WO2014057994A1 - 使用済み吸収性物品を処理する方法 - Google Patents

使用済み吸収性物品を処理する方法 Download PDF

Info

Publication number
WO2014057994A1
WO2014057994A1 PCT/JP2013/077533 JP2013077533W WO2014057994A1 WO 2014057994 A1 WO2014057994 A1 WO 2014057994A1 JP 2013077533 W JP2013077533 W JP 2013077533W WO 2014057994 A1 WO2014057994 A1 WO 2014057994A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyzed water
absorbent article
pulp
water
minutes
Prior art date
Application number
PCT/JP2013/077533
Other languages
English (en)
French (fr)
Inventor
山口 正史
孝義 小西
徹 大庭
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to ES13845695.9T priority Critical patent/ES2659014T3/es
Priority to EP13845695.9A priority patent/EP2907593B1/en
Priority to CN201380042790.3A priority patent/CN104582866B/zh
Priority to US14/435,130 priority patent/US9839708B2/en
Publication of WO2014057994A1 publication Critical patent/WO2014057994A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L11/00Methods specially adapted for refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/0075Disposal of medical waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • B29B2017/0296Dissolving the materials in aqueous alkaline solutions, e.g. NaOH or KOH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4871Underwear
    • B29L2031/4878Diapers, napkins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for treating a used absorbent article.
  • a used paper diaper is a method for disinfecting and processing used paper diapers, in which lime, hypochlorous acid, and used paper diapers are put into a processing tank and stirred in the processing tank. Agitating for a predetermined time while supplying the minimum possible water, draining the liquid in the treatment tank to the outside of the treatment tank and dehydrating it, collecting the discharged wastewater, performing water quality treatment and discarding it.
  • a characteristic method for processing used paper diapers has been proposed.
  • Patent Document 1 since a sufficient amount of lime is added to decompose the polymer in the disposable diaper, the inside of the treatment tank becomes a high pH environment, and as a result, if rinsing is not repeated using a large amount of water, Since safety cannot be ensured, the recovered material (pulp) may not be reused as a sanitary material.
  • ozone or a chlorine-type compound is used as a disinfectant (bactericidal agent)
  • ozone has the bactericidal power and can sterilize in a short time, since the sustainability of a bactericidal power is low, it is in process.
  • an object of the present invention is to provide a method for treating a used absorbent article, which is hygienic and can recover a highly safe recycled material.
  • the present invention provides a method for treating a used absorbent article, wherein (a) acidic electrolysis treats a used absorbent article in a treatment tank using acidic electrolyzed water as a treatment liquid.
  • a method is provided that includes a water treatment step.
  • a method for treating a used absorbent article which is hygienic and can recover a highly safe recycled material.
  • FIG. 1 is a diagram illustrating one embodiment of a method of treating a used absorbent article of the present invention.
  • FIG. 2 is a diagram illustrating another embodiment of a method of treating a used absorbent article of the present invention.
  • the method of the present invention is a method for treating a used absorbent article, wherein the method comprises (a) treating the used absorbent article in a treatment tank using acidic electrolyzed water as a treatment liquid.
  • the present invention relates to a method including a water treatment step.
  • the method for treating a used absorbent article according to the present invention is a method having an excellent cleaning function and a sterilizing effect. And the method of processing the used absorbent article by this invention is hygienic, and can collect
  • the treatment tank used in the method for treating a used absorbent article according to the present invention is not particularly limited as long as it can contain treatment liquid such as acidic electrolyzed water and alkaline electrolyzed water, water, and the like.
  • the treatment tank used in the method for treating a used absorbent article according to the present invention may be a container, and examples thereof include a cylindrical container, a box-type container, a pipe-type container, and a saddle-type container.
  • the acidic electrolyzed water and the alkaline electrolyzed water described later used in the method for treating a used absorbent article according to the present invention can be generated by electrolyzing salt water. Acidic electrolyzed water is generated on the anode side, and alkaline electrolyzed water is generated on the cathode side.
  • chlorine gas is dissolved in the acidic electrolyzed water, and microorganisms and the like are produced by the action of hypochlorous acid (HClO) generated from this chlorine gas.
  • HCVO hypochlorous acid
  • the chlorine concentration in the acidic electrolyzed water is preferably 20 to 70 ppm.
  • the chlorine concentration can be measured using, for example, a chlorine ion meter CL-5F (manufactured by Kasahara Chemical Co., Ltd.).
  • alkaline electrolyzed water contains sodium hydroxide (NaOH) according to the above formula (3), and can remove proteins, oil stains, etc., and disperse proteins, oil stains, etc. by osmosis. be able to.
  • the pH of the acidic electrolyzed water is preferably 2.5 to 5.0, and the pH of the alkaline electrolyzed water is preferably 11 to 12.5.
  • the pH of acidic electrolyzed water and alkaline electrolyzed water can be measured, for example, using a pH meter manufactured by AS ONE (AS-212).
  • Examples of the used absorbent article in the method for treating a used absorbent article of the present invention include sanitary products and sanitary products such as paper diapers, incontinence pads, incontinence liners, sanitary napkins, panty liners, etc. May target humans, and may target non-human animals such as pets.
  • sanitary products and sanitary products such as paper diapers, incontinence pads, incontinence liners, sanitary napkins, panty liners, etc. May target humans, and may target non-human animals such as pets.
  • the used absorbent article is often an absorbent, a plastic, a mixture of pulp and a superabsorbent polymer (hereinafter also referred to as “SAP”). It is composed of a nonwoven fabric or the like.
  • the superabsorbent polymer examples include water-swellable crosslinked polymers obtained by polymerizing hydrophilic monomers.
  • the structure and composition thereof are not particularly limited. Specifically, a partially neutralized crosslinked polyacrylic acid polymer, a crosslinked and partially neutralized starch-acrylic acid graft polymer, an isobutylene-maleic acid copolymer, Examples thereof include saponified vinyl acetate-acrylic acid copolymers, hydrolysates of acrylamide and (co) polymers, hydrolysates of acrylonitrile polymers, (meth) acrylamide derivatives, and the like. Of these, a polyacrylate-based crosslinked polymer is preferable. As the polyacrylate-based crosslinked polymer, 50 to 90 mol% of acid groups in the polymer is preferably neutralized, and examples of the salt include alkali metal salts, ammonium salts, amine salts, and the like. Can do.
  • the absorbent article of the present invention preferably includes an alkaline electrolyzed water treatment step in which (b) the used absorbent article is treated in a treatment tank using alkaline electrolyzed water as a treatment liquid (aspect 1).
  • the cleaning function is further improved, the bactericidal action is further improved, the residual chlorine of the recycled material such as recovered pulp is not detected (less than 1 ppm), and the pH is in the range of 3.1 to 9.8. Is within.
  • the (b) alkaline electrolyzed water treatment step is a pre-process of the (a) acidic electrolyzed water treatment step (aspect 2).
  • the cleaning function is further improved, the bactericidal action is further improved, the residual chlorine of the recycled material such as recovered pulp is not detected (less than 1 ppm), and the pH is in the range of 3.1 to 9.8. Is within.
  • in (b) alkaline electrolyzed water treatment step protein, oil stains and the like are dropped from the used absorbent article and desorbed, and thereafter (a) acidic electrolyzed water treatment step and / or described later. Through the rinsing step, protein, oil stains and the like can be discharged out of the treatment tank, so that the removal efficiency of proteins, oil stains and the like can be enhanced.
  • the alkaline electrolyzed water treatment step is a subsequent step of (a) the acidic electrolyzed water treatment step (aspect 3).
  • the cleaning function is further improved, the bactericidal action is further improved, the residual chlorine of the recycled material such as recovered pulp is not detected (less than 1 ppm), and the pH is in the range of 3.1 to 9.8. Is within.
  • the method includes (c1) a step of introducing metal ions into a treatment tank using acidic electrolyzed water as a treatment liquid (Aspect 4).
  • the aspect 4 in addition to the above effect, it is possible to dehydrate and remove moisture contained in the superabsorbent polymer constituting the used absorbent article. Since the water in the superabsorbent polymer is dehydrated and removed, the superabsorbent polymer easily settles, so that the treatment efficiency (washing efficiency, sterilization, etc.) of the acidic electrolyzed water treatment process, alkaline electrolyzed water treatment process, rinsing process, etc. Efficiency, rinsing efficiency, etc.) can be further increased.
  • the metal ion is not particularly limited as long as it is a metal ion, but examples thereof include alkali metal ions, alkali metal salts, alkaline earth metal ions, alkaline earth metal salts, transition metal ions, transition metal salts, and the like. Can be mentioned.
  • alkali metal ion examples include lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion and the like.
  • alkali metal salt examples include water-soluble salts of lithium, sodium, potassium, rubidium and cesium, and particularly sodium chloride, potassium chloride, sodium nitrate, potassium nitrate, sodium sulfate, potassium sulfate and the like.
  • alkaline earth metal ions include beryllium ions, magnesium ions, calcium ions, strontium ions, barium ions, and the like.
  • alkaline earth metal salt include water-soluble salts of beryllium, magnesium, calcium, strontium, and barium, and in particular, calcium oxide (lime), calcium chloride, calcium nitrate, magnesium chloride, magnesium nitrate, and the like. Can be mentioned.
  • transition metal ions include iron ions, cobalt ions, nickel ions, copper ions, and the like.
  • transition metal ion salt include water-soluble salts such as iron, cobalt, nickel, and copper, and any inorganic acid salt, organic acid salt, complex, or the like may be used as long as it is incorporated into the water-absorbing polymer. May be used.
  • inorganic acid salts include iron salts such as iron chloride, iron sulfate, iron phosphate and iron nitrate, cobalt salts such as cobalt chloride, cobalt sulfate, cobalt phosphate and cobalt nitrate, nickel salts such as nickel chloride and nickel sulfate, Examples thereof include copper salts such as copper chloride and copper sulfate.
  • organic acid salts include iron lactate, cobalt acetate, cobalt stearate, nickel acetate, and copper acetate.
  • the amount of the alkali metal ion or alkali metal salt is preferably 8 mmol or more, more preferably 9 to 20 mmol, still more preferably 10 to 16 per 1 g (dry mass) of the superabsorbent polymer constituting the used absorbent article. Millimolar.
  • the amount of the alkaline earth metal ion, alkaline earth metal salt, transition metal ion or transition metal salt is preferably 4 mmol or more, more preferably 1 g (dry mass) of the superabsorbent polymer constituting the used absorbent article. Is 4.5 to 10 mmol, more preferably 5 to 8 mmol.
  • alkali metal ion, alkali metal salt, alkaline earth metal ion, alkaline earth metal salt, transition metal ion or transition metal salt is too small, dehydration of the superabsorbent polymer will be insufficient.
  • alkali metal ion, alkali metal salt, alkaline earth metal ion, alkaline earth metal salt, transition metal ion or transition metal salt is too large, excess alkali metal ion, alkaline earth metal ion or transition metal ion Since it remains in the processing solution without being taken into the superabsorbent polymer, it leads to waste of alkali metal ions, alkali metal salts, alkaline earth metal ions, alkaline earth metal salts, transition metal ions or transition metal salts, and processing costs. Increase.
  • the alkaline electrolyzed water treatment step is a subsequent step of (a) an acidic electrolyzed water treatment step.
  • the method includes (c2) a step of introducing metal ions into a treatment tank using alkaline electrolyzed water as a treatment liquid (Aspect 5).
  • the aspect 5 in addition to the above effect, it is possible to dehydrate and remove moisture contained in the superabsorbent polymer constituting the used absorbent article. Since the water in the superabsorbent polymer is dehydrated and removed, the superabsorbent polymer easily settles, so that the treatment efficiency (washing efficiency, sterilization, etc.) of the acidic electrolyzed water treatment process, alkaline electrolyzed water treatment process, rinsing process, etc. Efficiency, rinsing efficiency, etc.) can be further increased.
  • an alkaline electrolyzed water treatment step is a pre-process of (a) an acidic electrolyzed water treatment step
  • the treatment tank contains alkaline electrolyzed water as a treatment liquid. It is preferable to add metal ions before adding alkaline electrolyzed water.
  • a rinsing step of (d) rinsing the used absorbent article with water (Aspect 6).
  • the rinsing step can include a final rinsing step and an intermediate rinsing step.
  • the method for treating a used absorbent article of the present invention includes (e) a dehydration step of dehydrating the used absorbent article (Aspect 7).
  • a dehydration step of dehydrating the used absorbent article by dehydrating, dirt and extra components can be effectively removed, and extra water can be removed, so that energy required for subsequent drying can be reduced.
  • two or more of modes 1 to 7 can be combined.
  • FIG. 1 is a diagram showing an embodiment of a method for treating a used absorbent article of the present invention.
  • the acidic electrolyzed water treatment step (Step 1 and Step 2) will be described.
  • step 1 used paper diapers (11) and calcium oxide (12) are put into a treatment tank (13).
  • step 2 acidic electrolyzed water (A) is added and stirred.
  • step 3 the pulp (14) floats near the upper part of the treatment tank (13), and the nonwoven fabric, plastic, etc. (15) floats near the middle part of the treatment tank (13) and has high water absorption.
  • the polymer (16) settles in the lower part of the treatment tank (13).
  • step 4 the pulp (14) floating near the upper part of the treatment tank (13) is scooped up.
  • Step 5 the scooped pulp (14) is put into a dehydrator (17) for dehydration.
  • step 6 the dehydrated pulp (14) is rinsed with running water (18). Further, in step 7, the rinsed pulp (14) is again put into the dehydrator (17) for dehydration. Finally, in step 8, the dehydrated pulp (14) is dried with a hot air dryer to obtain a recovered pulp.
  • FIG. 2 is a diagram showing another embodiment of a method for treating a used absorbent article of the present invention.
  • the alkaline electrolyzed water treatment step (Step 1 and Step 2) will be described.
  • step 1 used paper diapers (11) and calcium oxide (12) are put into a treatment tank (13).
  • step 2 alkaline electrolyzed water (B) is added and stirred.
  • step 3 the treated water containing alkaline electrolyzed water is drained, and the pulp (14) floating near the upper portion of the treatment tank (13) and the nonwoven fabric floating near the middle of the treatment tank (13), The plastic or the like (15) and the superabsorbent polymer (16) settling in the lower part of the treatment tank (13) are then rinsed with running water (18).
  • step 4 acidic electrolyzed water (A) is added and stirred.
  • the pulp (14) floats again near the upper part of the treatment tank (13), and the nonwoven fabric, plastic, etc. (15) floats near the middle part of the treatment tank (13).
  • the water-absorbing polymer (16) settles in the lower part of the treatment tank (13).
  • step 6 the pulp (14) floating near the upper part of the treatment tank (13) is scooped up.
  • step 7 the scooped pulp (14) is put into a dehydrator (17) for dehydration.
  • step 8 the dehydrated pulp (14) is rinsed with running water (18). Further, in step 9, the rinsed pulp (14) is again put into the dehydrator (17) for dehydration.
  • the dehydrated pulp (14) is dried with a hot air dryer (19) to obtain a recovered pulp.
  • Example 1 ⁇ Example 1-1> (Evaluation of cleaning function)
  • 50 ml of acidic electrolyzed water produced by electrolyzed water sanitary environment system ESS-ZERO manufactured by pH 3 Tech Corporation
  • ESS-ZERO electrolyzed water sanitary environment system ESS-ZERO manufactured by pH 3 Tech Corporation
  • RS-4DR magnetic stirrer
  • EMPA111 artificially contaminated cloth cut to 4 cm square
  • the washed contaminated cloth was rinsed with water and then washed with 50 ml of freshly added acidic electrolyzed water for 10 minutes.
  • the washed contaminated cloth was drained with a filter paper, and then dried with a hot air dryer at 105 ° C. for 30 minutes.
  • the dried soiled cloth was measured for whiteness ( ⁇ E value) using a color meter (CR-300 manufactured by Konica Minolta Co., Ltd.), and the cleaning effect was quantified.
  • Example 1-2> Evaluation of sterilization function Based on the standard test method of the Japanese Society of Chemotherapy for acidic electrolyzed water, the minimum bactericidal concentration is evaluated by confirming that it does not grow even after 24 hours. It was determined whether there was a bactericidal effect even at the concentration.
  • Example 1-3 Preparation of recovered pulp for pH evaluation
  • Eight pieces of commercially available disposable diapers (Moony M size manufactured by Unicharm Co., Ltd.) absorbed 200 ml of sanitary saline were introduced into the washing layer of a two-tank small washing machine (Asei Seiki AST-01).
  • a two-tank small washing machine Asei Seiki AST-01.
  • 80 g of CaO (Wako Pure Chemical Industries) was added, followed by 6.5 L of acidic electrolyzed water (pH 3, produced by TEC Corporation's electrolyzed water sanitary environment system ESS-ZERO).
  • Example 2 ⁇ Example 2-1> (Evaluation of cleaning function)
  • 50 ml of alkaline electrolyzed water (pH12, produced by an electrolyzed water sanitary environment system ESS-ZERO manufactured by Tech Corporation) was put. While stirring at 500 rpm using a magnetic stirrer (RS-4DR, manufactured by ASONE), an artificially contaminated cloth cut to 4 cm square (EMPA111, manufactured by EMPA) was washed for 10 minutes. The washed contaminated cloth was rinsed with water, and then washed with 50 ml of acidic electrolyzed water (pH3, produced by TEC-ZERO, an electrolyzed water sanitary environment system manufactured by Tech Corporation) for 10 minutes.
  • RS-4DR magnetic stirrer
  • EMPA111 artificially contaminated cloth cut to 4 cm square
  • the washed contaminated cloth was drained with a filter paper, and then dried with a hot air dryer at 105 ° C. for 30 minutes.
  • the dried soiled cloth was measured for whiteness ( ⁇ E value) using a color meter (CR-300 manufactured by Konica Minolta Co., Ltd.), and the cleaning effect was digitized.
  • Example 2-2 (Bactericidal performance evaluation) Measure MIC (Minimum Growth Inhibitory Concentration) for each of acidic electrolyzed water and alkaline electrolyzed water based on the standard test method of the Japanese Society of Chemotherapy, and evaluate the minimum bactericidal concentration by confirming that it does not grow even after 24 hours After that, it was determined whether the concentration in Example 2-2 also has a bactericidal effect.
  • MIC Minimum Growth Inhibitory Concentration
  • Example 2-3 Preparation of recovered pulp for pH evaluation
  • Eight pieces of commercially available disposable diapers (Moony M size manufactured by Unicharm Co., Ltd.) absorbed 200 ml of sanitary saline were introduced into the washing layer of a two-tank small washing machine (Asei Seiki AST-01).
  • a two-tank small washing machine Asei Seiki AST-01.
  • 80 g of CaO (Wako Pure Chemical Industries) was added, followed by 6.5 L of alkaline electrolyzed water (pH12, produced by the electrolyzed water sanitary environment system ESS-ZERO manufactured by Tech Corporation).
  • Example 3 (Evaluation of cleaning function) A 100 ml beaker was charged with 50 ml of acidic electrolyzed water (produced by ESS-ZERO, an electrolyzed water sanitary environment system manufactured by pH3 Tech Corporation). While stirring at 500 rpm using a magnetic stirrer (RS-4DR, manufactured by ASONE), an artificially contaminated cloth cut to 4 cm square (EMPA111, manufactured by EMPA) was washed for 10 minutes. The washed contaminated cloth was rinsed with water, and then washed with 50 ml of alkaline electrolyzed water (produced with ESS-ZERO, an electrolyzed water sanitary environment system manufactured by pH12 Tech Corporation) for 10 minutes.
  • ESS-ZERO an electrolyzed water sanitary environment system manufactured by pH3 Tech Corporation
  • the washed contaminated cloth was drained with a filter paper, and then dried with a hot air dryer at 105 ° C. for 30 minutes.
  • the dried soiled cloth was measured for whiteness ( ⁇ E value) using a color meter (CR-300 manufactured by Konica Minolta Co., Ltd.), and the cleaning effect was digitized.
  • Example 3-2> Bactericidal performance evaluation
  • Measure MIC Minimum Growth Inhibitory Concentration
  • Example 3-3 (Preparation of recovered pulp for pH evaluation) Eight pieces of commercially available disposable diapers (Moony M size manufactured by Unicharm Co., Ltd.) absorbed 200 ml of sanitary saline were introduced into the washing layer of a two-tank small washing machine (Asei Seiki AST-01). Into the washing tub, 80 g of CaO (Wako Pure Chemical Industries) was added, followed by 6.5 L of acidic electrolyzed water (pH 3, produced by Electrolytic Water Sanitary Environment System ESS-ZERO manufactured by Tech Corporation).
  • CaO WiO
  • pH 3 produced by Electrolytic Water Sanitary Environment System ESS-ZERO manufactured by Tech Corporation
  • ⁇ Comparative Example 1-3> (Preparation of recovered pulp for pH evaluation) Eight pieces of commercially available disposable diapers (Moony M size manufactured by Unicharm Co., Ltd.) absorbed with 200 ml of sanitary saline were put into the washing layer of a two-tank small washing machine (Asei Seiki AST-01). Into the washing tub, 80 g of CaO (Wako Pure Chemical) was added, followed by 6.5 L of tap water. After washing for 30 minutes, only the pulp floating in the liquid in the water washing layer was scooped up, placed in a mesh bag (N-No.250HD manufactured by NBC Meshtec Co., Ltd.) and dehydrated for 5 minutes in a dehydration tank.
  • a mesh bag N-No.250HD manufactured by NBC Meshtec Co., Ltd.
  • the recovered pulp was rinsed with tap water for 15 minutes together with the mesh bag, and again dehydrated in a dehydration tank for 5 minutes.
  • the recovered pulp was dried with a hot air dryer at 105 ° C. for 24 hours. From the above, recovered pulp was obtained.
  • the washed contaminated cloth was drained with a filter paper, and then dried with a hot air dryer at 105 ° C. for 30 minutes.
  • the dried soiled cloth was measured for whiteness ( ⁇ E value) using a color meter (CR-300 manufactured by Konica Minolta Co., Ltd.), and the cleaning effect was digitized.
  • MIC Minimum Growth Inhibitory Concentration
  • the washed contaminated cloth was drained with a filter paper, and then dried with a hot air dryer at 105 ° C. for 30 minutes.
  • the dried soiled cloth was measured for whiteness ( ⁇ E value) using a color meter (CR-300 manufactured by Konica Minolta Co., Ltd.), and the cleaning effect was digitized.
  • the washed contaminated cloth was drained with a filter paper, and then dried with a hot air dryer at 105 ° C. for 30 minutes.
  • the dried soiled cloth was measured for whiteness ( ⁇ E value) using a color meter (CR-300 manufactured by Konica Minolta Co., Ltd.), and the cleaning effect was digitized.
  • the washed contaminated cloth was drained with a filter paper, and then dried with a hot air dryer at 105 ° C. for 30 minutes.
  • the dried soiled cloth was measured for whiteness ( ⁇ E value) using a color meter (CR-300 manufactured by Konica Minolta Co., Ltd.), and the cleaning effect was digitized.
  • Example 1 The results of Examples 1 to 3 and Comparative Examples 1 to 5 are shown in Table 1 below. As shown in Table 1, with regard to the cleaning function, the result of Example 2 is almost the same level as the original whiteness, and the results of Examples 1 and 3 have no problem in terms of whiteness (color). It was a level. In addition, as a criterion for evaluating the cleaning function, it is determined that identification is generally possible if ⁇ E has a difference of 1.00.
  • the minimum bactericidal concentration for each bacterium E. coli or Staphylococcus aureus was measured, and it was shown that there was a bactericidal effect other than the results of Comparative Examples 1 and 2.
  • Example 1 Regarding the residual chlorine concentration, the results of Example 1 and Example 2 were not detected (less than 1 ppm) and were good. The result of Comparative Example 1 shows that the residual chlorine concentration was not detected, but this was due to the use of tap water.
  • Example 1 and Example 2 were within the pH range (3.1 to 9.8) at a level where there was no practical problem.
  • the pH values of Comparative Examples 3 to 5 using sodium hypochlorite were outside the pH range (3.1 to 9.8) at which there is no practical problem.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Paper (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

 衛生的であって、安全性の高いリサイクル素材を回収することができる、使用済み吸収性物品を処理する方法を提供する。本発明の使用済み吸収性物品を処理する方法は、(a)酸性電解水を処理液とする処理槽内で使用済み吸収性物品を処理する、酸性電解水処理工程を含むことを特徴とする。本発明の方法は、好ましくは、さらに、(b)アルカリ性電解水を処理液とする処理槽内で前記使用済み吸収性物品を処理する、アルカリ性電解水処理工程を含む。

Description

使用済み吸収性物品を処理する方法
 本発明は、使用済み吸収性物品を処理する方法に関する。
 製品化された物を再資源化し、新たな製品の原料として利用する、リサイクル技術の研究開発が盛んに行われている。紙おむつ、失禁パッド、失禁ライナー、生理用ナプキン、パンティーライナー等の吸収性物品は衛生物品であるので、使用された後は焼却等の処分が一般的であるが、近年の環境意識の変化から、このような衛生物品に対するリサイクル化の要望が高まっている。
 例えば、特許文献1では、使用済み紙オムツを消毒し処理する使用済み紙オムツの処理方法であって、石灰と次亜塩素と使用済み紙オムツを処理槽内に投入し、処理槽内で撹拌可能な最低限の水を供給しながら所定の時間にわたり撹拌し、処理槽内の液体を処理槽の外へ排出させると共に脱水し、排出された廃水を回収し水質処理を施して破棄することを特徴とする使用済み紙オムツの処理方法が提案されている。
特開2010-84031号公報
 しかしながら、特許文献1では、紙おむつにおける高分子ポリマーの分解に充分な量の石灰を投入しているので処理槽内が高いpH環境となり、結果的に大量の水を用いてすすぎを繰り返さなければ、安全性の担保ができないので回収素材(パルプ)を衛生素材として再利用することができない場合がある。また、特許文献1では、消毒剤(殺菌剤)として、オゾン又は塩素系化合物を用いるが、オゾンは殺菌力が大きく短時間で殺菌可能であるが、殺菌力の持続性が低いため、処理中は常にオゾンを発生させ続けなければならず、さらに、殺菌においては低濃度でも作用するが、洗浄漂白効果を得るには高濃度にする必要があるので安全性等ハンドリングの面で問題が残る。そして、塩素系化合物に関しては、低濃度で殺菌効果が得られる一方で、特にタンパク質系の汚れを含んだ汚染物を洗浄漂白しようとする場合には高濃度で使用する必要があるので、リサイクル素材への残留の観点から吸収性物品用途としては高濃度での使用は望ましくないことがある。
 そこで、本発明は、衛生的であって、安全性の高いリサイクル素材を回収することができる、使用済み吸収性物品を処理する方法を提供することを目的とする。
 上記目的を解決するために、本発明は、使用済み吸収性物品を処理する方法であって、(a)酸性電解水を処理液とする処理槽内で使用済み吸収性物品を処理する酸性電解水処理工程を含むことを特徴とする方法を提供する。
 本発明によれば、衛生的であって、安全性の高いリサイクル素材を回収することができる、使用済み吸収性物品を処理する方法が提供される。
図1は、本発明の使用済み吸収性物品を処理する方法の1実施形態を示す図である。 図2は、本発明の使用済み吸収性物品を処理する方法の別の1実施形態を示す図である。
 以下、本発明による使用済み吸収性物品を処理する方法について説明する。本発明の方法は、使用済み吸収性物品を処理する方法であって、その方法が、(a)酸性電解水を処理液とする処理槽内で該使用済み吸収性物品を処理する、酸性電解水処理工程を含む方法に関する。
 本発明による使用済み吸収性物品を処理する方法は、洗浄機能に優れ、殺菌効果を奏する方法である。そして、本発明による使用済み吸収性物品を処理する方法は、衛生的であって、安全性の高い、回収パルプ等のリサイクル素材を回収することができる。回収パルプ等のリサイクル素材は、残留塩素が未検出か又は1ppm未満であり、pHが3.1~9.8の範囲内である。
 本発明による使用済み吸収性物品を処理する方法で用いられる処理槽は、酸性電解水、アルカリ電解水等の処理液、水等を入れることができるものであれば、特に限定されることはない。本発明による使用済み吸収性物品を処理する方法で用いられる処理槽としては、容器でよく、例えば、円柱型容器、ボックス型容器、パイプ型容器、桶型容器等が挙げられる。
 本発明による使用済み吸収性物品を処理する方法で用いられる、酸性電解水及び後述のアルカリ性電解水は、塩水を電気分解することにより生成することができる。酸性電解水は陽極側に生成されて、アルカリ電解水は陰極側に生成される。
 酸性電解水(陽極反応)とアルカリ電解水(陰極反応)との生成反応式は以下である。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 上記の(1)式、(2)式及び(4)式により、酸性電解水には塩素ガスが溶解しており、この塩素ガスから生成される次亜塩素酸(HClO)の働きにより微生物等を殺菌することができる。酸性電解水中の塩素濃度は、20~70ppmであることが好ましい。塩素濃度は、例えば、塩素イオン計CL-5F(笠原理化工業株式会社製)を用いて測定することができる。一方、アルカリ電解水は、上記の(3)式により、水酸化ナトリウム(NaOH)を含み、タンパク質、油汚れ等を落とすことができ、浸透作用により、タンパク質、油汚れ等を分散させ脱離することができる。
 酸性電解水のpHは2.5~5.0であることが好ましく、アルカリ電解水のpHは11~12.5であることが好ましい。酸性電解水及びアルカリ電解水のpHは、例えばアズワン社製(AS-212)のpH計を用いて測定することができる。
 本発明の使用済み吸収性物品を処理する方法における、使用済み吸収性物品としては、例えば、紙おむつ、失禁パッド、失禁ライナー、生理用ナプキン、パンティーライナー等の衛生用品・生理用品が挙げられ、これらはヒトを対象としてもよいし、ペット等のヒト以外の動物を対象としてもよい。使用済み吸収性物品が吸収対象とするものは、特に限定されないが、主として、経血、尿、大便等である。
 本発明の使用済み吸収性物品を処理する方法における、使用済み吸収性物品は、多くの場合、パルプと高吸水性ポリマー(以下、「SAP」ともいう。)とを混合した吸収体、プラスチック、不織布等から構成される。
 高吸水性ポリマーとしては、親水性単量体を重合して得られる水膨潤性架橋重合体等が例示できる。その構造、組成としては特に限定されないが、具体的には、部分中和架橋ポリアクリル酸重合体、架橋され部分的に中和された澱粉-アクリル酸グラフトポリマー、イソブチレン-マレイン酸共重合体、酢酸ビニル-アクリル酸共重合体のケン化物、アクリルアミドや(共)重合体の加水分解物、アクリロニトリル重合体の加水分解物、(メタ)アクリルアミド誘導体、等が挙げられる。なかでも、ポリアクリル酸塩系架橋重合体が好ましい。ポリアクリル酸塩系架橋重合体としては、重合体中の酸基の50~90モル%が中和されていることが好ましく、塩としてはアルカリ金属塩、アンモニウム塩、アミン塩などを例示することができる。
 本発明の吸収性物品において、(b)アルカリ性電解水を処理液とする処理槽内で使用済み吸収性物品を処理する、アルカリ性電解水処理工程を含むことが好ましい(態様1)。態様1によれば、洗浄機能を更に向上させ、殺菌作用を更に向上させ、回収パルプ等のリサイクル素材の残留塩素が未検出(1ppm未満)であり、pHが3.1~9.8の範囲内である。
 態様1において、(b)アルカリ性電解水処理工程が、(a)酸性電解水処理工程の前工程であることが好ましい(態様2)。態様2によれば、洗浄機能を更に向上させ、殺菌作用を更に向上させ、回収パルプ等のリサイクル素材の残留塩素が未検出(1ppm未満)であり、pHが3.1~9.8の範囲内である。そして態様2によれば、(b)アルカリ性電解水処理工程で、タンパク質、油汚れ等を使用済み吸収性物品から落として、脱離させ、その後の(a)酸性電解水処理工程及び/又は後述する濯ぎ工程を経て、タンパク質、油汚れ等を処理槽外に排出することができるので、タンパク質、油汚れ等の除去効率を高めることができる。
 態様1において、(b)アルカリ性電解水処理工程が、(a)酸性電解水処理工程の後工程であることが好ましい(態様3)。態様3によれば、洗浄機能を更に向上させ、殺菌作用を更に向上させ、回収パルプ等のリサイクル素材の残留塩素が未検出(1ppm未満)であり、pHが3.1~9.8の範囲内である。
 本発明の吸収性物品において、(c1)金属イオンを、酸性電解水を処理液とする処理槽内に投入する工程を含むことが好ましい(態様4)。態様4によれば、上記の効果に加えて、更に、使用済み吸収性物品を構成する高吸水性ポリマーに含まれる水分を脱水して除去することができる。高吸水性ポリマー中の水分が脱水されて除去されることで高吸水性ポリマーは沈降しやすくなるので、酸性電解水処理工程、アルカリ電解水処理工程、濯ぎ工程等の処理効率(洗浄効率、殺菌効率、濯ぎ効率等)を更に高めることができる。
 金属イオンは、金属イオンであれば、特に限定されることはないが、例えば、アルカリ金属イオン、アルカリ金属塩、アルカリ土類金属イオン、アルカリ土類金属塩、遷移金属イオン、遷移金属塩等が挙げられる。
 アルカリ金属イオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等が挙げられる。アルカリ金属塩としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムの水溶性の塩が挙げられ、特には、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、硫酸カリウム等が挙げられる。
 アルカリ土類金属イオンとしては、例えば、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等が挙げられる。アルカリ土類金属塩としては、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウムの水溶性の塩が挙げられ、特には、酸化カルシウム(石灰)、塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硝酸マグネシウム等が挙げられる。
 遷移金属イオンとしては、例えば、鉄イオン、コバルトイオン、ニッケルイオン、銅イオン等が挙げられる。遷移金属イオン塩としては、例えば、鉄、コバルト、ニッケル、銅等の水溶性の塩が挙げられ、吸水性ポリマーに取り込まれるものであれば、無機酸塩、有機酸塩、錯体等を問わず用いられてよい。無機酸塩としては、例えば、塩化鉄、硫酸鉄、燐酸鉄、硝酸鉄等の鉄塩、塩化コバルト、硫酸コバルト、燐酸コバルト、硝酸コバルト等のコバルト塩、塩化ニッケル、硫酸ニッケル等のニッケル塩、塩化銅、硫酸銅等の銅塩などが挙げられる。有機酸塩類としては、例えば、乳酸鉄、酢酸コバルト、ステアリン酸コバルト、酢酸ニッケル、酢酸銅等が挙げられる。
 アルカリ金属イオン又はアルカリ金属塩の量は、使用済み吸収性物品を構成する高吸水性ポリマー1g(乾燥質量)あたり、好ましくは8ミリモル以上、より好ましくは9~20ミリモル、さらに好ましくは10~16ミリモルである。アルカリ土類金属イオン、アルカリ土類金属塩、遷移金属イオン又は遷移金属塩の量は、使用済み吸収性物品を構成する高吸水性ポリマー1g(乾燥質量)あたり、好ましくは4ミリモル以上、より好ましくは4.5~10ミリモル、さらに好ましくは5~8ミリモルである。アルカリ金属イオン、アルカリ金属塩、アルカリ土類金属イオン、アルカリ土類金属塩、遷移金属イオン又は遷移金属塩の量が少なすぎると、高吸水性ポリマーの脱水が不十分となる。アルカリ金属イオン、アルカリ金属塩、アルカリ土類金属イオン、アルカリ土類金属塩、遷移金属イオン又は遷移金属塩の量が多すぎると、余分のアルカリ金属イオン、アルカリ土類金属イオン又は遷移金属イオンが高吸水性ポリマーに取り込まれないまま処理液中に残るので、アルカリ金属イオン、アルカリ金属塩、アルカリ土類金属イオン、アルカリ土類金属塩、遷移金属イオン又は遷移金属塩の浪費につながり、処理費用を増加させる。
 本発明の使用済み吸収性物品を処理する方法が、(b)アルカリ電解水処理工程を経ない場合、又は(b)アルカリ電解水処理工程が(a)酸性電解水処理工程の後工程である場合は酸性電解水を処理液とする処理槽内に酸性電解水を投入する前に、金属イオンを投入することが好ましい。
 本発明の吸収性物品において、(c2)金属イオンを、アルカリ電解水を処理液とする処理槽内に投入する工程を含むことが好ましい(態様5)。態様5によれば、上記の効果に加えて、更に、使用済み吸収性物品を構成する高吸水性ポリマーに含まれる水分を脱水して除去することができる。高吸水性ポリマー中の水分が脱水されて除去されることで高吸水性ポリマーは沈降しやすくなるので、酸性電解水処理工程、アルカリ電解水処理工程、濯ぎ工程等の処理効率(洗浄効率、殺菌効率、濯ぎ効率等)を更に高めることができる。
 態様5における金属イオンの具体例は上記のとおりである。
 本発明の使用済み吸収性物品を処理する方法が、(b)アルカリ電解水処理工程が、(a)酸性電解水処理工程の前工程である場合はアルカリ電解水を処理液とする処理槽内にアルカリ電解水を投入する前に、金属イオンを投入することが好ましい。
 本発明の使用済み吸収性物品を処理する方法において、(d)使用済み吸収性物品を水で濯ぐ、濯ぎ工程を含むことが好ましい(態様6)。(d)濯ぎ工程は、最終濯ぎ工程と中間濯ぎ工程を含むことができる。態様6によれば、上記の効果に加えて、最終濯ぎ工程の場合は、汚れと菌とを洗い流して、(a)酸性電解水処理工程後又は(b)アルカリ電解水処理工程後の回収パルプ等のリサイクル素材をより中性側に近い状態とすることができ、(b)アルカリ電解水処理工程後の中間濯ぎの場合は、残存の有機物を洗い流してその後の酸性電解水処理工程における殺菌作用を高めることができる。次亜塩素酸がより酸性側で作用するので殺菌効果がより奏する。(a)酸性電解水処理工程後の中間濯ぎの場合は、死滅した菌と水溶性の汚れ及び金属イオン残渣を洗い流し、リサイクル素材をより中性側に近い状態とし、その後のアルカリ洗浄効果を高めるという効果がある。
 本発明の使用済み吸収性物品を処理する方法において、(e)使用済み吸収性物品を脱水する、脱水工程を含むことが好ましい(態様7)。態様7によれば、脱水することにより、汚れや余分な成分を効果的に除去する事が出来、また余分な水分も除去できる為その後の乾燥に必要なエネルギーを低減できるという効果がある。
 本発明の使用済み吸収性物品を処理する方法において、態様1~7のうち2以上を組み合わせることができる。
 以下、図1及び図2に基づいて、本発明による使用済み吸収性物品を処理する方法の実施形態を更に詳細に説明する。なお、本発明による使用済み吸収性物品を処理する方法は、本発明の目的及び主旨を逸脱しない範囲内で、図1及び図2で表される本発明の実施の形態に限定されるものではない。
 図1は、本発明の使用済み吸収性物品を処理する方法の1実施形態を示す図である。まず、酸性電解水処理工程(工程1及び工程2)について説明する。工程1において、使用済み紙おむつ(11)と酸化カルシウム(12)を処理槽(13)に投入する。続いて、工程2において、酸性電解水(A)を加えて攪拌をする。所定時間経過後、工程3において、パルプ(14)は処理槽(13)の上部付近に浮遊し、不織布、プラスチック等(15)は、処理槽(13)の中部付近に浮遊し、高吸水性ポリマー(16)は処理槽(13)の下部に沈降する。工程4において、処理槽(13)の上部付近に浮遊するパルプ(14)をすくい取る。工程5において、そのすくい取ったパルプ(14)を脱水機(17)に投入して脱水する。工程6において、脱水したパルプ(14)を流水(18)で濯ぐ。さらに、工程7において、濯いだパルプ(14)を再び、脱水機(17)に投入して脱水する。最後に、工程8において、脱水したパルプ(14)を熱風乾燥機で乾燥して、回収パルプが得られる。
 図2は、本発明の使用済み吸収性物品を処理する方法の別の1実施形態を示す図である。まず、アルカリ電解水処理工程(工程1及び工程2)について説明する。工程1において、使用済み紙おむつ(11)と酸化カルシウム(12)を処理槽(13)に投入する。続いて、工程2において、アルカリ電解水(B)を加えて攪拌をする。所定時間経過後、工程3において、アルカリ電解水を含む処理水を排水し、処理槽(13)の上部付近に浮遊するパルプ(14)と、処理槽(13)の中部付近に浮遊する不織布、プラスチック等(15)と、処理槽(13)の下部に沈降する高吸水性ポリマー(16)とを、その後流水(18)で濯ぐ。工程4において、酸性電解水(A)を加えて攪拌をする。所定時間経過後、工程5において、再び、パルプ(14)は処理槽(13)の上部付近に浮遊し、不織布、プラスチック等(15)は、処理槽(13)の中部付近に浮遊し、高吸水性ポリマー(16)は処理槽(13)の下部に沈降する。工程6において、処理槽(13)の上部付近に浮遊するパルプ(14)をすくい取る。工程7において、そのすくい取ったパルプ(14)を脱水機(17)に投入して脱水する。工程8において、脱水したパルプ(14)を流水(18)で濯ぐ。さらに、工程9において、濯いだパルプ(14)を再び、脱水機(17)に投入して脱水する。最後に、工程10において、脱水したパルプ(14)を熱風乾燥機(19)で乾燥して、回収パルプが得られる。
 以下、例を挙げて本発明を説明するが、本発明はこれらの例に限定されるものではない。
 [実施例1]
   <実施例1-1>
 (洗浄機能の評価)
 100mlビーカーに酸性電解水(pH3 テックコーポレーション社製 電解水衛生環境システムESS-ZERO で生成)を50ml入れた。マグネチックスターラー(RS-4DR アズワン社製)を用いて500rpmで攪拌しながら、4cm四方にカットした人工汚染布(EMPA社製 EMPA111)を10分間洗浄した。洗浄した汚染布を水ですすいだ後、続けて、新たに入れた酸性電解水50mlで10分間洗浄した。洗浄した汚染布をろ紙にはさんで水切りをおこなった後、105℃の熱風乾燥機で30分間乾燥させた。乾燥された汚染布を色彩計(CR-300 コニカミノルタ社製)を用いて白度(ΔE値)を測定し洗浄効果を数値化した。
 <実施例1-2>
 (殺菌機能の評価)
 酸性電解水について日本化学療法学会の標準試験法に基づきMIC(最小発育阻止濃度)を測定し、さらに24時間後でも発育されないことを確認することで最小殺菌濃度の評価をおこない、実施例中の濃度でも殺菌効果があるかを判定した。
 <実施例1-3>
 (回収パルプのpH評価用サンプル調製)
 市販紙おむつ(ユニ・チャーム社製 ムーニーMサイズ)に生理用食塩水200mlを吸水させたものを2槽式小型洗濯機(アルミス社製 晴晴 AST-01 )の洗濯層に8個投入した。洗濯槽内にCaO(和光純薬)80gを投入し、続けて酸性電解水(pH3、テックコーポレーション社製 電解水衛生環境システムESS-ZEROで生成)6.5Lを投入した。15分間洗濯した後、洗濯槽内の液を排水し、酸性電解水(pH3、テックコーポレーション社製 電解水衛生環境システムESS-ZEROで生成)6.5Lを新たに投入した。15分間洗濯した後、水洗濯層内の液中に浮遊するパルプのみをすくい取り、メッシュ袋(25cm四方 NBCメッシュテック社製 N-No.250HD)に入れ、脱水槽(脱水機)で5分間脱水した。回収したパルプはメッシュ袋ごと流水(水道水)で15分間すすぎ洗いをおこない再び脱水槽(脱水機)で5分間脱水した。パルプを105℃の熱風乾燥機で24時間乾燥した。以上より、回収パルプを得た。
 (回収パルプのpH評価)
 乾燥させたパルプ1.00gをビーカーに量りとり、生理用食塩水10mlを加えた。ガラス棒で軽く攪拌後、10分間静置し、ビーカー内の液をpH計(アズワン社製 AS-212 )で測定した。
 (回収パルプの残留塩素濃度)
 上記と同じ乾燥パルプを5.00gとり、100mlの蒸留水中に溶出させ、その塩素濃度を測定した(JIS K 0102 33.2)。
 [実施例2]
 <実施例2-1>
 (洗浄機能の評価)
 100mlビーカーにアルカリ性電解水(pH12, テックコーポレーション社製 電解水衛生環境システムESS-ZERO で生成)を50ml入れた。マグネチックスターラー(RS-4DR アズワン社製)を用いて500rpmで攪拌しながら、4cm四方にカットした人工汚染布(EMPA社製 EMPA111)を10分間洗浄した。洗浄した汚染布を水ですすいだ後、続けて酸性電解水(pH3 , テックコーポレーション社製 電解水衛生環境システムESS-ZERO で生成)50mlで10分間洗浄した。洗浄した汚染布をろ紙にはさんで水切りをおこなった後、105℃の熱風乾燥機で30分間乾燥させた。乾燥させた汚染布を、色彩計(CR-300 コニカミノルタ社製)を用いて白度(ΔE値)を測定し洗浄効果を数値化した。
 <実施例2-2>
 (殺菌性能評価)
 酸性電解水、アルカリ性電解水のそれぞれについて日本化学療法学会の標準試験法に基づきMIC(最小発育阻止濃度)を測定し、さらに24時間後でも発育されないことを確認することで最小殺菌濃度の評価をおこない、実施例2-2中の濃度でも殺菌効果があるかを判定した。
 <実施例2-3>
 (回収パルプのpH評価用サンプル調製)
 市販紙おむつ(ユニ・チャーム社製 ムーニーMサイズ)に生理用食塩水200mlを吸水させたものを2槽式小型洗濯機(アルミス社製 晴晴 AST-01 )の洗濯層に8個投入した。洗濯槽内にCaO(和光純薬)80gを投入し、続けてアルカリ性電解水(pH12、テックコーポレーション社製 電解水衛生環境システムESS-ZERO で生成)を、6.5Lを投入した。15分間洗濯した後、洗濯槽内の液を排水し、酸性電解水(pH3、テックコーポレーション社製 電解水衛生環境システムESS-ZEROで生成)6.5Lを新たに投入した。15分間洗濯した後、水洗濯層内の液中に浮遊するパルプのみをすくい取り、メッシュ袋(25cm四方 NBCメッシュテック社製 N-No.250HD)に入れ、脱水槽(脱水機)で5分間脱水した。回収したパルプはメッシュ袋ごと流水(水道水)で15分間すすぎ洗いをおこない再び脱水槽(脱水機)で5分間脱水した。パルプを105℃の熱風乾燥機で24時間乾燥した。以上より、回収パルプを得た。
 (回収パルプのpH評価)
 乾燥させたパルプ1.00gをビーカーに量りとり、生理用食塩水10mlを加えた。ガラス棒で軽く攪拌後、10分間静置し、ビーカー内の液をpH計(アズワン社製 AS-212 )で測定した。
 (回収パルプの残留塩素濃度)
 上記と同じ乾燥パルプを5.00gとり、100mlの蒸留水中に溶出させ、その塩素濃度を測定した(JIS K 0102 33.2)。
 [実施例3]
 <実施例3-1>
 (洗浄機能の評価)
 100mlビーカーに酸性電解水(pH3 テックコーポレーション社製 電解水衛生環境システムESS-ZERO で生成)50mlを入れた。マグネチックスターラー(RS-4DR アズワン社製)を用いて500rpmで攪拌しながら、4cm四方にカットした人工汚染布(EMPA社製 EMPA111)を10分間洗浄した。洗浄した汚染布を水ですすいだ後、続けてアルカリ性電解水(pH12 テックコーポレーション社製 電解水衛生環境システムESS-ZERO で生成)50mlで10分間洗浄した。洗浄した汚染布をろ紙にはさんで水切りをおこなった後、105℃の熱風乾燥機で30分間乾燥させた。乾燥させた汚染布を、色彩計(CR-300 コニカミノルタ社製)を用いて白度(ΔE値)を測定し洗浄効果を数値化した。
 <実施例3-2>
 (殺菌性能評価)
 酸性電解水、アルカリ性電解水のそれぞれについて日本化学療法学会の標準試験法に基づきMIC(最小発育阻止濃度)を測定し、さらに24時間後でも発育されないことを確認することで最小殺菌濃度の評価をおこない、実施例3-2中の濃度でも殺菌効果があるかを判定した。
 <実施例3-3>
 (回収パルプのpH評価用サンプル調製)
 市販紙おむつ(ユニ・チャーム社製 ムーニーMサイズ)に生理用食塩水200mlを吸水させたものを2槽式小型洗濯機(アルミス社製 晴晴 AST-01 )の洗濯層に8個投入した。洗濯槽内にCaO(和光純薬)80gを投入し、続けて、酸性電解水(pH3、テックコーポレーション社製 電解水衛生環境システムESS-ZEROで生成)6.5Lを投入した。15分間洗濯した後、洗濯槽内の液を排水し、アルカリ性電解水(pH12、テックコーポレーション社製 電解水衛生環境システムESS-ZERO で生成)を、6.5Lを新たに投入した。15分間洗濯した後、水洗濯層内の液中に浮遊するパルプのみをすくい取り、メッシュ袋(25cm四方 NBCメッシュテック社製 N-No.250HD)に入れ、脱水槽(脱水機)で5分間脱水した。回収したパルプはメッシュ袋ごと流水(水道水)で15分間すすぎ洗いをおこない再び脱水槽(脱水機)で5分間脱水した。パルプを105℃の熱風乾燥機で24時間乾燥した。以上より、回収パルプを得た。
 (回収パルプのpH評価)
 乾燥させたパルプ1.00gをビーカーに量りとり、生理用食塩水10mlを加えた。ガラス棒で軽く攪拌後、10分間静置し、ビーカー内の液をpH計(アズワン社製 AS-212 )で測定した。
 (回収パルプの残留塩素濃度)
 上記と同じ乾燥パルプを5.00gとり、100mlの蒸留水中に溶出させ、その塩素濃度を測定した(JIS K 0102 33.2)。
 [比較例1]
 <比較例1-1>
 (洗浄機能の評価)
 100mlビーカーに水道水50mlを入れた。マグネチックスターラー(RS-4DR アズワン社製)を用いて500rpmで攪拌しながら、4cm四方にカットした人工汚染布(EMPA社製 EMPA111)を10分間洗浄した。洗浄した汚染布を水ですすいだ後、続けて新たに入れた水道水50mlで10分間洗浄した。洗浄した汚染布をろ紙にはさんで水切りをおこなった後、105℃の熱風乾燥機で30分間乾燥させた。乾燥させた汚染布を、色彩計(CR-300 コニカミノルタ社製)を用いて白度(ΔE値)を測定し洗浄効果を数値化した。
 <比較例1-2>
 (殺菌性能の評価)
 水道水について日本化学療法学会の標準試験法に基づきMIC(最小発育阻止濃度)を測定し、さらに24時間後でも発育されないことを確認することで最小殺菌濃度の評価をおこない、実施例中の濃度でも殺菌効果があるかを判定した。
 <比較例1-3>
 (回収パルプのpH評価用サンプル調製)
 市販紙おむつ(ユニ・チャーム社製 ムーニーMサイズ)に生理用食塩水200mlを吸水させたものを2槽式小型洗濯機(アルミス社製 晴晴 AST-01)の洗濯層に8個投入した。洗濯槽内にCaO(和光純薬)80gを投入し、続けて水道水を6.5Lを投入した。30分間洗濯した後、水洗濯層内の液中に浮遊するパルプのみをすくい取り、メッシュ袋(25cm四方 NBCメッシュテック社製 N-No.250HD)に入れ、脱水槽で5分間脱水した。回収したパルプはメッシュ袋ごと水道水で15分間すすぎ洗いをおこない再び脱水槽で5分間脱水した。回収したパルプは105℃の熱風乾燥機で24時間乾燥させた。以上より、回収パルプを得た。
 (回収パルプのpH評価)
 乾燥させたパルプ1.00gをビーカーに量りとり、生理用食塩水10mlを加えた。ガラス棒で軽く攪拌後、10分間静置し、ビーカー内の液をpH計(アズワン社製 AS-212)で測定した。
 (回収パルプの残留塩素濃度)
 上記と同じ乾燥パルプを5.00gとり、100mlの蒸留水中に溶出させ、その塩素濃度を測定した(JIS K 0102 33.2)。
 [比較例2]
 <比較例2-1>
 (洗浄機能の評価)
 100mlビーカーにアルカリ性電解水(pH12 テックコーポレーション社製 電解水衛生環境システムESS-ZERO で生成)50mlを入れた。マグネチックスターラー(RS-4DR アズワン社製)を用いて500rpmで攪拌しながら、4cm四方にカットした人工汚染布(EMPA社製 EMPA111)を10分間洗浄した。洗浄した汚染布を水ですすいだ後、続けて新たに入れたアルカリ性電解水50mlで10分間洗浄した。洗浄した汚染布をろ紙にはさんで水切りをおこなった後、105℃の熱風乾燥機で30分間乾燥させた。乾燥させた汚染布を、色彩計(CR-300 コニカミノルタ社製)を用いて白度(ΔE値)を測定し洗浄効果を数値化した。
 <比較例2-2>
 (殺菌性能の評価)
 アルカリ性電解水について日本化学療法学会の標準試験法に基づきMIC(最小発育阻止濃度)を測定し、さらに24時間後でも発育されないことを確認することで最小殺菌濃度の評価をおこない、比較例2-2中の濃度でも殺菌効果があるかを判定した。
 [比較例3]
 <比較例3-1>
 (洗浄機能の評価)
 100mlビーカーに次亜塩素酸Na250ppm(和光純薬で購入したものを希釈して調製)の50mlを入れた。マグネチックスターラー(RS-4DR アズワン社製)を用いて500rpmで攪拌しながら、4cm四方にカットした人工汚染布(EMPA社製 EMPA111)を10分間洗浄した。洗浄した汚染布を水ですすいだ後、続けて新たに入れた次亜塩素酸Na250ppm(和光純薬で購入したものを希釈して調製)の50mlで10分間洗浄した。洗浄した汚染布をろ紙にはさんで水切りをおこなった後、105℃の熱風乾燥機で30分間乾燥させた。乾燥させた汚染布を、色彩計(CR-300 コニカミノルタ社製)を用いて白度(ΔE値)を測定し洗浄効果を数値化した。
 <比較例3-2>
 (殺菌性能の評価)
 次亜塩素酸Na250ppmについて日本化学療法学会の標準試験法に基づきMIC(最小発育阻止濃度)を測定し、さらに24時間後でも発育されないことを確認することで最小殺菌濃度の評価をおこない、比較例3-2中の濃度でも殺菌効果があるかを判定した。
 <比較例3-3>
 (回収パルプのpH評価用サンプル調製)
 市販紙おむつ(ユニ・チャーム社製 ムーニーMサイズ)に生理用食塩水200mlを吸水させたものを2槽式小型洗濯機(アルミス社製 晴晴 AST-01)の洗濯層に8個投入した。洗濯槽内にCaO(和光純薬)80gを投入し、続けて次亜塩素酸Na250ppm(和光純薬で購入したものを希釈して調製)6.5Lを投入した。30分間洗濯した後、水洗濯層内の液中に浮遊するパルプのみをすくい取り、メッシュ袋(25cm四方 NBCメッシュテック社製 N-No.250HD)に入れ、脱水槽で5分間脱水した。回収したパルプはメッシュ袋ごと水道水で15分間すすぎ洗いをおこない再び脱水槽で5分間脱水した。回収したパルプは105℃の熱風乾燥機で24時間乾燥させた。以上より、回収パルプを得た。
 (回収パルプのpH評価)
 乾燥させたパルプ1.00gをビーカーに量りとり、生理用食塩水10mlを加えた。ガラス棒で軽く攪拌後、10分間静置し、ビーカー内の液をpH計(アズワン社製 AS-212)で測定した。
 (回収パルプの残留塩素濃度)
 上記と同じ乾燥パルプを5.00gとり、100mlの蒸留水中に溶出させ、その塩素濃度を測定した(JIS K 0102 33.2)。
 [比較例4]
 <比較例4-1>
 (洗浄機能の評価)
 100mlビーカーに次亜塩素酸Na500ppm(和光純薬で購入したものを希釈して調製)の50mlを入れた。マグネチックスターラー(RS-4DR アズワン社製)を用いて500rpmで攪拌しながら、4cm四方にカットした人工汚染布(EMPA社製 EMPA111)を10分間洗浄した。洗浄した汚染布を水ですすいだ後、続けて新たに入れた次亜塩素酸Na500ppm(和光純薬で購入したものを希釈して調製)の50mlで10分間洗浄した。洗浄した汚染布をろ紙にはさんで水切りをおこなった後、105℃の熱風乾燥機で30分間乾燥させた。乾燥させた汚染布を、色彩計(CR-300 コニカミノルタ社製)を用いて白度(ΔE値)を測定し洗浄効果を数値化した。
 <比較例4-2>
 (殺菌性能の評価)
 次亜塩素酸Na500ppmについて日本化学療法学会の標準試験法に基づきMIC(最小発育阻止濃度)を測定し、さらに24時間後でも発育されないことを確認することで最小殺菌濃度の評価をおこない、比較例4-2中の濃度でも殺菌効果があるかを判定した。
 <比較例4-3>
 (回収パルプのpH評価用サンプル調製)
 市販紙おむつ(ユニ・チャーム社製 ムーニーMサイズ)に生理用食塩水200mlを吸水させたものを2槽式小型洗濯機(アルミス社製 晴晴 AST-01 )の洗濯層に8個投入した。洗濯槽内にCaO(和光純薬)80gを投入し、続けて次亜塩素酸Na500ppm(和光純薬で購入したものを希釈して調製)6.5Lを投入した。30分間洗濯した後、水洗濯層内の液中に浮遊するパルプのみをすくい取り、メッシュ袋(25cm四方 NBCメッシュテック社製 N-No.250HD)に入れ、脱水槽で5分間脱水した。回収したパルプはメッシュ袋ごと水道水で15分間すすぎ洗いをおこない再び脱水槽で5分間脱水した。回収したパルプは105℃の熱風乾燥機で24時間乾燥させた。以上より、回収パルプを得た。
 (回収パルプのpH評価)
 乾燥させたパルプ1.00gをビーカーに量りとり、生理用食塩水10mlを加えた。ガラス棒で軽く攪拌後、10分間静置し、ビーカー内の液をpH計(アズワン社製 AS-212)で測定した。
 (回収パルプの残留塩素濃度)
 上記と同じ乾燥パルプを5.00gとり、100mlの蒸留水中に溶出させ、その塩素濃度を測定した(JIS K 0102 33.2)。
 [比較例5]
 <比較例5-1>
 (洗浄機能の評価)
 100mlビーカーに次亜塩素酸Na1000ppm(和光純薬で購入したものを希釈して調製)の50mlを入れた。マグネチックスターラー(RS-4DR アズワン社製)を用いて500rpmで攪拌しながら、4cm四方にカットした人工汚染布(EMPA社製 EMPA111)を10分間洗浄した。洗浄した汚染布を水ですすいだ後、続けて新たに入れた次亜塩素酸Na1000ppm(和光純薬で購入したものを希釈して調製)の50mlで10分間洗浄した。洗浄した汚染布をろ紙にはさんで水切りをおこなった後、105℃の熱風乾燥機で30分間乾燥させた。乾燥させた汚染布を、色彩計(CR-300 コニカミノルタ社製)を用いて白度(ΔE値)を測定し洗浄効果を数値化した。
 <比較例5-2>
 (殺菌性能の評価)
 次亜塩素酸Na1000ppmについて日本化学療法学会の標準試験法に基づきMIC(最小発育阻止濃度)を測定し、さらに24時間後でも発育されないことを確認することで最小殺菌濃度の評価をおこない、比較例4-2中の濃度でも殺菌効果があるかを判定した。
 <比較例5-3>
 (回収パルプのpH評価用サンプル調製)
 市販紙おむつ(ユニ・チャーム社製 ムーニーMサイズ)に生理用食塩水200mlを吸水させたものを2槽式小型洗濯機(アルミス社製 晴晴 AST-01 )の洗濯層に8個投入した。洗濯槽内にCaO(和光純薬)80gを投入し、続けて次亜塩素酸Na1000ppm(和光純薬で購入したものを希釈して調製)6.5Lを投入した。30分間洗濯した後、水洗濯層内の液中に浮遊するパルプのみをすくい取り、メッシュ袋(25cm四方 NBCメッシュテック社製 N-No.250HD)に入れ、脱水槽で5分間脱水した。回収したパルプはメッシュ袋ごと水道水で15分間すすぎ洗いをおこない再び脱水槽で5分間脱水した。回収したパルプは105℃の熱風乾燥機で24時間乾燥させた。以上より、回収パルプを得た。
 (回収パルプのpH評価)
 乾燥させたパルプ1.00gをビーカーに量りとり、生理用食塩水10mlを加えた。ガラス棒で軽く攪拌後、10分間静置し、ビーカー内の液をpH計(アズワン社製 AS-212)で測定した。
 (回収パルプの残留塩素濃度)
 上記と同じ乾燥パルプを5.00gとり、100mlの蒸留水中に溶出させ、その塩素濃度を測定した(JIS K 0102 33.2)。
 実施例1~3及び比較例1~5の結果を下記の表1に示す。表1に示されるように、洗浄機能については、実施例2の結果が元の白度とほぼ同レベルであり、実施例1及び3の結果は、白度(色味)が実害上問題ないレベルであった。なお、洗浄機能の評価基準として、ΔEが、一般的に1.00の差があれば識別可能と判断される。
 殺菌効果は、それぞれの菌(大腸菌又は黄色ブドウ球菌)に対する最小殺菌濃度を測定しており、比較例1及び2の結果以外は殺菌作用の効果があることを示した。
 残留塩素濃度については、実施例1及び実施例2の結果が未検出(1ppm未満)で良好であった。比較例1の結果が、残留塩素濃度が未検出であるが、これは水道水を使用したことによるものであった。
 回収パルプpHについては、実施例1及び実施例2の結果が実害上問題ないレベルのpH範囲(3.1~9.8)内であった。次亜塩素酸ナトリウムを用いた、比較例3~5のpHは、実害上問題ないレベルのpH範囲(3.1~9.8)外であった。
Figure JPOXMLDOC01-appb-T000004
 11  紙おむつ(吸収性物品)
 12  酸化カルシウム
 13  処理槽
 14  パルプ
 15  不織布、プラスチック等
 16  高吸水性ポリマー
 17  脱水機
 18  流水
 19  熱風乾燥機
 A  酸性電解水
 B  アルカリ性電解水

Claims (8)

  1.  使用済み吸収性物品を処理する方法であって、
     該方法が、
     (a)酸性電解水を処理液とする処理槽内で該使用済み吸収性物品を処理する、酸性電解水処理工程を、
     含む、方法。
  2.  (b)アルカリ性電解水を処理液とする処理槽内で前記使用済み吸収性物品を処理する、アルカリ性電解水処理工程を、
     含む、請求項1に記載の方法。
  3.  前記(b)アルカリ性電解水処理工程が、前記(a)酸性電解水処理工程の前工程である、請求項2に記載の方法。
  4.  前記(b)アルカリ性電解水処理工程が、前記(a)酸性電解水処理工程の後工程である、請求項2に記載の方法。
  5.  (c1)金属イオンを、酸性電解水を処理液とする処理槽内に投入する工程を、
     含む、請求項1から4のいずれか1項に記載の方法。
  6.  (c2)金属イオンを、アルカリ性電解水を処理液とする処理槽内に投入する工程を、
     含む、請求項1から5のいずれか1項に記載の方法。
  7.  (d)前記使用済み吸収性物品を水で濯ぐ、濯ぎ工程を、
     含む、請求項1から6のいずれか1項に記載の方法。
  8.  (e)前記使用済み吸収性物品を脱水する、脱水工程を、
     含む、請求項1から7のいずれか1項に記載の方法。
PCT/JP2013/077533 2012-10-12 2013-10-09 使用済み吸収性物品を処理する方法 WO2014057994A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES13845695.9T ES2659014T3 (es) 2012-10-12 2013-10-09 Método para tratar artículo absorbente usado
EP13845695.9A EP2907593B1 (en) 2012-10-12 2013-10-09 Method for treating used absorbent article
CN201380042790.3A CN104582866B (zh) 2012-10-12 2013-10-09 处理使用过的吸收性物品的方法
US14/435,130 US9839708B2 (en) 2012-10-12 2013-10-09 Method for treating used absorbent article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227517 2012-10-12
JP2012227517A JP6073104B2 (ja) 2012-10-12 2012-10-12 使用済み吸収性物品を処理する方法

Publications (1)

Publication Number Publication Date
WO2014057994A1 true WO2014057994A1 (ja) 2014-04-17

Family

ID=50477461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077533 WO2014057994A1 (ja) 2012-10-12 2013-10-09 使用済み吸収性物品を処理する方法

Country Status (6)

Country Link
US (1) US9839708B2 (ja)
EP (1) EP2907593B1 (ja)
JP (1) JP6073104B2 (ja)
CN (1) CN104582866B (ja)
ES (1) ES2659014T3 (ja)
WO (1) WO2014057994A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957992A (zh) * 2014-06-12 2019-07-02 尤妮佳股份有限公司 再生浆粕在卫生用品中的用途及含有再生浆粕的卫生用品
CN110820401A (zh) * 2014-10-15 2020-02-21 尤妮佳股份有限公司 由使用过的卫生用品制造再生浆粕的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203722A1 (ja) * 2016-05-25 2017-11-30 フィーネ株式会社 殺菌消毒剤及び殺菌消毒方法
WO2018119970A1 (zh) * 2016-12-30 2018-07-05 清倍华再源技股份有限公司 吸收性物品回收方法、回收系统及水体存储系统
TWI630959B (zh) * 2016-12-30 2018-08-01 清倍華再源技股份有限公司 吸收性物品回收方法及回收系統
CN108262327A (zh) * 2016-12-30 2018-07-10 清倍华再源技股份有限公司 吸收性物品回收方法、回收系统及水体存储系统
JP6865619B2 (ja) * 2017-03-31 2021-04-28 ユニ・チャーム株式会社 リサイクル製品を製造する方法、リサイクル樹脂ペレット、及びリサイクルフィルム
JP6483770B2 (ja) * 2017-08-23 2019-03-13 ユニ・チャーム株式会社 使用済み衛生用品を分解する方法および使用済み衛生用品からパルプ繊維を分離する方法
JP6993996B2 (ja) * 2019-02-25 2022-01-14 パナソニック株式会社 使用済み紙おむつ処理装置
JP7231522B2 (ja) * 2019-09-06 2023-03-01 ユニ・チャーム株式会社 再生高吸水性ポリマーを製造する方法、再生高吸水性ポリマーを用いて高吸水性ポリマーを製造する方法、及び、再生高吸水性ポリマー
JP7132899B2 (ja) 2019-09-19 2022-09-07 パナソニックホールディングス株式会社 使用済み紙おむつ処理装置
CN114942300A (zh) * 2021-07-31 2022-08-26 上海世通检测技术服务有限公司 一种提高食品接触材料测试准确度的检测方法及其应用
TWI829343B (zh) * 2021-09-17 2024-01-11 益鈞環保科技股份有限公司 吸收性物品快速分解系統及其運作方法
CN114378101B (zh) * 2022-01-12 2023-11-28 苏州市职业大学 一种厨余垃圾处理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313878A (ja) * 2003-04-14 2004-11-11 Tsukada Unyu:Kk 使用済み衛生用品の処理方法及び処理システム
JP2005336337A (ja) * 2004-05-27 2005-12-08 Toto Ltd 衛生用品溶解処理装置
JP2005334321A (ja) * 2004-05-27 2005-12-08 Toto Ltd 衛生用品溶解処理装置
JP2005342570A (ja) * 2004-05-31 2005-12-15 Toto Ltd 衛生用品溶解処理装置
JP2009183893A (ja) * 2008-02-07 2009-08-20 Samuzu:Kk 使用済み紙オムツの処理方法
JP2010084031A (ja) 2008-09-30 2010-04-15 Samuzu:Kk 使用済み紙オムツの処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW272244B (ja) * 1994-08-19 1996-03-11 Toto Ltd
NO308831B1 (no) * 1995-03-22 2000-11-06 Nkt Res Ct As FremgangsmÕte for behandling av halogenholdig avfallsmateriale
US7387719B2 (en) * 2001-04-24 2008-06-17 Scimist, Inc. Mediated electrochemical oxidation of biological waste materials
JP2003093479A (ja) * 2001-07-18 2003-04-02 Sanyo Electric Co Ltd 殺菌方法及び電解水生成装置
JP5329022B2 (ja) * 2006-05-15 2013-10-30 ホシザキ電機株式会社 布製品の洗浄方法
US8657995B2 (en) * 2009-08-06 2014-02-25 Tech Corporation Co., Ltd. Method of producing recycled paper pulp from waste printed paper as raw material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313878A (ja) * 2003-04-14 2004-11-11 Tsukada Unyu:Kk 使用済み衛生用品の処理方法及び処理システム
JP2005336337A (ja) * 2004-05-27 2005-12-08 Toto Ltd 衛生用品溶解処理装置
JP2005334321A (ja) * 2004-05-27 2005-12-08 Toto Ltd 衛生用品溶解処理装置
JP2005342570A (ja) * 2004-05-31 2005-12-15 Toto Ltd 衛生用品溶解処理装置
JP2009183893A (ja) * 2008-02-07 2009-08-20 Samuzu:Kk 使用済み紙オムツの処理方法
JP2010084031A (ja) 2008-09-30 2010-04-15 Samuzu:Kk 使用済み紙オムツの処理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957992A (zh) * 2014-06-12 2019-07-02 尤妮佳股份有限公司 再生浆粕在卫生用品中的用途及含有再生浆粕的卫生用品
CN110055790A (zh) * 2014-06-12 2019-07-26 尤妮佳股份有限公司 分解使用过的卫生用品的方法和从使用过的卫生用品分离浆粕纤维的方法
US11319670B2 (en) 2014-06-12 2022-05-03 Unicharm Corporation Method for manufacturing recycled pulp from used sanitary products
CN110820401A (zh) * 2014-10-15 2020-02-21 尤妮佳股份有限公司 由使用过的卫生用品制造再生浆粕的方法
CN110846919A (zh) * 2014-10-15 2020-02-28 尤妮佳股份有限公司 由使用过的卫生用品制造再生浆粕的方法
CN110846919B (zh) * 2014-10-15 2022-06-10 尤妮佳股份有限公司 由使用过的卫生用品制造再生浆粕的方法
CN110820401B (zh) * 2014-10-15 2022-06-17 尤妮佳股份有限公司 由使用过的卫生用品制造再生浆粕的方法

Also Published As

Publication number Publication date
JP2014079666A (ja) 2014-05-08
EP2907593A1 (en) 2015-08-19
US20150265737A1 (en) 2015-09-24
EP2907593A4 (en) 2016-06-22
CN104582866B (zh) 2017-11-24
JP6073104B2 (ja) 2017-02-01
ES2659014T3 (es) 2018-03-13
CN104582866A (zh) 2015-04-29
US9839708B2 (en) 2017-12-12
EP2907593B1 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6073104B2 (ja) 使用済み吸収性物品を処理する方法
CN110820401B (zh) 由使用过的卫生用品制造再生浆粕的方法
US10280560B2 (en) Process for manufacturing recycled pulp from used sanitary goods
JP6632494B2 (ja) 使用済み吸収性物品からパルプ繊維を回収する方法
JP6218982B2 (ja) リサイクルパルプ、吸収体、ティッシュ、不織布および衛生用品
WO2014168179A1 (ja) 使用済み衛生用品からパルプ繊維を回収する方法およびその方法により得られる再生パルプ
US20190000698A1 (en) Method for recovering pulp fiber from used hygiene product
Al-Gheethi et al. Efficiency of Moringa oleifera seeds for treatment of laundry wastewater
CN109477297B (zh) 由使用过的吸收性物品回收浆粕纤维的方法
JP6279372B2 (ja) 使用済み紙おむつ等から尿由来の栄養塩を回収する方法
JP2017095855A (ja) 使用済み衛生用品からパルプ繊維を回収して得られる再生パルプ
CN109477298A (zh) 由使用过的吸收性物品回收浆粕纤维的方法
JP6667575B2 (ja) 有機酸の回収方法、及びリサイクルパルプの製造方法
JP2017193819A (ja) 使用済み衛生用品からリサイクルパルプを製造する方法
JP2010270080A (ja) 抗菌組成物
JP5244305B2 (ja) 布製品または紙製品の清浄化方法
JP2017031550A (ja) 使用済み衛生用品からリサイクルパルプを製造する方法
JP2011156243A (ja) 抗菌組成物
JP2018058378A (ja) 使用済み紙おむつ等から尿由来の栄養塩を回収する方法
JPH0959693A (ja) 衣類等の洗剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845695

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013845695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013845695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14435130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE