WO2014052274A1 - Flexible, space-efficient i/o circuitry for integrated circuits - Google Patents

Flexible, space-efficient i/o circuitry for integrated circuits Download PDF

Info

Publication number
WO2014052274A1
WO2014052274A1 PCT/US2013/061317 US2013061317W WO2014052274A1 WO 2014052274 A1 WO2014052274 A1 WO 2014052274A1 US 2013061317 W US2013061317 W US 2013061317W WO 2014052274 A1 WO2014052274 A1 WO 2014052274A1
Authority
WO
WIPO (PCT)
Prior art keywords
pads
pad
defining
power supply
bonding
Prior art date
Application number
PCT/US2013/061317
Other languages
French (fr)
Inventor
Jonathan C. PARKS
Yin Hao Liew
Kok Seong LEE
Salah M WERFELLI
Original Assignee
Baysand Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/627,270 external-priority patent/US9166593B2/en
Application filed by Baysand Inc. filed Critical Baysand Inc.
Priority to EP13842574.9A priority Critical patent/EP2901477A4/en
Priority to JP2015534591A priority patent/JP2015532530A/en
Priority to KR1020157008651A priority patent/KR20150058273A/en
Priority to CN201380050485.9A priority patent/CN104781924A/en
Publication of WO2014052274A1 publication Critical patent/WO2014052274A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0296Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices involving a specific disposition of the protective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06133Square or rectangular array with a staggered arrangement, e.g. depopulated array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11898Input and output buffer/driver structures

Definitions

  • the present invention relates to I/O circuitry for integrated circuits.
  • the present invention relates to I/O circuitry for integrated circuits.
  • FIG, 1 shows a top view of the layout of a portion 300 of I/O circuitry of an example IC die, according to the prior art.
  • I/O circuitry 300 could run along any edge of the periphery of an IC die.
  • the I/O circuitry 300 uses two concentric rows of bond pads, i.e., inner pad row 1 and outer pad row 2. The pad placements along the peripheral edge are offset between the two rows.
  • all pads along the outer row 2 are typically wire bonded before any bond pads on inner row 1 are wire bonded (or vice versa). This arrangement enables I/O pads to be packed more densely without exceeding the capabilities (minimum pad pitch) of wire bonding equipment.
  • Power/ground bond pads in turn include power bond pads (VCC CORE) 204 for a core logic portion of the integrated circuit, ground bond pads (VSS CORE) 205 for the core logic portion of the integrated circuit, power bond pads (VCC IO) 202 for the I/O portion of the integrated circuit, and ground bond pads (VSS IO) 203 for the IO portion of the integrated circuit.
  • VCC CORE power bond pads
  • VSS CORE ground bond pads
  • VCC IO power bond pads
  • VCC IO ground bond pads
  • Each of the foregoing pads is coupled to a corresponding one of I O cells 130, including differentiated signal I/O cells (SIG IO) 211, core logic power I/O cells (VCC CORE) 214, core logic ground cells (VSS CORE) 215, I/O power cells (VCC IO) 212, and I/O ground cells (VSS IO) 213,
  • a primary function of the four power/ground cells 130 is to provide electrostatic discharge (ESD) protection to the associated power/ground pads and supply power and ground to a group of I/O cells (SIG 10) 211.
  • Each of the cells 130 occupies an I/O slot, the I/O slots being spaced apart according to a specified pitch.
  • the I/O pads will typically be power/ground pads, and a corresponding proportion of the cells 130 will be power/ground cells.
  • FIG. 1 is a diagram of a portion of known I/O circuitry of an integrated circuit.
  • FIG, 2 is a diagram of a portion of flexible, space-efficient I/O circuitry of an integrated circuit.
  • FIG, 3 is a top view of the layout of a single periphery cell of the I/O circuitry of FIG, 2.
  • FIG. 4A is a top view of the layout of an instance of the periphery cell of the I/O circuitry of FIG. 2 following mask programming.
  • FIG. 4B is a cut-away view of the periphery cell of FIG. 4A.
  • FIG. 4C is another cut-away view of the periphery cell of FIG. 4A.
  • FIG. 4D is a top view of the layout of another instance of the periphery cell of the I O circuitry of FIG. 2 following mask programming.
  • FIG. 4E is a cut-away view of the periphery cell of FIG. 4D.
  • FIG, 4F is another cut-away view of the periphery cell of FIG. 4D.
  • FIG. 5A is a diagram of a group of periphery cells, illustrating pad assignment in accordance with one mask programmed configuration.
  • FIG. 5B is a diagram of a group of periphery cells, illustrating pad assignment in accordance with another mask programmed configuration.
  • FIG. 5C is diagram of a group of periphery cells, illustrating pad assignment in accordance wit yet another mask programmed configuration.
  • FIG. 6 A is a plan view of an IC illustrating one mask-programmed I/O bank arrangement.
  • FIG, 6B is a plan view of an IC illustrating another mask-programmed I/O bank arrangement.
  • FIG, 7 is a diagram of I/O circuitry configured in accordance with a flip-chip mask programming option.
  • FIG. 8A is a diagram of an IC having I/O pads configured in accordance with a wire bonding mask programming option.
  • FIG. 8B is a diagram of an IC having I/O pads configured in accordance with a flip- chip bonding mask programming option.
  • Customization circuitry also provides for flexible bank architectures, where signal I/O buffers within a bank share power supply requirements that may be different from power supply requirements of signal I/O buffers of another bank. The number of banks and the number of signal I/O buffers belonging to each bank is flexibly defined. Customization circuitry also provides for flexible pad options, whereby the IC pads may be configured, for example, for wire bonding, for flip-chip bonding, or for other types of bonding.
  • One aspect of the present flexible, space-efficient I/O circuitry involves the elimination of the power/ground cells of FIG. 1 ,
  • I/O circuitry 400 includes an outer row 410 (i.e., row 3) of three power/ground pads. I/O circuitry 400 also includes a middle row 42QA (i.e., row 2) of three uncommitted pads, and an inner row 420B (i.e., row 1) of three uncommitted pads. Many of uncommitted pads 420 will be mask programmed (i.e., programmed, committed, configured, or personalized) so as to handle I/O signals. Some may go unused, and some may be used for a power/ground line. I/O circuitry 400 also includes three electrostatic discharge (ESD) protection circuits, e.g., ESD protection circuit 460C, one of which is electrically connected with each of the three power/ground pads 410.
  • ESD electrostatic discharge
  • I/O circuitry 400 also includes six signal (SIG) I/O cells, or I/O buffers. These include three ROW 1 SIG I/O cells 450A, 450B and 450C that are electrically connected to the three uncommitted pads 420B on row 1.
  • the SIG I/O cells also include three ROW 2 SIG I/O cells 440A, 44QB and 440C that are electrically connected to the three uncommitted pads 420A on row 2.
  • each uncommitted pad 420 is electrically connected with either a cell 440 or a cell 450.
  • I/O circuitry 400 positions bond pads in a staggered, three-row scheme. The pad positions align, along the peripheral edge of the die, between inner row 1 and outer row 3, The pad positions are staggered (i.e. , offset) between middle row 2 and the pads of both row 1 and row 3.
  • Each of the three power/ground pads 410 is electrically connected with a corresponding instance of ESD protection circuits 460.
  • Each ESD protection circuit 460 is positioned substantially underneath one or more of the uncommitted pads 420.
  • the I/O circuitry 400 advantageously eliminates the need for any power/ground periphery cells.
  • the I/O circuitry 400 advantageously reduces the required I/O die area for pad limited ICs.
  • each of the six SIG I/O cells 440 or 450 may be determined by means of mask programming. Each cell's function can be determined independently of the function of any other SIG I/O cell.
  • an initial portion of the wafer fabrication process is controlled via a set of masks called lower masks.
  • a later portion of the wafer fabrication process is controlled by means of a set of masks called late masks.
  • a modern IC might use 30 or 40 different masks at different steps in its wafer fabrication process, whereas only between one and, for example, four masks might be needed to customize each specific IC design.
  • mask programming determines the functionality of each instance of SIG I/O cell 440 or 450.
  • the function of each of those cells that is independently selectable by mask programming can be selected from the following set of functions: i) receiving an input signal from the particular uncommitted pad 420 that corresponds to that particular instance of a SIG I/O pad; ii) providing an output signal to a pad 420; iii) both receiving an input signal and providing an output signal to a pad 420; or iv) connecting a pad 420 to one of the power/ground lines within the IC.
  • cells like the SIG I/O cells described may have mask programmability of a larger range in its set of functions, or of a smaller range.
  • Uncommitted pads 420 within I/O circuitry 400 can be mask programmed by means of changing only the late masks. This mask programmability feature advantageously provides highly flexible support for a wide variety of IC designs.
  • I/O circuitry 400 is implemented as three instances 500A, 500B and 500C of a periphery cell, each instance of which is identical except for its mask programming. Instances of periphery cell 500 may be the only cells that occur on the peripheral edge of the die. Referring to FIG. 3, a top view is shown of the layout of a single periphery cell 500, according to one embodiment.
  • periphery cell 500 includes: one uncommitted pad 420A that is positioned on row 2; one uncommitted pad 420B that is positioned on row 1; one uncommitted power/ground pad 410; one ESD protection circuit 460 may be electrically connected with the uncommitted power/ground pad; one SIG I/O cell 440 may be electrically connected to uncommitted pad 42QA; and one SIG I/O cell 450 may be electrically connected to uncommitted pad 420B.
  • Periphery cell 500 also includes a number of power/ground lines that run parallel to the peripheral edge of the die. In the embodiment shown in FIG.
  • these power/ground lines are: VSSIO 520, VSS 530, VCCIO 540, VCCPD 550, VREF 560, and VCC 570. Each of these power/ground lines may be electrically connected to uncommitted power/ground pad 410.
  • the number of power/ground lines supported by the periphery cell may of course vary. Similarly, the functional nature and the nomenclature of those power/ground lines may vary.
  • Each of the power/ground lines of each particular instance of periphery cell 500 is mask programmable such that the line may extend across and be shared by a variable number of multiple peripheral cells, or may extend only within the confines of a single peripheral cell.
  • inter-cell connectivity of each power/ground line can be mask programmed (i.e., programmed, committed, or personalized), by means of changing only the late masks.
  • This mask programmability advantageously provides highly flexible support for a wide variety of IC designs.
  • FIG. 4A a top view is shown of the layout of a single periphery cell, according to one embodiment.
  • FIG. 4B is a cutaway side view of the same periphery cell of FIG, 4A, with the cut made on cut line 4B.
  • FIG. 4C is a cutaway side view of this same periphery cell, with the cut made on cut line 4C.
  • FIGS. 4 A and 4B show how power/ground pad 410 is mask programmed to electrically connect with the VCCIO power line within the periphery cell shown. This connection passes down through via 61 OA on via layer VI A5, This connection continues along a metal run on metal layer M5, then down through via 650 to the VCCIO power line on metal layer M4.
  • FIGS. 4A and 4B also show how power/ground pad 410 is mask programmed to connect with ESD protection circuit 510 within this periphery cell. This electrical connection passes down through three vias 630A, each of which is on one of via layer VIA4, via layer VIA3, or via layer VIA2.
  • FIGS. 4 A and 4C show how uncommitted pad 420B is mask programmed to electrically connect with its corresponding I/O buffer within the periphery cell.
  • This connection passes down through via 620A on via layer VIA5, then along a metal run of metal layer M5, then down through vias 640 of via layers VIA4 and VIA5, then along a metal run on metal layer M3, then down through one or more vias into the I/O buffer.
  • FIG. 4D-4F show corresponding views of another single periphery cell, according to one embodiment. Note that this periphery cell has different mask programming than that of the cell in FIG. 4A, although these two cells have the same initial masks, and thus the same uncommitted potential functional capabilities.
  • FIGS. 4D and 4E show how power/ground pad 410 is mask programmed to electrically connect with the VCC power line within this periphery cell (in contrast to the VCCIO power line as shown in Figs. 4A and 4B).
  • This connection passes down through via 610B of layer VIA5, then along a metal run on metal layer M5, then down through via 660 to the VCC power line on metal layer M4,
  • FIGS, 4D and 4E also show how power/ground pad 410 is mask programmed to electrically connect with ESD protection circuit 510 within this periphery cell.
  • This electrical connection passes down through three vias 630B, each of which is on one of via layer VI A4, via layer VI A3, or via layer VIA2.
  • FIGS. 4D and 4F show how uncommitted pad 42GB is mask programmed to connect with the power line VSSIO within this periphery cell. This electrical connection occurs by means of via 620B of via layer VIA5 and via 670 of via layer VIA4.
  • FIGS. 4A, 4B, 4D, and 4E show how power/ground pad 410 can be mask programmed to connect with either of two specific ones of the power/ground lines within this periphery cell.
  • each power/ground pad in each particular instance of a periphery cell can be programmed to connect with any of the power/ground lines within that periphery cell.
  • the I/O bank architecture i.e., bank architecture or power architecture
  • the I/O bank architecture can be advantageously and flexibility customized to support the particular functional requirements of the IC.
  • FIGS. 4A, 4C, 4D, and 4F show how uncommitted pad 420B can be mask programmed to connect either with its corresponding I/O buffer or with one of the power lines.
  • any uncommitted pads that are not allocated to an I/O signal can be programmed to connect with any of the metal lines within any periphery cell. Additional pads connecting to a particular power line could improve the performance of the IC by helping to avoid switching induced transient voltages on that line,
  • one portion of the system may operate at a relatively high voltage and low speed, for example, the data signals that connect the system with removable media or devices.
  • An I/O standard is likely to also specify timing and speed parameters. These can be relevant when designing the I O bank architecture of ICs that use that standard; for example, relatively fast signals consume relatively more current which requires a relatively larger ratio of power/ground pads to I/O signal pads within each I/O bank.
  • another portion of the system may operate at a relatively low voltage and high speed, for example, the data signals that connect an IC with substantial processing capability to an IC with substantial memory capability.
  • I/O standards are gradually phased out in favor of newer ones.
  • some modern IC-based systems may have portions that operate in accordance with relatively recent I/O standards and some that operate in accordance with legacy I/O standards.
  • I/O standards might include CMOS, LVCMOS, SSTL, ECL, LVDS, etc.
  • FIG. 5A a diagram is shown of I/O circuitry 700A, which contains instances 500A, 500B, 500C, and 500D of periphery cell 500.
  • FIGS. 5B and 5C respectively, show I/O circuitry 700B and I/O circuitry 700C, each of which also contains instances 500A, 500B, 500C, and 500D of periphery cell 500.
  • the different I/O circuits 700A, 700B and 700C are differentiated by different mask programming related to the six power ground lines within this cell, specifically the power/ground lines VSSIO, VSS, VCCIO, VCCPD, VREF, and VCC.
  • the number of periphery cells in the I/O circuits 700A, 700B and 700C is exemplary only, and may be greater or less.
  • the number of power/ground lines and their function is also exemplary only.
  • FIGS. 5A, 5B, and 5C show how the mask programmability of the power/ground lines of periphery cell 500 is used to implement not only multiple I/O banks, but to mix and match reference voltages, such as VREF1 and VREF2, across I/O banks.
  • the mask programmability of the power/ground lines of periphery cells according to embodiments of the invention advantageously supports significant flexibility in the design of a wide variety of I/O bank architectures for a wide variety of specific IC designs.
  • FIG. 6A shows a top view of the entire layout of die 8Q0A of an example IC, according to one embodiment.
  • FIG. 6B shows a top view of the entire layout of die 8GQB of a different example IC
  • each example die may use, for example, periphery cell 400 (FIG. 2).
  • Periphery cell 400 includes six uncommitted pads, which are often used for I/O signals, as well as three power/ground pads. Uncommitted pads can be mask programmed for I/O signals. Alternatively, some (or even all) of those uncommitted pads can be mask programmed to help supply the power requirements of the die.
  • Periphery cell 400 also includes three power/ground pads and six power/ground lines. Each power/ground pad can be independently mask programmed to connect to any of those six power/ground lines.
  • periphery cells of various designs consistent with the principle described herein,
  • Each of the die 800A and 800B includes core logic 120.
  • ICs 800A and 800B have quite different I/O bank architectures. (In the illustrated example, die 800A includes seven I/O banks of various numbers of I/Os, and die 800B includes nine I/O banks of various numbers of I/Os.) Each of these I/O architectures is determined via mask programming. Each of these I/O banks is independent of the others with respect to the I/O standard(s) used within that bank. Typically, different I O standards will have different power supply requirements, which may be flexibly supported as illustrated and described previously in relation to FIGS. 5A-5C.
  • FIGS. 6A and 6B illustrate the advantageous IC design flexibility supported by this aspect of the mask programmability of the present embodiment.
  • Pad bonding options may include wire bonding, flip-chip bonding, or other types of bonding. Significantly, the choice between wire bond packaging and flip-chip packaging can be made late in the IC design cycle, or even after the IC design is finalized.
  • each periphery cell 500A, 500B, 500C and 500D includes a pair of I/O buffers like I/O buffers 440 and 450 (FIG. 3). While the buffer layout remains the same, the pad layout (defined by customization circuitry) is different. Odd numbered periphery cells (500A, 500C) have associated with them three bond pads including two uncommitted bond pads in rows 6 and 4 and one power/ground bond pad in row 2.
  • ESD protection circuit (ESDa, ESDc) abuts the I/O buffers of the periphery cell (500A, 500C) and partly underlies the bond pad in row 6. Whereas the ESD protection circuit (ESDa, ESDc) is centered on the periphery cell, the bond pad in row 6 is centered on a left half of the periphery cell. The power/ground bond pad in row 2 overlies a core logic area 120.
  • Even numbered periphery cells differ in that their bond pads are offset (staggered), being located in rows 1, 3 and 5. Odd and even-numbered periphery cells are paired to form a larger module; i.e., periphery cells 50QA and 500B are paired to form a module 91 OA, and periphery cells 500C and 500D are paired to form a module 910B.
  • FIG. 8A a diagram is shown of a top view of the entire layout of a IC die 900A, according to one embodiment.
  • Die 900A includes instances of periphery cell 500 along each of its four edges.
  • FIG. 8B a diagram is shown of a top view of the entire layout of an IC die 900B, according to one embodiment.
  • periphery cells 500 are positioned to form a square, within which is positioned core logic 120.
  • periphery modules 910 are positioned to form a square, within which is positioned core logic 120.
  • Periphery cell 500 may contain three bond pads.
  • Periphery module 910 may contain six bump pads such as bump pad 920 (FIG, 7), This alteration between periphery cell 500 and periphery module 910 is a simple matter of mask programming. Typically the minimum distance separating adjacent bump pads will be larger than the minimum separation required between bond pads.
  • any particular bond/bump pad can go unused in a particular specific IC design.
  • any particular uncommitted bond/bump pad can be mask programmed to be either a signal bond bump pad, or a power/ground bond/bump pad.
  • periphery cells may be mask programmable in various ways, including but not limited to the ways explicitly described herein and shown in the accompanying figures.
  • periphery cells can be masked programmed to specify, relatively late in the wafer fabrication process some or all of the following: the choice between including bump pads or bond pads in the IC dies when the later wafer processing steps are completed; which uncommitted bond pads, or uncommitted bump pads, are used for input signals, which are used for output signals, which are used for bidirectional I/O signals, and which are used for a power/ground line; which uncommitted bond pads, or uncommitted bump pads, are used for input signals, which are used for output signals, which are used for bidirectional I/O signals, and which are used for a power/ground line; and a wide variety of functional characteristics within the core logic of the IC.
  • Such late mask programming can be employed to advantageously reduce manufacturing turn around time (TAT) when changes are made in the design of an IC that is implemented according to the described embodiments.
  • TAT manufacturing turn around time
  • This late mask programming can also advantageously reduce the cost incurred for each set of design changes, because only a few of the potentially many masks use to fabricate the IC need to be regenerated.
  • Embodiments of the invention may take the form of methods of laying out the I/O portion of an integrated circuit, as well as non-transitory computer readable media containing instructions for accomplishing such layout.
  • Various features of the present invention including but not limited to periphery cells, mask programmable capabilities, and I/O banks can be represented in a variety of hardware description languages (HDLs).
  • HDL descriptions may vary from low-level to high-level.
  • a wide variety of HDLs are known in the art.
  • a wide variety of computer systems are also known in the art.
  • Using one or more HDLs a design of an IC can be represented in a way that can be interpreted (i.e., processed, manipulated, compiled, synthesized, simulated, or transformed) by one or more computer systems,
  • An integrated circuit comprising an I/O portion, the I/O portion comprising:
  • each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers, a number of I/O pads in the plurality of I/O pads being greater than a number of I/O buffers in the plurality of I/O buffers;
  • customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as either a signal pad or a fixed- voltage pad;
  • variable number of I/O pads of the plurality of I/O pads are defined as fixed- voltage pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
  • the plurality of I/O pads comprises first, second and third I/O pads, further comprising customization circuitry configured for performing at least one of: defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
  • the apparatus of Claim 20 comprising customization circuitry configured for performing at least two of: defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
  • the apparatus of Claim 21, comprising customization circuitry configured for performing all of: defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
  • An integrated circuit comprising an I/O portion, the I/O portion comprising:
  • each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers, a number of I/O pads in the plurality of I/O pads being greater than a number of I/O buffers in the plurality of I/O buffers;
  • customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as either a signal pad, a power supply pad, or a ground pad;
  • a variable number of I/O pads of the plurality of I/O pads are defined as power supply pads, a variable number of I/O pads of the plurality of I/O pads are defined as ground pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
  • An integrated circuit comprising an I/O portion, the I/O portion comprising two I/O buffers;
  • customization circuitry configured in accordance with one of a plurality of different configurations for customizing the three I/O pads such that each I/O pad of the three I/O pads is defined as either a signal pad, a power supply pad, or a ground pad; wherein, depending on a configuration of the customization circuitry, a variable number of I/O pads of the plurality of I/O pads are defined as power supply pads, a variable number of I/O pads of the plurality of I/O pads are defined as ground pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
  • a method of laying out an I/O portion of integrated circuit comprising:
  • a plurality of flexible I/O modules comprising: a plurality of I/O buffers and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
  • each I/O pad of the plurality of I/O pads is defined as either a signal pad or a fixed- voltage pad; wherein, depending on a configuration of the customization circuitry, a variable number of I/O pads of the plurality of I/O pads are defined as fixed- voltage pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
  • each flexible I/O module comprises a plurality of I/O buffers
  • a non-transitory computer-readable medium for laying out an I/O portion of integrated circuit comprising instructions for:
  • a plurality of flexible I/O modules comprising: a plurality of I/O buffers and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
  • each I/O pad of the plurality of I/O pads is defined as either a signal pad or a fixed- voltage pad; wherein, depending on a configuration of the customization circuitry, a variable number of I/O pads of the plurality of I/O pads are defined as fixed- voltage pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
  • each flexible I/O module comprises a plurality of I/O buffers; and a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers.
  • An integrated circuit comprising an I/O portion, the I/O portion comprising:
  • a plurality of I/O pads forming a first bank of I/O pads coupled to I/O buffers of the first bank of I/O buffers such that each I/O pad of the first bank of I/O pads is coupled to at least one I/O buffer of the first bank of I/O buffers;
  • each I/O pad of the second bank of I/O pads is coupled to at least one I/O buffer of the second bank of I/O buffers;
  • customization circuitry configured in accordance with one of a plurality of different configurations for customizing the I/O pads of the first bank of I/O pads and I/O pads of the second bank of I/O pads such that:
  • each I/O pad of the first and second bank of I/O pads is defined as either a signal pad or a fixed voltage pad
  • each signal pad in the first bank of I/O pads is supplied power in accordance with power supply requirements of one or more I/O standards of the first bank of I/O pads; each signal pad in the second bank of I/O pads is supplied power in accordance with different power supply requirements of one or more different I/O standards different than the one or more I/O standards of the first bank of I/O pads;
  • the apparatus of Claim 30, comprising customization circuitry configured for performing at last one of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; and defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard.
  • the apparatus of Claim 31 comprising customization circuitry configured for performing at last two of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; and defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard.
  • the apparatus of Claim 32 comprising customization circuitry configured for performing all of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; and defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard.
  • a method of laying out an I/O portion of integrated circuit comprising:
  • a plurality of flexible I/O modules comprising a plurality of I/O buffers, and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
  • each I/O pad of the plurality of I/O pads is defined as belong to one of a plurality of I/O banks, each I/O bank being configured in accordance with power supply requirements of one or more I/O standards, wherein power supply requirements different ones of the I/O banks are different.
  • a method of laying out an I/O portion of integrated circuit comprising:
  • a plurality of flexible I/O modules comprising a plurality of I/O buffers, and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
  • each I/O pad of the plurality of I/O pads is defined as belong to one of a plurality of I/O banks, each I/O bank being configured in accordance with power supply requirements of one or more I/O standards, wherein power supply requirements different ones of the I/O banks are different.
  • each flexible I/O module comprises a plurality of I/O buffers
  • a non-transitory computer-readable medium for laying out an I/O portion of integrated circuit comprising instructions for:
  • a plurality of flexible I/O modules comprising a plurality of I/O buffers, and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
  • each I/O pad of the plurality of I/O pads is defined as belong to one of a plurality of I/O banks, each I/O bank being configured in accordance with power supply requirements of one or more I/O standards, wherein power supply requirements different ones of the I/O banks are different.
  • each flexible I/O module comprises a plurality of I/O buffers; and a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers.
  • An integrated circuit comprising an I/O portion, the I/O portion comprising:
  • customization circuitry configured in accordance with one of a plurality of different configurations for defining a plurality of I/O pads coupled to the plurality of I/O buffers and for customizing the plurality of I/O pads in accordance with one of a plurality of pad options including at least a wire bond pad option and a flip chip pad option, such that a layout of the plurality of I/O buffers is the same regardless of a chosen pad option.
  • the apparatus of Claim 39 comprising customization circuitry configured for performing at least one of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
  • the apparatus of Claim 41 comprising customization circuitry configured for performing at least two of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
  • the apparatus of Claim 42 comprising customization circuitry configured for performing at least all of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
  • a method of laying out an I/O portion of integrated circuit comprising:
  • laying out customization circuitry configured for defining a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
  • the customization circuitry is configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads in accordance with one of a plurality of pad options including at least a wire bond pad option and a flip chip pad option, such that a layout of the plurality of I/O buffers is the same regardless of a chosen pad option.
  • each flexible I/O module comprises a plurality of I/O buffers; and a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers.
  • a non-transitory computer-readable medium for laying out an I/O portion of an integrated circuit comprising instructions method for:
  • laying out customization circuitry configured for defining a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
  • the customization circuitry is configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads in accordance with one of a plurality of pad options including at least a wire bond pad option and a flip chip pad option, such that a layout of the plurality of I/O buffers is the same regardless of a chosen pad option.
  • each flexible I/O module comprises a plurality of I/O buffers; and a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers.

Abstract

Flexible, space-efficient I/O architectures for integrated circuits simplify circuit design and shorten design times. In one aspect, cells for power supply pads are eliminated, in part by locating ESD protection circuitry for these pads underneath the pads themselves, leaving only signal I/O buffers. Pads coupled to the signal I/O buffers may be defined as either signal I/O pads or power supply pads in accordance with customization circuitry. Customization circuitry provides for flexible bank architectures, where signal I/O buffers within a bank share power supply requirements that may be different from power supply requirements of signal I/O buffers of another bank. The number of banks and the number of signal I/O buffers belonging to each bank is flexibly defined. Customization circuitry provides for flexible pad options, whereby the IC pads may be configured for different packaging technology, for example, for wire bonding for flip-chip bonding, or for other types of bonding.

Description

FLEXIBLE, SPACE-EFFICIENT I/O CIRCUITRY FOR INTEGRATED CIRCUITS
BACKGROUND
[0001] Field of the Invention
[0002] The present invention relates to I/O circuitry for integrated circuits. [0003] State of the Art
[0004] Complex integrated circuits are often I/O-limited, meaning that the die size is increased beyond what would otherwise be required in order to accommodate the required number of I/Os. For integrated circuits generally, and especially I/O-limited integrated circuits, design of the I/O portion of the integrated circuit is often laborious and time-consuming. At the same time, short product design cycles call for short integrated circuit design cycles. Reducing design time and labor for integrated circuits, including complex, I/O limited integrated circuits, requires new approaches.
[0005] FIG, 1 shows a top view of the layout of a portion 300 of I/O circuitry of an example IC die, according to the prior art. I/O circuitry 300 could run along any edge of the periphery of an IC die. The I/O circuitry 300 uses two concentric rows of bond pads, i.e., inner pad row 1 and outer pad row 2. The pad placements along the peripheral edge are offset between the two rows. During the wire bonding process, all pads along the outer row 2 are typically wire bonded before any bond pads on inner row 1 are wire bonded (or vice versa). This arrangement enables I/O pads to be packed more densely without exceeding the capabilities (minimum pad pitch) of wire bonding equipment. [0006] Bond pads in FIG. 1 include signal bond pads (SIG) 201 and power/ground bond pads. Power/ground bond pads in turn include power bond pads (VCC CORE) 204 for a core logic portion of the integrated circuit, ground bond pads (VSS CORE) 205 for the core logic portion of the integrated circuit, power bond pads (VCC IO) 202 for the I/O portion of the integrated circuit, and ground bond pads (VSS IO) 203 for the IO portion of the integrated circuit. Each of the foregoing pads is coupled to a corresponding one of I O cells 130, including differentiated signal I/O cells (SIG IO) 211, core logic power I/O cells (VCC CORE) 214, core logic ground cells (VSS CORE) 215, I/O power cells (VCC IO) 212, and I/O ground cells (VSS IO) 213, A primary function of the four power/ground cells 130 is to provide electrostatic discharge (ESD) protection to the associated power/ground pads and supply power and ground to a group of I/O cells (SIG 10) 211.
[0007] Each of the cells 130 occupies an I/O slot, the I/O slots being spaced apart according to a specified pitch. For a complex integrated circuit, roughly 30% of the I/O pads will typically be power/ground pads, and a corresponding proportion of the cells 130 will be power/ground cells.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
[0008] The present invention may be further understood from the following Detailed Description in conjunction with the appended drawing figures. In the drawing:
[0009] FIG. 1 is a diagram of a portion of known I/O circuitry of an integrated circuit.
[0010] FIG, 2 is a diagram of a portion of flexible, space-efficient I/O circuitry of an integrated circuit.
[0011] FIG, 3 is a top view of the layout of a single periphery cell of the I/O circuitry of FIG, 2.
[0012] FIG. 4A is a top view of the layout of an instance of the periphery cell of the I/O circuitry of FIG. 2 following mask programming.
[0013] FIG. 4B is a cut-away view of the periphery cell of FIG. 4A.
[0014] FIG. 4C is another cut-away view of the periphery cell of FIG. 4A.
[0015] FIG. 4D is a top view of the layout of another instance of the periphery cell of the I O circuitry of FIG. 2 following mask programming.
[0016] FIG. 4E is a cut-away view of the periphery cell of FIG. 4D,
[0017] FIG, 4F is another cut-away view of the periphery cell of FIG. 4D.
[0018] FIG. 5A is a diagram of a group of periphery cells, illustrating pad assignment in accordance with one mask programmed configuration.
[0019] FIG. 5B is a diagram of a group of periphery cells, illustrating pad assignment in accordance with another mask programmed configuration. [0020] FIG. 5C is diagram of a group of periphery cells, illustrating pad assignment in accordance wit yet another mask programmed configuration.
[0021] FIG. 6 A is a plan view of an IC illustrating one mask-programmed I/O bank arrangement.
[0022] FIG, 6B is a plan view of an IC illustrating another mask-programmed I/O bank arrangement.
[0023] FIG, 7 is a diagram of I/O circuitry configured in accordance with a flip-chip mask programming option.
[0024] FIG. 8A is a diagram of an IC having I/O pads configured in accordance with a wire bonding mask programming option.
[0025] FIG. 8B is a diagram of an IC having I/O pads configured in accordance with a flip- chip bonding mask programming option.
DETAILED DESCRIPTION
[0026] Summary
[0027] Flexible, space-efficient I/O architectures for integrated circuits simplify circuit design and shorten design times. In one aspect, cells for power supply pads are eliminated, in part by locating ESD circuitry for these pads underneath the pads themselves, leaving only signal I/O buffers. Pads coupled to the signal I/O buffers may be defined as either signal I/O pads or power supply pads in accordance with customization circuitry. Customization circuitry also provides for flexible bank architectures, where signal I/O buffers within a bank share power supply requirements that may be different from power supply requirements of signal I/O buffers of another bank. The number of banks and the number of signal I/O buffers belonging to each bank is flexibly defined. Customization circuitry also provides for flexible pad options, whereby the IC pads may be configured, for example, for wire bonding, for flip-chip bonding, or for other types of bonding.
[0028] Description
[0029] Flexible, Space-Efficient Layout
[0030] One aspect of the present flexible, space-efficient I/O circuitry involves the elimination of the power/ground cells of FIG. 1 ,
[0031] Referring to FIG. 2, a diagram is shown of a top view of the layout of a portion 400 of I/O circuitry of an IC. I/O circuitry 400 includes an outer row 410 (i.e., row 3) of three power/ground pads. I/O circuitry 400 also includes a middle row 42QA (i.e., row 2) of three uncommitted pads, and an inner row 420B (i.e., row 1) of three uncommitted pads. Many of uncommitted pads 420 will be mask programmed (i.e., programmed, committed, configured, or personalized) so as to handle I/O signals. Some may go unused, and some may be used for a power/ground line. I/O circuitry 400 also includes three electrostatic discharge (ESD) protection circuits, e.g., ESD protection circuit 460C, one of which is electrically connected with each of the three power/ground pads 410.
[0032] I/O circuitry 400 also includes six signal (SIG) I/O cells, or I/O buffers. These include three ROW 1 SIG I/O cells 450A, 450B and 450C that are electrically connected to the three uncommitted pads 420B on row 1. The SIG I/O cells also include three ROW 2 SIG I/O cells 440A, 44QB and 440C that are electrically connected to the three uncommitted pads 420A on row 2. Thus, each uncommitted pad 420 is electrically connected with either a cell 440 or a cell 450. I/O circuitry 400 positions bond pads in a staggered, three-row scheme. The pad positions align, along the peripheral edge of the die, between inner row 1 and outer row 3, The pad positions are staggered (i.e. , offset) between middle row 2 and the pads of both row 1 and row 3.
[0033] Each of the three power/ground pads 410 is electrically connected with a corresponding instance of ESD protection circuits 460. Each ESD protection circuit 460 is positioned substantially underneath one or more of the uncommitted pads 420. In this manner, the I/O circuitry 400 advantageously eliminates the need for any power/ground periphery cells. Thus, the I/O circuitry 400 advantageously reduces the required I/O die area for pad limited ICs.
[0034] The function of each of the six SIG I/O cells 440 or 450 may be determined by means of mask programming. Each cell's function can be determined independently of the function of any other SIG I/O cell. In the case of a mask programmable IC, an initial portion of the wafer fabrication process is controlled via a set of masks called lower masks. A later portion of the wafer fabrication process is controlled by means of a set of masks called late masks. For example, a modern IC might use 30 or 40 different masks at different steps in its wafer fabrication process, whereas only between one and, for example, four masks might be needed to customize each specific IC design.
[0035] During the late portion of the wafer fabrication process, mask programming determines the functionality of each instance of SIG I/O cell 440 or 450. In one embodiment, the function of each of those cells that is independently selectable by mask programming can be selected from the following set of functions: i) receiving an input signal from the particular uncommitted pad 420 that corresponds to that particular instance of a SIG I/O pad; ii) providing an output signal to a pad 420; iii) both receiving an input signal and providing an output signal to a pad 420; or iv) connecting a pad 420 to one of the power/ground lines within the IC. In various embodiments of the invention, cells like the SIG I/O cells described may have mask programmability of a larger range in its set of functions, or of a smaller range.
[0036] Uncommitted pads 420 within I/O circuitry 400 can be mask programmed by means of changing only the late masks. This mask programmability feature advantageously provides highly flexible support for a wide variety of IC designs.
[0037] Flexible Pad Assignment
[0038] In the illustrated embodiment, I/O circuitry 400 is implemented as three instances 500A, 500B and 500C of a periphery cell, each instance of which is identical except for its mask programming. Instances of periphery cell 500 may be the only cells that occur on the peripheral edge of the die. Referring to FIG. 3, a top view is shown of the layout of a single periphery cell 500, according to one embodiment. In the illustrated embodiment, periphery cell 500 includes: one uncommitted pad 420A that is positioned on row 2; one uncommitted pad 420B that is positioned on row 1; one uncommitted power/ground pad 410; one ESD protection circuit 460 may be electrically connected with the uncommitted power/ground pad; one SIG I/O cell 440 may be electrically connected to uncommitted pad 42QA; and one SIG I/O cell 450 may be electrically connected to uncommitted pad 420B. Periphery cell 500 also includes a number of power/ground lines that run parallel to the peripheral edge of the die. In the embodiment shown in FIG. 3, these power/ground lines are: VSSIO 520, VSS 530, VCCIO 540, VCCPD 550, VREF 560, and VCC 570. Each of these power/ground lines may be electrically connected to uncommitted power/ground pad 410. The number of power/ground lines supported by the periphery cell may of course vary. Similarly, the functional nature and the nomenclature of those power/ground lines may vary.
[0039] Each of the power/ground lines of each particular instance of periphery cell 500 is mask programmable such that the line may extend across and be shared by a variable number of multiple peripheral cells, or may extend only within the confines of a single peripheral cell. In this manner, inter-cell connectivity of each power/ground line can be mask programmed (i.e., programmed, committed, or personalized), by means of changing only the late masks. This mask programmability advantageously provides highly flexible support for a wide variety of IC designs.
[0040] Referring to FIG. 4A, a top view is shown of the layout of a single periphery cell, according to one embodiment. FIG. 4B is a cutaway side view of the same periphery cell of FIG, 4A, with the cut made on cut line 4B. Similarly, FIG. 4C is a cutaway side view of this same periphery cell, with the cut made on cut line 4C.
[0041] FIGS. 4 A and 4B show how power/ground pad 410 is mask programmed to electrically connect with the VCCIO power line within the periphery cell shown. This connection passes down through via 61 OA on via layer VI A5, This connection continues along a metal run on metal layer M5, then down through via 650 to the VCCIO power line on metal layer M4. FIGS. 4A and 4B also show how power/ground pad 410 is mask programmed to connect with ESD protection circuit 510 within this periphery cell. This electrical connection passes down through three vias 630A, each of which is on one of via layer VIA4, via layer VIA3, or via layer VIA2.
[0042] FIGS. 4 A and 4C show how uncommitted pad 420B is mask programmed to electrically connect with its corresponding I/O buffer within the periphery cell. This connection passes down through via 620A on via layer VIA5, then along a metal run of metal layer M5, then down through vias 640 of via layers VIA4 and VIA5, then along a metal run on metal layer M3, then down through one or more vias into the I/O buffer.
[0043] FIG. 4D-4F show corresponding views of another single periphery cell, according to one embodiment. Note that this periphery cell has different mask programming than that of the cell in FIG. 4A, although these two cells have the same initial masks, and thus the same uncommitted potential functional capabilities.
[0044] FIGS. 4D and 4E show how power/ground pad 410 is mask programmed to electrically connect with the VCC power line within this periphery cell (in contrast to the VCCIO power line as shown in Figs. 4A and 4B). This connection passes down through via 610B of layer VIA5, then along a metal run on metal layer M5, then down through via 660 to the VCC power line on metal layer M4, FIGS, 4D and 4E also show how power/ground pad 410 is mask programmed to electrically connect with ESD protection circuit 510 within this periphery cell. This electrical connection passes down through three vias 630B, each of which is on one of via layer VI A4, via layer VI A3, or via layer VIA2. [0045] FIGS. 4D and 4F show how uncommitted pad 42GB is mask programmed to connect with the power line VSSIO within this periphery cell. This electrical connection occurs by means of via 620B of via layer VIA5 and via 670 of via layer VIA4.
[0046] Considered together, FIGS. 4A, 4B, 4D, and 4E show how power/ground pad 410 can be mask programmed to connect with either of two specific ones of the power/ground lines within this periphery cell. By means of different mask programming, each power/ground pad in each particular instance of a periphery cell can be programmed to connect with any of the power/ground lines within that periphery cell. Thus, by means of different layouts for the late masks used for the metal and via layers shown in these figures, the I/O bank architecture (i.e., bank architecture or power architecture) can be advantageously and flexibility customized to support the particular functional requirements of the IC.
[0047] Similarly, FIGS. 4A, 4C, 4D, and 4F show how uncommitted pad 420B can be mask programmed to connect either with its corresponding I/O buffer or with one of the power lines. By means of different mask programming, any uncommitted pads that are not allocated to an I/O signal can be programmed to connect with any of the metal lines within any periphery cell. Additional pads connecting to a particular power line could improve the performance of the IC by helping to avoid switching induced transient voltages on that line,
[0W8] Flexible I/O Banks
[0049] In a modern IC-based system, one portion of the system may operate at a relatively high voltage and low speed, for example, the data signals that connect the system with removable media or devices. An I/O standard is likely to also specify timing and speed parameters. These can be relevant when designing the I O bank architecture of ICs that use that standard; for example, relatively fast signals consume relatively more current which requires a relatively larger ratio of power/ground pads to I/O signal pads within each I/O bank. At the same time and within the same system, another portion of the system may operate at a relatively low voltage and high speed, for example, the data signals that connect an IC with substantial processing capability to an IC with substantial memory capability. As market requirements and manufacturing capabilities evolve, older I/O standards are gradually phased out in favor of newer ones. Thus, some modern IC-based systems may have portions that operate in accordance with relatively recent I/O standards and some that operate in accordance with legacy I/O standards. Thus, there is a need for a wide variety of particular ICs that are easily customizable to handle a potentially wide variety of I/O standards. Examples of such I/O standards might include CMOS, LVCMOS, SSTL, ECL, LVDS, etc.
[0050] Referring to FIG. 5A, a diagram is shown of I/O circuitry 700A, which contains instances 500A, 500B, 500C, and 500D of periphery cell 500. Similarly, FIGS. 5B and 5C, respectively, show I/O circuitry 700B and I/O circuitry 700C, each of which also contains instances 500A, 500B, 500C, and 500D of periphery cell 500. The different I/O circuits 700A, 700B and 700C are differentiated by different mask programming related to the six power ground lines within this cell, specifically the power/ground lines VSSIO, VSS, VCCIO, VCCPD, VREF, and VCC. The number of periphery cells in the I/O circuits 700A, 700B and 700C is exemplary only, and may be greater or less. The number of power/ground lines and their function is also exemplary only.
[0051] FIGS. 5A, 5B, and 5C show how the mask programmability of the power/ground lines of periphery cell 500 is used to implement not only multiple I/O banks, but to mix and match reference voltages, such as VREF1 and VREF2, across I/O banks. Thus, the mask programmability of the power/ground lines of periphery cells according to embodiments of the invention advantageously supports significant flexibility in the design of a wide variety of I/O bank architectures for a wide variety of specific IC designs.
[0052] Referring to FIGS. 6A and 6B, FIG. 6A shows a top view of the entire layout of die 8Q0A of an example IC, according to one embodiment. Similarly, FIG. 6B shows a top view of the entire layout of die 8GQB of a different example IC, In FIGS. 6A and 6B, each example die may use, for example, periphery cell 400 (FIG. 2). Periphery cell 400 includes six uncommitted pads, which are often used for I/O signals, as well as three power/ground pads. Uncommitted pads can be mask programmed for I/O signals. Alternatively, some (or even all) of those uncommitted pads can be mask programmed to help supply the power requirements of the die. Periphery cell 400 also includes three power/ground pads and six power/ground lines. Each power/ground pad can be independently mask programmed to connect to any of those six power/ground lines. Various other embodiments may use periphery cells of various designs, consistent with the principle described herein,
[0053] Each of the die 800A and 800B includes core logic 120. ICs 800A and 800B have quite different I/O bank architectures. (In the illustrated example, die 800A includes seven I/O banks of various numbers of I/Os, and die 800B includes nine I/O banks of various numbers of I/Os.) Each of these I/O architectures is determined via mask programming. Each of these I/O banks is independent of the others with respect to the I/O standard(s) used within that bank. Typically, different I O standards will have different power supply requirements, which may be flexibly supported as illustrated and described previously in relation to FIGS. 5A-5C. FIGS. 6A and 6B illustrate the advantageous IC design flexibility supported by this aspect of the mask programmability of the present embodiment.
[0054] Flexible I/O Pad Bonding Options [0055] Pad bonding options may include wire bonding, flip-chip bonding, or other types of bonding. Significantly, the choice between wire bond packaging and flip-chip packaging can be made late in the IC design cycle, or even after the IC design is finalized.
[0056] Referring to FIG. 7, a diagram is shown of I/O circuitry configured in accordance with a flip-chip pad option in which the pads are bump pads rather than wire bond pads. Instances of bump pads may overlie core logic—a substantial advantage of flip-chip packaging. Each periphery cell 500A, 500B, 500C and 500D includes a pair of I/O buffers like I/O buffers 440 and 450 (FIG. 3). While the buffer layout remains the same, the pad layout (defined by customization circuitry) is different. Odd numbered periphery cells (500A, 500C) have associated with them three bond pads including two uncommitted bond pads in rows 6 and 4 and one power/ground bond pad in row 2. An ESD protection circuit (ESDa, ESDc) abuts the I/O buffers of the periphery cell (500A, 500C) and partly underlies the bond pad in row 6. Whereas the ESD protection circuit (ESDa, ESDc) is centered on the periphery cell, the bond pad in row 6 is centered on a left half of the periphery cell. The power/ground bond pad in row 2 overlies a core logic area 120.
[0057] Even numbered periphery cells (500B, 500C) differ in that their bond pads are offset (staggered), being located in rows 1, 3 and 5. Odd and even-numbered periphery cells are paired to form a larger module; i.e., periphery cells 50QA and 500B are paired to form a module 91 OA, and periphery cells 500C and 500D are paired to form a module 910B.
[0058] Referring to FIGS 8A and 8B, in FIG. 8A, a diagram is shown of a top view of the entire layout of a IC die 900A, according to one embodiment. Die 900A includes instances of periphery cell 500 along each of its four edges. In FIG. 8B, a diagram is shown of a top view of the entire layout of an IC die 900B, according to one embodiment. In FIG, 8A, periphery cells 500 are positioned to form a square, within which is positioned core logic 120. In FIG. 8B, periphery modules 910 are positioned to form a square, within which is positioned core logic 120.
[0059] Periphery cell 500, as used in die 900A, may contain three bond pads. Periphery module 910, as used in die 900B, may contain six bump pads such as bump pad 920 (FIG, 7), This alteration between periphery cell 500 and periphery module 910 is a simple matter of mask programming. Typically the minimum distance separating adjacent bump pads will be larger than the minimum separation required between bond pads.
[0060] In the case of both wire bond packaging and flip-chip packaging, any particular bond/bump pad can go unused in a particular specific IC design. Similarly, any particular uncommitted bond/bump pad can be mask programmed to be either a signal bond bump pad, or a power/ground bond/bump pad.
[0061] As described in relation to the foregoing embodiments, periphery cells may be mask programmable in various ways, including but not limited to the ways explicitly described herein and shown in the accompanying figures. For example, periphery cells can be masked programmed to specify, relatively late in the wafer fabrication process some or all of the following: the choice between including bump pads or bond pads in the IC dies when the later wafer processing steps are completed; which uncommitted bond pads, or uncommitted bump pads, are used for input signals, which are used for output signals, which are used for bidirectional I/O signals, and which are used for a power/ground line; which uncommitted bond pads, or uncommitted bump pads, are used for input signals, which are used for output signals, which are used for bidirectional I/O signals, and which are used for a power/ground line; and a wide variety of functional characteristics within the core logic of the IC.
[0062] Such late mask programming can be employed to advantageously reduce manufacturing turn around time (TAT) when changes are made in the design of an IC that is implemented according to the described embodiments. This late mask programming can also advantageously reduce the cost incurred for each set of design changes, because only a few of the potentially many masks use to fabricate the IC need to be regenerated. These advantages ca be realized whether such IC design changes are made to remove bugs or as a result of evolving product requirements.
[0063] Embodiments of the invention may take the form of methods of laying out the I/O portion of an integrated circuit, as well as non-transitory computer readable media containing instructions for accomplishing such layout. Various features of the present invention, including but not limited to periphery cells, mask programmable capabilities, and I/O banks can be represented in a variety of hardware description languages (HDLs). HDL descriptions may vary from low-level to high-level. A wide variety of HDLs are known in the art. A wide variety of computer systems are also known in the art. Using one or more HDLs, a design of an IC can be represented in a way that can be interpreted (i.e., processed, manipulated, compiled, synthesized, simulated, or transformed) by one or more computer systems,
[0064] As used herein, words of approximation, unless otherwise defined, are used to mean plus or minus ten percent of nominal value. [0065] Additional aspects of the invention are set forth in the attached Appendix.
[0066] It will be apparent to those of ordinary skill in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential character thereof. The foregoing description is therefore to be regarded as illustrative, not restrictive. The scope of the invention is defined by the appended claims, not the foregoing description, and all changes which some within the range of scope of equivalents thereof are intended to be embraced therein.
APPENDIX: ADDITIONAL ASPECTS OF INVENTION
19. An integrated circuit comprising an I/O portion, the I/O portion comprising:
a plurality of I/O buffers;
a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers, a number of I/O pads in the plurality of I/O pads being greater than a number of I/O buffers in the plurality of I/O buffers; and
customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as either a signal pad or a fixed- voltage pad;
wherein, depending on a configuration of the customization circuitry, a variable number of I/O pads of the plurality of I/O pads are defined as fixed- voltage pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
20. The apparatus of Claim 19, wherein the plurality of I/O pads comprises first, second and third I/O pads, further comprising customization circuitry configured for performing at least one of: defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
21. The apparatus of Claim 20, comprising customization circuitry configured for performing at least two of: defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
22. The apparatus of Claim 21, comprising customization circuitry configured for performing all of: defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
23. An integrated circuit comprising an I/O portion, the I/O portion comprising:
a plurality of I/O buffers;
a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers, a number of I/O pads in the plurality of I/O pads being greater than a number of I/O buffers in the plurality of I/O buffers; and
customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as either a signal pad, a power supply pad, or a ground pad;
wherein, depending on a configuration of the customization circuitry, a variable number of I/O pads of the plurality of I/O pads are defined as power supply pads, a variable number of I/O pads of the plurality of I/O pads are defined as ground pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
An integrated circuit comprising an I/O portion, the I/O portion comprising two I/O buffers;
three I/O pads coupled to the two I/O buffers such that each I/O pad of the three I/O pads is coupled to at least one I/O buffer of the two I/O buffers; and
customization circuitry configured in accordance with one of a plurality of different configurations for customizing the three I/O pads such that each I/O pad of the three I/O pads is defined as either a signal pad, a power supply pad, or a ground pad; wherein, depending on a configuration of the customization circuitry, a variable number of I/O pads of the plurality of I/O pads are defined as power supply pads, a variable number of I/O pads of the plurality of I/O pads are defined as ground pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
25. A method of laying out an I/O portion of integrated circuit, comprising:
arraying within the I/O portion a plurality of flexible I/O modules comprising: a plurality of I/O buffers and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers; and
laying out customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as either a signal pad or a fixed- voltage pad; wherein, depending on a configuration of the customization circuitry, a variable number of I/O pads of the plurality of I/O pads are defined as fixed- voltage pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
26. The apparatus of Claim 25, wherein layout is performed such that:
each flexible I/O module comprises a plurality of I/O buffers; and
a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers. 27. A non-transitory computer-readable medium for laying out an I/O portion of integrated circuit, comprising instructions for:
arraying within the I/O portion a plurality of flexible I/O modules comprising: a plurality of I/O buffers and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers; and
laying out customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as either a signal pad or a fixed- voltage pad; wherein, depending on a configuration of the customization circuitry, a variable number of I/O pads of the plurality of I/O pads are defined as fixed- voltage pads, and a variable number of I/O pads of the plurality of I/O pads are defined as signal pads.
28. The apparatus of Claim 27, comprising instructions for performing said layout such that:
each flexible I/O module comprises a plurality of I/O buffers; and a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers.
29. An integrated circuit comprising an I/O portion, the I/O portion comprising:
a plurality of I/O buffers forming a first bank of I/O buffers;
a plurality of I/O buffers forming a second bank of I/O buffers;
a plurality of I/O pads forming a first bank of I/O pads coupled to I/O buffers of the first bank of I/O buffers such that each I/O pad of the first bank of I/O pads is coupled to at least one I/O buffer of the first bank of I/O buffers;
a plurality of I/O pads forming a bank of I/O pads coupled to I/O buffers of the second bank of I/O buffers such that each I/O pad of the second bank of I/O pads is coupled to at least one I/O buffer of the second bank of I/O buffers; and
customization circuitry configured in accordance with one of a plurality of different configurations for customizing the I/O pads of the first bank of I/O pads and I/O pads of the second bank of I/O pads such that:
each I/O pad of the first and second bank of I/O pads is defined as either a signal pad or a fixed voltage pad;
each signal pad in the first bank of I/O pads is supplied power in accordance with power supply requirements of one or more I/O standards of the first bank of I/O pads; each signal pad in the second bank of I/O pads is supplied power in accordance with different power supply requirements of one or more different I/O standards different than the one or more I/O standards of the first bank of I/O pads;
wherein, in accordance with different configurations of the customization circuitry, different numbers of I/O pads are defined as belonging to the first bank of I/O pads and the second bank of I/O pads.
30. The apparatus of Claim 29, wherein at least some of the I/O pads are grouped into groups of three I/O pads including first, second and third I/O pads, and at least some of the I/O buffers are grouped into pairs of I/O buffers including first and second I/O buffers, and wherein each of said groups of three I/O pads is associated with one of said pairs of I/O buffers such that each of the first, second and third I/O pads of the group of I/O pads is coupled to at least one of the I/O buffers of the pair of I/O buffers.
31. The apparatus of Claim 30, comprising customization circuitry configured for performing at last one of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; and defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard.
32. The apparatus of Claim 31 , comprising customization circuitry configured for performing at last two of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; and defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard.
33. The apparatus of Claim 32, comprising customization circuitry configured for performing all of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; and defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard.
34. A method of laying out an I/O portion of integrated circuit, comprising:
arraying within the I/O portion a plurality of flexible I/O modules comprising a plurality of I/O buffers, and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers; and
laying out customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as belong to one of a plurality of I/O banks, each I/O bank being configured in accordance with power supply requirements of one or more I/O standards, wherein power supply requirements different ones of the I/O banks are different.
35. A method of laying out an I/O portion of integrated circuit, comprising:
arraying within the I/O portion a plurality of flexible I/O modules comprising a plurality of I/O buffers, and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers; and
laying out customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as belong to one of a plurality of I/O banks, each I/O bank being configured in accordance with power supply requirements of one or more I/O standards, wherein power supply requirements different ones of the I/O banks are different.
36. The apparatus of Claim 35, wherein layout is performed such that:
each flexible I/O module comprises a plurality of I/O buffers; and
a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers. 37. A non-transitory computer-readable medium for laying out an I/O portion of integrated circuit, comprising instructions for:
arraying within the I/O portion a plurality of flexible I/O modules comprising a plurality of I/O buffers, and a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers; and
laying out customization circuitry configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads such that each I/O pad of the plurality of I/O pads is defined as belong to one of a plurality of I/O banks, each I/O bank being configured in accordance with power supply requirements of one or more I/O standards, wherein power supply requirements different ones of the I/O banks are different.
38. The apparatus of Claim 37, comprising instructions for performing said layout such that:
each flexible I/O module comprises a plurality of I/O buffers; and a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers.
39. An integrated circuit comprising an I/O portion, the I/O portion comprising:
a plurality of I/O buffers occupying a plurality of adjacent I/O slots located at a specified I/O slot pitch relative to one another; and
customization circuitry configured in accordance with one of a plurality of different configurations for defining a plurality of I/O pads coupled to the plurality of I/O buffers and for customizing the plurality of I/O pads in accordance with one of a plurality of pad options including at least a wire bond pad option and a flip chip pad option, such that a layout of the plurality of I/O buffers is the same regardless of a chosen pad option.
40. The apparatus of Claim 39, wherein at least some of the I/O pads are grouped into groups of three I/O pads including first, second and third I/O pads, and at least some of the I/O buffers are grouped into pairs of I/O buffers including first and second I/O buffers, and wherein each of said groups of three I/O pads is associated with one of said pairs of I/O buffers such that each of the first, second and third I/O pads of the group of I/O pads is coupled to at least one of the I/O buffers of the pair of I/O buffers.
41. The apparatus of Claim 39, comprising customization circuitry configured for performing at least one of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
42. The apparatus of Claim 41, comprising customization circuitry configured for performing at least two of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
43. The apparatus of Claim 42, comprising customization circuitry configured for performing at least all of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
44. A method of laying out an I/O portion of integrated circuit, comprising:
arraying within the I/O portion a plurality of flexible I/O modules comprising a plurality of I/O buffers;
and
laying out customization circuitry configured for defining a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
wherein the customization circuitry is configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads in accordance with one of a plurality of pad options including at least a wire bond pad option and a flip chip pad option, such that a layout of the plurality of I/O buffers is the same regardless of a chosen pad option.
45. The apparatus of Claim 44, wherein layout is performed such that:
each flexible I/O module comprises a plurality of I/O buffers; and a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers.
46. A non-transitory computer-readable medium for laying out an I/O portion of an integrated circuit, comprising instructions method for:
arraying within the I/O portion a plurality of flexible I/O modules comprising a plurality of I/O buffers;
and
laying out customization circuitry configured for defining a plurality of I/O pads coupled to the plurality of I/O buffers such that each I/O pad of the plurality of I/O pads is coupled to at least one I/O buffer of the plurality of I/O buffers;
wherein the customization circuitry is configured in accordance with one of a plurality of different configurations for customizing the plurality of I/O pads in accordance with one of a plurality of pad options including at least a wire bond pad option and a flip chip pad option, such that a layout of the plurality of I/O buffers is the same regardless of a chosen pad option.
47. The apparatus of Claim 46, comprising instructions for performing said layout such that:
each flexible I/O module comprises a plurality of I/O buffers; and a number of I/O pads in the plurality of I/O pads is greater than a number of I/O buffers in the plurality of I/O buffers.

Claims

What is claimed is:
1. An integrated circuit comprising an I/O portion, the I/O portion comprising:
a first I/O buffer occupying a first I/O slot, and a second I/O buffer occupying a second adjacent I/O slot, the first I/O slot and the second adjacent I/O slot being located at a specified I/O slot pitch relative to one another;
a group of I/O pads comprising a first I/O pad coupled to the first I/O buffer, a second I/O pad coupled to the second I/O buffer, and a third I/O pad coupled to at least one of the first I/O buffer and the second I/O buffer, wherein I/O pads of the group of I/O pads are staggered in relation to one another; and
an ESD protection circuit underlying an I/O pad to provide ESD protection for the third I/O pad without increasing said I/O slot pitch.
2. The apparatus of Claim 1, comprising customization circuitry configured for performing at least one of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
3. The apparatus of Claim 2, wherein the customization circuitry is configured for performing at least two of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
4. The apparatus of Claim 2, wherein the customization circuitry is configured for performing at least three of the following: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
5. A method of laying out an I/O portion of integrated circuit, comprising:
arraying within the I/O portion a plurality of flexible I/O modules, each flexible I/O module comprising:
a first I/O buffer occupying a first I/O slot, and a second I/O buffer occupying a second adjacent I/O slot, the first I/O slot and the second adjacent I/O slot being located at a specified pitch relative to one another;
a group of I/O pads comprising a first I/O pad coupled to the first I/O buffer, a second I/O pad coupled to the second I/O buffer, and a third I/O pad coupled to at least one of the first I/O buffer and the second I/O buffer, wherein I/O pads of the group of I/O pads are staggered in relation to one another; and an ESD protection circuit underlying an I/O pad to provide ESD protection for the third I/O pad without increasing said I/O slot pitch.
6. The method of Claim 5, further comprising customizing the I/O modules to perform at least one of: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
7. The method of Claim 6, comprising customizing the I/O modules to perform at least two of: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
8. The method of Claim 7, comprising customizing the I/O modules to perform at least three of: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
9. A non-transitory machine-readable computer medium for laying out an I/O portion of an integrated circuit, comprising instructions for defining a flexible I/O module comprising:
a first I/O buffer occupying a first I/O slot, and a second I/O buffer occupying a second adjacent I/O slot, the first I/O slot and the second adjacent I/O slot being located at a specified pitch relative to one another;
a group of I/O pads comprising a first I/O pad coupled to the first I/O buffer, a second I/O pad coupled to the second I/O buffer, and a third I/O pad coupled to at least one of the first I/O buffer and the second I/O buffer, wherein I/O pads of the group of I/O pads are staggered in relation to one another; and
an ESD circuit underlying an I/O pad to provide ESD protection for the third I/O pad without increasing said I/O slot pitch.
10. The apparatus of Claim 9, comprising instructions for placing within the I/O portion of the integrated circuit a plurality of adjacent ones of said I/O module.
11. The apparatus of Claim 10, comprising instructions for customizing the I/O modules to perform at least one of: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
12. The apparatus of Claim 11, comprising instructions for customizing the I/O modules to perform at least two of: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
13. The apparatus of Claim 12, comprising instructions for customizing the I/O modules to perform at least three of: defining at least one of the first, second and third I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
14. An integrated circuit comprising:
a core logic region; and
an I/O portion surrounding a periphery of the core logic region;
wherein circuitry within said I/O portion consists essentially of a plurality of signal I/O buffers occupying a plurality of linear arrays of I/O slots, within which arrays the I/O slots are located at a specified I/O slot pitch relative to one another.
15. The apparatus of Claim 14, comprising:
a plurality of pairs of signal I/O buffers, each pair of signal I/O buffers comprising two of said signal I/O buffers; and
a plurality of groups of I/O pads, each group of I/O pads being associated with an associated pair of signal I/O buffers and comprising first, second and third I/O pads, wherein each of the first, second and third I/O pads is coupled to at least one of the two I/O signal buffers of the associated pair of I/O signal buffers.
16. The apparatus of Claim 15, comprising customization circuitry configured for performing at least one of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
17. The apparatus of Claim 16, comprising customization circuitry configured for performing at least two of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
18. The apparatus of Claim 16, comprising customization circuitry configured for performing three of: defining at least one of the first, second and third I/O pads of a group of I/O pads as either a power supply pad or a signal pad; defining at least one of the first, second and third I/O pads of a group of I/O pads as an I/O pad for one of multiple different types of bonding, including at least wire bonding and flip-chip bonding; defining for at least one of the first, second and third I/O pads of a group of I/O pads at least one of directionality and I/O standard; and defining multiple different banks of I/O pads, each I/O pad within a bank of I/O pads having the same I/O pad power supply requirements and I/O pads within different banks of I/O pads having different I/O pad power supply requirements.
PCT/US2013/061317 2012-09-26 2013-09-24 Flexible, space-efficient i/o circuitry for integrated circuits WO2014052274A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13842574.9A EP2901477A4 (en) 2012-09-26 2013-09-24 Flexible, space-efficient i/o circuitry for integrated circuits
JP2015534591A JP2015532530A (en) 2012-09-26 2013-09-24 Flexible and efficient input / output circuit elements for integrated circuits
KR1020157008651A KR20150058273A (en) 2012-09-26 2013-09-24 Flexible, space-efficient i/o circuitry for integrated circuits
CN201380050485.9A CN104781924A (en) 2012-09-26 2013-09-24 Flexible, space-efficient i/o circuitry for integrated circuits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US136272770 2012-09-26
US13/627,270 US9166593B2 (en) 2012-05-28 2012-09-26 Flexible, space-efficient I/O circuitry for integrated circuits

Publications (1)

Publication Number Publication Date
WO2014052274A1 true WO2014052274A1 (en) 2014-04-03

Family

ID=53719571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/061317 WO2014052274A1 (en) 2012-09-26 2013-09-24 Flexible, space-efficient i/o circuitry for integrated circuits

Country Status (5)

Country Link
EP (1) EP2901477A4 (en)
JP (1) JP2015532530A (en)
KR (1) KR20150058273A (en)
CN (1) CN104781924A (en)
WO (1) WO2014052274A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273654B2 (en) * 2019-08-09 2023-05-15 ルネサスエレクトロニクス株式会社 Semiconductor device, manufacturing method thereof, and electronic device
WO2021171408A1 (en) * 2020-02-26 2021-09-02 株式会社ソシオネクスト Semiconductor integrated circuit device
WO2024042698A1 (en) * 2022-08-26 2024-02-29 株式会社ソシオネクスト Semiconductor integrated circuit device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760428A (en) * 1996-01-25 1998-06-02 Lsi Logic Corporation Variable width low profile gate array input/output architecture
US6992356B2 (en) * 2003-03-28 2006-01-31 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US7898034B2 (en) * 2006-01-31 2011-03-01 Samsung Electronics Co., Ltd. Semiconductor chips having improved electrostatic discharge protection circuit arrangement

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246354A (en) * 1989-03-20 1990-10-02 Nec Corp Master slice layout integrated circuit device
JP3464802B2 (en) * 1991-09-18 2003-11-10 株式会社東芝 Semi-custom integrated circuits
JP3951090B2 (en) * 2000-06-19 2007-08-01 セイコーエプソン株式会社 Semiconductor integrated circuit device and layout design method thereof
TW511193B (en) * 2001-12-13 2002-11-21 Acer Labs Inc Inner circuit structure of array type bonding pad chip and its manufacturing method
US6798069B1 (en) * 2003-03-28 2004-09-28 Lsi Logic Corporation Integrated circuit having adaptable core and input/output regions with multi-layer pad trace conductors
US7194707B2 (en) * 2004-09-17 2007-03-20 International Business Machines Corporation Method and apparatus for depopulating peripheral input/output cells
JP2007305822A (en) * 2006-05-12 2007-11-22 Kawasaki Microelectronics Kk Semiconductor integrated circuit
US20070267748A1 (en) * 2006-05-16 2007-11-22 Tran Tu-Anh N Integrated circuit having pads and input/output (i/o) cells
JP2007335511A (en) * 2006-06-13 2007-12-27 Fujitsu Ltd Design method for semiconductor integrated circuit device, semiconductor integrated circuit device and manufacturing method therefor
JP5264135B2 (en) * 2006-11-09 2013-08-14 パナソニック株式会社 Semiconductor integrated circuit and multichip module
US7872283B2 (en) * 2006-11-09 2011-01-18 Panasonic Corporation Semiconductor integrated circuit and multi-chip module
JP2009164195A (en) * 2007-12-28 2009-07-23 Panasonic Corp Semiconductor chip
US7932744B1 (en) * 2008-06-19 2011-04-26 Actel Corporation Staggered I/O groups for integrated circuits
JP2010147282A (en) * 2008-12-19 2010-07-01 Renesas Technology Corp Semiconductor integrated circuit device
TWI370531B (en) * 2009-03-19 2012-08-11 Faraday Tech Corp Io cell with multiple io ports and related techniques for layout area saving
JP2012235048A (en) * 2011-05-09 2012-11-29 Renesas Electronics Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760428A (en) * 1996-01-25 1998-06-02 Lsi Logic Corporation Variable width low profile gate array input/output architecture
US6992356B2 (en) * 2003-03-28 2006-01-31 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US7898034B2 (en) * 2006-01-31 2011-03-01 Samsung Electronics Co., Ltd. Semiconductor chips having improved electrostatic discharge protection circuit arrangement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2901477A4 *

Also Published As

Publication number Publication date
KR20150058273A (en) 2015-05-28
EP2901477A1 (en) 2015-08-05
JP2015532530A (en) 2015-11-09
CN104781924A (en) 2015-07-15
EP2901477A4 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US8773163B1 (en) Flexible, space-efficient I/O circuitry for integrated circuits
US9577640B1 (en) Flexible, space-efficient I/O circuitry for integrated circuits
CN100435326C (en) Integrated circuit die I/O cells
CN104350595B (en) Large sized silicon interposers overcoming the reticle area limitations
CN102959704B (en) Electrostatic discharge protective for the crystal grain of multi-chip module
US20090321893A1 (en) Multi-die integrated circuit device and method
EP2220682A2 (en) Formation of a hybrid integrated circuit device
US10438939B2 (en) Semiconductor integrated circuit device
US10002832B2 (en) Semiconductor integrated circuit device
US11251125B2 (en) Semiconductor integrated circuit device
EP1878050A1 (en) Integrated circuit assembly with passive integration substrate for power and ground line routing on top of an integrated circuit chip
EP2901477A1 (en) Flexible, space-efficient i/o circuitry for integrated circuits
US7960823B2 (en) Semiconductor device with different sized ESD protection elements
US7405946B2 (en) Ball grid array assignment
US6744081B2 (en) Interleaved termination ring
US6747349B1 (en) Termination ring for integrated circuit
CN102945823B (en) Method for reducing area of interconnected input-output pins on stacked chips
US20170077060A1 (en) Semiconductor device, semiconductor chip, and method of manufacturing semiconductor device
WO2003065451A9 (en) Flip chip die bond pads, die bond pad placement and routing optimization
JP5855458B2 (en) Method and apparatus for forming an I / O cluster in an integrated circuit
CN112840452A (en) Pad limited configurable logic device
CN110491849A (en) Chip, input/output structure and bed course
US6700142B1 (en) Semiconductor wafer on which is fabricated an integrated circuit including an array of discrete functional modules
Voldman Electrostatic Discharge Protection and Latch-Up Design and Methodologies for ASIC Development
KR20120129652A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008651

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013842574

Country of ref document: EP