding device. It can also be configured to the terminal device through the network device.
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of n is the value in ⁇ 0, 1, 2, 3 ⁇ ;
- the value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 1 is the value in ⁇ 0, 1 , 2, 3 ⁇ ;
- the antenna port group phase factor For the antenna port group phase factor,
- the antenna port group phase factor For the antenna port group phase factor, The value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 2 is the value in ⁇ 0, 1, 2 , 3 ⁇ ;
- the antenna port group phase factor For the antenna port group phase factor, For the antenna port group phase factor, For the antenna port group phase factor, The value can be taken in ⁇ +1, -1, +j, -j ⁇ , and the value of p 3 is the value in ⁇ 0, 1, 2 , 3 ⁇ ;
- the antenna port group phase factor For the antenna port group phase factor,
- the precoding matrix in the codebook corresponding to the rank 3 includes three column vectors which are the precoding matrix W 10 in the codebook of rank 4 shown above or any one of which has rows/columns with W 10 a subset of the column vectors in the matrix of the transformed relationship, or a subset of the column vectors in the product matrix of W 10 and a constant coefficient, such as a constant coefficient may be Alternatively, a subset of the column vectors in the product matrix having a row/column transformation relationship with W 10 and a constant coefficient, for example, the constant coefficient may be Alternatively, the three column vectors are a subset of the precoding matrix W 10 in the codebook satisfying the rank 4 shown above or any one of the column vectors in the matrix having the row/column transformation relationship with W 10 , or The three column vectors are a subset of the column vectors in the product matrix satisfying W 10 and a constant coefficient, for example, the constant coefficient may be Alternatively, the three column vectors are a subset of the column vectors in the
- the PMI may include a seventeenth PMI and a third PMI.
- the seventeenth PMI can be used to indicate with
- the seventeenth PMI may include multiple indication fields, one of which indicates the indication field Another indicator field is used to indicate There is also an indicator field for indicating
- the third PMI is used to indicate the polarization antenna phase factor
- the PMI may include an eighteenth PMI.
- the eighteenth PMI can be used to indicate with
- the eighteenth PMI may include multiple indication domains, one of which indicates the domain is used to indicate Another indicator field is used to indicate Another indicator field is used to indicate There is also an indicator field for indicating
- the embodiment of the present application determines the CSI based on the precoding matrix in the high-order codebook provided by the present application by the network device and the terminal device, so that the transmission of the data stream of a larger layer can be realized. Thereby, it is beneficial to increase the rate of MIMO transmission, improve the data transmission capability of the communication system, and improve the throughput.
- precoding matrix enumerated above is only a possible form of the precoding matrix provided by the present application, and should not constitute any limitation to the present application, performing row/column transformation on the form of the precoding matrix provided by the present application, or other
- the precoding matrix obtained by the mathematical transformation should fall within the protection scope of the present application.
- the network device and the terminal device may save one or more of the following:
- the parameters may include, but are not limited to, the codebook configuration parameters enumerated above, and the like;
- row/column transformation refers to row transformation, or column transformation, or row transformation and column transformation.
- the preservation referred to in this application may be stored in one or more memories.
- the one or more memories may be separate arrangements or integrated in an encoder or decoder, processor, or communication device.
- the one or more memories may also be partially provided separately, and some of them may be integrated in a decoder, a processor, or a communication device.
- the type of the memory may be any form of storage medium, which is not limited herein.
- FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application, which is shown from the perspective of device interaction. Specifically, FIG. 5 shows a scenario of uplink channel measurement. As shown, the method illustrated in FIG. 5 can include steps 510 through 550.
- step 510 the terminal device transmits a reference signal to the network device.
- step 520 the network device transmits a PMI and an RI to the terminal device according to the reference signal.
- the method 500 further includes: Step 530: The network device sends the codebook indication information to the terminal device.
- the method 500 further includes: Step 540: The network device sends the codebook configuration information to the terminal device.
- the method 500 further includes: Step 550: The terminal device pre-codes the uplink data to be sent according to the PMI and the RI, and sends the pre-coded uplink data.
- step 530 may be before step 540 or after step 540.
- the network device may further determine the downlink channel according to channel reciprocity (for example, in time division depluxing (TDD)).
- TDD time division depluxing
- the embodiment of the present application determines the CSI based on the precoding matrix in the high-order codebook provided by the present application by the network device and the terminal device, so that the transmission of the data stream of a larger layer can be realized. Thereby, it is beneficial to increase the rate of MIMO transmission, improve the data transmission capability of the communication system, and improve the throughput.
- FIG. 6 is a schematic diagram of a device 10 for communication according to an embodiment of the present disclosure.
- the device 10 may be a terminal device, or may be a chip or a circuit, such as a terminal device. Chip or circuit.
- the terminal device may correspond to the terminal device in the foregoing method.
- the device 10 can include a processor 11 and a memory 12.
- the memory 12 is for storing instructions for executing the instructions stored by the memory 12 to cause the apparatus 20 to implement the steps in the corresponding method of FIG. 4 or FIG.
- the device 10 may further include an input port 13 and an output port 14.
- the processor 11, memory 12, input port 13 and output port 14 can communicate with one another via internal connection paths to communicate control and/or data signals.
- the memory 12 is configured to store a computer program, and the processor 11 can be used to call and run the computer program from the memory 12 to control the input port 13 to receive signals, and control the output port 14 to send signals to complete the terminal device in the above method.
- the memory 12 can be integrated in the processor 11 or can be provided separately from the processor 11.
- the input port 13 is a receiver
- the output port 14 is a transmitter.
- the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
- the input port 13 is an input interface
- the output port 14 is an output interface
- the functions of the input port 13 and the output port 14 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
- the processor 11 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
- the terminal device provided by the embodiment of the present application may be implemented by using a general-purpose computer.
- the program code that implements the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general purpose processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
- FIG. 7 is a schematic structural diagram of a terminal device 20 provided by the present application.
- the terminal device 20 can be applied to the system shown in FIG.
- FIG. 7 shows only the main components of the terminal device.
- the terminal device 20 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
- the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, in the embodiment of the indication method for supporting the terminal device to perform the foregoing transmission precoding matrix.
- the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
- the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
- the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
- the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
- the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
- FIG. 7 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
- the memory may also be referred to as a storage medium or a storage device, and the like.
- the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
- the processor in FIG. 7 integrates the functions of the baseband processor and the central processing unit.
- the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
- the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
- the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
- the central processing unit can also be expressed as a central processing circuit or a central processing chip.
- the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
- the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 201 of the terminal device 20, and the processor having the processing function is regarded as the processing unit 202 of the terminal device 20.
- the terminal device 20 includes a transceiver unit 201 and a processing unit 202.
- the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
- the device for implementing the receiving function in the transceiver unit 201 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 201 is regarded as a sending unit, that is, the transceiver unit 201 includes a receiving unit and a sending unit.
- the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
- the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
- FIG. 8 is a schematic diagram of a device 30 for communication according to an embodiment of the present disclosure.
- the device 30 may be a network device, or may be a chip or a circuit, such as a network device. Chip or circuit inside.
- the network device corresponds to the network device in the foregoing method.
- the device 30 can include a processor 31 and a memory 32.
- the memory 32 is for storing instructions for executing the instructions stored by the memory 32 to cause the apparatus 30 to implement the steps of the corresponding method as in FIG. 4 or FIG.
- the device 30 may further include an input port 33 and an output port 33.
- the processor 31, memory 32, input port 33, and output port 34 can communicate with one another via internal connection paths to communicate control and/or data signals.
- the memory 32 is used to store a computer program, and the processor 31 can be used to call and run the computer program from the memory 32 to control the input port 33 to receive signals, and control the output port 34 to send signals to complete the terminal device in the above method.
- the memory 32 can be integrated in the processor 31 or can be provided separately from the processor 31.
- the control input port 33 receives the signal, and the control output port 34 transmits a signal to complete the steps of the network device in the above method.
- the memory 32 can be integrated in the processor 31 or can be provided separately from the processor 31.
- the input port 33 is a receiver
- the output port 34 is a transmitter.
- the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
- the input port 33 is an input interface
- the output port 34 is an output interface
- the device 30 may not include the memory 32, and the processor 31 may read an instruction (program or code) in the memory external to the chip to implement the foregoing 4 or the function in the corresponding method in FIG.
- the functions of the input port 33 and the output port 34 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
- the processor 31 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
- a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
- the program code that implements the functions of the processor 31, the input port 33, and the output port 34 is stored in a memory, and the general purpose processor implements the functions of the processor 31, the input port 33, and the output port 34 by executing code in the memory.
- FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present disclosure, which may be used to implement the functions of the network device in the foregoing method.
- a base station As shown in FIG. 9, the base station can be applied to the system as shown in FIG. 1.
- the base station 40 includes one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 402. .
- RRU remote radio unit
- BBUs baseband units
- DUs digital units
- the RRU 401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4011 and a radio frequency unit 4012.
- the RRU 401 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
- the BBU 402 portion is mainly used for performing baseband processing, controlling a base station, and the like.
- the RRU 401 and the BBU 402 may be physically disposed together or physically separated, that is, distributed base stations.
- the BBU 402 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
- the BBU (processing unit) 402 can be used to control the base station 40 to perform the operation procedure of the network device in the foregoing method embodiment.
- the BBU 402 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE system or a 5G system), or may support different ones. Access to the standard wireless access network.
- the BBU 402 also includes a memory 4021 and a processor 4022.
- the memory 4021 is used to store necessary instructions and data.
- the memory 4021 stores the codebook or the like in the above embodiment.
- the processor 4022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
- the memory 4021 and the processor 4022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
- SoC System-on-chip
- all or part of the functions of the 402 part and the 401 part may be implemented by the SoC technology, for example, by a base station function chip.
- the base station function chip integrates a processor, a memory, an antenna interface and the like.
- the program of the base station related function is stored in the memory, and the processor executes the program to implement the related functions of the base station.
- the base station function chip can also read the memory external to the chip to implement related functions of the base station.
- FIG. 9 the structure of the base station illustrated in FIG. 9 is only one possible form, and should not be construed as limiting the embodiments of the present application. This application does not preclude the possibility of other forms of base station architecture that may arise in the future.
- the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
- the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
- DSPs digital signal processors
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
- the volatile memory can be a random access memory (RAM) that acts as an external cache.
- RAM random access memory
- RAM random access memory
- SRAM static random access memory
- DRAM dynamic random access memory
- synchronous dynamic randomness synchronous dynamic randomness.
- Synchronous DRAM SDRAM
- DDR SDRAM double data rate synchronous DRAM
- ESDRAM enhanced synchronous dynamic random access memory
- SLDRAM synchronous connection dynamic random access memory Take memory
- DR RAM direct memory bus random access memory
- the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
- the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
- the computer program product comprises one or more computer instructions or computer programs.
- the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
- the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
- the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
- the semiconductor medium can be a solid state hard drive.
- the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
- the implementation process constitutes any limitation.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
- the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
- the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种通信方法,能够提供更高阶的预编码矩阵的码本,有利于提高信道传输的数据层数,从而有利于提高通信系统的数据传输能力,提高吞吐量。该方法包括:第一设备接收用于信道测量的参考信号;该第一设备根据该参考信号发送预编码矩阵指示 PMI 和秩指示 RI,该 PMI 用于指示该RI 所对应的码本中的预编码矩阵,该码本中的预编码矩阵包括与多个天线端口组一一对应的多个矩阵,一个天线端口组或至少两个天线端口组中的每个天线端口组对应的矩阵具有两个不同的天线端口组间相位因子,且该预编码矩阵中的任意两个列向量相互正交。
Description
本申请要求于2017年06月16日提交中国专利局、申请号为201710459791.8、申请名称为“通信方法、通信装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2017年09月11日提交中国专利局、申请号为201710814468.8、申请名称为“通信方法、通信装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2017年09月18日提交中国专利局、申请号为201710843369.2、申请名称为“通信方法、通信装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线通信领域,并且更具体地,涉及通信方法、通信装置和系统。
大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)是业界公认的第五代移动通信(the 5th Generation mobile communication,5G)的关键技术之一。为了避免多用户之间的干扰,提高信号质量,通常可以采用预编码的方式对信号进行处理,从而实现了空分复用,大大提高了频谱利用率。
当前技术中,网络设备可以通过发送例如信道状态信息参考信号(channel state information reference signal,CSI-RS)来获取终端设备反馈的信道状态信息(channel state information),进而确定与下行信道相适配的预编码矩阵。其中,预编码矩阵的行数可以代表天线端口的数量,预编码矩阵的列数可以代表该码本对应的秩(rank)。
然而,在5G新一代无线接入技术(new radio access technology,NR)中,随着多天线技术的发展,天线端口的数量也随之增加。由于天线端口数量的增加,可能会为同一网络设备配置多个天线面板,将多个天线端口配置在多个天线面板上。由此,引入了多面板码本(multi-panel codebook)。
现有技术中还未能提供一种方法,能够提供更高阶(例如,秩大于4)的码本,以实现预编码矩阵中的列向量相互正交的目的。
发明内容
本申请提供一种通信方法、通信装置和系统,能够提供更高阶的码本。
第一方面,提供了一种通信方法,包括:
第一设备接收用于信道测量的参考信号;
该第一设备根据该参考信号发送预编码矩阵指示(precoding matrix indicator,PMI)和秩指示(rank indication,RI),该PMI用于指示该RI所对应的码本中的预 编码矩阵,该码本中的预编码矩阵包括与多个天线端口组一一对应的多个矩阵,一个天线端口组或至少两个天线端口组中的每个天线端口组对应的矩阵具有两个不同的天线端口组间相位因子,且该预编码矩阵中的任意两个列向量相互正交。
本申请通过提供用于高阶码本的预编码矩阵,使得预编码矩阵的任意两个预编码列向量相互正交,因此,能够实现更大层数的数据流的传输。从而有利于提高MIMO传输的速率,提高了通信系统的数据传输能力,提高了吞吐量。
可选地,该方法还包括:
该第二设备向第一设备发送码本指示信息,该码本指示信息用于指示所使用的码本类型。
可选地,码本类型包括:单面板码本或多面板码本。
因此,第一设备在接收到该码本指示信息后,便可以根据所指示的码本类型,选择相对应的码本。
可选地,该方法还包括:
该第一设备接收码本配置参数。
其中,可选地,该码本配置参数包括以下任意一项:
天线端口组的数量以及每个天线端口组中包含的天线端口数;
天线端口组的数量以及天线端口的总数量;
天线端口的总数量以及每个天线端口组中包含的天线端口数;或者,
每个天线端口组中包含的横向天线端口数、纵向天线端口数以及天线端口组的数量。
通过指示码本配置参数,能够确定预编码矩阵的矢量长度,也就是该预编码矩阵的行数。
另外,第一设备可以根据参考信号确定信道矩阵,从而确定秩,因此,可以确定该预编码矩阵的列数。
第二方面,提供了一种通信方法,包括:
第二设备发送用于信道测量的参考信号;
该第二设备接收PMI和RI,该PMI和RI与该参考信号相关,该PMI用于指示该RI所对应的码本中的预编码矩阵,该码本中的预编码矩阵包括与多个天线端口组一一对应的多个矩阵,一个天线端口组或至少两个天线端口组中的每个天线端口组对应的矩阵具有两个不同的天线端口组间相位因子,且该预编码矩阵中的任意两个列向量相互正交。本申请通过提供用于高阶码本的预编码矩阵,使得预编码矩阵的任意两个预编码列向量相互正交,因此,能够实现更大层数的数据流的传输。从而有利于提高MIMO传输的速率,提高了通信系统的数据传输能力,提高了吞吐量。
可选地,该方法还包括:
该第二设备向第一设备发送码本指示信息,该码本指示信息用于指示所使用的码本类型。
可选地,码本类型包括:单面板码本或多面板码本。
因此,第一设备在接收到该码本指示信息后,便可以根据所指示的码本类型,选择相对应的码本。
可选地,该方法还包括:
该第一设备接收码本配置参数。其中,可选地,该码本配置参数包括以下任意一项:
天线端口组的数量以及每个天线端口组中包含的天线端口数;
天线端口组的数量以及天线端口的总数量;
天线端口的总数量以及每个天线端口组中包含的天线端口数;或者,
每个天线端口组中包含的横向天线端口数、纵向天线端口数以及天线端口组的数量。
通过指示码本配置参数,能够确定预编码矩阵的矢量长度,也就是该预编码矩阵的行数。
另外,第一设备可以根据参考信号确定信道矩阵,从而确定秩,因此,可以确定该预编码矩阵的列数。
相应于第一方面的通信方法,本申请还提供了一种通信装置。所述通信装置可以是以无线方式进行数据传输的任意一种发送端的设备或接收端的设备。例如,通信芯片、终端设备、或者网络设备(例如基站等)。在通信过程中,发送端的设备和接收端的设备是相对的。在某些通信过程中,所述通信装置可以作为上述第一设备,在某些通信过程中,所述通信装置可以作为上述第二设备。例如,对于下行数据传输,发送端的设备是基站,对应的接收端的设备是终端设备;对于上行数据传输,发送端的设备是终端设备,对应的接收端的设备是基站;对于D2D(device to device)的数据传输,发送端的设备是终端设备,对应的接收端的设备也可以是终端设备。本申请对通信方式不做不做限定。
上述参考信号可以是用于上行信道测量的参考信号,也可以是用于下行信道测量的参考信号,或者是同于其他通信方式的参考信号。例如,若该参考信号为用于上行信道测量的参考信号,所述第一设备可以为终端设备或可用于终端设备的通信芯片,所述第二设备为网络设备或可用于网络设备的通信芯片。又例如,若该参考信号为用于下行信道测量的参考信号,所述第一设备可以为网络设备或可用于网络设备的通信芯片,所述第二设备可以为终端设备或可用于终端设备的通信芯片。
第三方面,提供了一种通信装置,包括发送单元和接收单元,以执行上述第一或第二方面任一种可能实现方式中的方法。所述发送单元用于执行与发送相关的功能,所述接收单元用于执行与接收相关的功能。
在一种设计中,所述通信装置为通信芯片,所述发送单元可以为所述通信芯片的输入电路或者接口,所述发送单元可以为所述通信芯片的输出电路或者接口。
在另一种设计中,所述通信装置为终端设备,所述发送单元可以为发射机或发射器。
在另一种设计中,所述通信装置为网络设备,所述发送单元可以为接收机或接收器。
可选的,所述通信装置还包括可用于执行上述第一方面或第二方面任一种可能实现方式中的通信方法的各个模块。
第四方面,提供了一种通信装置,包括,处理器,存储器,该存储器用于存储计 算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行第一或第二方面任一种可能实现方式中的方法。
可选的,所述处理器为一个或多个,所述存储器为一个或多个。
可选的,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信装置还包括,发射机(发射器)和接收机(接收器)。
一个可能的设计中,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第一方面或第一方面任一种可能实现方式中的方法。
另一个可能的设计中,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第二方面或第二方面任一种可能实现方式中的方法。
第五方面,提供了一种系统,所述系统包括上述终端设备和网络设备。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
在以上方面中的任一方面中,
可选地,该预编码矩阵的列数与秩对应,该预编码矩阵的行数与该天线端口的总数量对应,其中,该秩为M,该天线端口组的数量为N,该预编码矩阵中的N/2个天线端口组对应的矩阵包括第一列向量集合和第二列向量集合,该第一列向量集合的天线端口组间相位因子和该第二列向量集合的天线端口组间相位因子互为相反数,其中,M为大于1的整数,N为大于或等于2的偶数。
可选的,每个天线端口组(如每个天线面板对应一个天线端口组)中包含2N
1N
2个CSI-RS天线端口,N
1表示横向CSI-RS天线端口个数,N
2表示纵向CSI-RS天线端口个数,N个天线端口组总共包含天线端口个数为P
CSI-RS=2
NN
1N
2,其中,N为大于或等于2的偶数,N
1为大于或等于1的整数,N
2为大于或等于1的整数。其中,
N即为N。
该预编码矩阵为阶数为8的码本提供了一种可能的形式。
在一种可能的设计中,所述M为8,N为2,所述秩对应的码本中的预编码矩阵为,或,满足:
或者,与所述W
1具有行和/或列变换关系的矩阵;
在一种可能的设计中,所述M<8,N为2,所述秩对应的码本中的预编码矩阵包括M个列向量,其中,所述M个列向量为以下预编码矩阵或满足以下等式的预编码矩阵中的列向量的子集:
或者,与所述W
1具有行和/或列变换关系的矩阵;
该预编码矩阵为阶数为5~7的码本提供了一种可能的形式。
也就是说,秩取最大值时对应的码本中的预编码矩阵可具有嵌套特性。
在一种可能的设计中,所述M为8,N为4,所述秩对应的码本中的预编码矩阵为,或,满足:
或者,与所述W
2具有行和/或列变换关系的矩阵;
其中,b
1、b
2为DFT矢量,c为极化天线相位因子,
与
与
与
为与三个天线端口组一一对应的三组天线端口组间相位因子,其中两组天线端口组间相位因子的值满足
另一组天线端口组间相位因子的值满足,
i为1、2或3。
该预编码矩阵为阶数为8的码本提供了又一种可能的形式。
在一种可能的设计中,所述M为8,N为4,所述秩对应的码本中的预编码矩阵为,或,满足:
或者与上述W
2’具有行和/或列变换关系的矩阵;
其中,b
1、b
2为离散傅里叶变换DFT矢量,c为极化天线相位因子,
α
11,α
12,α
13,α
14中的两个取值为+1,另外两个取值为-1;
α
21,α
22,α
23,α
24中的两个取值为+1,另外两个取值为-1;
β
11,β
12,β
13,β
14中的两个取值为+1,另外两个取值为-1;
β
21,β
22,β
23,β
24中的两个取值为+1,另外两个取值为-1。
其中取1的两个参数和取-1的两个参数可以由协议定义,在相应装置内预先存储。也可以通过网络设备向终端设备进行配置。
该预编码矩阵为阶数为8的码本提供了又一种可能的形式。
在一种可能的设计中,所述M<8,N为4,所述秩对应的码本中的预编码矩阵包括M个列向量,其中,所述M个列向量为以下预编码矩阵或满足以下等式的预编码矩阵中的列向量的子集:
或者,与所述W
2具有行和/或列变换关系的矩阵;
其中,b
1、b
2为DFT矢量,c为极化天线相位因子,
与
与
与
为与三个天线端口组一一对应的三组天线端口组间相位因子,其中两组天线端口组间相位因子的值满足
另一组天线端口组间相位因子的值满足
i为1、2或3。
该预编码矩阵为阶数为5~7的码本提供了又一种可能的形式。
在一种可能的设计中,M=4,N=2,码本模式为码本模式1时,所述秩对应的码本中的预编码矩阵为,或,满足:
或者与W
8具有行和/或列变换关系的矩阵;
其中,以第一个等号后的等式进行描述,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值;
和
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
1的取值为{0,1,2,3}中的值。
该预编码矩阵为阶数为4的码本提供了又一种可能的形式。
在一种可能的设计中,M=3,N=2,码本模式为码本模式1时,所述秩对应的码本中的预编码矩阵包括3个列向量,其中,所述3个列向量为以下预编码矩阵或者满足以下等式的预编码矩阵中的列向量的子集:
或者与W
8具有行和/或列变换关系的矩阵;
其中,以第一个等号后的等式进行描述,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值;
和
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
1的取值为{0,1,2,3}中的值。
该预编码矩阵为阶数为3的码本提供了又一种可能的形式。
在一种可能的设计中,M=4,N=4,码本模式为码本模式1时,所述秩对应的码本中的预编码矩阵为,或者,满足:
或者,与W
10具有行和/或列变换关系的矩阵;
其中,以第一个等号后的等式进行描述,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
1的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
2的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
3的取值为{0,1,2,3}中的值。
在一种可能的设计中,M=3,N=4,码本模式为码本模式1时,所述秩对应的码本中的预编码矩阵包括3个列向量,其中,所述3个列向量为以下预编码矩阵或满足以下等式的预编码矩阵中的列向量的子集:
或者,与W
10具有行和/或列变换关系的矩阵;
其中,以第一个等号后的等式进行描述,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
1的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
2的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
3的取值为{0,1,2,3}中的值。
可选的,M=4,N=2,码本模式为码本模式2时,所述秩对应的码本中的预编码矩阵为,或,满足:
或者,与W
9具有行/列变换关系的矩阵;
其中,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值。
的值为
p
1的取值为{0,1,2,3}中的值;
的值为
p
2的取值为{0,1,2,3}中的值;b
n1的值为
n
1的取值为{0,1}中的值;b
n2的值为
n
2的取值为{0,1}中的值。
可选的,M=3,N=2,码本模式为码本模式2时,所述秩对应的码本中的预编码矩阵包括3个列向量,其中,所述3个列向量为以下预编码矩阵或者满足以下等式的预编码矩阵中的列向量的子集:
或者与W
9具有行/列变换关系的矩阵;
其中,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值。
的值为
p
1的取值为{0,1,2,3}中的值;
的值为
p
2的取值为{0,1,2,3}中的值;b
n1的值为
n
1的取值为{0,1}中的值;b
n2的值为
n
2的取值为{0,1}中的值。
可选的,以上码本模式为码本模式2时,其设计也满足一个天线端口组或至少两个天线端口组中的每个天线端口组对应的矩阵具有两个不同的天线端口组间相位因子,且该预编码矩阵中的任意两个列向量相互正交。由于其变形较复杂,上述描述中未给出天线端口组间相位因子的具体形式,但这并不影响该方案的实现。
可选的,如有必要,可以将以上可能的设计中的预编码矩阵的形式单独保护,而不必局限在前述第一方面或第二方面的描述之下。
可选的,以上各参数的取值可以为协议预定义的,也可以为通过网络设备和终端设备之间的配置确定的。
在上述可能的设计中,相应的PMI反馈机制也可以包括以下几种可能的设计:
一种可能的设计是,仅量化天线端口组间相位因子,或者仅量化极化天线相位因子。
与之对应地,所述PMI包括第一PMI、第二PMI或第三PMI,所述第一PMI用于指示DFT矢量,所述第二PMI用于指示所述天线端口组间相位因子,所述第三PMI用于指示极化天线相位因子。或者,所述PMI包括第一PMI和第十PMI。所述第一PMI用于指示DFT矢量,所述第十PMI用于指示所述天线端口组间相位因子,或者,用于指示极化天线相位因子。或者,所述PMI包括第十一PMI,所述第十一PMI对应多个指示域(如包括多个指示域),其中一个指示域用于指示DFT矢量,另一个指示域用于指示天线端口组间相位因子,或者,用于指示极化天线相位因子。这种反馈机制通过将一个参数固化可以达到节省信令开销的效果。
另一种可能的设计中,同时量化天线端口间相位因子和极化天线相位因子。
与之对应地,所述PMI包括第一PMI、第二PMI和第三PMI,所述第一PMI用于指示DFT矢量,所述第二PMI用于指示所述天线端口组间相位因子,所述第三PMI用于指示极化天线相位因子。
或者,所述PMI包括第一PMI和第四PMI,所述第一PMI用于指示DFT矢量,所述第四PMI用于指示所述天线端口组间相位因子和极化天线相位因子。或者,所述PMI包括第十二PMI和第三PMI。所述第十二PMI对应多个指示域(如包括多个指示域),其中一个指示域用于指示DFT矢量,另一个指示域用于指示天线端口组间相位因子,所述第三PMI用于指示极化天线相位因子。这种反馈机制能够通过一个PMI携带多个用于指示多个因子,可以节省信令开销。
可选地,所述M为8,N为2,所述秩对应的码本中的预编码矩阵为,或,满足:
或,与所述W
3具有行和/或列变换关系的矩阵;
其中,b
1、b
2为DFT矢量,z
1=1,z
2为极化天线相位因子,z
3、-z
3为天线端口组间相位因子,z
4为所述极化天线相位因子与上述天线端口组间相位因子的乘积。
该预编码矩阵为阶数为8的码本提供了又一种可能的形式。
可选地,所述M<8,N为2,所述秩对应的码本中的预编码矩阵包括M个列向量,其中,所述M个列向量为以下预编码矩阵或满足以下等式的预编码矩阵中的列向量的子集:
或,与所述W
3具有行和/或列变换关系的矩阵;
其中,b
1、b
2为DFT矢量,z
1=1,z
2为极化天线相位因子,z
3、-z
3为天线端口组间相位因子,z
4为所述极化天线相位因子与所述天线端口组间相位因子的乘积。
该预编码矩阵为阶数为8的码本提供了一种可能的形式。
其中,z
k的值可以固化,也可以量化,k取值为2、3、4。
在一种可能的设计中,所述z
k的取值为{+1,-1,+j,-j}中的值,k取值为2、3、4。
与之对应地,所述PMI包括第一PMI和第五PMI,所述第一PMI用于指示DFT矢量,所述第五PMI用于指示z
2、z
3、z
4中至少一个。
在一种可能的设计中,所述z
m=x
m×y
m,x
m和y
m为z
m的两个分量,m取值为2、3、4中的一个或多个。
可选的,x
m是和宽带相关的分量,y
m是和子带相关的分量。
与之对应地,所述PMI包括第一PMI、第六PMI和第七PMI,所述第一PMI用于指示DFT矢量,所述第六PMI用于指示x
m,所述第七PMI用于指示y
m。
其中,若m的取值为多个,即,量化了多个z
m,则该第七PMI中可以包含多个用于指示y
m的信息。
所述PMI包括第八PMI和第九PMI,所述第八PMI用于指示DFT矢量和x
m,第九PMI用于指示y
m。
在这种设计中,将用于指示宽带反馈的DFT矢量和x
m的信息携带在同一个PMI中,将用于指示子带反馈的y
m的信息携带在一个PMI中,可以减小PMI的数量,节省信令开销。本申请通过提供用于高阶码本的预编码矩阵,使得预编码矩阵的任意两个预编码列向量相互正交,因此,能够实现更大层数的数据流的传输。从而有利于提高MIMO传输的速率,提高了通信系统的数据传输能力,提高了吞吐量。
图1是适用于本申请实施例的通信方法的通信系统的示意图;
图2是现有LTE系统中所采用的下行物理信道处理过程的示意图;
图3示出了多个天线端口配置于多个天线面板的示意图;
图4是本申请实施例提供的通信方法的示意性流程图;
图5是本申请另一实施例提供的通信方法的示意性流程图;
图6是本申请实施例提供的通信装置的示意图;
图7是本申请实施例提供的终端设备的结构示意图;
图8是本申请实施例提供的通信装置的另一示意图;
图9是本申请实施例提供的网络设备的结构示意图。
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、下一代通信系统(例如,第五代通信(fifth-generation,5G)系统)、多种接入系统的融合系统,或演进系统等。其中,5G系统也可以称为新一代无线接入技术(NR)系统。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的用于数据传输的方法和装置的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
应理解,网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的网络设备(如传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、基站、小基站设备等)、未来通信系统中的网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。
应理解,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
本申请的实施例可以适用于下行数据传输,也可以适用于上行数据传输,还可以适用于设备到设备(device to device,D2D)的数据传输。例如,对于下行数据传输,发送端的设备是基站,对应的接收端的设备是UE;对于上行数据传输,发送端的设备是UE,对应的接收端的设备是基站;对于D2D的数据传输,发送设备是UE,对应的接收设备也是UE。本申请的实施例对此不做限定。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(PLMN)网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
为便于理解本申请实施例,以下结合图2简单说明LTE系统中下行物理信道的处理过程。图2是现有LTE系统中所采用的下行物理信道处理过程的示意图。下行物理信道处理过程的处理对象为码字,码字通常为经过编码(至少包括信道编码)的比特流。码字(code word)经过加扰(scrambling),生成加扰比特流。加扰比特流经过 调制映射(modulation mapping),得到调制符号流。调制符号流经过层映射(layer mapping),被映射到多个层(layer),为便于区分和说明,在本申请实施例以中,可以将经层映射之后的符号流称为层映射空间层(或者称,层映射空间流、层映射符号流)。层映射空间层经过预编码(precoding),得到多个预编码数据流(或者称,预编码符号流)。预编码符号流经过资源粒(resource element,RE)映射,被映射到多个RE上。这些RE随后经过正交频分复用(orthogonal frequency division multiplexing,OFDM)调制,生成OFDM符号流。OFDM符号流随后通过天线端口(antenna port)发射出去。
其中,预编码技术可以是在已知信道状态的情况下,通过在发送端对待发射信号做预先的处理,即,借助与信道资源相匹配的预编码矩阵来对待发射信号进行处理,使得经过预编码的待发射信号与信道相适配,使得接收端消除信道间影响的复杂度降低。因此,通过对发射信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR))得以提升。因此,采用预编码技术,可以实现发送端设备与多个接收端设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应注意,有关预编码技术的相关描述仅用于举例,并非用于限制本申请实施例的保护范围,在具体实现过程中,还可以通过其他方式进行预编码(例如在无法获知信道矩阵的情况下采用预先设置的预编码矩阵或者加权处理方式进行预编码),具体内容本文不再赘述。
发送端为了获取能够与信道相适配的预编码矩阵,通常通过发送参考信号的方式来预先进行信道估计,获取接收端的反馈,从而确定出较为准确的预编码矩阵来对待发送数据进行预编码处理。具体地,该发送端可以为网络设备,接收端可以为终端设备,该参考信号可以为用于下行信道测量的参考信号,例如,信道状态信息参考信号(channel state information reference signal,CSI-RS),终端设备可以根据接收到的CSI-RS,进行CSI测量,并向网络设备反馈下行信道的CSI;该发送端也可以为终端设备,接收端可以为网络设备,该参考信号可以为用于上行信道测量的参考信号,例如,探测参考信号(sounding reference signal,SRS)。网络设备可以根据接收到的RSR,进行CSI测量,向终端设备指示上行信道的CSI。其中,该CSI可以包括例如预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)和信道质量指示(channel quality indicator,CQI)等。
随着多天线技术的发展,天线端口的数量也随之增加。由于天线端口数量的增加,可能会为同一网络设备配置多个天线面板,将多个天线端口配置于多个天线面板上。例如,在每个天线面板上配置有至少一个天线端口,每个天线面板配置的至少一个天线端口可以称为一个天线端口组。
图3示出了多个天线端口配置于多个天线面板的示意图。具体地,图3中示出了在2个天线面板配置多个天线端口的示意图。其中,每个天线面板配置了4个天线端口,图中的每个×代表不同极化方向的两个天线端口。图中的每个天线面板配置有4个天线端口。在天线面板#1上,天线端口0和天线端口1为同一极化方向的天线端口,对应了一个相同的波束矢量(或者称,预编码向量),例如记作b
1,天线端口4和天 线端口5为同一极化方向的天线端口,对应了另一个相同的波束矢量,例如记作b
2。与之相似地,在天线面板#2上,天线端口2和天线端口3对应了波束矢量b
1,天线端口6和天线端口7对应了波束矢量b
2。其中,b
1和b
2可以是两个正交的离散傅里叶变换(discrete fourier transform,DFT)矢量,或者也可以是表征空间电磁波特性的数学矢量,本申请实施例对此并未特别限定。
需要注意的是,为便于理解,上文中结合图3说明了在多个天线面板配置多个天线端口的情形,但是本申请实施例并不限定天线与天线端口的对应关系,一个或多个物理天线可以配置为一个天线端口。换句话说,天线端口可以理解为被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口与一个参考信号对应。
当前技术中,多面板码本中的预编码矩阵可以通过多个单面板码本(single-panel codebook)中的预编码矩阵拼接而成,不同的天线面板之间通过天线面板相位因子来区分。例如,一个天线面板对应一个天线面板相位因子。预编码矩阵中的任意两个列向量之间满足相互正交的关系,因此,预编码矩阵的列数会受限于天线端口的数量。例如,当为每个天线面板配置的天线端口数为4时,最多只能形成4个相互正交的列向量,即,秩最大为4。
再看图3,以图3中的任意一个天线面板为例,一个天线面板上配置的天线端口对应的秩为1的预编码向量的结构可以为:
其中c为极化天线相位因子,可以在{+1,-1,+j,-j}中任意取值。应理解,这里所示例的预编码向量仅为一种可能的结构示意,不应对本申请实施例构成任何限定。
需要说明的是,极化天线相位因子可以理解为用于区分不同极化方向的天线端口的相位因子。
需要说明的是,天线端口组间相位因子,也可以称为天线面板间相位因子,可以理解为用于区分不同的天线端口组(或者说,天线面板)中的天线端口的相位因子。其具体的取值可以依据与天线面板之间的间距或校准误差来确定。
还需要说明的是,两个预编码列向量相互正交是指:一个预编码列向量的共轭转置与另一个预编码列向量的积为零。
但是,现有技术中还未能提供一种方法,能够提供更高阶(例如,秩大于4)的码本,以实现预编码矩阵中的列向量相互正交的目的,从而也就无法提供更高阶数的预编码矩阵来对数据进行预编码。例如,图3中示出的每个天线面板配置的天线端口 数为4,仅能提供秩为1~4的预编码矩阵,而无法提供秩为5~8的预编码矩阵。
通常情况下,数据的层数小于或等于通信系统所支持的天线端口的最大数量。目前的通信系统所支持的最大天线端口数为8,但随着5G的发展,最大天线端口数可能趋于更大,例如,可以为16、32甚至64。若无法提供更高阶数的预编码矩阵来对数据进行预编码,则会大大限制MIMO传输中并向的数据流的数量,从而限制了通信系统的数据传输能力,影响吞吐量。
因此,本申请提供一种通信方法,能够提供更高阶数的码本,从而有利于提高通信系统的数据传输能力,提高吞吐量。
应理解,本申请提供的通信方法可以适用于上行传输和下行传输。在下行传输中,本申请实施例中的第一设备可以为终端设备,第二设备可以为接入网设备,参考信号可以为用于下行信道测量的参考信号,例如,CSI-RS;在下行传输中,本申请实施例中的第一设备可以为接入网设备,第二设备可以为终端设备,参考信号可以为用于上行信道测量的参考信号,例如SRS。下面将分别以上行信道测量和下行信道测量为例,结合附图详细说明本申请实施例的通信方法。但应理解,以上列举的用于上行信道测量和下行信道测量的参考信号仅为示例性说明,不应对本申请实施例构成任何限定,本申请并不排除在现有的协议(例如,LTE协议)或未来的协议中定义其他用作上行或下行信道测量的参考信号的可能。
图4是从设备交互的角度示出的本申请实施例提供的通信方法的示意性流程图。具体地,图4示出了下行信道测量的场景。如图所示,图4中示出的方法可以包括步骤410至步骤460。
在步骤410中,网络设备发送参考信号。
相对应地,在步骤410中,终端设备接收来自网络设备的参考信号。
在本申请实施例中,该网络设备可以配置有多个天线面板,每个天线面板配置有一个天线端口组,每个天线端口组包括至少一个天线端口。例如,该天线面板可以为如图3中所示的天线面板,当然,该天线面板也可以配置更多的天线端口,或者,该网络设备也可以配置更多天线面板,本申请实施例对此并未特别限定。
或者,该网络设备也可以仅配置了一个天线面板,该天线面板中可以配置至少一个天线端口。
可以理解,当网络设备配置多个天线面板和仅配置一个天线面板所对应的码本可以是不同的。上文中已经结合图3中的天线面板的示意说明了多面板码本与单面板码本的区别,为了避免重复,这里不再赘述。
另外,网络设备还可以将码本类型、码本配置参数等的信息通知终端设备,以便于网络设备和终端设备采用相同的码本,从而基于相同的码本确定预编码矩阵。
可选地,该方法400还包括:步骤420,网络设备向该终端设备发送码本指示信息,该码本指示信息用于指示码本的类型。
在一种可能的设计中,该码本指示信息可以配置于高层信令中。例如,将该码本指示信息配置于无线资源控制(radio resource control,RRC)消息中。具体地,可通过RRC消息中的一个指示域来承载该码本指示信息,例如,该指示域可以为1比特的指示位,通过“1”或者“0”来指示多面板码本或单面板码本。终端设备在接收到 该码本指示信息时,便可以确定在接收到该网络设备发送的参考信号时,信道测量所需反馈的PMI是多面板码本的PMI。
在步骤430中,终端设备根据参考信号,向该网络设备发送PMI和RI。
首先,终端设备可以根据接收到的参考信号估计信道矩阵,确定信道矩阵的秩,也就是预编码矩阵的列数,从而可以确定与秩对应的码本。
在一种可能的实现方式中,终端设备根据参考信号测量得到的信道矩阵H之后,可以通过对信道矩阵H进行奇异值分解(singular value decomposition,SVD)的方法从码本中确定与理想预编码矩阵最接近的预编码矩阵。
具体地,对信道矩阵进行SVD后得到:
H=U·S·V
H
其中,U、V
H为酉矩阵,S为对角矩阵,其非零元素(即对角线上的元素)即为信道矩阵H的奇异值,这些奇异值通常可以按照由大到小的顺序排列。右酉矩阵V
H的共轭转置V即为理想预编码矩阵。换句话说,理想预编码矩阵也就是根据信道矩阵H计算得到的预编码矩阵。
终端设备可以将上述确定的码本中的每个候选的预编码矩阵去与理想预编码矩阵最做对比,并确定与理想预编码矩阵最接近的预编码矩阵。该最接近的预编码矩阵也就是终端设备通过PMI反馈给网络设备的预编码矩阵(为便于区分和说明,记作第一预编码矩阵,可以理解,第一预编码矩阵也就是与理想预编码矩阵最接近的预编码矩阵)。
终端设备确定与理想预编码矩阵最接近的预编码矩阵的方法可以有多种,例如,可以通过确定各候选的预编码矩阵与理想预编码矩阵之间的欧式距离的方法来确定最接近的预编码矩阵。
应理解,上述示例的通过SVD确定理想预编码矩阵的方法仅为用于确定理想预编码矩阵的一种可能的实现方式,而不应对本申请实施例构成任何限定。终端设备还可以利用最大均方误差(minimum mean square error,MMSE)、迫零(zero-forcing,ZF)、最大比合并(maximal ratio combining,MRC)等接收机算法、吞吐量最大化、SINR最大化或其他准则来确定秩和预编码矩阵,从而确定向网络设备反馈的RI和PMI。
还应理解,终端设备根据参考信号确定信道矩阵,并根据信道矩阵确定秩和预编码矩阵的具体方法可以与现有技术相同,为了简洁,这里省略对其具体过程的详细说明。
终端设备根据RI确定了第一预编码矩阵之后,便可以向网络设备发送该第一预编码矩阵对应的PMI,以便于网络设备确定用于对待发送的下行数据进行预编码的预编码矩阵(为便于区分和说明,记作第二预编码矩阵)。
在本申请实施例中,终端设备从码本中确定的第一预编码矩阵可以包括与多个天线端口组一一对应的多个矩阵。一个天线端口组对应的矩阵具有两个不同的天线端口组间相位因子,或者,至少两个天线端口组中的每个天线端口组对应的矩阵具有两个不同的天线端口组间相位因子;并且,该预编码矩阵中的任意两个列向量相互正交。
可选地,该第一预编码矩阵的列数与秩对应,行数与天线端口的总数量对应,或者说,该第一预编码矩阵的列数表示秩的值,行数表示天线端口的总数量。为方便说 明,将秩记为M(M大于1,M为整数),天线端口组的数量记为N(N≥2,N为偶数),则该第一预编码矩阵满足如下条件:该第一预编码矩阵中的N/2个天线端口组对应的矩阵包括第一列向量集合和第二列向量集合,该第一列向量集合的天线端口间相位因子和第二列向量集合的天线端口间相位因子互为相反数。
可选的,每个天线端口组(比如,每个天线面板对应一个天线端口组)中包含2N
1N
2个CSI-RS天线端口,N
1表示横向CSI-RS天线端口个数,N
2表示纵向CSI-RS天线端口个数,N个天线端口组总共包含天线端口个数为P
CSI-RS=2
NN
1N
2。
其中,第一列向量集合和第二列向量集合中的列向量具有相同的行数,即,为天线端口的总数量。并且,本申请实施例对该第一列向量集合中的各列向量和第二列向量集合中的各列向量在第一预编码矩阵中的排布顺序并不限定,该第一预编码矩阵经过行/或列变换后仍然能够满足任意两个列向量相互正交。
后文中将结合具体的预编码矩阵详细说明本申请提出的预编码矩阵。
可选地,终端设备也可以根据在步骤430中接收到的码本配置参数,进一步确定与该秩对应的码本。
可选地,该方法400还包括:步骤440,该网络设备向终端设备发送码本配置参数。
在步骤440中,网络设备可以进一步将码本配置参数通知终端设备,以便于该终端设备根据码本配置参数确定预编码矩阵的矢量长度,也就是预编码矩阵的行数。
可以理解的是,以上步骤的编号并不限定步骤的先后顺序,步骤的先后顺序可以根据方案的实现予以确定。比如,步骤420可以在步骤430之前,也可以在步骤430之后。
在本申请实施例中,天线面板上配置的天线端口是可以平均分配的,也就是每个天线面板上分配的天线端口数可以是相同的,因此,当终端设备获知了以下列举的码本配置参数中的任意一项时,便可以确定天线端口的总数量、天线面板数、每个天线面板包含的天线端口的数量。
可选地,该码本配置参数可以包括以下任意一项:
天线端口组的数量以及每个天线端口组包含的天线端口的数量;
天线端口组的数量以及天线端口的总数量;
天线端口的总数量以及每个天线端口组中包含的天线端口的数量;或者,
每个天线端口组中包含的横向天线端口数、纵向天线端口数以及天线端口组的数量。
可选地,该码本配置参数可以配置于高层信令中。
例如,将该码本指示信息配置于RRC消息中。
可选地,该方法还包括:步骤450,网络设备可以根据接收到的PMI和RI,确定预编码矩阵,并对待发送的下行数据进行预编码。
具体地,网络设备可以根据接收到的PMI和RI,确定该PMI对应的预编码矩阵W,也可以根据该PMI对应的预编码矩阵,进行数学变换,例如可以为W的正交子空间中的预编码矩阵,对待发送的下行数据进行预编码。
应理解,网络设备根据接收到的PMI和RI,确定预编码矩阵的具体方法可以与现 有技术相同,为了简洁,这里省略对其具体过程的详细说明。
可选地,该方法400还包括:步骤460,网络设备发送预编码后的下行数据。
对应地,在步骤460中,终端设备接收预编码后的下行数据。
在步骤460中,网络设备向终端设备发送预编码后的下行数据的同时,还可以发送预编码后的解调参考信号(demodulation reference signal,DMRS),以便于终端设备根据DMRS确定等效信道矩阵,进而解调得到网络设备发送的下行数据。
应理解,终端设备接收到下行数据之后的处理过程可以与现有技术相同,为了简洁,这里省略对其具体过程的详细说明。
上文结合图4详细说明了本申请实施例的通信方法的具体流程,下面将结合具体的例子详细说明本申请提出的预编码矩阵以及相应的PMI反馈机制。
本申请实施例结合不同的秩的值和天线面板的数量,提出了多种不同的预编码矩阵。为便于说明,以下,假设每个天线面板上有四个天线端口,每个天线面板上有两个极化方向的天线端口,则每个极化方向上有两个天线端口。因此,每个天线面板最多能形成两个极化方向的波束矢量,记作b
1和b
2,该两个极化方向的波束矢量是相互正交的。更具体地说,b
1和b
2是相互正交的带有过采样的一位或二维DFT矢量。示例性地,b
1和b
2分别可以为:
i
1,1、i
1,2为波束矢量的索引,可以通过一个PMI来指示,N
1、N
2为不同极化方向的天线端口的数量,O
1、O
2为与不同的极化方向的天线端口对应的过采样因子,e表示自然常数,j表示单位虚数。
情况一、秩M=8,天线端口组的数量(即,天线面板数)N=2:
或者与该W
0具有行/列变换关系的矩阵。
本申请实施例中,基本形式是指在该预编码矩阵的基本形式的基础上进行了整理变形,如归一化处理,的预编码矩阵也在本申请实施例提出的与该秩对应的码本中的 预编码矩阵的揭示范围内,可以理解为预编码矩阵满足上述W
0的等式关系。在具体描述时,“基本形式”可能被省略,但鉴于对于预编码矩阵进行整理变形,如归一化处理,和/或,行/列关系变换,对预编码矩阵的应用并无实质影响,因而对于实施例中给出的预编码矩阵进行整理变形,如归一化处理,和/或,行/列关系变换所获得的预编码矩阵也应理解在本申请实施例提出的与该秩对应的码本中的预编码矩阵的揭示范围内。
比如:
与该秩对应的码本中的预编码矩阵可以为W
0,或者,与该W
0具有行/列变换关系的矩阵,或者,W
0和一个常数系数的乘积,例如常数系数可以是
或者,与该W
0具有行/列变换关系的矩阵和一个常数系数的乘积,例如常数系数可以是
其中,为了区分同一天线端口组间相位因子的不同取值,对同一天线端口组间相位因子
分别定义为
与
(n≥1,n为整数),n用于区分不同的天线端口组。同一天线端口组对应的天线端口间相位因子互为相反数,因此在W
0该天线端口组对应的天线端口组间相位因子,
以下结合不同的量化情况给出不同的实施例。需要说明的是,以下所说的“固化”可以理解为该参数是固定不变的,其取值可以是协议中定义的;“量化”可以理解为该参数是根据不同的信道状态确定的,随着信道状态的变化,该参数可能变换,需要通过终端设备的PMI反馈来指示。在本发明实施例中,可固化的参数包括极化天线相位因子和天线端口组间相位因子,不论是否固化,该极化天线相位因子和天线端口组间相位因子均可以在{+1,-1,+j,-j}中取值。
以下详细说明具体情况:
1)固化天线端口组间相位因子,量化极化天线相位因子
对于两个天线端口组的情况来说,其中一个天线端口组的天线端口组间相位因子可以取值为1,另一个天线端口组间相位因子可以为互为相反数的两个值,例如{+1,-1},或者,{+j,-j}。
则,该秩对应的码本中的预编码矩阵可以为以下任意一个预编码矩阵,或者,与以下任意一个预编码矩阵具有行/列变换关系的矩阵,或,该秩对应的码本中的预编码矩阵可以满足以下任意一个预编码矩阵,或者,与以下任意一个预编码矩阵具有行/列变换关系的矩阵:
其中,c为极化天线相位因子,在{+1,-1,+j,-j}中取值。并且c(d)=e
jπd/2,d为极化天线相位因子的索引,可以通过另一个PMI来指示。
具体地,d的取值与c(d)的对应关系可参考下表:
d | c(d) |
0 | 1 |
1 | j |
2 | -1 |
3 | -j |
可以看到,在W
4和W
5中,上面两行对应于第一个天线端口组,下面两行对应于第二个天线端口组,天线端口组间相位因子取值均分别为{+1,-1}。W
4中,相同层在不同天线端口组中的天线端口对应的波束矢量相同,如W
4中示出的第一个列向量的波束矢量均为b
1;W
5中,相同层在不同天线端口组中的天线端口对应的波束矢量不同,如W
5中示出的第一个列向量对应于第一个天线端口组的波束矢量为b
1,对应于第二个天线端口组的波束矢量为b
2。
在这种情况中,PMI可以包括第一PMI和第二PMI,其中,第一PMI指示DFT矢量,第二PMI用于指示极化天线相位因子。
或者,所述PMI包括第一PMI和第十PMI。所述第一PMI用于指示DFT矢量,所述第十PMI用于指示极化天线相位因子。
或者,所述PMI包括第十一PMI,所述第十一PMI对应多个指示域(如包括多个指示域),其中一个指示域用于指示DFT矢量,另一个指示域用于指示极化天线相位因子。
在本申请实施例中,第一PMI可以包括波束矢量的索引i
1,1、i
1,2,第二PMI可以包括极化天线相位因子的索引d。
可选地,步骤430具体包括:
终端设备根据参考信号,向网络设备发送第一PMI、第二PMI和RI。
或者,终端设备根据参考信号,向网络设备发送第一PMI、第十PMI和RI。
或者,终端设备根据参考信号,向网络设备发送第十一PMI和RI。
2)固化极化天线相位因子,量化天线端口组间相位因子
极化天线相位因子c可以在{+1,-1,+j,-j}中取值,这里假设c=1。
对于两个天线端口组的情况来说,其中一个天线端口组的天线端口组间相位因子 可以取值为1,另一个天线端口组间相位因子可以为互为相反数的两个值,为便于区分,记作
与
且
且
可以在{+1,-1,+j,-j}中取值。
则,该秩对应的码本中的预编码矩阵可以为,或,满足:
或者与W
6具有行/列变换关系的矩阵;
对于两个天线端口组的情况来说,其中一个天线端口组的天线端口组间相位因子可以取值为1,另一个天线端口组间相位因子可以为互为相反数的两个值。上式中,
和
为与同一个天线端口组对应的天线端口组间相位因子,且
且
可以在{+1,-1,+j,-j}中取值。并且
p为天线端口组间相位因子的索引,可以通过PMI来指示。
另外,在W
6中,相同层在不同天线端口组中的天线端口对应的波束矢量可以相同,也可以不同。
在这种情况下,PMI可以包括第一PMI和第三PMI,其中,第一PMI用于指示DFT矢量,第三PMI用于指示天线端口组间相位因子。在本申请实施例中,第一PMI可以包括波束矢量的索引i
1,1、i
1,2,第三PMI可以包括天线端口组间相位因子的索引p。
或者,所述PMI包括第一PMI和第十PMI。所述第一PMI用于指示DFT矢量,所述第十PMI用于指示天线端口组间相位因子。
或者,所述PMI包括第十一PMI,所述第十一PMI对应多个指示域(如包括多个指示域),其中一个指示域用于指示DFT矢量,另一个指示域用于指示天线端口组间相位因子。
可选地,步骤420具体包括:
终端设备根据参考信号,向网络设备发送第一PMI、第三PMI和RI。
或者,终端设备根据参考信号,向网络设备发送第一PMI,第十PMI和RI。
或者,终端设备根据参考信号,向网络设备发送第十一PMI和RI。
3)同时量化极化天线相位因子和天线端口组间相位因子
该秩对应的码本中的预编码矩阵可以为,或,满足:
或者与W
1具有行/列变换关系的矩阵;
其中,c为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,并且c(d)=e
jπd/2,d为极化天线相位因子的索引,可以通过一个PMI来指示。
和
为天线端口组间相位因子,
且
可以在{+1,-1,+j,-j}中取值。并且
p为天线端口组间相位因子的索引,可以通过另一个PMI来指示。
另外,在W
1中,相同层在不同天线端口组中的天线端口对应的波束可以相同,也可以不同。
在这种情况下,PMI可以包括第一PMI、第二PMI和第三PMI。其中,第一PMI用于指示DFT矢量,第二PMI用于指示极化天线相位因子,第三PMI用于指示天线端口组间相位因子。
或者,PMI可以包括第十二PMI和第三PMI,所述第十二PMI对应于多个指示域(如包括多个指示域),其中一个指示域用于指示DFT矢量,另一个指示域用于指示天线端口组间相位因子,第三PMI用于指示极化天线相位因子。
可选地,步骤420具体包括:
终端设备根据参考信号,发送第一PMI、第二PMI、第三PMI和RI。
或者终端设备根据参考信号,向网络设备发送第十二PMI、第三PMI和RI。
或者,PMI可以包括第一PMI和第四PMI。其中,第一PMI用于指示DFT矢量,第四PMI用于指示极化天线相位因子和天线端口组间相位因子。
在一种可能的设计中,在同一个PMI中指示两个索引,即,分别为极化天线相位因子和天线端口组间相位因子。即,第一PMI可以包括波束矢量的索引i
1,1、i
1,2,第四PMI中包含极化天线相位因子的索引d和天线端口组间相位因子之间的索引p。在另一种可能的设计中,极化天线相位因子和天线端口组间相位因子可以具有绑定关系,当采用了极化天线相位因子和天线端口组间相位因子中的一个值时,另一个值可以根据绑定关系确定,此时,在该一个PMI中可以指示极化天线相位因子或天线端口组间相位因子。即,第一PMI可以包括波束矢量的索引i
1,1、i
1,2,第四PMI中包含极化天线相位因子的索引d或天线端口组间相位因子的索引p。
可选地,步骤420具体包括:
终端设备根据参考信号,发送第一PMI、第四PMI和RI。
4)量化极化天线相位因子或天线端口组间相位因子
通过对上述预编码矩阵W
0变形可以得到:
则,该秩对应的码本中的预编码矩阵可以为或满足:W
3,或者,与W
3预编码矩阵具有行/列变换关系的矩阵,或者,W
3和一个常数系数的乘积,例如常数系数可以是
或者,与W
3预编码矩阵具有行/列变换关系的矩阵和一个常数系数的乘积,例如常数系数可以是
其中,z
1=1,z
2为极化天线相位因子,z
3、-z
3为天线端口组间相位因子,z
4为所述极化天线相位因子与上述天线端口组间相位因子的乘积。
上述z
2、z
3和z
4中的部分或全部可以固化,也可以量化。
若全部固化,则,z
2、z
3和z
4均在{+1,-1,+j,-j}中取值,具体的取值可以在协议中预先固定,不需要通过PMI来量化。
若部分量化,则可以至少包括两种情况:
情况A:z
k在{+1,-1,+j,-j}中取值,k取值为2、3、4中的一个或多个,。
也就是说,z
2、z
3和z
4的取值范围在{+1,-1,+j,-j}中,但具体取值情况可以通过PMI来指示。
在这种情况下,PMI可以包括第一PMI和第五PMI,该第一PMI用于指示波束矢量,该第五PMI用于指示一个z
2、z
3和z
4中的至少一个。
其中,第一PMI可以包括波束矢量的索引i
1,1、i
1,2,第五PMI可以包括用于化天线相位因子的索引d和天线端口组间相位因子的索引p。
可选地,步骤420具体包括:
终端设备根据参考信号,发送第一PMI、第五PMI和RI。
或者,该多个z
k的取值也可以通过多个PMI来指示,即,将多个索引承载于多个PMI中。
情况B:z
m=x
m×y
m,x
m和y
m为z
m的两个分量。具体地,x
m表示对应于z
m的和宽带相关分量,y
m表示对应于z
m的和子带相关的分量,m取值为2、3、4中的一个或多个。
也就是说,z
2、z
3和z
4的取值可以通过一个宽带的PMI和子带的PMI来分别指示。这种反馈机制能够更加准确地反馈CSI,也就能够确定出更加准确的预编码矩阵,以与信道状态相适配。
在这种情况下,PMI可以包括第一PMI、第六PMI和第七PMI,该第一PMI用于指 示波束矢量,该每个第六PMI用于指示一个x
m的取值,每个第七PMI用于指示一个y
m的取值。
其中,第一PMI可以包括波束矢量的索引i
1,1、i
1,2,第六PMI可以包括用于指示x
m的索引,第七PMI可以包括用于指示y
m的索引。可选地,步骤420具体包括:
终端设备根据参考信号,发送第一PMI、第六PMI和第七PMI和RI。
或者,PMI可以包括第七PMI和第八PMI,
其中,第七PMI可以包括用于指示y
m的索引,第八PMI可以包括波束矢量的索引i
1,1、i
1,2和用于指示x
m的索引。
应理解,以上列举的量化方案和反馈机制仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在使用本申请所提供的的预编码矩阵及其数学变形的基础上反馈其他PMI用于实现相同或相似功能的可能。例如,该PMI也可以仅包括两个PMI,分别用于指示波束矢量、极化天线相位因子、天线端口组间相位因子这三个因素中的任意两个。
情况二、秩<8,天线端口组的数量(即,天线面板数)N=2:
以上示出了秩M=8的情况下的各种可能的预编码矩阵,以及相应的PMI反馈机制。在秩M<8的情况下,该秩对应的码本中的预编码矩阵可以包括M个列向量,其中,所述M个列向量为以上示出的预编码矩阵W
0、W
1、W
3、W
4、W
5和W
6中的任意一个或者与上述任意一个具有行/列变换关系的矩阵中的列向量的子集,或者,所述M个列向量为以上示出的预编码矩阵W
0、W
1、W
3、W
4、W
5和W
6中的任意一个与常数系数
的乘积矩阵中的列向量的子集,或者,所述M个列向量为与上述预编码矩阵W
0、W
1、W
3、W
4、W
5和W
6中的任意一个具有行/列变换关系的矩阵与常数系数
的乘积矩阵中的列向量的子集。或者,所述M个列向量为满足以上示出的预编码矩阵W
0、W
1、W
3、W
4、W
5和W
6中的任意一个或者与上述任意一个具有行/列变换关系的矩阵中的列向量的子集,或者,所述M个列向量为满足以上示出的预编码矩阵W
0、W
1、W
3、W
4、W
5和W
6中的任意一个与常数系数
的乘积矩阵中的列向量的子集,或者,所述M个列向量为满足与上述预编码矩阵W
0、W
1、W
3、W
4、W
5和W
6中的任意一个具有行/列变换关系的矩阵与常数系数
的乘积矩阵中的列向量的子集。
以M=5为例,与该秩对应的码本中的预编码矩阵包括5个列向量,该5个列向量可以为上述W
0、W
1、W
3、W
4、W
5和W
6中任意一个预编码矩阵中的任意5个列向量,并且,该5个列向量还可以进行行/列变换,或者,该5个列向量可以为上述W
0、W
1、W
3、W
4、W
5和W
6中任意一个预编码矩阵乘以一个常数系数
形成的预编码矩阵中的5个列向量(或者,该5个列向量可以为上述W
0、W
1、W
3、W
4、W
5和W
6中任意一个预编码矩阵中的任意5个列向量乘以一个常数系数
形成的预编码矩阵所包括的5个列向量),或者,该5个列向量可以为上述W
0、W
1、W
3、W
4、W
5和W
6中任意一个预编码矩 阵进行行/列变换并乘以一个常数系数
形成的预编码矩阵中的5个列向量(或者,该5个列向量可以为上述W
0、W
1、W
3、W
4、W
5和W
6中任意一个预编码矩阵中的任意5个列向量进行行/列变换并乘以一个常数系数
形成的预编码矩阵所包括的5个列向量)。
另外,情况一中列举的量化方案和反馈机制同样适用于情况二,为了避免重复,这里不再赘述。
情况三、秩为8,天线端口组的数量N=4:
或者与上述W
2具有行/列变换关系的矩阵。
比如:
与该秩对应的码本中的预编码矩阵可以为W
2,或者,与上述W
2具有行/列变换关系的矩阵,或者,W
2和一个常数系数的乘积,例如常数系数可以是
或者,与该W
2具有行/列变换关系的矩阵和一个常数系数的乘积,例如常数系数可以是
其中,为了区分同一天线端口组间相位因子的不同取值,对同一天线端口组间相位因子
分别定义为
与
(n≥1,n为整数),n用于区分不同的天线端口组。在W
2中,
与
与
与
为与三个天线端口组一一对应的三组天线端口组间相位因子,任意两组天线端口组间相位因子中的每组天线端口组间相位因子的两个值互为相反数。换句话说,任意两组天线端口组间相位因子的值满足
另一组天线端口组间相位因子的值满足
i为1、2或3。举例来说,假设天线端口组间相位因子的绝对值为1,则W
2中的两个天线端口组间相位因子的取值均可以为{+1,+1,+1,+1,+1,+1,+1,+1},另两个天线端口组间相位因子的取值均可以为{+1,+1,+1,+1,-1,-1,-1,-1}。
或者,假设天线极化相位因子为c,本申请实施例提出的与该秩对应的码本中的预编码矩阵的基本形式可以表示为:
或者与上述W
2’具有行和/或列变换关系的矩阵。
比如:
与该秩对应的码本中的预编码矩阵可以为W
2’,或者,与上述W
2’具有行/列变换关系的矩阵,或者,W
2’和一个常数系数的乘积,例如常数系数可以是
或者,与该W
2’具有行/列变换关系的矩阵和一个常数系数的乘积,例如常数系数可以是
其中b
1、b
2为离散傅里叶变换DFT矢量,c为极化天线相位因子,
α
11,α
12,α
13,α
14中的两个取值为+1,另外两个取值为-1;
α
21,α
22,α
23,α
24中的两个取值为+1,另外两个取值为-1;
β
11,β
12,β
13,β
14中的两个取值为+1,另外两个取值为-1;
β
21,β
22,β
23,β
24中的两个取值为+1,另外两个取值为-1。
其中取1的两个参数和取-1的两个参数可以经由协议定义,在相应装置内预先存储。也可以通过网络设备向终端设备进行配置。
可选的,α
11,α
12,α
13,α
14,α
21,α
22,α
23,α
24,β
11,β
12,β
13,β
14,β
21,β
22,β
23,β
24可以对应于天线端口组间相位因子。
在本发明实施例中,天线极化相位因子c可以在{+1,-1,+j,-j}中任意取值,天线端口组间相位因子也可以在{+1,-1,+j,-j}中任意取值。
通过对上述预编码矩阵W
2变形可以得到:
或者
则,该秩对应的码本中的预编码矩阵可以为,或,满足:W
7,或者,与该W
7具有行/列变换关系的矩阵,或者,W
7和一个常数系数的乘积,例如常数系数可以是
或者,与该W
7具有行/列变换关系的矩阵和一个常数系数的乘积,例如常数系数可以是
参考上述情况一中列出的各种不同的量化方案和PMI反馈机制,情况三中也可以结合W
2采用相似的量化方案和相应的反馈机制。例如:
1)固化天线端口组间相位因子,量化极化天线相位因子:
则PMI可以包括第一PMI和第二PMI,第一PMI用于指示波束矢量,第二PMI用于指示极化天线相位因子;
或者PMI可以包括第十一PMI,第十一PMI对应多个指示域(如包括多个指示域),其中一个指示域用于指示波束矢量,另一个指示域用于指示极化天线相位因子。
2)固化极化天线相位因子,量化天线端口组间相位因子:
则PMI可以包括第一PMI和第三PMI,第一PMI用于指示波束矢量,第三PMI用于指示天线端口组间相位因子;
或者PMI可以包括第十一PMI,第十一PMI对应多个指示域(如包括多个指示域),其中一个指示域用于指示波束矢量,另一个指示域用于指示天线端口组间相位因子。
3)同时量化极化天线相位因子和天线端口组间相位因子:
则PMI可以包括第一PMI、第二PMI和第三PMI,第一PMI用于指示波束矢量,第二PMI用于指示极化天线相位因子,第三PMI用于指示天线端口组间相位因子;或者,P MI可以包括第一PMI和第四PMI,第一PMI用于指示波束矢量,第四PMI用于指示 极化天线相位因子和天线端口组间相位因子。
或者,PMI可以包括第十二PMI和第三PMI,第十二PMI对应多个指示域,其中一个指示域用于指示波束矢量,另一个指示域用于指示天线端口组间相位因子,第三PMI用于指示极化天线相位因子。
应理解,以上列举的量化方案和反馈机制仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在使用本申请所提供的预编码矩阵及其数学变形的基础上反馈其他PMI用于实现相同或相似功能的可能。例如,该PMI也可以仅包括两个PMI,分别用于指示波束矢量、极化天线相位因子、天线端口组间相位因子这三个因素中的任意两个。
情况四、秩<8,天线端口组的数量N=4:
以上示出了秩M=8的情况下的各种可能的预编码矩阵,以及相应的PMI反馈机制。在秩M<8的情况下,该秩对应的码本中的预编码矩阵可以包括M个列向量,其中,所述M个列向量为以上示出的预编码矩阵W
2,W
2’和W
7中的任意一个或者与上述任意一个具有行/列变换关系的矩阵中的列向量的子集,或者,所述M个列向量为以上示出的预编码矩阵W
2,W
2’和W
7中的任意一个与常数系数
的乘积矩阵中的列向量的子集,或者,所述M个列向量为与以上示出的预编码矩阵W
2,W
2’和W
7中的任意一个具有行/列变换关系的矩阵与常数系数
的乘积的矩阵中的列向量的子集。或者,所述M个列向量为满足以上示出的预编码矩阵W
2,W
2’和W
7中的任意一个或者与上述任意一个具有行/列变换关系的矩阵中的列向量的子集,或者,所述M个列向量为满足以上示出的预编码矩阵W
2,W
2’和W
7中的任意一个与常数系数
的乘积矩阵中的列向量的子集,或者,所述M个列向量为满足与以上示出的预编码矩阵W
2,W
2’和W
7中的任意一个具有行/列变换关系的矩阵与常数系数
的乘积的矩阵中的列向量的子集。
另外,情况三中列举的量化方案和反馈机制同样适用于情况二,为了避免重复,这里不再赘述。
情况五、秩=3或4,当天线端口组的数量(即,天线面板数)N=2
网络设备可以使用高层信令配置码本模式1或者码本模式2。
可选的,码本模式1和码本模式2可以对应不同的预编码矩阵的形式。
当配置码本模式1时,秩4对应的码本中的预编码矩阵的基本形式可以表示为:
或者与W
8具有行和/或列变换关系的矩阵。
比如:
与该秩对应的码本中的预编码矩阵可以为W
8,或者,与该W
8具有行/列变换关系的矩阵,或者,W
8和一个常数系数的乘积,例如常数系数可以是
或者,与该W
8具有行/列变换关系的矩阵和一个常数系数的乘积,例如常数系数可以是
其中,以第一个等号后的等式进行描述,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值;
和
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
1的取值为{0,1,2,3}中的值;秩3对应的码本中的预编码矩阵包含3个列向量,所述3个列向量为以上示出的秩4的码本中的预编码矩阵W
8或者任意一个与W
8具有行和/或列变换关系的矩阵中的列向量的子集,或者,W
8和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,与W
8具有行和/或列变换关系的矩阵和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,所述3个列向量为满足以上示出的秩4的码本中的预编码矩阵W
8或者任意一个与W
8具有行和/或列变换关系的矩阵中的列向量的子集,或者,所述3个列向量为满足W
8和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,所述3个列向量为满足与W
8具有行和/或列变换关系的矩阵和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
这种情况下,PMI可以包括第十三PMI和第三PMI。其中,第十三PMI可以用于指 示天线端口组间相位因子
第三PMI用于指示极化天线相位因子
或者,PMI可以包括第十四PMI。其中,第十四PMI可以用于指示
和
例如第十四PMI可以包含多个指示域,其中一个指示域用于指示
另一个指示域用于指示
当配置码本模式2时,秩4对应的码本中的预编码矩阵的基本形式可以表示为:
或者与W
9具有行/列变换关系的矩阵。
比如,
与该秩对应的码本中的预编码矩阵可以为W
9,或者,与该W
9具有行/列变换关系的矩阵,或者,W
9和一个常数系数的乘积,例如常数系数可以是
或者,与该W
9具有行/列变换关系的矩阵和一个常数系数的乘积,例如常数系数可以是
其中,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值。
的值为
p
1的取值为{0,1,2,3}中的值;
的值为
p
2的取值为{0,1,2,3}中的值;b
n1的值为
n
1的取值为{0,1}中的值;b
n2的值为
n
2的取值为{0,1}中的值;秩3对应的码本中的预编码矩阵包含3个列向量,所述3个列向量为以上示出的秩4的码本中的预编码矩阵W
9或者任意一个与W
9具有行/列变换关系的矩阵中的列向量的子集,或者,W
9和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,与W
9具有行/列变换关系的矩阵和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,所述3个列向量为满足以上示出的秩4的码本中的预编码矩阵W
9或者任意一个与W
9具有行/列变换关系的矩阵中的列向量的子集,或者,所述3个列向量为满足W
9和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,所述3个列向量为满足与W
9具有行/列变换关系的矩阵和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
这种情况下,PMI可以包括第十五PMI和第十六PMI。其中,第十五PMI可以用于指示
和
例如第十五PMI可以包含多个指示域,其中一个指示域用于指示
另一个指示域用于指示
第十六PMI用于指示极化天线相位因子
以及
和
例如第十六PMI可以包含多个指示域,其中一个指示域用于指示
一个指示域用于指示
另一个指示域用于指示
情况六、秩=3或4,当天线端口组的数量(即,天线面板数)N=4
可选的,网络设备可以使用高层信令配置码本模式1,
秩4对应的码本中的预编码矩阵的基本形式可以是:
其中,以第一个等号后的等式进行描述,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
1的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
可以可以在{+1,-1,+j,-j}中取值,p
2的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
可以可以在{+1,-1,+j,-j}中取值,p
3的取值为{0,1,2,3}中的值。秩3对应的码本中的预编码矩阵包含3个列向量,所述3个列向量为以上示出的秩4的码本中的预编码矩阵W
10或者任意一个与W
10具有行/列变换关系的矩阵中的列向量的子集,或者,W
10和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,与W
10具有行/列变换关系的矩阵和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,所述3个列向量为满足以上示出的秩4的码本中的预编码矩阵W
10或者任意一个与W
10具有行/列变换关系的矩阵中的列向量的子集,或者,所述3个列向量为满足W
10和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,所述3个列向量为满足与W
10具有行/列变换关系的矩阵和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者
或者与上述W
10具有行/列变换关系的矩阵。
比如:
与该秩对应的码本中的预编码矩阵可以为W
10,或者,与该W
10具有行/列变换关系的矩阵,或者,W
10和一个常数系数的乘积,例如常数系数可以是
或者,与该W
10具有行/列变换关系的矩阵和一个常数系数的乘积,例如常数系数可以是
其中α
1,α
2,α
3,α
4中的两个取值为+1,另外两个取值为-1;β
1,β
2,β
3,β
4中的两个取值为+1,另外两个取值为-1;
其中取1的两个参数和取-1的两个参数可以经由协议定义,在相应装置内预先存储。也可以通过网络设备向终端设备进行配置。
其中,以第一个等号后的等式进行描述,
为极化天线相位因子,可以在{+1,-1,+j,-j}中取值,n的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
1的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
2的取值为{0,1,2,3}中的值;
为天线端口组间相位因子,
为天线端口组间相位因子,
为天线端口组间相位因子,
可以在{+1,-1,+j,-j}中取值,p
3的取值为{0,1,2,3}中的值。秩3对应的码本中的预编码矩阵包含3个列向量,所述3个列向量为以上示出的秩4的码本中的预编码矩阵W
10或者任意一个与W
10具有行/列变换关系的矩阵中的列向量的子集,或者,W
10和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,与W
10具有行/列变换关系的矩阵和一个常数系数的乘积矩阵中的列向量的子集, 例如常数系数可以是
或者,所述3个列向量为满足以上示出的秩4的码本中的预编码矩阵W
10或者任意一个与W
10具有行/列变换关系的矩阵中的列向量的子集,或者,所述3个列向量为满足W
10和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
或者,所述3个列向量为满足与W
10具有行/列变换关系的矩阵和一个常数系数的乘积矩阵中的列向量的子集,例如常数系数可以是
在情况六下,PMI可以包括第十七PMI和第三PMI。其中,第十七PMI可以用于指示
和
例如第十七PMI可以包含多个指示域,其中一个指示域用于指示
另一个指示域用于指示
还有一个指示域用于指示
第三PMI用于指示极化天线相位因子
或者,PMI可以包括第十八PMI。其中,第十八PMI可以用于指示
和
例如第十八PMI可以包含多个指示域,其中一个指示域用于指示
另一个指示域用于指示
另一个指示域用于指示
还有一个指示域用于指示
因此,本申请实施例通过网络设备和终端设备基于本申请所提供的高阶码本中的预编码矩阵来确定CSI,从而能够实现更大层数的数据流的传输。从而有利于提高MIMO传输的速率,提高了通信系统的数据传输能力,提高了吞吐量。
应理解,以上列举的预编码矩阵仅为本申请提供的预编码矩阵的可能形式,而不应对本申请构成任何限定,在本申请提供的预编码矩阵的形式上进行行/列变换、或者其他数学变换得到的预编码矩阵均应落入本申请的保护范围内。
需要说明的是,在一种可能的实现方式中,网络设备和终端设备可以保存以下一个或多个:
a)用于获得上述各实现方式中列举的任一预编码矩阵中的参数,基于所述参数可以获得上述任一预编码矩阵。例如,所述参数可以包括但不限于上述列举的码本配置参数等;
b)上述各实现方式中列举的任一预编码矩阵;
c)基于上述各实现方式中列举的任一预编码矩阵扩展后的矩阵;
d)基于上述各实现方式中列举的任一预编码矩阵经过行/列变换后的矩阵;
e)基于上述各实现方式中列举的任一预编码矩阵经过行/列变换后的矩阵的扩展后的矩阵。
f)码本,所述码本包括至少一个上述b)、c)、d)或者e)中所述的矩阵。
应理解,本申请中,行/列变换是指行变换、或者列变换、或者行变换和列变换。
本申请中涉及的保存,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不 对此限定。
以上,结合图4详细说明了本申请实施例的通信方法,下面结合图5详细说明本发明另一实施例的通信方法。
图5是从设备交互的角度示出的本申请实施例提供的通信方法的示意性流程图。具体地,图5示出了上行信道测量的场景。如图所示,图5中示出的方法可以包括步骤510至步骤550。
在步骤510中,终端设备向网络设备发送参考信号。
在步骤520中,网络设备根据参考信号,向该终端设备发送PMI和RI。
可选地,该方法500还包括:步骤530,网络设备向终端设备发送码本指示信息。
可选地,该方法500还包括:步骤540,网络设备向终端设备发送码本配置信息。
可选地,该方法500还包括:步骤550,终端设备根据PMI和RI,对待发送的上行数据进行预编码,并发送预编码后的上行数据。
应理解,方法500中的步骤与方法400中的步骤相似,为了避免重复,这里不再赘述。
上述步骤的编号并不限定步骤的先后顺序,步骤的先后顺序可以依据方案的实现确定。比如步骤530可以在步骤540之前,也可以在步骤540之后。
上文中结合图4描述的各种预编码矩阵的形式同样适用于上行信道测量。为了避免重复,这里不再结合预编码矩阵详细说明。
另外,在本申请实施例中,该网络设备在测量得到了上行信道的CSI之后,还可以根据信道互易性(例如,在时分双工(time division depluxing,TDD)中)来确定下行信道的CSI。本申请对此并未特别限定。
因此,本申请实施例通过网络设备和终端设备基于本申请所提供的高阶码本中的预编码矩阵来确定CSI,从而能够实现更大层数的数据流的传输。从而有利于提高MIMO传输的速率,提高了通信系统的数据传输能力,提高了吞吐量。
根据前述方法,图6为本申请实施例提供的用于通信的装置10的示意图一,如图6所示,该装置10可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。其中,该终端设备可以对应上述方法中的终端设备。
该装置10可以包括处理器11和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图4或图5中对应的方法中的步骤。
进一步的,该装置10还可以包括输入口13和输出口14。进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序,该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中终端设备的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该装置10为终端设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中,通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图7为本申请提供的一种终端设备20的结构示意图。该终端设备20可应用于图1所示出的系统中。为了便于说明,图7仅示出了终端设备的主要部件。如图7所示,终端设备20包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图7中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中, 也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备20的收发单元201,将具有处理功能的处理器视为终端设备20的处理单元202。如图7所示,终端设备20包括收发单元201和处理单元202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元201中用于实现接收功能的器件视为接收单元,将收发单元201中用于实现发送功能的器件视为发送单元,即收发单元201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
根据前述方法,图8为本申请实施例提供的用于通信的装置30的示意图二,如图8所示,该装置30可以为网络设备,也可以为芯片或电路,如可设置于网络设备内的芯片或电路。其中,该网络设备对应上述方法中的网络设备。
该装置30可以包括处理器31和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现前述如图4或图5中对应的方法中的步骤。
进一步的,该装置30还可以包括输入口33和输出口33。再进一步的,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器32用于存储计算机程序,该处理器31可以用于从该存储器32中调用并运行该计算计程序,以控制输入口33接收信号,控制输出口34发送信号,完成上述方法中终端设备的步骤。该存储器32可以集成在处理器31中,也可以与处理器31分开设置。
以控制输入口33接收信号,控制输出口34发送信号,完成上述方法中网络设备的步骤。该存储器32可以集成在处理器31中,也可以与处理器31分开设置。
可选地,若该装置30为网络设备,该输入口33为接收器,该输出口34为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置30为芯片或电路,该输入口33为输入接口,该输出口34为输出接口。
可选的,若该装置30为芯片或电路,所述装置30也可以不包括存储器32,所述处理器31可以读取该芯片外部的存储器中的指令(程序或代码)以实现前述如图4或图5中对应的方法中的功能。
作为一种实现方式,输入口33和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器31可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器31、输入口33和输出口34的功能。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明 及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图9为本申请实施例提供的一种网络设备的结构示意图,可以用于实现上述方法中的网络设备的功能。如可以为基站的结构示意图。如图9所示,该基站可应用于如图1所示的系统中。基站40包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)402。所述RRU 401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线4011和射频单元4012。所述RRU 401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 402部分主要用于进行基带处理,对基站进行控制等。所述RRU 401与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)402可以用于控制基站40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 402还包括存储器4021和处理器4022。所述存储器4021用以存储必要的指令和数据。例如存储器4021存储上述实施例中的码本等。所述处理器4022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(System-on-chip,SoC)技术的发展,可以将402部分和401部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图9示例的基站的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器 (read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执 行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (25)
- 一种通信方法,其特征在于,包括:接收用于信道测量的参考信号;根据所述参考信号发送预编码矩阵指示PMI和秩指示RI,所述PMI用于指示所述RI所对应的码本中的预编码矩阵,所述码本中的预编码矩阵包括与多个天线端口组一一对应的多个矩阵,一个天线端口组或至少两个天线端口组中的每个天线端口组对应的矩阵具有两个不同的天线端口组间相位因子,且所述预编码矩阵中的任意两个列向量相互正交。
- 一种通信方法,其特征在于,包括:发送用于信道测量的参考信号;接收预编码矩阵指示PMI和秩指示RI,所述PMI和所述RI与所述参考信号相关,所述PMI用于指示所述RI所对应的码本中的预编码矩阵,所述码本中的预编码矩阵包括与多个天线端口组一一对应的多个矩阵,一个天线端口组或至少两个天线端口组中的每个天线端口组对应的矩阵具有两个不同的天线端口组间相位因子,且所述预编码矩阵中的任意两个列向量相互正交。
- 根据权利要求1或2所述的方法,其特征在于,所述预编码矩阵的列数与秩对应,所述预编码矩阵的行数与所述天线端口的总数量对应,其中,所述秩为M,所述天线端口组的数量为N,所述预编码矩阵中的N/2个天线端口组对应的矩阵包括第一列向量集合和第二列向量集合,所述第一列向量集合的天线端口组间相位因子和所述第二列向量集合的天线端口组间相位因子互为相反数,其中,M为大于1的整数,N为大于或等于2的偶数。
- 根据权利要求3所述的方法,其特征在于,每个天线端口组中包含2N 1N 2个CSI-RS天线端口,N 1表示横向CSI-RS天线端口个数,N 2表示纵向CSI-RS天线端口个数,N个天线端口组总共包含天线端口个数为P CSI-RS=2NN 1N 2,其中,N为大于或等于2的偶数,N 1为大于或等于1的整数,N 2为大于或等于1的整数。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述PMI包括第一PMI、第二PMI和/或第三PMI,所述第一PMI用于指示DFT矢量,所述第二PMI用于指示所述天线端口组间相位因子,所述第三PMI用于指示极化天线相位因子。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述PMI包括第一PMI和第四PMI,所述第一PMI用于指示DFT矢量,所述第四PMI用于指示所述天线端口组间相位因子和极化天线相位因子。
- 根据权利要求11或12所述的方法,其特征在于,所述z k的取值为{+1,-1,+j,-j}中的值,k取值为2、3、4。
- 根据权利要求13所述的方法,其特征在于,所述PMI包括第一PMI和第五PMI,所述第一PMI用于指示DFT矢量,所述第五PMI用于指示z 2、z 3、z 4中的至少一个。
- 根据权利要求11或12所述的方法,其特征在于,所述z m=x m×y m,x m和y m为z m的两个分量,m取值为2、3、4中的一个或多个。
- 根据权利要求15所述的方法,其特征在于,所述PMI包括第一PMI、第六PMI和第七PMI,所述第一PMI用于指示DFT矢量,所述第六PMI用于指示x m,所述第七PMI用于指示y m。
- 根据权利要求15所述的方法,其特征在于,所述PMI包括第七PMI和第八 PMI,所述第七PMI用于指示y m,所述第八PMI用于指示DFT矢量和x m。
- 根据权利要求1和3-17中任一项所述的方法,其特征在于,还包括:接收码本指示信息,所述码本指示信息用于指示所使用的码本类型。
- 根据权利要求18所述的方法,其特征在于,所述码本类型包括:单面板码本或多面板码本。
- 根据权利要求18或19所述的方法,其特征在于,还包括:根据所指示的码本类型,选择相对应的码本。
- 根据权利要求1和3-17中任一项所述的方法,其特征在于,还包括:接收码本配置参数,所述码本配置参数包括以下任意一项:天线端口组的数量以及每个天线端口组中包含的天线端口数;天线端口组的数量以及天线端口的总数量;天线端口的总数量以及每个天线端口组中包含的天线端口数;或者,每个天线端口组中包含的横向天线端口数、纵向天线端口数以及天线端口组的数量。
- 根据权利要求21所述的方法,其特征在于,还包括:根据所述码本配置参数,确定预编码矩阵的行数。
- 一种通信装置,其特征在于,用于执行如权利要求1至22中任意一项所述的方法。
- 一种通信装置,其特征在于,包括:存储器,用于存储计算机程序;处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至22中任一项所述的方法。
- 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至22中任意一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18818772.8A EP3641149B1 (en) | 2017-06-16 | 2018-06-19 | Communication method, apparatus and system |
US16/712,040 US11018738B2 (en) | 2017-06-16 | 2019-12-12 | Communication method, communications apparatus, and system |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710459791.8 | 2017-06-16 | ||
CN201710459791 | 2017-06-16 | ||
CN201710814468 | 2017-09-11 | ||
CN201710814468.8 | 2017-09-11 | ||
CN201710843369.2 | 2017-09-18 | ||
CN201710843369.2A CN109150256B (zh) | 2017-06-16 | 2017-09-18 | 通信方法、通信装置和系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/712,040 Continuation US11018738B2 (en) | 2017-06-16 | 2019-12-12 | Communication method, communications apparatus, and system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018228599A1 true WO2018228599A1 (zh) | 2018-12-20 |
Family
ID=64659979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/091885 WO2018228599A1 (zh) | 2017-06-16 | 2018-06-19 | 通信方法、通信装置和系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114448477A (zh) |
WO (1) | WO2018228599A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200119788A1 (en) * | 2017-06-16 | 2020-04-16 | Huawei Technologies Co., Ltd. | Communication method, communications apparatus, and system |
CN112751598A (zh) * | 2019-10-31 | 2021-05-04 | 华为技术有限公司 | 一种预编码矩阵的处理方法和通信装置 |
CN113709813A (zh) * | 2021-09-03 | 2021-11-26 | 上海中兴易联通讯股份有限公司 | 一种用于nr小基站基带合并的方法和系统 |
CN113938169A (zh) * | 2020-06-29 | 2022-01-14 | 华为技术有限公司 | 预编码矩阵确定方法及装置 |
CN114600384A (zh) * | 2019-10-30 | 2022-06-07 | 华为技术有限公司 | 一种信道测量方法和通信装置 |
US20220385343A1 (en) * | 2020-02-07 | 2022-12-01 | Huawei Technologies Co., Ltd. | Information transmission method and apparatus |
WO2024073999A1 (en) * | 2023-02-16 | 2024-04-11 | Lenovo (Beijing) Ltd. | Codebook design for 8tx ue with two coherent antenna groups |
WO2024169542A1 (zh) * | 2023-02-17 | 2024-08-22 | 华为技术有限公司 | 一种信道状态信息的上报方法和装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160119097A1 (en) * | 2014-10-03 | 2016-04-28 | Samsung Electronics Co., Ltd. | Codebook design and structure for advanced wireless communication systems |
CN106233640A (zh) * | 2014-03-31 | 2016-12-14 | 三星电子株式会社 | 无线通信系统中用于信道信息反馈的装置和方法 |
-
2017
- 2017-09-18 CN CN202210041103.7A patent/CN114448477A/zh active Pending
-
2018
- 2018-06-19 WO PCT/CN2018/091885 patent/WO2018228599A1/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106233640A (zh) * | 2014-03-31 | 2016-12-14 | 三星电子株式会社 | 无线通信系统中用于信道信息反馈的装置和方法 |
US20160119097A1 (en) * | 2014-10-03 | 2016-04-28 | Samsung Electronics Co., Ltd. | Codebook design and structure for advanced wireless communication systems |
Non-Patent Citations (1)
Title |
---|
HUAWEI; HISILICON: "Design and evaluation results for Type I codebook", 3GPP TSG-RAN WG1 MEETING #89, no. R1-1708138, 6 May 2017 (2017-05-06), Hangzhou, China, XP051262273 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200119788A1 (en) * | 2017-06-16 | 2020-04-16 | Huawei Technologies Co., Ltd. | Communication method, communications apparatus, and system |
US11018738B2 (en) * | 2017-06-16 | 2021-05-25 | Huawei Technologies Co., Ltd. | Communication method, communications apparatus, and system |
CN114600384A (zh) * | 2019-10-30 | 2022-06-07 | 华为技术有限公司 | 一种信道测量方法和通信装置 |
CN114600384B (zh) * | 2019-10-30 | 2023-09-12 | 华为技术有限公司 | 一种信道测量方法和通信装置 |
CN112751598A (zh) * | 2019-10-31 | 2021-05-04 | 华为技术有限公司 | 一种预编码矩阵的处理方法和通信装置 |
US20220385343A1 (en) * | 2020-02-07 | 2022-12-01 | Huawei Technologies Co., Ltd. | Information transmission method and apparatus |
CN113938169A (zh) * | 2020-06-29 | 2022-01-14 | 华为技术有限公司 | 预编码矩阵确定方法及装置 |
CN113938169B (zh) * | 2020-06-29 | 2023-09-22 | 华为技术有限公司 | 预编码矩阵确定方法及装置 |
CN113709813A (zh) * | 2021-09-03 | 2021-11-26 | 上海中兴易联通讯股份有限公司 | 一种用于nr小基站基带合并的方法和系统 |
WO2024073999A1 (en) * | 2023-02-16 | 2024-04-11 | Lenovo (Beijing) Ltd. | Codebook design for 8tx ue with two coherent antenna groups |
WO2024169542A1 (zh) * | 2023-02-17 | 2024-08-22 | 华为技术有限公司 | 一种信道状态信息的上报方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114448477A (zh) | 2022-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109150256B (zh) | 通信方法、通信装置和系统 | |
WO2018228599A1 (zh) | 通信方法、通信装置和系统 | |
WO2019096071A1 (zh) | 通信方法、通信装置和系统 | |
WO2020125510A1 (zh) | 一种信道测量方法和通信装置 | |
US20220263560A1 (en) | Channel state information reporting method and communications apparatus | |
CN111106857B (zh) | 指示和确定预编码向量的方法以及通信装置 | |
JP7238167B2 (ja) | プリコーディング行列表示及び決定方法、及び通信装置 | |
US11184208B2 (en) | Communication method, communications apparatus, and system | |
CN111757382B (zh) | 指示信道状态信息的方法以及通信装置 | |
CN111431679B (zh) | 参数配置方法和通信装置 | |
US11362707B2 (en) | Precoding vector indicating and determining method and communications apparatus | |
WO2020244496A1 (zh) | 一种信道测量方法和通信装置 | |
WO2020143580A1 (zh) | 用于构建预编码向量的向量指示方法和通信装置 | |
CN113746514A (zh) | 一种通信方法、装置及系统 | |
CN111756422A (zh) | 指示信道状态信息的方法以及通信装置 | |
CN113557684B (zh) | 用于构建预编码向量的向量指示方法以及通信装置 | |
CN110875767B (zh) | 指示和确定预编码向量的方法和通信装置 | |
CN112398516A (zh) | 一种码本子集限制的方法和通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18818772 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018818772 Country of ref document: EP Effective date: 20200115 |