WO2014058074A1 - 含水バラ物の荷揚げ処理方法 - Google Patents

含水バラ物の荷揚げ処理方法 Download PDF

Info

Publication number
WO2014058074A1
WO2014058074A1 PCT/JP2013/078112 JP2013078112W WO2014058074A1 WO 2014058074 A1 WO2014058074 A1 WO 2014058074A1 JP 2013078112 W JP2013078112 W JP 2013078112W WO 2014058074 A1 WO2014058074 A1 WO 2014058074A1
Authority
WO
WIPO (PCT)
Prior art keywords
unloading
rose
belt conveyor
water
moisture content
Prior art date
Application number
PCT/JP2013/078112
Other languages
English (en)
French (fr)
Inventor
友規 衣笠
正典 後藤
恭利 井上
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201380052494.1A priority Critical patent/CN104718146B/zh
Priority to BR112015008025-1A priority patent/BR112015008025B1/pt
Priority to JP2014540922A priority patent/JP5896037B2/ja
Priority to AU2013330776A priority patent/AU2013330776B2/en
Priority to KR1020157012180A priority patent/KR101747569B1/ko
Publication of WO2014058074A1 publication Critical patent/WO2014058074A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G69/00Auxiliary measures taken, or devices used, in connection with loading or unloading
    • B65G69/20Auxiliary treatments, e.g. aerating, heating, humidifying, deaerating, cooling, de-watering or drying, during loading or unloading; Loading or unloading in a fluid medium other than air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/60Loading or unloading ships
    • B65G67/606Loading or unloading ships using devices specially adapted for bulk material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2814/00Indexing codes relating to loading or unloading articles or bulk materials
    • B65G2814/02Auxiliary devices or arrangements
    • B65G2814/0205Auxiliary devices or arrangements for preventing breakage, pulverisation or damage to materials

Definitions

  • the present invention relates to a belt that is generated by the generation of spring water when unloading water-containing ore, coal, or other water-containing bulk material is unloaded from a carrier ship, barge, or the like by a bridge crane, unloader, or continuous unloader bucket.
  • the present invention relates to a method for unloading hydrous roses, which has been developed to eliminate unloading obstacles on a conveyor.
  • Patent Documents 1 and 2 conventionally, that is, when spring water is generated, the spring water is once pumped by a drainage facility (suction machine). After that, methods such as resuming unloading have been proposed.
  • JP 60-204526 A Japanese Utility Model Publication No. 50-13339 Japanese Patent Laid-Open No. 61-60784 JP 61-164658 A
  • the spring water is generated in the dent after grabbing with the grab bucket in the middle of unloading, so the above-mentioned pumping and draining method requires frequent and repeated pumping work of the spring water, interrupting the unloading work. There was a problem that the work efficiency was greatly reduced by repeating the restart.
  • Patent Documents 1 and 2 assumes that only spring water is pumped, the hollow portion generated after grabbing with a grab bucket is separated from a rose having a large particle size.
  • powder with a small particle size flows in and most of the powder is mud (slurry).
  • slurry mud
  • Patent Documents 3 and 4 In response to these problems, the inventor paid attention to the moisture content reduction methods proposed in Patent Documents 3 and 4 and repeated studies.
  • the solid water-absorbing resin since the solid water-absorbing resin is used, it is difficult to uniformly contact the roses at the time of unloading. It has been found that there is a problem that if it contains, it swells easily from the belt conveyor. Moreover, since it is necessary to finally separate the water-absorbing resin from the roses, it has been extremely difficult to use the water-absorbing resin when unloading the water-containing roses.
  • the present invention has been developed in view of the above-mentioned present situation, and is intended to eliminate the problem of unloading on a belt conveyor due to slurry-like spring water that inevitably occurs when unloading a hydrous rose.
  • the purpose is to propose an unloading method.
  • the gist configuration of the present invention is as follows. 1. When unloading hydrous bulk material containing ore and coal from a cargo ship onto a belt conveyor using a grab bucket of a bridge crane or unloader, suspended spring water in which powder is suspended is generated and converted to hydrous bulk material. Contained in the hopper of the above-mentioned belt conveyor or the above-mentioned bridge crane or unloader machine with respect to the above-mentioned water-containing rose material when the water content of the water-containing rose material is increased. Is added as a chemical solution to form aggregates of water-containing roses and suspended spring water, and then the aggregates are transported by a belt conveyor.
  • the present invention in a cargo ship hold, in the middle of loading, suspended spring water in which powder is suspended is generated and contained in a rose, even if the moisture content of the rose is increased.
  • roses and contained water derived from spring water can be transported without overflowing from the belt conveyor, so that it is not necessary to pump up suspended spring water. Therefore, it is not necessary to interrupt the unloading work as in the prior art, and the continuous unloading work can be performed, so that the unloading efficiency is improved.
  • (A)-(e) is a conceptual diagram explaining the effect
  • an ore or coal (hereinafter referred to as “rose”), which is called a hydrous rose 2 (hereinafter also simply referred to as “rose”) housed in a cargo hold (loading room) 1 of a cargo ship.
  • a hydrous rose 2 (hereinafter also simply referred to as “rose”) housed in a cargo hold (loading room) 1 of a cargo ship.
  • suspended springs 3 in which powders separated mainly from gravel-like ores are dispersed and suspended are accumulated in the depressions 4.
  • 1 is a hold
  • 2 is a water-containing rose
  • 3 is a suspended spring
  • 4 is a depression
  • 5 is an unloader
  • 6 is a grab bucket.
  • Suspended spring water 3 generated in the sediment layer of the wet bulk material 2 in the funnel 1 is gradually slurried as it is unloaded, making it difficult to unload it with the grab bucket 6 of the unloader 5 or the like. This is because once slurried material can be grabbed by the grab bucket 6, it will flow out of the hopper (not shown) and belt conveyor (not shown) in the unloader machine, and the unloader operation will continue. Because it becomes impossible. In particular, at the bottom of the hold 1, suspended spring water is often slurried, and unloading work is often interrupted and drainage work must be performed.
  • the roses when the moisture content of the roses is high and the cargo handling efficiency deteriorates, the roses are loaded in the hopper in the unloader machine (including the continuous unloader machine) or unloaded on the belt conveyor.
  • a polymer flocculant to a loose product to cause particle aggregation and agglomeration and granulating it, that is, making it agglomerated, it is possible to transport spring water together with the rose, and unloading work
  • the suspension spring 3 is made into a solid state (aggregate) together with the water-containing roses 2 such as ores, and precisely, the suspension spring 3 is formed by a belt conveyor. It can be transported.
  • the moisture content (amount) in this invention is a ratio of the moisture content with respect to the mass of a rose thing.
  • the aggregates of the water-containing bulk material in the present invention are those in which the above-mentioned aggregated particles and aggregated particles are configured in an arbitrary ratio (any may be 100%).
  • % display in this invention means mass%.
  • Wm becomes a solidified state, and is in an attached state where it adheres to loose objects.
  • the bulk material can be easily transported on the belt conveyor, and the suspended spring itself can be transported together with the bulk material without overflowing from the belt conveyor. It will be possible to send the roses to such as without trouble.
  • the components constituting the chemical solution in the present invention are burned during firing in the subsequent sintering machine, such as N, C, and H, and do not remain in the product, so that it is not necessary to separate the chemical solution. Therefore, this invention has the merit that the process of chemical
  • FIG. 3 is an explanatory diagram in the case where the roses unloaded on the belt conveyor are sprayed uniformly on the surface in a mist state.
  • the polymer flocculant adheres only on the surface of the mixture of roses and Wm, it is an example of an embodiment that can be sufficiently implemented if the rose has a moisture content of about several percent.
  • preferred embodiments of the present invention include the unloading of high moisture content roses occurring before the occurrence of suspended spring water, and the generation of suspended spring water, and the subsequent high moisture content roses.
  • the polymer flocculant is added to the high moisture content bulk material in the form of spraying, and the polymer flocculant reached on the belt conveyor by spraying is added to the head part of the belt conveyor junction part.
  • discharging onto falling roses and spring water. This is because by adopting such a form, the above-mentioned setting action (which may include pseudo-particles) and agglomeration action are promoted, and the unloading operation is further improved.
  • a chemical flocculant mainly composed of a polymer flocculant is sprayed as a chemical solution as it is in a shower form. In addition to adhering to the surface, it is sprayed so as to pass through the roses and reach the surface of the belt conveyor.
  • the belt By spreading in such a state, even if non-uniformity in the adhesion of the polymer flocculant has occurred in the width direction of the loose article, even when it is conveyed to the belt conveyor junction (falling edge), the belt
  • the polymer flocculant remaining on the surface is mixed again with the fallen roses and spring water, and compared with the state supplied in the mist state, the polymer flocculant and roses and spring water are mixed. As a result, the action of making agglomerates by mixing roses, spring water, and polymer flocculant is promoted.
  • FIG. 5 shows another spraying procedure. That is, not only is the polymer flocculant mist sprayed and adhered to the surface of the bulk material, but the polymer flocculant is mainly applied to the belt conveyor junction portion on the side that is the back surface (back surface) on the upstream side.
  • a mist containing a chemical as a component is sprayed as it is, and a mist containing a chemical mainly composed of a polymer flocculant is sprayed on the surface of the mist.
  • the polymer flocculant is effectively mixed with roses and spring water, and even if supplied in a mist state, mixing with the polymer flocculant proceeds,
  • stimulates the aggregation action of a rose thing, spring water, and a polymer flocculent can be produced.
  • medical agent which has a polymer flocculent as a main component is used as a chemical
  • the drug is solid, it is dispersed in a solution and used as a drug solution.
  • the polymer flocculant is an agent that causes adsorption activity on the powder by the electrostatic force or hydrogen bond of the polymer and causes a cross-linking action between the powders. Any material can be used as long as it has an effect of forming an aggregate.
  • powders, granular or liquid organic flocculants such as polyacrylamide (copolymerized allylamide and sodium acrylate), polyvinylamidine flocculants, amphoteric polymer flocculants, etc. Therefore, it is preferable because it exhibits an aggregating action. In addition, it is good also as mixing together and using a well-known inorganic type coagulant
  • acrylic acid cationic polymer, acrylamide cationic polymer, methacrylic acid polymer, methacrylic acid amino ester cationic polymer, amidine polymer, anionic W / O emulsion polymer, and the like can be used as the polymer flocculant.
  • the main component of the polymer flocculant generally refers to a drug containing a polymer flocculant in an amount that is recognized as having an aggregating effect. It is a drug with a content of about% or more.
  • the polymer flocculant 100% may be used as it is.
  • the solution includes water and an organic solvent
  • the solute is a polymer of C, H, N, and O
  • the solvent is a hydrocarbon solvent (C, H , O only).
  • the amount of the chemical solution added in the present invention is preferably about 0.1 to 1% with respect to the water content of the rose. This is because, when the above range is satisfied, it was confirmed from the test results described later, however, the fluidity due to excessive moisture is reduced and the adhesiveness when the coagulant is excessively administered is not expressed. is there.
  • the amount added is more preferably about 0.15 to 0.4% with respect to the moisture content of the rose.
  • medical solution is a ratio with respect to the moisture content of a rose as above-mentioned.
  • the addition rate of the chemical solution is not particularly limited and may be set as appropriate depending on equipment or the like, but an example is about 2 to 10 (L / min).
  • the experimental conditions for Test 1 are shown in Table 1.
  • flow time is the time which added the chemical
  • the polymer flocculant in the drug is a polymer, which is an acrylic acid cationic polymer, acrylamide-based cationic polymer, methacrylic acid-based polymer, methacrylic acid aminoester cationic polymer, amidine polymer, anionic W / O type emulsion. A polymer or the like, and the drug was used as it was as a chemical solution.
  • the belt conveyor junction part includes the second belt conveyor (OR-62) terminal b, the third belt conveyor (OR-63S) terminal c, the fourth belt conveyor (OR-74R) terminal d, and the fifth belt conveyor (OR-62R) terminal c.
  • a 1st belt conveyor (OR-61) is a belt conveyor used as the head of grab bucket unloading. In the actual machine, the first belt conveyor can be set as the chemical solution addition position.
  • FIG. Fig. 7 shows a pile of Carajas iron ore obtained under the experimental conditions shown in Table 1 using 100 tons of ore in the process of unloading from the ore carrier.
  • Test i in which the polymer flocculant was not used, a part from which roses flowed out was observed at the bottom of the pile.
  • the portion that has flowed out in this manner adheres to the belt when the loose article is transported by the belt conveyor, overflows from the belt, and adheres to the back surface of the belt conveyor as described above, thereby hindering transport. It is presumed that this may cause a failure by adhering to the conveyor roll or the drive system, and a clogging accident due to the occurrence of an adhering matter is predicted at the belt conveyor junction.
  • Experiment 2 (Test ii) and Experiment 5 (Test v) are examples in which the chemical solution was added (spray addition) at a ratio of 0.22% and 0.34% in the mist state.
  • the portion where the roses flowed out was not observed at the foot of the pile, but the occurrence of belt deposits was confirmed. This is presumed to be due to the insufficient amount of the polymer flocculant mixed with the rose and spring water accompanying the mist addition.
  • the hybrid polymer ⁇ was used as a drug as it was as a chemical solution, and the experiment was conducted with the moisture content of roses exceeding 11% and exceeding 9.6%.
  • the moisture content of roses exceed 11% and exceeding 9.6%.
  • the moisture content test levels was reduced from 24%. Changed to 23%.
  • the experiment was conducted with the maximum moisture content set at 54%, similar to the experiment described in Table 2 above.
  • the third experiment was conducted with the concentration of the chemical solution added being 0.1%. As a result, even if the moisture content of the rose material was 20% exceeding 9.6%, it was obtained that the rose material could be modified.
  • the experiment was performed again by changing the concentration of the chemical solution added from 0.1% to 0.2%. As a result, it was confirmed that the above problem could be solved by increasing the chemical concentration under the condition of a moisture content of 23%. Therefore, in the present invention, it was determined that the loading of Carajas iron ore can be performed at a moisture content of 23% or less.
  • the moisture content was determined from the occurrence of suspended spring water, or an on-line measuring instrument such as a neutron moisture meter was used, or a sample was taken with an autosampler and obtained by simple moisture measurement at the analysis center.
  • the moisture content is 24% or more, the Calajas iron ore around the spring generation where the moisture content is low is thrown into the high water generation portion of the club bucket or continuous unloader club. Then, the moisture content can be reduced to an area of 23% or less by simultaneously unloading the Calajas iron ore and spring water.
  • the moisture content can also be controlled by adding a polymer water-absorbing agent (water-absorbing polymer).
  • the present invention has been described by taking Carajas iron ore as an example. However, as long as the conditions of the present invention are followed, other ores may be used, and in the case of a new iron ore, the test object described in Experiments 1 and 2 described above is used. By implementing as a new iron ore, the target value of the moisture content can be determined.
  • the chemical solution was added when the Carajas iron ore was unloaded from the transport ship when the water content reached an area of 9.6% or more, which was excessive in water.
  • the time to reach the above-mentioned water content 9.6% or more
  • it is based on the occurrence of suspended spring water that occurs in the depression after grabbing it with a grab bucket. It is possible to determine. That is, the amount of water can be estimated from the amount of suspended spring water generated after grabbing with the grab bucket and the grab bucket capacity.
  • samples of the water change of Carajas iron ore can be collected using an online measuring instrument such as a neutron moisture meter or an autosampler, and simple moisture measurement can be performed at the analysis center. From the relationship between the change in the analyzed moisture content and the amount of suspended spring water (visually measured) generated after grabbing with a grab bucket, unloading from the next transport ship reaches an area where the moisture content is 9.6% or more. It is possible to estimate whether or not.
  • the addition of chemicals to roses will be started after unloading when the moisture content reaches 9.6% or more. do it.
  • Example 1 The following experiment was conducted using the first belt conveyor in FIG. 6 as the drug addition position.
  • the iron ore When unloading Carajas iron ore with a water content of 7.9-23% from a transport ship, the iron ore is unloaded from the transport vessel under the conditions shown in Table 2 and Table 3 where the propriety of modification is ⁇ .
  • Each chemical solution was added.
  • the chemical solution was Chrysat C-333L and hybrid polymer ⁇ .
  • Chrysat C-333L and the hybrid polymer ⁇ are both liquids.
  • the effect of addition is determined by photographing the return side (l) of the belt conveyor shown in FIG. 8 and (II), (III), and (IV) of the junction part at the end of the belt conveyor after the unloading is completed. did.
  • Example 2 The following experiment was carried out with the chemical solution addition position on the belt conveyor downstream of the hopper of the first belt conveyor in FIG.
  • the addition conditions were the same as in Example 1, and the chemical solution was also the same component.
  • the addition effect was also determined in the same manner as in Example 1.
  • the Carajas iron ore itself contains a large amount of moisture, and a lot of spring water is generated when it is unloaded to the land. Therefore, the iron ore was unloaded while intermittently removing (draining) suspended spring water.
  • the unloading efficiency of iron ore when no spring water is generated is 100%, the unloading efficiency is reduced to 65% in the conventional unloading method in which drainage work is performed.
  • an unloading efficiency of about 92% could be achieved by employing the unloading method suitable for the present invention.
  • the above-described technique for unloading roses according to the present invention can be applied to the unloading work of loose objects such as gravel, sand, and grains in addition to the exemplified hydrous ore and coal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

 本発明に従い、含水バラ物に対し、ベルトコンベア上または橋形クレーンやアンローダ機中のホッパー内で、高分子凝集剤を主成分とした薬剤を薬液として添加して、含水バラ物と懸濁湧水の凝集物とした後、該凝集物を、ベルトコンベアで搬送することによって、含水バラ物の荷揚げの際に不可避的に発生する、スラリー状の湧水によるベルトコンベア上の荷揚げ障害を解消することができる。

Description

含水バラ物の荷揚げ処理方法
 本発明は、水分を含む鉱石や石炭等の含水バラ物を、運搬船やはしけ(艀)などから橋形クレーンやアンローダまたは連続式アンローダのバケットによって荷揚げする時、湧水が発生することによって起こるベルトコンベア上の荷揚げ障害を解消するために開発された、含水バラ物の荷揚げ処理方法に関する。
 鉱石や石炭などのバラ物は、大部分が外国から輸入されており、そのほとんどが船舶によって輸送されている。これらのバラ物、特に鉱石や石炭は、近年、高水分のものが多く、その水分(湧水)は輸送過程においてバラ物と分離して船倉底部に溜まった状態になる。その結果、アンローダ等による荷揚げ過程の中盤或いは後半において、荷揚げのためのグラブバケットによる掴み取り後に窪みができ、そこに粉体と湧水とが混濁した状態の懸濁湧水を生成して溜まるだけでなく、やがてスラリー状態となって荷揚げ障害を引き起こすという問題があった。この問題は、バケットコンベア等からなる連続式アンローダのバケットによる荷揚げ過程でも同様に発生する。
 また、船舶からの荷揚げ中に豪雨等が発生したときは、荷揚げを継続すると否とにかかわらず、バラ物が高水分となり、雨水が船倉底部に溜まった状態となる点でも同様な荷揚げ障害現象を生じることになる。
 このことは、雨季を持つ国においても同様であり、船舶を含め橋形クレーンやアンローダを覆う屋根を備えないと、荷揚げ中のバラ物が高水分となり、荷揚げの継続に伴ってやがてスラリー状態となり、荷揚げ障害に至るという問題があった。
 このような問題に対し、従来、特許文献1および2に開示されているような方法、即ち、湧水が発生しているときは、一旦、その湧水を排水設備(吸引機)によって汲み揚げた後、荷揚げを再開するという方法などが提案されてきた。
特開昭60−204526号公報 実公昭50−13339号公報 特開昭61−60784号公報 特開昭61−164658号公報
 しかしながら、特許文献1および2で提案している汲み出し排水方法は、湧水を汲み揚げるために、船舶を排水(汲み揚げ)設備のある場所までその都度移動させるか、あるいは、排水(汲み揚げ)設備自体を移動させて船倉内から汲み揚げるなどの必要があり、作業時間が長くなるという問題があった。
 とりわけ、湧水というのは、荷揚げ途中のグラブバケットによる掴み取り後に生ずる窪みに生じることから、上記のような汲み出し排水方法では、湧水の汲み揚げ作業をたびたび繰り返す必要があって、荷揚げ作業の中断、再開を繰り返すことで、作業効率が大幅に低下するという問題があった。
 特に、近年では、鉱石や石炭は劣悪なもの、例えば、高水分含有率のものが多くを占めるようになり、こうした問題がより顕在化している。
 また、荷揚げする鉱石や石炭の水分含有率が高いと、バラ物は、湧水発生の前から流動しやすくなっていて、荷揚げ時のベルトコンベアによる搬送に支障をきたすようになり、搬送のトラブルのほかに、ベルトコンベア設備の保全上の問題も多発していた。
 さらに、特許文献1および2で提案している従来技術は、湧水のみを汲み揚げることを想定しているが、グラブバケットによる掴み取り後に生じる窪み部分には、粒径の大きいバラ物から分離した粒径の小さい粉体が流入して、多くは泥状(スラリー)化していることが多い。このようなスラリー状の液体を汲み揚げる場合、従来の排水設備では汲み揚げが困難であって、湧水が発生するごとの作業能率はさらに落ちるが、そのまま荷揚げした場合には、前述したように、荷揚げしたバラ物が流動性に富んでいるため、ベルトコンベア上から流出しやすく、これもまた、荷揚げ障害を生じさせることとなる。
 これらの問題に対し、発明者は、特許文献3および4で提案されている含水率低減方法に着目し、検討を重ねた。しかしながら、上記特許文献3および4に記載された方法では、固体である吸水性樹脂を使用するために、荷揚げ時のバラ物と均一に接触させることが難しいという問題と、吸水性樹脂は水分を含むと膨潤するためにベルトコンベアから落下しやすいという問題があることが分かった。また、吸水性樹脂は、最終的にバラ物と分離する必要があることから、含水バラ物の荷揚げの際に利用することは、極めて困難であった。
 本発明は、上記した現状に鑑み開発されたもので、含水バラ物の荷揚げの際に不可避的に発生するスラリー状の湧水によるベルトコンベア上の荷揚げ障害を解消するための、含水バラ物の荷揚げ処理方法を提案することを目的とする。
 すなわち、本発明の要旨構成は次のとおりである。
1.鉱石や石炭を含む含水バラ物を、橋形クレーンやアンローダのグラブバケットを用いて貨物船からベルトコンベア上に荷揚げするに当たり、粉体が懸濁した懸濁湧水が発生して含水バラ物に含有し、含水バラ物の含水率が上昇した場合に、上記含水バラ物に対し、上記ベルトコンベア上または上記橋形クレーンやアンローダ機中のホッパー内で、高分子凝集剤を主成分とした薬剤を薬液として添加して、含水バラ物と懸濁湧水の凝集物とした後、該凝集物を、ベルトコンベアで搬送する含水バラ物の荷揚げ処理方法。
2.前記薬液の添加量は、バラ物の含水量に対して0.1~1mass%の範囲とする前記1に記載の含水バラ物の荷揚げ処理方法。
3.前記薬液の添加量を、バラ物の含水量に対して、さらに、0.15~0.4mass%の範囲とする前記1または2に記載の含水バラ物の荷揚げ処理方法。
4.前記含水バラ物の凝集物中のバラ物、湧水および薬剤を、さらに、ベルトコンベアジャンクション部位の落差部分で混ぜる前記1~3のいずれか1に記載の含水バラ物の荷揚げ方法。
5.前記ベルトコンベア上での薬剤の添加を、散布する形式で行うと共に、散布後のベルトコンベア上に達した上記薬剤を、前記ベルトコンベアジャンクション部位の落差部分で、再び、前記含水バラ物の凝集物に混ぜる前記1~4のいずれか1に記載の含水バラ物の荷揚げ方法。
6.前記ベルトコンベア上での薬剤の添加を、ミストの形式で噴霧すると共に、噴霧後のベルトコンベア上に達した上記薬剤を、前記ベルトコンベアジャンクション部位の落差部分で、再び、前記含水バラ物の凝集物に混ぜる前記1~4のいずれか1に記載の含水バラ物の荷揚げ方法。
7.前記含水バラ物の含水率を23mass%以下に制御して行う前記1~6のいずれか1に記載の含水バラ物の荷揚げ方法。
8.前記含水バラ物の含水率の制御を高分子吸水剤の添加で行う前記7に記載の含水バラ物の荷揚げ方法。
 本発明によれば、貨物船の船倉内で、荷場げの途中に、粉体が懸濁した懸濁湧水が発生してバラ物に含有し、バラ物の含水率が上昇した場合でも、バラ物や、湧水由来の含有水がベルトコンベアから溢れることなく搬送可能となり、懸濁湧水の汲み揚げ作業を行なう必要がなくなる。そのため、従来のように荷揚げ作業を中断させる必要がなく、連続的な荷揚げ作業を行なうことができるので、荷揚げ効率が向上する。
貨物船内バラ物をアンローダのグラブバケットを使って荷揚げする様子を示す説明図である。 (a)~(e)は、懸濁湧水に高分子凝集剤を添加した時の作用を説明する概念図である。 荷揚げバラ物に薬液(高分子凝集剤含有)をミスト噴霧したときの状態を示す概念図である。 荷揚げバラ物に薬液(高分子凝集剤含有)をシャワー状態で散布したときの状億を示す概念図である。 荷揚げバラ物に薬液(高分子凝集剤含有)をミスト噴霧するとき、薬液付着を促進する噴霧法を示す概念図である。 鉱石専用船と荷揚げ後のベルトコンベアによる搬送ルートを示す図である。 各実験条件(テストi~iii)により得られたカラジャス鉄鉱石の積み山の様子を示した図である。 各実験条件(テストiv~vii)により得られたカラジャス鉄鉱石の積み山の様子を示した図である。 ベルトコンベアのリターン側、およびベルトコンベアの端部位置におけるジャンクション部、の撮影箇所を示した図である。
 以下、本発明を具体的に説明する。
 一般に、図1に示すように、貨物船の船倉(荷室)1に収容されている含水バラ物2(以下、単に「バラ物」とも言う)と呼ばれている鉱石や石炭(以下、「鉱石類」とも言う)を、橋形クレーンやアンローダ5、または、連続式アンローダのバケットを使って荷揚げする際、鉱石類堆積層の下層部分には湧水からなる水溜りが発生する。そして、荷揚げ作業が進み、荷揚げ作業が鉱石類堆積層の中層から下層部分に達すると、含水バラ物堆積層の一部には窪み4が生じる。その窪み4内に、主に礫状の鉱石類から分離した粉体が分散して懸濁した懸濁湧水3が溜まることが知られている。なお、図中、1は船倉、2は含水バラ物、3は懸濁湧水、4は窪み、5はアンローダ、6はグラブバケットである。
 船倉1内の含水バラ物2の堆積層に発生する懸濁湧水3は、荷揚げが進むと共に、次第にスラリー化して、アンローダ5のグラブバケット6などでの荷揚げが困難になる。というのは、一旦、スラリー化したものは、たとえグラブバケット6で掴み得たとしても、アンローダ機内のホッパー(図示省略)やベルトコンベア部分(図示省略)で流出してしまい、アンローダの運転を継続できなくなるからである。特に、船倉1の底部では、懸濁湧水がスラリー化することが多く、荷揚げ作業をしばしば中断して、排水作業をしなければならない。
 そこで、本発明では、バラ物の含水率が高く、荷役能率が悪化する時、アンローダ機(連続式アンローダ機含む)内のホッパー内に装入されたバラ物、またはベルトコンベア上に荷揚げされたバラ物に対して、高分子凝集剤を添加して粒子の凝結・凝集を起こさせて粒状化させる、すなわち凝集物とすることで、湧水をバラ物とともに搬送することを可能とし、荷揚げ作業の中断を防止し、荷揚げ効率の向上を図るようにした。即ち、本発明に従えば、鉱石類等の含水バラ物2と共に懸濁湧水3を、正確にはその懸濁湧水3の構成成分を、固体状態(凝集物)にして、ベルトコンベアによる搬送を可能とするのである。
 なお、本発明における含水率(量)は、バラ物の質量に対する水分量の比率である。
〔搬送可能となる原理〕
 図2(a)および(b)は、粉体:Pを含む懸濁湧水に含まれる水:Wmと、それに添加される高分子凝集剤:Aを示すものである。このAがP+Wmに添加されると、図2(c)に示すように、WmとPの一部が、高分子凝集剤:Aにおける分子鎖の枝状に広がったポリマー:Bに絡め捕られるようにして凝結し、図2(d)に示すような粒径の小さい凝結粒子7の幾つかを形成する。その後、混合(ジャンクション部位での落下混合を含む)と共に、その凝結粒子7の複数個が、やがて凝集(集合)して、図2(e)に示すような粒径の大きな凝集粒子8へと成長する。従って、本発明における含水バラ物の凝集物とは、上記した凝集粒子と凝結粒子とが任意の比率(いずれかが100%であっても良い)で構成されているものである。なお、本発明における%表示は、特に断らない限り、mass%を意味する。
 図2(e)に示したような段階になると、Wmは固化した状態となって、バラ物に付着する付着状態となる。かかる状態となることにより、バラ物は、ベルトコンベアでの搬送が容易となって、懸濁湧水自体もバラ物と共に、ベルトコンベアから溢流することなく搬送することができ、もって、原料ヤードなどへのバラ物の送給がトラブル無くできるようになるのである。
 また、本発明における薬液を構成する成分は、N,C,Hといった、次工程の焼結機での焼成の際に燃え、製品中に残らないものなので、薬液分離の必要が要らない。従って、本発明は、薬液分離の工程がいらないというメリットを有している。
 さらに、上述したように、水や、バラ物の溢流が生じると、ベルトコンベア背面に生じる付着水や、付着粉により、バラ物等の搬送に支障が出る他、コンベアロールおよび駆動系に、付着水や、付着粉に起因する故障が発生するが、本発明では、水やバラ物が、ベルトコンベアから溢流することがないため、高含水率のバラ物搬送時であっても、これらの問題が効果的に防止できるのである。
 ここに、図3は、ベルトコンベア上に荷揚げされたバラ物に対し、ミスト状態で均一に表面に噴霧した場合の説明図である。この場合、バラ物およびWmの混在物の表面しか高分子凝集剤の付着がないものの、数%程度の含水率のバラ物であれば、十分に実施可能な形態の一例である。
 加えて、本発明の好ましい実施形態としては、懸濁湧水の発生前から生じる高含水率の含水バラ物の荷揚げ、および、懸濁湧水の発生、並びにその後も続く高含水率バラ物の荷揚げに際し、高含水率バラ物に対しての高分子凝集剤の添加を、散布する形式で行うと共に、散布することによりベルトコンベア上に達した高分子凝集剤を、ベルトコンベアジャンクション部位の落差部分で、落下するバラ物や湧水上に排出(再散布)する、という形態も挙げられる。かかる形態とすることで、前述の凝結作用(擬似粒子化したものを含んでも良い)および凝集作用を促進して、荷揚げ作業が一層効率化するからである。
 具体的には、図4に示すように、高分子凝集剤を主成分とした薬剤をそのまま薬液としてシャワー状に散布する形式であって、シャワー状で供給した高分子凝集剤は、バラ物の表面に付着するほか、バラ物を通過してベルトコンベア表面に達するように散布する。かかる状態として散布することにより、バラ物の幅方向において、たとえ散布時において高分子凝集剤の付着に不均一さが生じていたとしても、ベルトコンベアジャンクション(落ち口)に搬送されたときには、ベルト表面に残る高分子凝集剤が、落下したバラ物や湧水と再び混在することになって、ミスト状態で供給した状態に比べて、高分子凝集剤とバラ物や、湧水との混合が進み、バラ物や、湧水、高分子凝集剤を混ぜて凝集物とする作用が促進されるのである。
 さらに、図5は、他の噴霧要領を示している。すなわち、バラ物の表面に、高分子凝集剤のミストを噴霧し付着させるだけでなく、ベルトコンベアジャンクション部分において、その上流側では背面(裏面)となっていた側に、高分子凝集剤を主成分とした薬剤をそのまま薬液としたミストを噴霧し、さらにその表面にも高分子凝集剤を主成分とした薬剤を薬液としたミストを噴霧した例である。かかる噴霧方式を採用することで、高分子凝集剤は、バラ物、湧水と効果的に混在することになって、ミスト状態で供給しても、高分子凝集剤との混合が進んで、バラ物、湧水および高分子凝集剤の凝集作用を促進する作用を生じさせることができるのである。
〔高分子凝集剤〕
 本発明では、高分子凝集剤を主成分とした薬剤を薬液として使用する。あるいは薬剤が固体状であれば、溶液に分散させ薬液として使用する。
 また、上記高分子凝集剤としては、高分子のもつ静電気力または水素結合によって、粉体に吸着活性を生じて粉体間架橋作用を起すもので、固粒化構造を形成して凝結粒子(凝集物)を形成させる効果を有するものであれば、いずれも使用可能である。例えば、粉末、頼粒状または液状の有機系凝集剤である、ポリアクリルアミド系(アルリルアミドとアクリル酸ナトリウムを共重合したもの)、ポリビニルアミジン系、両性高分子系の凝集剤などは、凝結作用のみならず、凝集作用を発揮するので好ましい。なお、公知の無機系凝集剤をさらに混ぜて併用することとしてもよい。
 さらに、上記高分子凝集剤として、アクリル酸カチオンポリマー、アクリルアミド系カチオンポリマー、メタクリル酸系ポリマー、メタクリル酸アミノエステルカチオンポリマー、アミジンポリマー、アニオン性W/O型エマルジョンポリマーなどを使用することもできる。
 本発明において、高分子凝集剤が主成分であるとは、一般に、凝集効果があると認められている量以上の高分子凝集剤を含有している薬剤を指し、通常は高分子凝集剤40%程度以上の含有量の薬剤である。勿論、高分子凝集剤:100%のものを、そのまま薬剤として用いても構わない。
 なお、薬剤が固体状、または薄めて使用する場合、溶液は、水、有機溶媒が挙げられ、溶質は、C,H,N,Oの重合体、溶媒は、炭化水素系溶媒(C,H,Oのみ)が挙げられる。
 さらに、本発明における薬液の添加量は、バラ物の含水量に対して0.1~1%程度含まれていることが好ましい。
 というのは、上記範囲を満足すると、後述する試験結果からも確認されたことであるが、過水分による流動性が低下すると共に、凝集剤を過剰に投与した際の粘着性が発現しないためである。
 なお、上記添加量は、バラ物の含水量に対して0.15~0.4%程度含まれていることがより好ましい。また、本発明において、薬液の添加比率(量)は、上述したようにバラ物の含水量に対する比率である。
 ここに、薬液の添加速度は、特に限定はなく、設備等によって適宜設定すればよいが、一例としては、2~10(L/min)程度が挙げられる。
 次に、本発明の作用効果を確認するために、図6に示す搬送ルートを用いて行なった実験について説明する。
 この実験は、含水率:9.6%のブラジル産カラジャス鉄鉱石を700t使用し、また荷揚げ手段としてアンローダを用いた。
 通常の鉱石は、保水性があるが、カラジャス鉄鉱石は保水性が少なく、含水率:8.0%程度で、懸濁湧水の発生が懸念され、荷揚げに支障をきたす鉱石である。
 テスト1の実験条件を表1に示す。実験は、上記含水率:9.6%のカラジャス鉄鉱石を各100tずつ用い、薬液の添加方法、鉱石の搬送量、薬液添加速度及び濃度をそれぞれ変化させたものである。なお、表中、流れ時間とは、薬剤を添加していた時間のことである。
 なお、薬剤中の高分子凝集剤は、高分子ポリマーであって、アクリル酸カチオンポリマーやアクリルアミド系カチオンポリマー、メタクリル酸系ポリマー、メタクリル酸アミノエステルカチオンポリマー、アミジンポリマー、アニオン性W/O型エマルジョンポリマー等であり、薬剤をそのまま薬液として使用した。
Figure JPOXMLDOC01-appb-T000001
 鉱石専用船からの荷揚げは、アンローダに付属のグラブバケットを用いる荷揚げ方式とし、岸壁に沿って走行する第1ベルトコンベアの後の、第2ベルトコンベア(OR−62)部分を、実験のための薬液添加位置とした。図中、破線の四角で囲まれた位置a~fは、それぞれベルトコンベアジャンクション部分を示す。したがって、本実験では、ベルトコンベアジャンクション部位は、第2ベルトコンベア(OR−62)末端b、第3ベルトコンベア(OR−63S)末端c、第4ベルトコンベア(OR−74R)末端d、第5ベルトコンベア(OR−75)末端e、および、第6ベルトコンベア(OR−24)末端fの計5ケ所である。第1ベルトコンベア(OR−61)は、グラブバケット荷揚げの筆頭となるベルトコンベアである。
 なお、実機では、第1ベルトコンベアを薬液添加位置とすることもできる。
 実験結果を、図7および表1で説明する。
 前記鉱石専用船からの荷揚げの過程で、各100tずつの鉱石を用い、上記表1に示した実験条件により得られたカラジャス鉄鉱石の積み山を、図7に写真にて示す。高分子凝集剤を使用しない実験1(テストi)のケースでは、積み山裾野に、バラ物の流れ出した部分が観察された。このように流れ出した部分は、バラ物がベルトコンベアで搬送される際には、ベルトに付着し、またベルトから溢流し、前述したように、ベルトコンベア背面に付着して搬送に支障が出る他、コンベアロールや、駆動系に付着して故障の原因になると推察され、ベルトコンベアジャンクション部では、付着物の発生などによる詰り事故が予測される。
 実験2(テストii)および実験5(テストv)のケースは、薬液をミスト状態で、0.22%、0.34%の比率で添加(噴霧添加)した例である。
 実験2(テストii)のケースは、積み山裾野に、バラ物が流れ出した部分は観察されなかったが、ベルト付着物の発生が確認された。これは、ミスト添加に伴う、バラ物と湧水に対する、高分子凝集剤の混合量不足と推察される。
 一方、実験5(テストv)のケース、すなわち薬液の添加比率を増加させた例では、積み山の裾野部分に、粉体の塊(ダマ)が観察され、ベルト付着物発生は無かったものの、ダマ発生では、ベルトコンベア上からの落下を生じると予想された。粉体の塊(ダマ)発生は、高分子凝集剤の混合ムラと考えられ、薬液量の多い部分に発生したものと考えられる。
 なお、上記予想の根拠は、ベルトコンベア上に鉱石が乗っていない状態で薬液を添加してしまった際に、ベルトのテール(反転部)のクリーナー部で粘性の高い薬剤がベルト下部に堆積するという現象が起きたからである。
 実験3(テストiii),4(テストiv),6(テストvi)および7(テストvii)のケースは、薬液の添加方式の差異であって、ミスト噴霧方式とストレート散布方式との差異を明らかにするために行ったもので、薬液を、それぞれ、0.19%、0.24%、0.36%および0.17%の比率で添加し、ベルトコンベア上の荷揚げされたバラ物に対しストレート散布方式、すなわち上方からシャワー状で散布する形式として添加した実験である。
 上記実験の結果、ストレート方式では、ミスト(噴霧添加)と比べて、少ない添加量で有利な効果が認められ、ベルト付着物発生は観察されなかった。また、薬液を高比率で添加した実験4および6のケース(添加比率はそれぞれ0.24%と0.36%)において、積み山裾野部分に小さなダマが観察されたものの、ベルトコンベア上からの落下を生じる支障はないと予想される程度であった。
 なお、上記予想根拠は、手で実際にダマに触ってみた際に表面に粘着性がなかったためである。
 以上の結果は、前掲図3で説明したように、高分子凝集剤を、ミスト状態で、バラ物表面に均一に噴霧した場合は、バラ物およびWmの混在物の表面にしか、高分子凝集剤の付着は生じない。そして、バラ物およびWmが、このような状態でベルトコンベアジャンクション(落ち口)に搬送されたとしても、前記表面にしか高分子凝集剤の付着がないバラ物は、高分子凝集剤による付着が促進されることは無く、バラ物およびWmは分離した状態のまま、その後も搬送されてしまう。したがって、ベルトコンベアからの溢流により種々の支障(評価:△または×)をきたすことになる。
 なお、上記実験において、表1中の○、△、×の評価基準は、以下のとおりである。
 ○:全体が改質済みかつダマなしで表面にべたつきなし
 △:全体が改質済みだが、一部に薬剤過多によるべたつき箇所(ダマ)有り
 ×:改質出来ている場所と出来ていない場所がある上に薬剤過多の場所も有り(ダマ)
 また、ストレート散布形式(図4参照)を採用した場合、高分子凝集剤は、図4に示したように、バラ物を通過してベルトコンベア表面に達している。そのため、たとえ、散布時に、バラ物表面の高分子凝集剤の付着量に不均一さが生じていたとしても、ベルトコンベアジャンクション(落ち口)に搬送されたときに、ベルト表面に残った高分子凝集剤が、落下したバラ物や、湧水と再び混在することになって、ミスト状態で供給した状態に比べて、一段と高分子凝集剤の混合が進むこととなり、上記評価が○となったものと推察される。
〔添加範囲の実験例〕
 本発明に使用する高分子凝集剤を主成分とする薬剤で、以下の実験を行った。
 使用した薬剤は、表2では、クリサット(登録商標、栗田工業(株)製)、表3では、ハイブリッドポリマーα(登録商標、テクニカ合同(株)製)である。いずれも土壌改良剤として提案されている薬剤である。
 カラジャス鉄鉱石に水を加え、含水率を調整した後、上記薬剤を直接、そのまま薬液として加え、撹拌時間を調整しながら改質可能かどうかを判断した。
 ここで、含水率:9.6%では、表1において、本発明に従う限りにおいて問題が無いことが判明しているので、本実験では、9.6%を超える含水率の場合において、表1に示した実験結果と同じ様に、荷揚げ上問題がないように改質できるか、について実験した。改質とは、ベルトコンベアで搬送可能かどうかであり、その可否を改質の判定基準とした。
 表2に示したように、クリサットを薬剤としてそのまま薬液として用い、バラ物の含水率を、9.6%を超える12%以上として、バラ物の改質の可否を確認する実験を行った。薬液の添加量は、第一実験を0.4%とした。また、薬液の添加量を上昇させ、1.0%とした第二実験も行った。
Figure JPOXMLDOC01-appb-T000002
 その結果、表2に示したように、バラ物の含水率が9.6%を超えた20%の含水率であっても、バラ物の改質は可能であるが、含水率が24%以上になると、バラ物の改質が困難になった。
 ついで、薬液の添加濃度を、0.4%から1.0%として第二実験を行ったが、第一実験と同様に、バラ物の含水率が24%以上になると、バラ物の改質が困難という結果を得た。
 次に、表3に示したように、ハイブリッドポリマーαを薬剤として、そのまま薬液として用い、バラ物の含水率が、9.6%を超えた11%以上として実験した。また、表2よりに示した結果から、バラ物の含水率が24%以上では、バラ物の改質が困難になるという知見を得たため、含水率の試験水準のうち一つを24%から23%に変更した。ただし、最高含水率は、上記表2に記載した実験と同様に54%として実験を行った。
Figure JPOXMLDOC01-appb-T000003
 薬液の添加濃度を、0.1%として第三実験を行った。その結果、バラ物の含水率が9.6%を超えた20%であっても、バラ物の改質は可能であるとの結果を得た。ここで、バラ物が23%の含水率の場合、改質に、ある問題点が生じることが判明した。というのは、バラ物がわずかながらしか固まらないという問題である。そこで、この問題を解決するために、薬液の添加濃度を、0.1%から0.2%として、再度実験を実施した。その結果、含水率が23%の条件では、薬液濃度を上昇させることで、上記問題が解消できることを確認した。
 したがって、本発明では、カラジャス鉄鉱石の荷揚げにおいて、含水率23%以下で実施可能と判断した。
 カラジャス鉄鉱石の荷揚げにおいて、懸濁湧水の生起からの含水率判定や、中性子水分計等オンラインの測定器を用いるか、オートサンプラーでサンプルを採取し、分析センターにて簡易水分測定で求めた含水率が24%以上となる場合には、含水率の低い部分である湧水発生周囲のカラジャス鉄鉱石を、クラブバケットあるいは連続式アンローダのクラブ部分で、含水率の高い湧水発生部分に投入してから、カラジャス鉄鉱石と湧水を同時に荷揚げするなどにより、含水率を23%以下の領域まで低下をさせることができる。また、上記含水率の制御は、高分子吸水剤(吸水性高分子ポリマー)の添加で行うこともできる。かかる手順を踏むことによって、含水率超過の問題は解消が出来るため、実操業上は有利と考える。
 以上、カラジャス鉄鉱石を例に本発明を説明したが、本発明の条件に従う限り、他の鉱石類でもよく、新規な鉄鉱石の場合は、前記した実験一や二などに記載した実験対象を新規な鉄鉱石として実施することで、上記の含水率の目標値を定めることができる。
 薬液添加は、カラジャス鉄鉱石を運搬船から荷揚げする際、水分過多となる含水率:9.6%以上の領域に至ったときを添加開始とした。
 上記含水率:9.6%以上の領域に至る時期を確認する手段としては、カラジャス鉄鉱石を運搬船から荷揚げする際、グラブバケットで掴み取った後の窪みに発生する懸濁湧水の生起から判定することが可能である。すなわち、グラブバケットで掴み取った後に発生する懸濁湧水量と、グラブバケット容量からその水分量を推定することができる。または、カラジャス鉄鉱石を運搬船から荷揚げする際、最初の荷揚げにおいて、カラジャス鉄鉱石の水分変化を中性子水分計等オンラインの測定器か、オートサンプラーでサンプルを採取し、分析センターにて簡易水分測定で分析した水分量の変化と、グラブバケットで掴み取った後に発生する懸濁湧水量(目視で測定)との関係から、次の運搬船からの荷揚げが含水率:9.6%以上の領域に至るか否かの推定は可能である。
 なお、湧水由来の含有水がベルトコンベアから溢れることを極力避けるために、安全をとるならば、含水率:9.6%以上の領域に至る時期の荷揚げから、バラ物に薬剤添加を開始すればよい。
 〔実施例1〕
 図6における第1ベルトコンベア上を薬剤添加位置として、以下の実験を実施した。
 鉄鉱石の荷揚げで、含水率が7.9~23%のカラジャス鉄鉱石を、運搬船から荷揚げするに当たり、前記表2および表3に示した条件中、改質の可否が○となった条件で、薬液をそれぞれ添加した。
 ここに、薬液は、クリサットC−333L,ハイブリットポリマーαとした。なお、クリサットC−333L,ハイブリットポリマーαは、共に液体である。
 添加効果は、図8に示すベルトコンベアのリターン側(l)およびベルトコンベア端部位置のジャンクション部の(II)、(III)および(IV)を、荷揚げが終了した後撮影して、それぞれ判定した。
 判定の結果、図6中の、aおよびbの位置において若干の付着物生成があったほかは、c位置以降(第3ベルトコンベア以降の、図8に示したリターン側(l)およびベルトコンベア端部位置のジャンクション部の(II)、(III)および(IV))では付着物が生じることなく、カラジャス鉄鉱石の荷揚げができることが分った。
 〔実施例2〕
 図6における第1ベルトコンベアのホッパー下流のベルトコンベア上を、薬液添加位置として、以下の実験を実施した。
 添加条件は実施例1と同じであり、薬液も同じ成分とした。また、添加効果の判定も実施例1と同様にした。
 判定の結果、図6中の、a位置において若干の付着物生成があったほかは、b位置以降(第2ベルトコンベア以降の、図8に示したリターン側(l)およびベルトコンベア端部位置のジャンクション部の(II)、(III)および(IV))では付着物が生じることなく、カラジャス鉄鉱石の荷揚げができることが分った。
 また、従来のカラジャス鉄鉱石の輸送では、前述したように、カラジャス鉄鉱石自体に水分が多く含まれていて、陸上への荷揚げに際して、湧水が多く発生していた。そのため、間欠的に懸濁湧水の除去(排水)作業を行ないつつ、鉄鉱石の荷揚げを実施していた。
 ここに、湧水の発生がない時の鉄鉱石の荷揚げ効率を100%とした時、排水作業を行なう従来の荷揚げ方法では、荷揚げ効率が65%にまで低下していた。しかしながら、上記した実施例2では、本発明に適合する荷揚げ方法を採用することで、約92%の荷揚げ効率を達成することができた。
 なお、豪雨時に、アンローダによる荷揚げを継続し、水分過多となる鉄鉱石の荷揚げの場合も同じである。
 豪雨中もアンローダのグラブバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた状態にある鉄鉱石を、運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を図6における第2ベルトコンベア上を、薬液添加位置として添加した。
 この場合において、豪雨による湧水の発生がない時の鉄鉱石の荷揚げ効率を100%とした時、排水作業を行なう従来の荷揚げ方法では、湧水発生後は、荷揚げ効率が65%にまで低下した。しかしながら、本発明に適合する荷揚げ方法を採用することで、豪雨による湧水の発生後も、約90%の荷揚げ効率を維持することができた。
 本発明の上述したバラ物の荷揚げ技術は、例示した含水鉱石や石炭の他、砂利、砂、穀物等のバラ物の荷揚げ作業にも適用が可能である。
1 船倉
2 バラ物
3 懸濁湧水
4 窪み
5 アンローダ
6 グラブバケット
7 小さい凝結粒子
8 大きい凝集粒子
A 高分子凝集剤
B ポリマー
P 粉体
Wm 水

Claims (8)

  1.  鉱石や石炭を含む含水バラ物を、橋形クレーンやアンローダのグラブバケットを用いて、貨物船からベルトコンベア上に荷揚げするに当たり、粉体が懸濁した懸濁湧水が発生して含水バラ物に含有し、含水バラ物の含水率が上昇した場合に、
     上記含水バラ物に対し、上記ベルトコンベア上または上記橋形クレーンやアンローダ機中のホッパー内で、高分子凝集剤を主成分とした薬剤を薬液として添加して、含水バラ物と懸濁湧水の凝集物とした後、該凝集物を、ベルトコンベアで搬送する含水バラ物の荷揚げ処理方法。
  2.  前記薬液の添加量は、バラ物の含水量に対して0.1~1mass%の範囲とする請求項1記載の含水バラ物の荷揚げ処理方法。
  3.  前記薬液の添加量を、バラ物の含水量に対して、さらに、0.15~0.4mass%の範囲とする請求項1または2に記載の含水バラ物の荷揚げ処理方法。
  4.  前記含水バラ物の凝集物中のバラ物、湧水および薬剤を、さらに、ベルトコンベアジャンクション部位の落差部分で混ぜる請求項1~3のいずれか1に記載の含水バラ物の荷揚げ方法。
  5.  前記ベルトコンベア上での薬剤の添加を、散布する形式で行うと共に、散布後のベルトコンベア上に達した上記薬剤を、前記ベルトコンベアジャンクション部位の落差部分で、再び、前記含水バラ物の凝集物に混ぜる請求項1~4のいずれか1に記載の含水バラ物の荷揚げ方法。
  6.  前記ベルトコンベア上での薬剤の添加を、ミストの形式で噴霧すると共に、噴霧後のベルトコンベア上に達した上記薬剤を、前記ベルトコンベアジャンクション部位の落差部分で、再び、前記含水バラ物の凝集物に混ぜる請求項1~4のいずれか1に記載の含水バラ物の荷揚げ方法。
  7.  前記含水バラ物の含水率を23mass%以下に制御して行う請求項1~6のいずれか1に記載の含水バラ物の荷揚げ方法。
  8.  前記含水バラ物の含水率の制御を高分子吸水剤の添加で行う請求項7に記載の含水バラ物の荷揚げ方法。
PCT/JP2013/078112 2012-10-12 2013-10-09 含水バラ物の荷揚げ処理方法 WO2014058074A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380052494.1A CN104718146B (zh) 2012-10-12 2013-10-09 含水散装物的卸载处理方法
BR112015008025-1A BR112015008025B1 (pt) 2012-10-12 2013-10-09 Método para descarregar material a granel contendo água
JP2014540922A JP5896037B2 (ja) 2012-10-12 2013-10-09 含水バラ物の荷揚げ処理方法
AU2013330776A AU2013330776B2 (en) 2012-10-12 2013-10-09 Method for unloading water-containing bulk material
KR1020157012180A KR101747569B1 (ko) 2012-10-12 2013-10-09 함수 벌크재의 언로딩 처리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-226979 2012-10-12
JP2012226979 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014058074A1 true WO2014058074A1 (ja) 2014-04-17

Family

ID=50477532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078112 WO2014058074A1 (ja) 2012-10-12 2013-10-09 含水バラ物の荷揚げ処理方法

Country Status (8)

Country Link
JP (1) JP5896037B2 (ja)
KR (1) KR101747569B1 (ja)
CN (1) CN104718146B (ja)
AU (1) AU2013330776B2 (ja)
BR (1) BR112015008025B1 (ja)
MY (1) MY175747A (ja)
TW (1) TWI558639B (ja)
WO (1) WO2014058074A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151524A1 (ja) * 2014-04-01 2015-10-08 Jfeスチール株式会社 含水バラ物処理方法および含水バラ物への凝集剤添加装置
WO2018066333A1 (ja) * 2016-10-04 2018-04-12 栗田工業株式会社 鉱物原料の付着及び詰まり防止方法
JP2020040833A (ja) * 2018-09-05 2020-03-19 日鉄環境株式会社 製鉄原料の山積み方法
WO2021187539A1 (ja) * 2020-03-18 2021-09-23 日本製鉄株式会社 含水バラ物の処理方法、及び凝集剤添加装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY175747A (en) 2012-10-12 2020-07-08 Jfe Steel Corp Method for unloading water-containing bulk material
CN104163344B (zh) * 2013-05-17 2016-03-02 宝山钢铁股份有限公司 大型散货轮船舱吸水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204526A (ja) * 1984-03-29 1985-10-16 Nisshin Steel Co Ltd 鉱石類荷揚途次における船倉からの水分除去方法
JPS6160784A (ja) * 1984-09-03 1986-03-28 Kawasaki Steel Corp 野積み堆積物の含水量低減方法
JP2000176493A (ja) * 1998-12-17 2000-06-27 Kyoei Kinzoku Kogeisha:Kk 汚泥固化材及び固化処理方法
JP2002371279A (ja) * 2001-06-14 2002-12-26 Chuo Kogyo Kk 土壌改良剤
JP2005013973A (ja) * 2003-06-25 2005-01-20 Eco Project:Kk 汚泥の固化処理材、それを用いる汚泥の処理方法及び汚泥固化物の再利用方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248741A (ja) * 2005-03-14 2006-09-21 Chugoku Electric Power Co Inc:The 石炭灰の水分調整装置および方法
CN201058341Y (zh) * 2007-03-09 2008-05-14 永城煤电集团有限责任公司 胶带输送机重载自动防尘喷雾装置
CN201085956Y (zh) * 2007-08-14 2008-07-16 徐州天科机械制造有限公司 煤泥粗分机
JP5163062B2 (ja) * 2007-11-08 2013-03-13 Jfeスチール株式会社 高炉の操業方法
CN101732923B (zh) * 2008-11-11 2011-08-17 河南理工大学 井下水煤移动脱水装置
CN201338866Y (zh) * 2008-12-11 2009-11-04 天津钢铁有限公司 一种堆料机堆料打水装置
MY175747A (en) 2012-10-12 2020-07-08 Jfe Steel Corp Method for unloading water-containing bulk material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204526A (ja) * 1984-03-29 1985-10-16 Nisshin Steel Co Ltd 鉱石類荷揚途次における船倉からの水分除去方法
JPS6160784A (ja) * 1984-09-03 1986-03-28 Kawasaki Steel Corp 野積み堆積物の含水量低減方法
JP2000176493A (ja) * 1998-12-17 2000-06-27 Kyoei Kinzoku Kogeisha:Kk 汚泥固化材及び固化処理方法
JP2002371279A (ja) * 2001-06-14 2002-12-26 Chuo Kogyo Kk 土壌改良剤
JP2005013973A (ja) * 2003-06-25 2005-01-20 Eco Project:Kk 汚泥の固化処理材、それを用いる汚泥の処理方法及び汚泥固化物の再利用方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151524A1 (ja) * 2014-04-01 2015-10-08 Jfeスチール株式会社 含水バラ物処理方法および含水バラ物への凝集剤添加装置
WO2018066333A1 (ja) * 2016-10-04 2018-04-12 栗田工業株式会社 鉱物原料の付着及び詰まり防止方法
JP2018058017A (ja) * 2016-10-04 2018-04-12 栗田工業株式会社 鉱物原料の付着及び詰まり防止方法
JP2020040833A (ja) * 2018-09-05 2020-03-19 日鉄環境株式会社 製鉄原料の山積み方法
JP7299027B2 (ja) 2018-09-05 2023-06-27 日鉄環境株式会社 製鉄原料の山積み方法
WO2021187539A1 (ja) * 2020-03-18 2021-09-23 日本製鉄株式会社 含水バラ物の処理方法、及び凝集剤添加装置
JP2021147152A (ja) * 2020-03-18 2021-09-27 日本製鉄株式会社 含水バラ物の処理方法、及び凝集剤添加装置
JP7424876B2 (ja) 2020-03-18 2024-01-30 日本製鉄株式会社 含水バラ物の処理方法、及び凝集剤添加装置

Also Published As

Publication number Publication date
MY175747A (en) 2020-07-08
BR112015008025A2 (pt) 2017-07-04
JP5896037B2 (ja) 2016-03-30
KR20150066583A (ko) 2015-06-16
BR112015008025B1 (pt) 2020-12-15
AU2013330776A1 (en) 2015-04-23
AU2013330776B2 (en) 2016-05-26
CN104718146A (zh) 2015-06-17
CN104718146B (zh) 2017-03-08
KR101747569B1 (ko) 2017-06-14
TW201425196A (zh) 2014-07-01
TWI558639B (zh) 2016-11-21
JPWO2014058074A1 (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5896037B2 (ja) 含水バラ物の荷揚げ処理方法
JP5927807B2 (ja) 石炭及び/又は鉄鉱石スラリーの改質方法
JP5910810B2 (ja) 含水バラ物の荷揚げ方法
JP6131902B2 (ja) 含水バラ物への薬液添加装置
JP6505668B2 (ja) 含水バラ物処理方法および含水バラ物への凝集剤添加装置
JP7299027B2 (ja) 製鉄原料の山積み方法
JP3686020B2 (ja) スラリーの脱水方法
KR101773271B1 (ko) 함수 벌크재의 언로딩 방법
WO2021187539A1 (ja) 含水バラ物の処理方法、及び凝集剤添加装置
WO2024004298A1 (ja) 粉体性状改質方法、含水バラ物の製造方法、含水バラ物および焼結用原料の造粒方法
JP5999393B2 (ja) 含水バラ物の荷揚げ方法
JP2017087166A (ja) 非粘着性物質による表面処理方法
CN206168043U (zh) 一种水砂分离装置
TWI558640B (zh) Discharge method of watery bulk cargo
JP4035090B2 (ja) 建築掘削土の処理方法
CN109963932B (zh) 增强散装固体从表面释放
JP2013100181A (ja) 連続式アンローダによる原料の荷役方法
JP2006316530A (ja) 撒き出し装置および撒き出し工法
JPS62218325A (ja) 粉粒体のスラリ−化搬送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015008025

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013330776

Country of ref document: AU

Date of ref document: 20131009

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157012180

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201502850

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13845468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015008025

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150410

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015008025

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2012-226979; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULAR(ES), INVENTOR(ES), NUMERO DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR QUE NAO FOI POSSIVEL IDENTIFICAR OS TITULARES DO PEDIDO PRIORITARIO NOS DOCUMENTOS JUNTADOS AO PROCESSO, TAMPOUCO NOS APRESENTADOS NA OMPI, POIS SE ENCONTRAM EM JAPONES.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01Y

Ref document number: 112015008025

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.5 NA RPI NO 2539 DE 03/09/2019 POR TER SIDO INDEVIDA.

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112015008025

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3.2 NA RPI NO 2538 DE 27/08/2019 POR TER SIDO INDEVIDA.