WO2014054479A1 - 微小粒子拡散装置および照明装置 - Google Patents

微小粒子拡散装置および照明装置 Download PDF

Info

Publication number
WO2014054479A1
WO2014054479A1 PCT/JP2013/075822 JP2013075822W WO2014054479A1 WO 2014054479 A1 WO2014054479 A1 WO 2014054479A1 JP 2013075822 W JP2013075822 W JP 2013075822W WO 2014054479 A1 WO2014054479 A1 WO 2014054479A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fine particle
stirring
microparticle
rotating disk
Prior art date
Application number
PCT/JP2013/075822
Other languages
English (en)
French (fr)
Inventor
敬三 鎌田
勝 三角
大塚 雅生
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380061812.0A priority Critical patent/CN104813109B/zh
Publication of WO2014054479A1 publication Critical patent/WO2014054479A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/078Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser combined with lighting fixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present invention relates to a fine particle diffusion device and an illumination device.
  • the fine particle diffusion device includes a sirocco fan, and blows air sucked from an air inflow port provided in one axial direction of the sirocco fan from the radial direction of the sirocco fan, The air is discharged from the air outlet to the outside of the fine particle diffusion device.
  • the conventional fine particle diffusing apparatus uses a sirocco fan
  • the interval between the moving blades is narrow, and foreign matter such as dust in the air, insects or bird feathers is very accumulated between the moving blades. Because it is easy, foreign matter such as dust accumulates between the rotor blades, the dynamic balance of the sirocco fan is deteriorated, the air volume discharged by the sirocco fan is drastically reduced, and the ability to diffuse fine particles is greatly reduced. There was a problem.
  • an object of the present invention is to provide a fine particle diffusing apparatus that has low pressure loss, low noise, and is difficult to adhere to foreign matters such as dust and insects.
  • the microparticle diffusion device of the present invention is: A stirring unit having a plurality of moving blades and generating a concentric vortex centered on the rotation axis; Facing the one side in the direction of the rotation axis of the stirring unit, a microparticle generating unit for generating microparticles, An air inflow port for allowing air to flow into the stirring unit from the vicinity of the outer periphery of the stirring unit; An air outlet that discharges air from the vicinity of the outer periphery of the stirring unit; A separation unit that is located on a radially outer side of the stirring blade of the stirring unit and that separates the circumferential vortex of the stirring unit of the air formed by the rotation of the blade of the stirring unit from the stirring unit And The air flowing in from the air inlet does not pass through the center of the stirring unit, becomes the vortex, flows in the circumferential direction of the stirring unit, and flows out from the air outlet. The fine particles generated by the fine particle generator are released to the outside on the air
  • the concentric air swirl around the rotation axis of the moving blade formed by the rotation of the moving blade of the stirring unit is diverted from the rotating direction of the moving blade by the separating unit, and the separating unit Flows out of the air outlet.
  • the air that has flowed in from the air inlet is less likely to collide with the stirrer vertically due to the vortex generated by the moving blades, and flows out of the air outlet along the separation part. There are few collisions and noise can be reduced.
  • the air flowing in from the air inlet flows along the vortex and flows out from the air outlet along the separation portion, so that the direction of the air flow is less changed, the pressure loss is less, the power There is little loss.
  • the concentric vortex around the rotation axis of the moving blade is generated by the rotation of the moving blade of the stirring unit, even if foreign matter such as dust or small insects flows into the stirring unit, the moving blade It is difficult to adhere to the blade, and the deterioration of the dynamic balance of the rotor blade can be prevented, and the reliability can be increased.
  • the fine particle generator is disposed so as to face the outer end of the moving blade in the radial direction.
  • the microparticles generated in the microparticle generator can be discharged to the strongest vortex portion, the microparticles can be efficiently discharged outside the microparticle diffusion device.
  • the agitating unit includes a rotating disk part, and the rotating disk part is provided on the other side of the agitating part in the direction of the rotating shaft while the moving blade is fixed.
  • the stirring unit includes the rotating disk part, and the moving blade is fixed to the rotating disk part, so that there is no gap between the moving blade and the rotating disk part, The efficiency can be improved, and the rotating disk part can be covered and not exposed on the other side of the stirring part, so that the amount of dust and foreign matter entering the stirring part can be reduced.
  • the rotating disk part is provided on the other side in the direction of the rotation axis of the stirring part, the rotating disk part becomes an obstacle when discharging the fine particles generated by the fine particle generating part. Therefore, the fine particles generated by the fine particle generator can be efficiently discharged to the air that should flow out of the air outlet or the air that has flowed out of the air outlet.
  • the microparticle diffusion device of one embodiment It is located on the other side in the direction of the rotating shaft, and includes a flat plate that covers the rotating disk part and has a gap between the rotating disk part.
  • the vortex generated on the other side in the direction of the rotation axis of the stirring unit is prevented from being generated by the flat plate, and the air flow toward the outside in the radial direction is reduced, so that the vortex flows into the microparticle diffusion device. Can be secured, and surging can be prevented.
  • the distance between the rotating disk part and the flat plate is greater than the distance between the radially outer end of the moving blade and the separating part.
  • the vortex generated on one side in the direction of the rotation axis of the stirring unit can be separated by the separation unit while preventing the generation of the vortex generated on the other side in the direction of the rotation axis of the stirring unit. Therefore, the air flowing into the fine particle diffusing device 3 can be reliably ensured, and surging can be prevented.
  • Control means for controlling the stirring unit is provided.
  • the rotation of the moving blade can be controlled by controlling the stirring unit.
  • the fine particles are charged particles.
  • air can be purified by charged particles.
  • the charged particles may be only negatively charged particles, only positively charged particles, or positively and negatively charged particles.
  • the fine particles are positive ions that are H + (H 2 O) m (m is an arbitrary natural number) and negative ions that are O 2 ⁇ (H 2 O) n (n is an arbitrary natural number).
  • the microparticles are positive ions that are H + (H 2 O) m (m is an arbitrary natural number) and O 2 ⁇ (H 2 O) n (n is an arbitrary natural number). Since it is a certain negative ion, it adheres to the surface of airborne bacteria in the air and chemically reacts to generate H 2 O 2 or .OH (hydroxyl radical) which is an active species. It can be inactivated and removed by surrounding bacteria.
  • microparticle diffusion device according to any one of the above is provided.
  • an illuminating device including a fine particle diffusing device that has a low pressure loss, a low noise, and a foreign matter such as dust and insects hardly adhere thereto.
  • a microparticle diffusion device that has low pressure loss, low noise, and that does not easily adhere to foreign matters such as dust and insects, and an illumination device using the microparticle diffusion device are realized. can do.
  • FIG. 1 is a perspective view of an illuminating device provided with a fine particle diffusion device according to an embodiment of the present invention.
  • FIG. 2 is a side view of the lighting device.
  • FIG. 3 is a schematic diagram of a longitudinal section viewed from the line AA of FIG. 2 showing the illumination device.
  • FIG. 4 is an exploded perspective view of the fine particle diffusing apparatus.
  • FIG. 5 is a perspective view of the stirring unit of the fine particle diffusing apparatus.
  • FIG. 6 is a control block diagram of the fine particle diffusing apparatus.
  • FIG. 7 is a cross-sectional view taken along line BB in FIG. 2 showing the flow of air generated in the fine particle diffusing apparatus.
  • FIG. 8 is a schematic view showing a vent hole portion in a longitudinal section viewed from the line II of FIG.
  • FIG. 7 showing the flow of air generated in the fine particle diffusing apparatus.
  • FIG. 9 is a schematic view showing a vent hole portion in a longitudinal section viewed from the line II-II in FIG. 7 showing the flow of air generated in the fine particle diffusing apparatus.
  • FIG. 10 is a schematic view showing a vent hole portion in a longitudinal section viewed from the line III-III in FIG. 7 showing the flow of air generated in the fine particle diffusing apparatus.
  • FIG. 11 is a schematic diagram of a longitudinal section showing the optimum shape of the vent portion of the fine particle diffusing apparatus.
  • FIG. 12 is a schematic diagram of a longitudinal section showing the optimum shape of the vent portion of the fine particle diffusing apparatus.
  • FIG. 13 is a schematic diagram of a longitudinal section showing the optimum shape of the vent portion of the fine particle diffusing apparatus.
  • FIG. 14 is a schematic diagram of a plan view of the stirring unit showing the optimum shape of the stirring unit of the fine particle diffusing apparatus.
  • FIG. 15 is a diagram showing the relationship between the number of moving blades installed and the wind speed.
  • FIG. 16 is a diagram showing the relationship between the number of moving blades installed and the number of ions.
  • FIG. 17 is a diagram showing the relationship between the number of moving blades installed and the noise value.
  • FIG. 18 is a diagram showing the relationship between the distance C and the number of ions.
  • FIG. 19 is a diagram illustrating the relationship between the angle z2 and the number of positive and negative ions when four separation units are provided.
  • the fine particle diffusing device of this embodiment is provided in an illumination device including a main body 1 and a shade 2 as shown in FIG.
  • the main body 1 includes a rotating concave curved outer peripheral surface that can be generated by rotating a concave curve such as an exponential curve or a hyperbola that gradually spreads from the top 100 toward the bottom 110, and an outer periphery of the rotating concave curved surface. And a cylindrical outer peripheral surface connected to the end of the surface on the bottom 110 side.
  • a part of the fine particle diffusing device 3 provided inside the main body 1 protrudes from the central portion at the bottom 110 of the main body 1, and an air inlet serving as an air inlet and an air outlet is formed on a side surface of the protruding portion. 13 is open.
  • the bottom 110 of the main body 1 is provided with a light emitting unit 80 (shown in FIG. 6) made of LED (light emitting diode), organic EL (electroluminescence) or the like.
  • the shade 2 is a circular disc in plan view, and the main body 1 is located at the center. Further, as shown in FIG. 2, the shade 2 is attached so as to be positioned at the center of the cylindrical outer peripheral surface of the main body 1 when viewed from the side.
  • the fine particle diffusing device 3 is located at the center of the main body 1 as shown in FIGS.
  • a lower casing 12, which is an example of a flat plate, is provided below the fine particle diffusion device 3, and a ventilation port 13 is provided between the lower casing 12 and the bottom 110 of the main body 1.
  • a stirring unit 6, an upper casing 11, and a separation unit 14 are provided on the inside of the main body 1 of the lower casing 12 of the microparticle diffusion device 3.
  • the separation part 14 is covered.
  • an ion generator 4, a drive unit 5, and a control unit 70 are provided on the upper part of the ceiling surface of the upper casing 11.
  • the ion generator 4, the agitation unit 6, the upper casing 11, the lower casing 12, and the separation unit 14 constitute an embodiment of the microparticle diffusion device 3.
  • the ion generator 4 has an ion generation part 41 for generating ions at one end, and is provided two symmetrically around the rotation shaft 60 of the stirring part 6. One of the two ion generators 4 and 4 generates positive ions, and the other generates negative ions.
  • the ion generators 4 and 4 are arranged such that the ion generator 41 is exposed from the ceiling surface of the upper casing 11 to the inside 120 of the microparticle diffusion device 3 surrounded by the upper casing 11 and the lower casing 12. .
  • the ion generators 4 and 4 are arrange
  • the drive unit 5 is provided with a motor (not shown) and a rotating shaft 15, and the motor rotates the stirring unit 6 through the rotating shaft 15. Therefore, the center of the rotating shaft 15 becomes the rotating shaft 60 of the stirring unit 6.
  • the motor of the drive unit 5 may be an inner rotor type or an outer rotor type.
  • the stirring unit 6 has a rotating disk part 21 and a moving blade 22, and the moving blade 22 is fixed to the rotating disk part 21.
  • a bearing unit 23 into which the rotating shaft 15 rotated by the driving unit 5 is inserted is provided.
  • the stirring unit 6 is arranged such that a flat surface where the rotor blades 22 of the rotating disk unit 21 are not fixed faces the lower casing 12.
  • a fixed gap W ⁇ b> 1 is provided between the rotating disc portion 21 and the lower casing 12 so that the rotating disc portion 21 and the lower casing 12 do not contact each other.
  • the rotating disk portion 21 has an annular flat plate shape in plan view, and the moving blade 22 has a substantially flat plate shape.
  • the rotor blades 22 are fixed to the rotating disk part 21 radially from the bearing part 23 in a radial direction and perpendicular to the rotating disk part 21.
  • the surface of the rotating disk portion 21 facing the lower casing 12 is provided with a circular groove centered on the rotating shaft 60 of the rotor blade 22 to improve the formability.
  • a groove having a height of about 0.5 mm and a width of about 9.6 mm is formed. The size of the groove can be changed according to the design. Further, as shown in FIG.
  • the bearing unit 23 functions as a rib, preventing deterioration of the dynamic balance of the agitation unit 6 and reducing the vibration of the rotor blade 22.
  • the inside of the bearing portion 23 is a cavity for accommodating a nut 17 (shown in FIG. 4) for fixing the rotary shaft 15, widens the area of the moving blade 22 to increase the air volume, and stirs. In order to reduce the weight of the portion 6, the size is made as small as possible.
  • the said rotating disc part 21, the moving blade 22, and the bearing part 23 may each be formed separately, may be combined, and may be formed integrally.
  • each of the separation units 14, 14, 14, 14 is arranged to be a square apex.
  • the vertices are not limited to square vertices, but may be non-uniform such as trapezoidal vertices.
  • the lower casing 12 is provided with four fixed bosses 16, 16, 16, 16 (only two are shown in FIG. 4).
  • the fixed bosses 16, 16, 16, 16 pass through the separation parts 14, 14, 14, 14, respectively, and have one end in the lower casing 12 and the other end in the upper casing 11 (for example, by screwing). ) It is fixed.
  • the vent hole 13 can be maximized.
  • the upper casing 11 is provided with projecting portions 52, 52, 52, 52 at positions corresponding to the separating portions 14, 14, 14, 14 on the inside 120 side of the microparticle diffusion device 3.
  • the projecting portions 52, 52, 52, 52 have surfaces that match the outer peripheral surface of the separating portions 14, 14, 14, 14, and the separating portions 14, 14, 14, 14, the upper casing 11, and the like.
  • the airflow efficiency is improved by eliminating the gap between the two.
  • the inner peripheral surface of the upper casing 11 is smoothly formed along the shape of the outer peripheral surface, and can efficiently flow the air flow without loss.
  • the control unit 70 controls the ion generator 4, the drive unit 5, and the light emitting unit 80 based on a signal from the operation unit 90 as shown in FIG.
  • the control unit 70 can control the drive unit 5 to adjust the rotational speed of the moving blade 22 of the stirring unit 6 and to freely switch the rotational direction between normal and reverse. Further, the ion generator 4 can be controlled so as to generate ions when the rotational speed of the moving blade 22 is equal to or higher than a certain value.
  • the operation unit 90 is a device for turning on / off the ion generator 4 or changing the rotational speed of the motor of the drive unit 5.
  • the operation unit 90 may be a remote controller or directly provided in the microparticle diffusion device 3. May be.
  • the air which exists in the vicinity of the outer peripheral part of the stirring part 6 and the exterior of an illuminating device by the flow of the air of four directions formed in the inside 120 of the microparticle diffusion apparatus 3 makes the vent holes 13, 13, 13,
  • the air flows into the interior 120 of the microparticle diffusion device 3 from the 13 air inflow portions 13a, 13a, 13a, 13a.
  • This inflowing air flows along the vortex of the stirring unit 6 and is guided by the separation units 14, 14, 14, 14 from the air outflow portions 13 b, 13 b, 13 b, 13 b of the vent holes 13, 13, 13, 13. It flows out of the main body 1.
  • the blowing direction of the air guided by the separation units 14, 14, 14, 14 is changed within a range of about 5 ° to 10 °. be able to.
  • the air flowing in from the air inflow portions 13a, 13a, 13a, 13a of the vent holes 13, 13, 13, 13 flows along the vortex flow of the air formed in the stirring portion 6 and is shown in FIG.
  • the vortex flow Y (second vortex) is generated by flowing along the upper casing 11 to the upper part of the interior 120 of the microparticle diffusion device 3.
  • the vortex Y generated in the inside 120 of the fine particle diffusing apparatus 3 rotates along the bearing portion 23 while entraining positive and negative ions emitted from the ion generator 4. It flows toward the plate part 21 and moves outward in the radial direction by the centrifugal force generated by the rotation of the stirring part 6.
  • the separation unit 14, 14, 14, 14 is deflected from the rotation direction of the stirring unit 6, and the main body 1 from the air outflow portions 13 b, 13 b, 13 b, 13 b of the vent holes 13, 13, 13, 13. Leaks out of the water.
  • the concentric air vortex X around the rotation shaft 60 of the moving blade 22 formed by the rotation of the moving blade 22 of the stirring unit 6 is caused by the separation unit 14. Deviated from the rotational direction of the moving blade 22, flows along the separation portion 14 and flows out from the air outflow portion 13 b of the ventilation port 13.
  • the air flowing in from the air inflow portion 13 a is less likely to collide with the stirring portion 6 vertically by the vortex X generated by the rotation of the moving blade 22, and the air outflow portion of the ventilation port 13 along the separation portion 14. Since it flows out from 13b, there are few collisions with air and the stirring part 6, and noise can be reduced.
  • the flow flows along not only the vortex X (first vortex) flowing along the rotation direction of the rotor blade 22 but also a plane substantially perpendicular to the virtual plane including the vortex X.
  • a vortex Y (second vortex) is also generated, and the vortex X and the vortex Y combine to form a three-dimensional flow. Since this three-dimensional flow is a strong air flow as compared with the case where only the vortex flow X is used (two-dimensional flow), the stirring effect can be enhanced. Thereby, since the ion generated by the ion generator 4 can be finely dispersed, the number of ions released from the four air outflow portions 13b, 13b, 13b, 13b can be made uniform.
  • the ions generated by the ion generator 4 are vortexed X. Can be released to the strongest part of Therefore, ions can be efficiently released to the outside of the fine particle diffusing device 3.
  • the drive unit 5 is controlled by the control unit 70, and the rotation speed of the stirring unit 6 is increased or decreased stepwise to prevent the main body 1 from swinging.
  • the direction of the centrifugal force due to the rotation of the moving blade 22 and the direction of air separation substantially coincide with each other in the portion where the vortex is separated by the separating portion 14.
  • a strong fluid force (self-cleaning action) directed to the outside of the stirring unit 6 acts on the adhered dust or the like. Further, since the relative speed between the dust and the moving blade 22 is small between the blades of the moving blade 22, the pressure for pressing the dust or the like against the moving blade 22 is small.
  • the fine particle diffuser apparatus 3 If the size of the vent hole 13 is reduced or a filter is attached to the vent hole 13 in order to prevent dust or foreign matter from entering the inside 120 of the fine particle diffuser apparatus 3 as in the past, the fine particle diffuser apparatus 3 As a result, the air blowing capacity is reduced and the fine particles cannot be sufficiently diffused into the air. However, since the fine particle diffusing device 3 can be easily discharged even if dust or foreign matter enters the inside 120 of the fine particle diffusing device 3, the size of the air vent 13 can be reduced, or a filter can be attached to the air vent 13. There is no need to attach it, and there is no need to cause unnecessary reduction in air blowing capacity.
  • the stirring unit 6 includes the rotating disk part 21 and the moving blade 22 is fixed to the rotating disk part 21, a gap is eliminated between the moving blade 22 and the rotating disk part 21, The air blowing efficiency can be improved. However, even without this rotating disk portion 21, the necessary minimum effects in the present invention, such as low pressure loss, low noise, and difficulty in adhering foreign matter such as dust and insects, can be exhibited.
  • a fine particle diffusion device in which positive and negative ions generated by the ion generator 4 are surrounded by the upper casing 11 and the lower casing 12.
  • the positive and negative ions generated by the ion generator 4 are efficiently discharged into the interior 120 of the fine particle diffusing apparatus 3 without being disturbed by the rotating disk portion 21 when discharged into the interior 120 of the It is possible to diffuse air containing sufficient ions.
  • the inside of the microparticle diffusion device 3 is moved from the inside to the outside. Even if a strong air flow is generated, the separation unit causes the vortex generated on one side in the direction of the rotating shaft of the stirring unit to be prevented from being generated on the other side in the direction of the rotating shaft of the stirring unit. Since it can isolate
  • the distance W1 between the rotating disk portion 21 and the lower casing 12 is larger than the distance W2 between the radially outer end portion of the moving blade 22 and the separating portion 14, the inside of the microparticle diffusion device 3 The air flowing into the can be ensured.
  • the upper surface of the lower casing 12 (the surface facing the surface where the rotor blades 22 of the rotating disk portion 21 are not fixed) is a flat flat surface having no irregularities such as ribs. This is because if there are irregularities on the upper surface of the lower casing 12, pressure fluctuation occurs due to the air flowing between the rotating disk portion 21 and the lower casing 12, which causes noise. If a circular rib or groove is provided on the upper surface of the lower casing 12, the noise value is increased, but the moldability of the lower casing 12 is improved.
  • the fine particle diffusion device 3 can also serve as a cooling device for the illumination device.
  • These positive and negative ions are attached to the surface of airborne bacteria in the air and chemically react to generate H 2 O 2 or .OH (hydroxyl radical) which is an active species. Since H 2 O 2 or .OH shows extremely strong activity, it can be inactivated and removed by surrounding mold and bacteria that are airborne bacteria.
  • the positive and negative ions are effective in inactivating and removing airborne bacteria by releasing positive ions and negative ions in pairs. However, when these positive ions and negative ions are released in a place where there is no air flow or there are few, they are attracted to each other, cancel each other, and disappear. In the illuminating device, since the air flow is formed by the fine particle diffusing device 3, it is possible to prevent the positive ions and the negative ions from canceling out and disappearing.
  • the fine particle generator as the fine particle generator, positive ions that are H + (H 2 O) m (m is an arbitrary natural number) and O 2 ⁇ (H 2 O) n (n is an arbitrary number)
  • an ion generator that generates normal ions using a high voltage may be used, or a different charge may be used. It may be an ion generator that generates particles.
  • a device that emits an odor component as a fine particle together with or instead of the charged particle may be used as the fine particle generation unit.
  • the fine particles as the odor component are preferably about the same size as the ions, but not about the same size as dust. This is because if particles having the same size as dust or the like adhere to the discharge electrons, there is a possibility of causing a discharge failure.
  • positive and negative ions are generated.
  • the present invention is not limited to this, and only positive ions or only negative ions may be generated.
  • the two ion generators 4 are provided, it is not restricted to this, You may make it provide only one and may provide three or more.
  • the generated ions are released into the inside 120 of the fine particle diffusing device 3, and the ions are emitted to the air before flowing out from the air outflow portion 13 b of the vent hole 13.
  • ions may be released from the bottom 110 of the main body 1 to release the ions into the air that has flowed out from the air outflow portion 13b of the vent hole 13.
  • the fine particle diffusion device 3 has five moving blades 22 of the stirring unit 6, but is not limited thereto, and may be any number as long as it is one or more.
  • the moving blade 22 is zero, that is, a flat disk, the vortex flow intended in the present invention can be generated.
  • the difference in the number of blades 22 affects the wind speed, air volume, number of ions, noise resistance, dust resistance, moldability of parts, and the like.
  • differences as shown in FIGS. 15, 16, and 17 occur.
  • the wind speed, the number of ions, and the noise value are values measured at a position of 700 mm from the rotating shaft 60 of the stirring unit 6.
  • the wind speed is high, but the noise value is the largest.
  • the number of the moving blades 22 is 5
  • the wind speed is equal to that at the time of 3 sheets, but the noise value is lower than that at the time of 3 sheets, and the number of ions is 1.5 times or more.
  • the noise value is the lowest but the wind speed and the number of ions are the lowest.
  • the number of moving blades 22 can be evaluated as follows. 3 blades: Airflow ⁇ Number of ions ⁇ Noise ⁇ Formability ⁇ 5 blades: Air volume ⁇ Number of ions ⁇ Noise ⁇ Formability ⁇ 7 blades: Air volume ⁇ Number of ions ⁇ Noise ⁇ Formability ⁇ ( ⁇ ... optimal ⁇ ... appropriate ⁇ ... possible ⁇ ... unsuitable) From the above, when four separation portions 14 are provided, it is preferable to provide five moving blades 22.
  • the separation unit 14 is provided at four locations, but is not limited thereto, and only one separation unit 14 may be provided, or five or more may be provided. Moreover, although the said isolation
  • the shape of the separation portion 14 is not limited to the substantially trapezoidal shape in plan view of the above embodiment, and may be a substantially rectangular shape or a flat plate shape, or may have a shape having inclined surfaces in both circumferential directions. In other words, any shape can be used as long as it can deflect the vortex of the air formed in the stirring unit 6 to form a flow along the separation unit 14.
  • the distance C between the ceiling surface of the upper casing 11 and the rotor blade 22 shown in FIG. 3 is preferably set to 15 mm. As shown in FIG. 18, by setting the distance C to 15 mm, the largest number of ions can be emitted.
  • the dimension H from the bottom surface of the rotating disk portion 21 to the upper surface of the rotor blade 22 shown in FIG. 11 is preferably 30 mm, and the angle z1 formed by the bottom surface of the rotating disk portion 21 and the side surface of the rotor blade 22 is set. Is preferably 72 °.
  • the distance t1 between the inner peripheral surface of the rotating concave curved surface of the upper casing 11 shown in FIG. 12 and the end of the upper surface of the rotor blade 22 is preferably 9.5 mm.
  • the distance t2 between the inner peripheral surface and the bottom surface of the rotating disc portion 21 is preferably 7.5 mm.
  • the curved surface R between the outer peripheral surface of the rotating concave curved surface of the upper casing 11 and the cylindrical outer peripheral surface preferably has a curvature radius of 26 mm.
  • the distances h1, h2, h3, h4 between the inner peripheral surface of the upper casing 11 and the side surfaces of the rotor blades 22 are gradually increased from h1 to h4. Yes.
  • a line connecting the centers of the two ion generators 4 through the rotation axis 60 of the stirring unit 6 is X
  • a line passing through the rotation axis 60 of the stirring unit 6 and perpendicular to X is Y.
  • z2 35 °.
  • L1 is a curve related to positive ions
  • L2 is a curve related to negative ions.
  • the diameter of the rotating disc portion 21 of the stirring unit 6 is D, and the rotation of the stirring unit 6 passes through both ends of the surface of the stirring unit 6 of the two ion generators 4 on the rotating shaft 60 side.
  • D and d preferably satisfy the relationship 0.5d ⁇ D ⁇ 2d.
  • the distance C between the ceiling surface of the upper casing 11 shown in FIG. 3 and the rotor blade 22 and the diameter D of the rotating disk portion 21 shown in FIG. 14 are 0.05D ⁇ C ⁇ . It is preferable to satisfy the relationship of 0.2D.
  • the diameter D of the rotating disk portion 21 is preferably 75 to 300 mm.
  • ions can be released in the direction in which the vortex of the air formed by the rotation of the moving blade 22 of the stirring unit 6 is diverted from the rotating direction of the moving blade 22 by the separation unit 14. Ions can be diffused in a plurality of directions by one microparticle diffusion device 3. Therefore, when ions are emitted in a plurality of different directions, there is no need to provide the microparticle generator 3 individually for the flow paths in different directions, and the manufacturing cost can be reduced by reducing the number of parts.
  • the substantially flat blade 22 is fixed perpendicularly to the rotating disk portion 21.
  • the present invention is not limited to this.
  • the shape of the blade 22 is curved. Also good. When the front surface in the rotational direction of the moving blade 22 is curved to be concave, a large amount of air can be conveyed and the ability of the stirring unit 6 can be enhanced.
  • the moving blade 22 it is preferable to form the moving blade 22 as thin as possible. By making the moving blade 22 thinner, it is possible to reduce the accumulation of dust and the like at the outer end portion (stagnation point) of the moving blade 22.
  • the stagnation point refers to the outer end of the moving blade 22 where the air flowing in from the outside first contacts the moving blade 22.
  • the control unit 70 switches the rotation direction of the moving blade 22 to change the location of the stagnation point, so that no further dust or the like is accumulated at the stagnation point where the dust or the like has accumulated. Then, the self-cleaning action is performed by the centrifugal force generated by the rotation of the moving blade 22 and the fluid force generated by the air flow, so that dust and the like accumulated on the moving blade 22 can be removed.
  • the fine particle diffusing device 3 is not limited to a lighting device, and can be used for an electronic device such as a refrigerator, a video device, or a personal computer, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

この発明の課題は、圧力損失が少なく、騒音が小さく、塵埃や昆虫等の異物が付着しにくい微小粒子拡散装置を提供することにある。微小粒子拡散装置(3)は、同心円状の渦流を生成する攪拌部(6)と、微小粒子を発生する微小粒子発生部(4,4)と、上記渦流を攪拌部(6)から分離する分離部(14,14,14,14)と、攪拌部(6)の外周部の近傍に設けられた通風口(13)とを備える。

Description

微小粒子拡散装置および照明装置
 この発明は、微小粒子拡散装置および照明装置に関する。
 従来、微小粒子拡散装置としては、特開2012-104304号公報(特許文献1)に記載されたものがある。この微粒子拡散装置は、シロッコファンを備え、このシロッコファンの軸方向の一方に設けられている空気流入口から吸い込んだ空気を、上記シロッコファンの径方向から吹き出し、この吹き出した空気を、空気通路を介して空気排出口から微粒子拡散装置の外部に排出するようにしている。
特開2012-104304号公報
 しかしながら、上記従来の微小粒子拡散装置では、空気をシロッコファンの軸方向の一方から吸い込んで、その後、シロッコファンの径方向に吹き出しているため、空気の方向転換による圧力損失が大きく、さらに、上記シロッコファンを含む攪拌部に空気がぶつかって垂直な方向に空気の流れを変えるため、大きな騒音を生じてしまうという問題があった。
 また、上記従来の微小粒子拡散装置は、シロッコファンを用いているので、動翼間の間隔が狭く、空気中の塵埃や昆虫あるいは鳥の羽根等の異物が動翼の間に非常に蓄積され易いため、動翼間に塵埃等の異物が蓄積して、シロッコファンの動バランスが悪化すると共に、シロッコファンにより吐出される風量が激減し、微小粒子の拡散能力が大幅に低下してしまうという問題があった。
 そこで、この発明の課題は、圧力損失が少なく、騒音が小さく、塵埃や昆虫等の異物が付着しにくい微小粒子拡散装置を提供することにある。
 上記課題を解決するため、この発明の微小粒子拡散装置は、
 複数の動翼を有して、回転軸を中心とする同心円状の渦流を生成する攪拌部と、
 上記攪拌部の上記回転軸の方向の一方の側に面し、微小粒子を発生する微小粒子発生部と、
 上記攪拌部に、その攪拌部の外周部の近傍から空気を流入させる空気流入口と、
 上記攪拌部の外周部の近傍からの空気を排出する空気流出口と、
 上記攪拌部の上記動翼よりも径方向の外側に位置すると共に、上記攪拌部の上記動翼の回転により形成される空気の上記攪拌部の周方向の渦流を上記攪拌部から分離する分離部と
を備え、
 上記空気流入口から流入した空気が、上記攪拌部の中心を通らないで、上記渦流となって、上記攪拌部の周方向に流れて、上記空気流出口から流出し、
 上記微小粒子発生部で発生させた上記微小粒子が、上記空気流出口から流出されるべき空気、または、上記空気流出口から流出された空気に乗って外部に放出されることを特徴とする。
 上記構成によれば、上記攪拌部の動翼の回転により形成される動翼の回転軸を中心とする同心円状の空気の渦流は、分離部により動翼の回転方向から逸らされて、分離部に沿った流れとなって空気流出口から流出する。
 このように、上記空気流入口から流入した空気は、動翼により生じた渦流によって攪拌部に垂直にぶつかることが少なく、分離部に沿って空気流出口から流出するので、空気と攪拌部との衝突が少なく、騒音を低減することができる。
 また、上記空気流入口から流入した空気は、上記渦流に沿って流れ、分離部に沿って空気流出口から流出するので、空気の流れの方向を変えることが少なくて、圧力損失が少なく、動力ロスが少ない。
 また、上記攪拌部の動翼の回転により、動翼の回転軸を中心とする同心円状の渦流を生成しているので、攪拌部に塵埃や小型の昆虫等の異物が流入しても動翼に付着しにくく、動翼の動バランスの悪化を防止できて、信頼性を高くすることができる。
 また、一実施形態の微小粒子拡散装置では、
 上記微小粒子発生部は、上記動翼の径方向の外側端部に対向するように配置されている。
 上記実施形態によれば、微小粒子発生部で発生した微小粒子を最も強い渦流部分に放出することができるので、微小粒子拡散装置の外部に微小粒子を効率よく放出することができる。
 また、一実施形態の微小粒子拡散装置では、
 上記攪拌部は、回転円板部を備え、この回転円板部は、上記動翼が固定されると共に、上記攪拌部の上記回転軸の方向の他方の側に設けられている。
 上記実施形態によれば、上記攪拌部が回転円板部を備え、この回転円板部に動翼が固定されているので、動翼と回転円板部との間に隙間をなくして、送風効率を向上させることができると共に、上記回転円板部が上記攪拌部の他方の側を覆って露出しないようにできるので、攪拌部の内部に侵入する塵埃や異物の量を低減することができる。
 また、上記回転円板部が攪拌部の回転軸の方向の他方の側に設けられているので、微小粒子発生部で発生させた微小粒子を放出する際に回転円板部が邪魔になることがなく、微小粒子発生部で発生させた微小粒子を上記空気流出口から流出されるべき空気、または、上記空気流出口から流出された空気に効率よく放出することができる。
 また、一実施形態の微小粒子拡散装置では、
 上記回転軸の方向の他方の側に位置し、上記回転円板部を覆うと共に、上記回転円板部との間に間隙を有する平板を備える。
 上記実施形態によれば、攪拌部の回転軸の方向の他方の側に生じる渦流は、平板により生成が妨げられ、半径方向外側に向かう空気の流れが小さくなるので、微小粒子拡散装置内に流入する空気を確保できて、サージングを防止することができる。
 また、一実施形態の微小粒子拡散装置では、
 上記回転円板部と上記平板との間の距離は、上記動翼の径方向の外側端部と上記分離部との間の距離よりも大きい。
 上記実施形態によれば、攪拌部の回転軸の方向の他方の側に生じる渦流の生成を妨げながら、攪拌部の回転軸の方向の一方の側に生じる渦流を分離部により分離することができるので、微小粒子拡散装置3内に流入する空気を確実に確保できて、サージングを防止することができる。
 また、一実施形態の微小粒子拡散装置では、
 上記攪拌部を制御する制御手段を備える。
 上記実施形態によれば、攪拌部を制御して、動翼の回転を制御することができる。
 また、一実施形態の微小粒子拡散装置では、
 上記微小粒子が荷電粒子である。
 上記実施形態によれば、荷電粒子によって空気浄化をすることができる。この荷電粒子は、負の荷電粒子のみ、正の荷電粒子のみ、あるいは、正負の荷電粒子であってもよい。
 また、一実施形態の微小粒子拡散装置では、
 上記微小粒子が、H(HO)(mは任意の自然数)である正イオンと、O (HO)(nは任意の自然数)である負イオンである。
 上記実施形態によれば、上記微小粒子が、H(HO)(mは任意の自然数)である正イオンと、O (HO)(nは任意の自然数)である負イオンであるので、空気中の浮遊細菌の表面に付着し、化学反応して活性種であるHまたは・OH(水酸基ラジカル)を生成し、空気中の浮遊細菌であるカビや雑菌を取り囲んで不活化、除去することができる。
 また、この発明の照明装置では、
 上記いずれか1つに記載の微小粒子拡散装置を備えることを特徴とする。
 上記構成によれば、圧力損失が少なく、騒音が小さく、塵埃や昆虫等の異物が付着しにくい微小粒子拡散装置を備えた照明装置を提供することができる。
 以上より明らかなように、この発明の微小粒子拡散装置によれば、圧力損失が少なく、騒音が小さく、塵埃や昆虫等の異物が付着しにくい微小粒子拡散装置およびそれを用いた照明装置を実現することができる。
図1は、この発明の実施の一形態の微小粒子拡散装置を備えた照明装置の斜視図である。 図2は、上記照明装置の側面図である。 図3は、上記照明装置を示す図2のA-A線から見た縦断面の模式図である。 図4は、上記微小粒子拡散装置の分解斜視図である。 図5は、上記微小粒子拡散装置の攪拌部の斜視図である。 図6は、上記微小粒子拡散装置の制御ブロック図である。 図7は、上記微小粒子拡散装置で発生する空気の流れを示す図2のB-B線から見た横断面図である。 図8は、上記微小粒子拡散装置で発生する空気の流れを示す図7のI-I線から見た縦断面の通風口部分を示す模式図である。 図9は、上記微小粒子拡散装置で発生する空気の流れを示す図7のII-II線から見た縦断面の通風口部分を示す模式図である。 図10は、上記微小粒子拡散装置で発生する空気の流れを示す図7のIII-III線から見た縦断面の通風口部分を示す模式図である。 図11は、上記微小粒子拡散装置の通風口部分の最適形状を示す縦断面の模式図である。 図12は、上記微小粒子拡散装置の通風口部分の最適形状を示す縦断面の模式図である。 図13は、上記微小粒子拡散装置の通風口部分の最適形状を示す縦断面の模式図である。 図14は、上記微小粒子拡散装置の攪拌部の最適形状を示す攪拌部の平面図の模式図である。 図15は、動翼の設置枚数と風速との関係を示す図である。 図16は、動翼の設置枚数とイオン数との関係を示す図である。 図17は、動翼の設置枚数と騒音値との関係を示す図である。 図18は、距離Cとイオン数との関係を示す図である。 図19は、分離部を4箇所設けている場合の角度z2と正負のイオン数との関係を示す図である。
 以下、この発明の微小粒子拡散装置および照明装置を図示の実施の形態により詳細に説明する。
 この実施形態の微小粒子拡散装置は、図1に示すように、本体1と、シェード2とを備える照明装置に設けている。
 上記本体1は、図2に示すように、上部100から底部110に向かって漸次広がる指数曲線や双曲線等の凹曲線を回転して生成できる回転凹曲面の外周面と、この回転凹曲面の外周面の底部110側の端に連なる円筒形状の外周面とを有している。上記本体1の底部110には、本体1内部に設けている微小粒子拡散装置3の一部分が中央部から突出しており、この突出部分の側面には、空気流入口および空気流出口となる通風口13が開口している。なお、本体1の底部110には、LED(発光ダイオード)や有機EL(エレクトロルミネッセンス)等からなる発光部80(図6に示す)を設けている。
 上記シェード2は、図1に示すように、平面視環状の円板で、中央に本体1が位置している。また、このシェード2は、図2に示すように、側面から見て、上記本体1の円筒形状の外周面の中央に位置するように取り付けている。
 上記微小粒子拡散装置3は、図2,図3に示すように、上記本体1の中央部に位置している。上記微小粒子拡散装置3の下部には、平板の一例である下部ケーシング12を設けており、この下部ケーシング12と本体1の底部110との間に、通風口13を設けている。
 上記微小粒子拡散装置3の下部ケーシング12の本体1内部側には、図3に示すように、攪拌部6と上部ケーシング11と分離部14とを設けており、上部ケーシング11で攪拌部6と分離部14とを覆っている。また、上部ケーシング11の天井面の上部には、微小粒子発生部の一例のイオン発生器4と駆動部5と制御部70(図6に示す)とを設けている。上記イオン発生器4、攪拌部6、上部ケーシング11、下部ケーシング12および分離部14は、微小粒子拡散装置3の一実施形態を構成する。
 上記イオン発生器4は、イオンを発生するイオン発生部41を一端に有し、攪拌部6の回転軸60を中心として左右対称に2つ設けている。この2つのイオン発生器4,4は、一方が正イオンを発生させ、他方が負イオンを発生させる。上記イオン発生器4,4は、上部ケーシング11の天井面から上部ケーシング11と下部ケーシング12とで囲まれた微小粒子拡散装置3の内部120にイオン発生部41が露出するように配置されている。また、イオン発生器4,4は、イオン発生部41,41が、後述する攪拌部6の動翼22の径方向の外側端部と対向する位置に配置されている。
 上記駆動部5には、モータ(図示せず)と回転シャフト15とを設けており、このモータが、上記回転シャフト15を介して攪拌部6を回転させる。したがって、この回転シャフト15の中心が攪拌部6の回転軸60となる。なお、駆動部5のモータは、インナーロータのタイプであっても、アウターロータのタイプであってもよい。
 上記攪拌部6は、回転円板部21と動翼22とを有し、回転円板部21に動翼22を固定している。この攪拌部6の中心には、上記駆動部5により回転する回転シャフト15が挿入される軸受け部23を設けている。また、上記攪拌部6は、回転円板部21の動翼22を固定していないフラットな面が下部ケーシング12に面するように配置している。回転円板部21と下部ケーシング12との間には、図3に示すように、一定の間隙W1を設けて、回転円板部21と下部ケーシング12とが接触しないようにしている。
 上記回転円板部21は、図3,図4に示すように、平面視環状の平板形状であり、上記動翼22は、略平板形状である。上記回転円板部21には、軸受け部23から径方向に放射状に、回転円板部21に対して垂直に、上記動翼22を固定している。回転円板部21の下部ケーシング12に面している面には、図示していないが、動翼22の回転軸60を中心とする円形の溝を設けて、成形性を向上させている。本実施形態では、高さ約0.5mm,幅約9.6mmの溝を形成している。なお、溝の大きさは、設計に応じて変更可能である。また、本実施形態の攪拌部6には、図5に示すように、5枚の動翼22が等間隔で回転円板部21に取り付けられている。このように攪拌部6を構成することで、軸受け部23がリブの機能を果たし、攪拌部6の動バランスの悪化を防止すると共に、動翼22の振れを小さくすることができる。上記軸受け部23の内部は、回転シャフト15を固定するためのナット17(図4に示す)を収容するため空洞であり、上記動翼22の面積を広くして風量を大きし、かつ、攪拌部6を軽量化するために、できるだけ小型化を図っている。なお、上記回転円板部21、動翼22および軸受け部23は、それぞれ別々に形成して組み合わせてもいいし、一体に形成してもよい。
 また、図4に示すように、上記攪拌部6の外周囲、つまり攪拌部6の動翼22,22,22,22,22の径方向外側に4つの分離部14,14,14,14を設けている。分離部14,14,14,14と攪拌部6の動翼22,22,22,22,22の径方向の外側端部との間には、図3に示すように、一定の間隙W2を設けている。この間隙W2は、回転円板部21と下部ケーシング12との間の間隙W1よりも小さく設けられている。この分離部14,14,14,14は、図7に示すように、平面視において、脚の一方が傾斜面であり攪拌部6側が底辺となる略台形で、環状のリングカバー51によって同一円周上に位置している。また、図7に示すように、上記分離部14,14,14,14の各々が正方形の頂点となるように配置している。但し、正方形の頂点とは限らず、他に台形の頂点等、不均等であってもかまわない。
 上記下部ケーシング12には、4つの固定ボス16,16,16,16(図4には2つだけ記載)を設けている。この固定ボス16,16,16,16は、それぞれが分離部14,14,14,14を貫通しており、一端を下部ケーシング12に、そして、他端を上部ケーシング11に(例えばビス締めで)固定している。このように、分離部14,14,14,14を貫通する位置に固定ボス16,16,16,16を設けることで、上記通風口13を最大限大きくすることができる。
 上記上部ケーシング11には、上記微小粒子拡散装置3の内部120側の上記分離部14,14,14,14に対応した位置に突出部52,52,52,52を設けている。この突出部52,52,52,52は、分離部14,14,14,14の外周側の面と合致する面を有しており、分離部14,14,14,14と上部ケーシング11との間の隙間をなくして、送風効率を向上させている。また、上部ケーシング11の内周面は、外周面の形状に沿って滑らかに形成されており、空気の流れをロスなく効率よく流すことができる。
 上記制御部70は、図6に示すように、操作部90からの信号に基づいて、イオン発生器4、駆動部5、および発光部80を制御する。この制御部70により、駆動部5を制御して、攪拌部6の動翼22の回転速度の高低を調整したり、回転方向の正逆を自在に切り替えたりすることができる。また、動翼22の回転速度が一定値以上のときに、イオンを発生するようイオン発生器4を制御することもできる。なお、操作部90は、イオン発生器4のオンオフあるいは駆動部5のモータの回転速度の変更等を行うための装置であり、リモートコントローラであってもいいし、微小粒子拡散装置3に直接設けてもよい。
 次に、上記構成の照明装置における微小粒子の拡散について説明する。
 照明装置を動作させると、上記微小粒子拡散装置3の駆動部5へ図示しない電源部から電力が供給され、駆動部5が回転シャフト15を介して攪拌部6を回転させる。そうすると、図7に示すように、微小粒子拡散装置3の内部120に攪拌部6の回転軸60を中心とする同心円状の空気の渦流X(第1の渦)が発生する。
 この渦流Xには遠心力が働くため、攪拌部6内の空気は回転と共に径方向外側に向かって移動して、分離部14,14,14,14により攪拌部6の回転方向から逸らされる。そのため、微小粒子拡散装置3の内部120には、流れる方向の異なる空気の流れが4方向に形成される。
 そして、微小粒子拡散装置3の内部120に形成された4方向の空気の流れによって、攪拌部6の外周部の近傍、かつ、照明装置の外部にある空気が、通風口13,13,13,13の空気流入部13a,13a,13a,13aから微小粒子拡散装置3の内部120に流入する。この流入した空気は、攪拌部6の渦流に沿って流れ、分離部14,14,14,14に案内されて通風口13,13,13,13の空気流出部13b,13b,13b,13bから本体1の外部に流出する。
 このとき、上記制御部70により攪拌部6の回転速度を調整することによって、分離部14,14,14,14により案内される空気の吹き出し方向を、約5°~10°の範囲で変更することができる。
 上記駆動部5による攪拌部6の回転と同時に、イオン発生器4にも電力が供給され、微小粒子拡散装置3の内部120に正負のイオンが放出される。そして、この正負のイオンは、形成された4方向の空気の流れに乗って本体1の外部に流出して、照明装置外部の空気中に拡散される。
 このとき、上記通風口13,13,13,13の空気流入部13a,13a,13a,13aから流入した空気は、攪拌部6に形成されている空気の渦流に沿って流れると共に、図8に示すように、上部ケーシング11に沿って微小粒子拡散装置3の内部120の上部に流れ、渦流Y(第2の渦)が発生する。そして、微小粒子拡散装置3の内部120に発生した渦流Yは、図9,図10に示すように、イオン発生器4から放出された正負のイオンを巻き込みながら、軸受け部23に沿って回転円板部21に向かって流れ、攪拌部6の回転により生じる遠心力によって径方向外側に向かう。その後、上述のように、分離部14,14,14,14によって攪拌部6の回転方向から逸らされ、通風口13,13,13,13の空気流出部13b,13b,13b,13bから本体1の外部に流出する。
 上記構成の微小粒子拡散装置3によれば、上記攪拌部6の動翼22の回転により形成される動翼22の回転軸60を中心とする同心円状の空気の渦流Xは、分離部14により動翼22の回転方向から逸らされて、分離部14に沿った流れとなって通風口13の空気流出部13bから流出する。
 このように、上記空気流入部13aから流入した空気は、動翼22の回転により生じた渦流Xによって攪拌部6に垂直にぶつかることが少なく、分離部14に沿って通風口13の空気流出部13bから流出するので、空気と攪拌部6との衝突が少なく、騒音を低減することができる。
 また、上記空気流入部13aから流入した空気は、上記渦流Xに沿って流れ、分離部14に沿って通風口13の空気流出部13bから流出するので、空気の流れの方向を変えることが少なくて、圧力損失が少なく、動力ロスが少ない。
 さらに、上記微小粒子拡散装置3では、動翼22の回転方向に沿って流れる渦流X(第1の渦)だけでなく、この渦流Xを含む仮想平面に対して略垂直な平面に沿って流れる渦流Y(第2の渦)も発生し、この渦流Xと渦流Yとが相俟って3次元流れを形成する。この3次元流れは、渦流Xのみを用いる場合(2次元流れ)と比較して、強い空気の流れであるので、攪拌効果を高めることができる。これにより、イオン発生器4で発生させたイオンを微細分散化することができるので、4つの空気流出部13b,13b,13b,13bから放出されるイオンの数量を均一にすることができる。
 また、イオン発生部41が攪拌部6の動翼22の径方向の外側端部と対向する位置に、イオン発生器4を配置しているので、イオン発生器4で発生させたイオンを渦流Xの最も強い部分に放出することができる。従って、微小粒子拡散装置3の外部にイオンを効率よく放出することができる。
 なお、上記照明装置がペンダント型の吊り下げ照明である場合に特に顕著であるが、攪拌部6の回転開始時および回転停止時に、本体1が慣性力で揺動してしまう。そのため、制御部70により駆動部5を制御して、攪拌部6の回転速度を段階的に上昇または下降させて、本体1の揺動を防止している。
 本実施形態の微小粒子拡散装置3は、分離部14により渦流が分離される部分において、動翼22の回転による遠心力の方向と空気の分離の方向とがほぼ一致するため、動翼22に付着した塵埃等に攪拌部6の外側に向かう強い流体力(セルフクリーニング作用)が働く。また、動翼22の翼間においては、塵埃等と動翼22との相対速度が小さいため、塵埃等を動翼22に押し付ける圧力が小さい。そのため、例えば小さい昆虫や鳥の羽根等、比較的大きい異物が通風口13の空気流入部13aから微小粒子拡散装置3の内部120に流入しても、上記セルフクリーニング作用により動翼22の翼間に詰まることがなく、通風口13の空気流出部13bから微小粒子拡散装置3の外部に排出される。
 このように、上記攪拌部6の動翼22の回転により形成される動翼22の回転軸60を中心とする同心円状の空気の渦流を生成しているので、攪拌部6に塵埃や小型の昆虫等の異物が流入しても動翼22に付着しにくく、容易く排出できるので、動翼22の動バランスの悪化を防止できて、かつ、信頼性を高くすることができる。
 特に、照明装置においては、その内部に小さな昆虫が侵入することが大きな解決すべき問題であるが、本微小粒子拡散装置3を備えた照明装置では、この昆虫の侵入という問題が解決される。
 従来のように、塵埃や異物等が微小粒子拡散装置3の内部120に侵入することを防ぐために、通風口13のサイズを小さくしたり、通風口13にフィルタ取り付けたりすると、微小粒子拡散装置3の送風能力が低下して、十分に微小粒子を空気中に拡散できなくなってしまう。しかし、上記微小粒子拡散装置3は、塵埃や異物等が微小粒子拡散装置3の内部120に侵入しても容易に排出できるため、通風口13のサイズを小さくしたり、通風口13にフィルタを取り付けたりする必要が無く、無用な送風能力の低下を招くことが無い。
 また、上記攪拌部6が回転円板部21を備え、この回転円板部21に動翼22が固定されているので、動翼22と回転円板部21との間に隙間をなくして、送風効率を向上させることができる。但し、この回転円板部21がなくても、圧力損失が少なく、騒音が小さく、塵埃や昆虫等の異物が付着しにくいといった、本発明における必要最小限の効果は発揮できる。
 また、上記回転円板部21を攪拌部6の下部ケーシング12側に設けることによって、イオン発生器4で発生させた正負のイオンを上部ケーシング11と下部ケーシング12とで囲まれた微小粒子拡散装置3の内部120に放出する際に回転円板部21が邪魔になることがなく、イオン発生器4で発生させた正負のイオンを微小粒子拡散装置3の内部120に効率よく放出して、正負のイオンを十分含んだ空気を拡散することができる。
 また、上記下部ケーシング12を設けることによって上記攪拌部6を覆って露出しないようにできるので、安全を確保でき、かつ、攪拌部6の内部に侵入する塵埃や異物の量を低減することができる。
 さらに、上記回転円板部21を覆い、かつ、回転円板部21と下部ケーシング12との間に間隙W1を有するように下部ケーシング12を設けることで、微小粒子拡散装置3の内部から外部に向かって強い空気の流れが発生しても、攪拌部の回転軸の方向の他方の側に生じる渦流の生成を妨げながら、攪拌部の回転軸の方向の一方の側に生じる渦流を分離部により分離することができるので、微小粒子拡散装置3内に流入する空気を確保できて、騒音の原因にもなるサージングの発生を抑制できる。また、回転円板部21と下部ケーシング12との間の距離W1が、動翼22の径方向の外側端部と分離部14との間の距離W2よりも大きいので、微小粒子拡散装置3内に流入する空気を確実に確保できる。
 なお、上記下部ケーシング12の上面(回転円板部21の動翼22を固定していない面に面している面)は、リブ等の凹凸の無いフラットな平面であるのが好ましい。これは、下部ケーシング12の上面に凹凸が存在すると、回転円板部21と下部ケーシング12との間を流れる空気によって圧力変動が生じ、騒音の原因となるからである。なお、下部ケーシング12の上面に円形のリブまたは溝を設けると、騒音値の増大をもたらすが、下部ケーシング12の成形性を向上させる。
 ところで、上記照明装置を動作したとき、LED等の発光部や電子部品から熱が発生する。この熱は、上部ケーシング11を介して、微小粒子拡散装置3の内部120に伝わる。上記微小粒子拡散装置3によって形成された空気の流れは、微小粒子拡散装置4の内部120に伝わった熱を外部に放出して、微小粒子拡散装置3を冷却する。すなわち、上記微小粒子拡散装置3は、上記照明装置の冷却装置としての役割をも果たすことができる。
 上記微小粒子拡散装置3では、イオン発生器4として、H(HO)(mは任意の自然数)である正イオンと、O (HO)(nは任意の自然数)である負イオンとを放出するイオン発生器を用いている。これらの正負のイオンは、空気中の浮遊細菌の表面に付着し、化学反応して活性種であるHまたは・OH(水酸基ラジカル)を生成する。Hまたは・OHは、極めて強力な活性を示すため、空気中の浮遊細菌であるカビや雑菌を取り囲んで不活化、除去することができる。
 また、上記正負のイオンは、正イオンと負イオンが対の状態で放出されることにより、空気中の浮遊細菌の不活化、除去に効果を発揮する。しかし、これらの正イオンと負イオンは、空気の流れが無い、あるいは、少ない場所に放出された場合、互いに引き寄せられ打ち消しあって消滅してしまう。上記照明装置では、微小粒子拡散装置3により空気の流れを形成するので、上記正イオンと負イオンとが打ち消しあって消滅するのを防ぐことができる。
 また、上記微小粒子発生装置は、微小粒子発生部として、H(HO)(mは任意の自然数)である正イオンと、O (HO)(nは任意の自然数)である負イオンを発生させるイオン発生器4を用いているが、これに限られず、例えば、高電圧を使用する通常のイオンを発生させるイオン発生器を用いてもいいし、さらに異なる荷電粒子を発生させるイオン発生器であってもよい。さらに、例えば、荷電粒子と共に、あるいは、荷電粒子に換えて、微小粒子として匂い成分を放出する装置を微小粒子発生部として用いてもよい。但し、匂い成分としての上記微粒子は、上記イオンと同程度の大きさであるのが望ましいが、塵埃等と同程度の大きさであることは望ましくない。塵埃等と同程度の大きさの粒子が放電電子に付着した場合、放電の不良に繋がる可能性があるからである。
 上記微小粒子拡散装置3では、正負のイオンを発生させているが、これに限られず、正のイオンのみ、または、負のイオンのみを発生するようにしてもよい。また、上記微小粒子拡散装置3では、イオン発生器4を2つ設けているが、これに限られず、1つだけ設けるようにしてもいいし、3以上設けてもよい。
 上記微小粒子拡散装置3では、発生させたイオンを微小粒子拡散装置3の内部120に放出して、通風口13の空気流出部13bから流出する前の空気にイオンを放出するようにしているが、これに限らず、例えば、本体1の底部110からイオンを放出するようにして、通風口13の空気流出部13bから流出した空気にイオンを放出するようにしてもよい。
 また、上記微小粒子拡散装置3では、攪拌部6の動翼22を5枚有しているが、これに限られず、1枚以上であれば何枚であってもよい。なお、動翼22が0枚すなわち平坦な円板であっても、本発明で意図している渦流を発生させることはできる。
 ところで、動翼22の枚数の違いは、風速・風量・イオン数・騒音性・耐埃性・部品の成形性などに影響する。例えば、上記実施形態同様に、分離部14を4箇所設けた場合、図15,図16,図17に示すような違いが生じる。なお、風速、イオン数および騒音値は、攪拌部6の回転軸60から700mmの位置で測定した値である。
 すなわち、動翼22が3枚のときは、風速は高いが、騒音値が最も大きくなる。また、動翼22が5枚のときは、風速が3枚時と同等であるのに、騒音値が3枚時よりも低く、さらに、イオン数量が1.5倍以上ある。また、動翼22が7枚のときは、騒音値は最も低いが風速、イオン数量共に最低である。
 したがって、動翼22の枚数に関して以下のように評価できる。
 動翼3枚:風量○ イオン数○ 騒音× 成形性×
 動翼5枚:風量○ イオン数○ 騒音○ 成形性○
 動翼7枚:風量△ イオン数△ 騒音○ 成形性◎
  (◎…最適 ○…適 △…可 ×…不適)
以上から、分離部14を4箇所設けた場合には、動翼22を5枚設けるのが好ましい。
 上記微小粒子拡散装置3では、分離部14を4箇所に設けているが、これに限られず、分離部14を1つだけ設けてもいいし、5以上設けてもよい。また、上記分離部14は、各々が正方形の頂点となるように配置しているが、攪拌部6の外周囲であれば自由に位置を変更できるようにしてもよい。分離部14の位置を変えることで、通風口13の大きさや空気が流れる方向を変更することができるので、イオンの拡散量や拡散方向を調整することができる。
 なお、分離部14の形状は、上記実施形態の平面視略台形に限られず、略矩形や平板形状にしてもいいし、あるいは、周方向両方に傾斜面を有する形状にしてもよい。つまり、攪拌部6で形成された空気の渦流を逸らして、分離部14に沿った流れにすることができる形状であればどんなものでもよい。
 上記微小粒子拡散装置3において、図3に示している上部ケーシング11の天井面と動翼22との間の距離Cは、15mmに設定するのが好ましい。図18に示すように、距離Cを15mmとすることで、最も多くのイオンを放出することができる。
 また、図11に示す回転円板部21の底面から動翼22の上面までの寸法Hは、30mmであるのが好ましく、回転円板部21の底面と動翼22の側面とが成す角度z1は、72°であるのが好ましい。さらに、図12に示す上部ケーシング11の回転凹曲面の内周面と動翼22の上面の端部との間の距離t1は、9.5mmであるのが好ましく、上部ケーシング11の円筒形状の内周面と回転円板部21の底面との間の距離t2は、7.5mmであるのが好ましい。また、上部ケーシング11の回転凹曲面の外周面と円筒形状の外周面との間の曲面Rは、曲率半径が26mmであるのが好ましい。このように微小粒子拡散装置3を構成することで、高いイオンの放出量を確保し、さらに空気の流出入に起因する騒音を低減することができる。
 また、図13に示すように、上部ケーシング11の内周面と動翼22の側面との間の距離h1,h2,h3,h4が、h1からh4に向かって漸次大きくなるように構成している。このように微小粒子拡散装置3を構成することで、空気の流出入に起因する騒音を低減することができ、風量、風速およびイオンの個数を最適化することができる。
 また、図14に示すように、攪拌部6の回転軸60を通り2つのイオン発生器4の中心を結ぶ線をXとし、攪拌部6の回転軸60を通りXに垂直な線をYとすると、図14に示す攪拌部6の回転軸60を通り対向する分離部14,14を貫通する固定ボス16の中心を結ぶ線とYとが成す角度z2を変えることで、各通風口13の空気流出部13bから放出されるイオン数量を調整することができる。イオンの総数は、イオン発生器4の性能や設置数により決定するが、ある1箇所の通風口13の空気流出部13bから放出されるイオンの数量を他の空気流出部13bよりも多くしたり、正(負)のイオンの放出割合を調整したりすることが可能である。
 なお、本実施形態においては、z2=35°としている。図19に示すように、分離部14の設置数が4箇所である場合、z2=35°とすると、正負のイオン数のバランスが最適となる。なお、図19において、L1は正イオンに関する曲線であり、L2は負イオンに関する曲線である。
 また、図14に示すように、攪拌部6の回転円板部21の直径をDとし、2つのイオン発生器4の攪拌部6の回転軸60側の面の両端を通り攪拌部6の回転軸60を中心とする円の直径をdとすると、Dとdは、0.5d<D<2dの関係を満たすのが好ましい。この関係を満たすように動翼22および回転円板部21を設けることで、イオン発生器4で発生させた正負のイオンを攪拌部6に形成されている渦流の流速の高い部分に放出することができる。なお、本実施形態においては、D=Φ100、d=Φ74にしており、上記関係を満たしている。
 また、図3に示している上部ケーシング11の天井面と動翼22との間の距離Cと、図14に示している回転円板部21の直径をDとは、0.05D<C<0.2Dの関係を満たすのが好ましい。本実施形態では、上部ケーシング11の天井面と動翼22との間の距離Cを15mmにしているので、回転円板部21の直径Dは75~300mmであるのが好ましい。回転円板部21の直径Dを75~300mmにすることで、最適なイオン放出量を維持しつつ攪拌部6の大きさを抑制して、微小粒子拡散装置3をコンパクトにすることができる。
 また、上記攪拌部6の回転軸60とイオン発生器4の中心とを結ぶ線が、動翼22の中心と分離部14の中心とを結ぶ線と交わることがない。このため、イオン発生器4で生成させたイオンを確実に攪拌部6に形成される空気の渦流に放出することができる。
 上記微小粒子拡散装置3では、攪拌部6の動翼22の回転により形成される空気の渦流が分離部14により動翼22の回転方向から逸らされる方向にイオンを放出することができるので、1つの微小粒子拡散装置3で複数方向にイオンを拡散することができる。そのため、異なる複数の方向にイオンを放出する場合に、方向の異なる流路に対して個別に微小粒子発生装置3を設ける必要が無く、部品点数を抑えて製造コストを抑制することができる。
 また、上記微笑粒子拡散装置3では、略平板形状の動翼22を回転円板部21に対して垂直に固定しているが、これに限られず、例えば、動翼22の形状を湾曲させてもよい。動翼22の回転方向の前面を凹面に湾曲させると、大量の空気を搬送して、攪拌部6の能力を高めることができる。
 なお、動翼22の厚さは、できる限り薄く形成するのが好ましい。動翼22を薄くすることで、動翼22の外側端部(澱み点)に塵埃等が蓄積するのを低減することができる。なお、澱み点とは、外部から流入した空気が最初に動翼22に接触する動翼22の外側端部をいう。
 上記攪拌部6の動翼22の回転方向が、正回転または逆回転のどちらであっても、同様の作用効果を奏する。
 なお、上記攪拌部6の動翼22を同一方向に回転させ続けると、澱み点に少なからず塵埃等が蓄積してしまう虞がある。この場合、制御部70により動翼22の回転方向を切り替えて、澱み点の場所を変えることで、塵埃等が蓄積していた澱み点に、更なる塵埃等が蓄積することがなくなる。そして、動翼22の回転による遠心力と、空気の流れによる流体力とによりセルフクリーニング作用が働いて、動翼22に蓄積していた塵埃等を取り除くことができる。
 上記微小粒子拡散装置3は、照明装置に限られず、例えば、冷蔵庫や映像機器やパーソナルコンピュータ等の電子機器に用いることもできる。
 1…本体
 2…シェード
 3…微小粒子拡散装置
 4…イオン発生器
 5…駆動部
 6…攪拌部
11…上部ケーシング
12…下部ケーシング
13…通風口
13a…空気流入部
13b…空気流出部
14…分離部
15…回転シャフト
16…固定ボス
17…ナット
21…回転円板部
22…動翼
23…軸受け部
41…イオン放出部
51…リングカバー
52…突出部
60…回転軸
70…制御部
80…発光部
90…操作部
100…上部
110…底部
120…内部

Claims (9)

  1.  複数の動翼(22)を有して、回転軸(60)を中心とする同心円状の渦流を生成する攪拌部(6)と、
     上記攪拌部(6)の上記回転軸(60)の方向の一方の側に位置し、微小粒子を発生する微小粒子発生部(3)と、
     上記攪拌部(6)に、その攪拌部(6)の外周部の近傍から空気を流入させる空気流入口(13a)と、
     上記攪拌部(6)の外周部の近傍からの空気を排出する空気流出口(13b)と、
     上記攪拌部(6)の上記動翼(22)よりも径方向の外側に位置すると共に、上記攪拌部(6)の上記動翼(22)の回転により形成される空気の上記攪拌部(6)の周方向の渦流を上記攪拌部(6)から分離する分離部(14)と
    を備え、
     上記空気流入口(13a)から流入した空気が、上記攪拌部(6)の中心を通らないで、上記渦流となって、上記攪拌部(6)の周方向に流れて、上記空気流出口(13b)から流出し、
     上記微小粒子発生部(3)により発生した上記微小粒子が、上記空気流出口(13b)から流出されるべき空気、または、上記空気流出口(13b)から流出された空気に乗って外部に放出されることを特徴とする微小粒子拡散装置(3)。
  2.  請求項1に記載の微小粒子拡散装置(3)において、
     上記微小粒子発生部(3)は、上記動翼(22)の径方向の外側端部に対向するように配置されていることを特徴とする微小粒子拡散装置(3)。
  3.  請求項1または2に記載の微小粒子拡散装置(3)において、
     上記攪拌部(6)は、回転円板部(21)を備え、この回転円板部(21)は、上記動翼(22)が固定されると共に、上記攪拌部(6)の上記回転軸(60)の方向の他方の側に設けられていることを特徴とする微小粒子拡散装置(3)。
  4.  請求項3に記載の微小粒子拡散装置(3)において、
     上記回転軸(60)の方向の他方の側に位置し、上記回転円板部(21)を覆うと共に、上記回転円板部(21)との間に間隙を有する上記回転円板部(21)を覆う平板(12)を備えることを特徴とする微小粒子拡散装置(3)。
  5.  請求項4に記載の微小粒子拡散装置(3)において、
     上記回転円板部(21)と上記平板(12)との間の距離は、上記動翼(22)の径方向の外側端部と上記分離部(14)との間の距離よりも大きいことを特徴とする微小粒子拡散装置(3)。
  6.  請求項1から5のいずれか1つに記載の微小粒子拡散装置(3)において、
     上記攪拌部(6)を制御する制御手段(70)を備えることを特徴とする微小粒子拡散装置(3)。
  7.  請求項1から6のいずれか1つに記載の微小粒子拡散装置(3)において、
     上記微小粒子が荷電粒子であることを特徴とする微小粒子拡散装置(3)。
  8.  請求項1から7のいずれか1つに記載の微小粒子拡散装置(3)において、
     上記微小粒子が、H(HO)(mは任意の自然数)である正イオンと、O (HO)(nは任意の自然数)である負イオンであることを特徴とする微小粒子拡散装置(3)。
  9.  請求項1から8のいずれか1つの微小粒子拡散装置(3)を備える照明装置。
PCT/JP2013/075822 2012-10-01 2013-09-25 微小粒子拡散装置および照明装置 WO2014054479A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380061812.0A CN104813109B (zh) 2012-10-01 2013-09-25 微小粒子扩散装置和照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012219492 2012-10-01
JP2012-219492 2012-10-01
JP2013-085853 2013-04-16
JP2013085853A JP6200679B2 (ja) 2012-10-01 2013-04-16 微小粒子拡散装置および照明装置

Publications (1)

Publication Number Publication Date
WO2014054479A1 true WO2014054479A1 (ja) 2014-04-10

Family

ID=50434807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075822 WO2014054479A1 (ja) 2012-10-01 2013-09-25 微小粒子拡散装置および照明装置

Country Status (3)

Country Link
JP (1) JP6200679B2 (ja)
CN (1) CN104813109B (ja)
WO (1) WO2014054479A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613017B (zh) * 2015-01-28 2017-09-15 浙江美尔凯特集成吊顶有限公司 换气扇
CN106439631B (zh) * 2015-08-10 2020-03-27 通用电气照明解决方案有限公司 通风套件和具有通风功能的嵌入式灯具组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667888U (ja) * 1993-02-25 1994-09-22 リコーエレメックス株式会社 クロスフローファン
JP2003307198A (ja) * 2002-04-12 2003-10-31 Mitsubishi Electric Corp 送風機
JP2004278989A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 冷却用ポンプおよび受熱装置
JP2005273458A (ja) * 2004-03-22 2005-10-06 Deiiru Ekoshisu:Kk 空気攪拌機及び吸気流案内板
JP2006156145A (ja) * 2004-11-30 2006-06-15 Tesco Co Ltd 照明器具
JP2012104304A (ja) * 2010-11-09 2012-05-31 Panasonic Corp イオン発生装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797993B2 (ja) * 2003-09-08 2006-07-19 シャープ株式会社 微小粒子拡散装置
JP4118316B1 (ja) * 2007-07-30 2008-07-16 シャープ株式会社 空気清浄機
MY164591A (en) * 2008-08-28 2018-01-15 Sharp Kk Ion generating apparatus
US20120282117A1 (en) * 2010-01-06 2012-11-08 Masaya Takahashi Air blowing fan, circulator, micro-particle diffusion device, and air circulation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667888U (ja) * 1993-02-25 1994-09-22 リコーエレメックス株式会社 クロスフローファン
JP2003307198A (ja) * 2002-04-12 2003-10-31 Mitsubishi Electric Corp 送風機
JP2004278989A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 冷却用ポンプおよび受熱装置
JP2005273458A (ja) * 2004-03-22 2005-10-06 Deiiru Ekoshisu:Kk 空気攪拌機及び吸気流案内板
JP2006156145A (ja) * 2004-11-30 2006-06-15 Tesco Co Ltd 照明器具
JP2012104304A (ja) * 2010-11-09 2012-05-31 Panasonic Corp イオン発生装置

Also Published As

Publication number Publication date
CN104813109A (zh) 2015-07-29
JP2014087586A (ja) 2014-05-15
JP6200679B2 (ja) 2017-09-20
CN104813109B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
KR20180004084A (ko) 공기조화기
JP6339219B2 (ja) イオン発生装置
JP4690682B2 (ja) 空調機
JP2013015114A (ja) 送風装置
KR200489464Y1 (ko) 신형 영구 자석형 브러시리스 모터 시스템을 가진 하우징 원심 팬
KR20180106828A (ko) 쿨링 팬 및 이를 구비한 시트 쿨링장치
KR101876030B1 (ko) 소음저감 및 바람 유도 구조를 갖는 송풍기
KR20170051107A (ko) 공기조화기
JP6200679B2 (ja) 微小粒子拡散装置および照明装置
CN212838463U (zh) 一种风扇灯扩散通道系统及具有该系统的风扇灯
JP2005241018A (ja) 一体形空気調和機
JP4874360B2 (ja) 羽根車並びに多翼送風機並びに空気調和機
EP2920521B1 (en) Indoor device for an air conditioner
JP6057675B2 (ja) 照明器具
JP2006104976A (ja) 電動送風機
JP2011019790A (ja) 液体微細化装置とそれを用いたサウナ装置
JP5213999B2 (ja) 冷却装置
JP2023067420A (ja) ドレンソケット
CN219345070U (zh) 机头机构和风扇设备
WO2022114150A1 (ja) 地面還気装置及び汚染物制御システム
CN213064010U (zh) 一种风扇灯风道系统和具有该系统的风扇灯
JP5097847B1 (ja) 照明装置
JP5879478B2 (ja) 遠心送風機
JP7156961B2 (ja) ミスト発生装置
JP2023141383A (ja) イオン発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843321

Country of ref document: EP

Kind code of ref document: A1