JP2007305822A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
JP2007305822A
JP2007305822A JP2006133255A JP2006133255A JP2007305822A JP 2007305822 A JP2007305822 A JP 2007305822A JP 2006133255 A JP2006133255 A JP 2006133255A JP 2006133255 A JP2006133255 A JP 2006133255A JP 2007305822 A JP2007305822 A JP 2007305822A
Authority
JP
Japan
Prior art keywords
connection pads
core
region
power supply
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006133255A
Other languages
Japanese (ja)
Inventor
Hajime Kinugasa
元 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Priority to JP2006133255A priority Critical patent/JP2007305822A/en
Publication of JP2007305822A publication Critical patent/JP2007305822A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/06153Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry with a staggered arrangement, e.g. depopulated array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49431Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a shortage of a connection pad for a power supply to a core region, to eliminate a necessity for decreasing a cell width of an IO cell, and to be able to apply an identical connection method to the all connection pads. <P>SOLUTION: A line of connection pads 41a to 41c and a line of connection pads 42a to 42d are arranged on IO cells 31a to 31g in an IO region 30 in a shifted manner, connection pads 43a to 43d are arranged on a core power wiring 21 among a side of a core region 20, and three connection pads per two IO cells are arranged with the relation between the respective pad pitch P of the connection pads 41a to 41c, 42a to 42d, 43a to 43d; the cell pitch S in the IO cells defined as P=2S; and the pad pitch of all connection pads 41a to 41c, 42a to 42d, 43a to 43d defined as P/3 (=2S/3). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ワイヤボンディング等を行うための接続パッドの配置について改良を図った半導体集積回路に関するものである。   The present invention relates to a semiconductor integrated circuit in which the arrangement of connection pads for performing wire bonding or the like is improved.

近年、プロセスの微細化により、半導体集積回路に搭載できる回路素子数は大幅に増加しつつあり、それに伴い、例えばASIC(特殊用途向けLSI)においては多ピン化が進んでいる。これにより、ワイヤボンディング等を行うために多くの接続パッドが必要となるが、パッケージ実装におけるワイヤボンディング装置の制約等により、パッドピッチは制限されており、パッドピッチを小さくする手法として、パッド配列を複数列に分ける手法が広く用いられている。   In recent years, the number of circuit elements that can be mounted on a semiconductor integrated circuit has been greatly increased due to miniaturization of processes, and accordingly, for example, in ASIC (LSI for special applications), the number of pins is increasing. As a result, many connection pads are required to perform wire bonding, etc., but the pad pitch is limited due to restrictions of the wire bonding apparatus in package mounting, etc. A technique of dividing into a plurality of columns is widely used.

図6は従来の半導体集積回路(LSIチップ)10の平面の概略を示す図である。20はコア領域であり、主要回路が構成され且つコア電源配線21とコア接地配線22がメッシュ状に配置されている。30はIO領域であり、複数のIOセル31が配置されるとともに、それぞれのIOセル31に対応する接続パッド40が配置される。接続パッド40は、例えば、IOセル31内の入力バッファ、出力バッファ、もしくは入出力バッファに配線51(図7参照)を介して接続され、それぞれ、入力パッド、出力パッド、もしくは入出力パッドとして利用される。接続パッド40は、また、IO領域30に設けられるIO領域用高電位電源配線もしくは接地電源配線(図示しない)に接続され、IO領域30用の高電位電圧(VDDO)もしくは低電位電圧(GNDO)を供給するためにも使用される。IOセル31の一部は、コア領域20のコア電源配線21に高電位電圧(VDD)を供給するためのコア電源用セル32、コア接地配線22に低電位電圧(GND)を供給するためのコア接地用セル33として使用される。この場合、コア電源用セル32およびコア接地用セル33に対応して配置された接続パッド40は、それぞれVDDおよびGNDを供給するために使用される。34はコア電源用セル32上のコア電源配線、35はコア接地用セル33上のコア接地配線である。   FIG. 6 is a diagram showing a schematic plan view of a conventional semiconductor integrated circuit (LSI chip) 10. Reference numeral 20 denotes a core region, in which a main circuit is configured, and a core power supply wiring 21 and a core ground wiring 22 are arranged in a mesh shape. Reference numeral 30 denotes an IO region, in which a plurality of IO cells 31 are arranged, and connection pads 40 corresponding to the respective IO cells 31 are arranged. The connection pad 40 is connected to, for example, an input buffer, an output buffer, or an input / output buffer in the IO cell 31 via a wiring 51 (see FIG. 7), and is used as an input pad, an output pad, or an input / output pad, respectively. Is done. The connection pad 40 is also connected to an IO region high potential power supply wiring or ground power supply wiring (not shown) provided in the IO region 30, and the IO region 30 high potential voltage (VDDO) or low potential voltage (GNDO). Also used to supply. A part of the IO cell 31 is used to supply a high potential voltage (VDD) to the core power wiring 21 in the core region 20 and a low potential voltage (GND) to the core ground wiring 22. Used as the core grounding cell 33. In this case, the connection pads 40 arranged corresponding to the core power supply cell 32 and the core grounding cell 33 are used to supply VDD and GND, respectively. Reference numeral 34 denotes a core power supply wiring on the core power supply cell 32, and reference numeral 35 denotes a core ground wiring on the core grounding cell 33.

図7は図6のX部分の拡大図である。この図7では、接続パッド40を千鳥状に2列に配置することで、各列の接続パッド40のパッピッチPをセルピッチSの2倍(=2S)に保持しながら、上下の列の接続パッドを合わせた全体のパッドピッチをセルピッチS(=P/2)に小さくして、パッド密度を高くしている(例えば、特許文献1参照)。52は配線、61はヴィアである。   FIG. 7 is an enlarged view of a portion X in FIG. In FIG. 7, the connection pads 40 are arranged in two rows in a staggered manner, so that the pad pitch P of the connection pads 40 in each row is maintained at twice the cell pitch S (= 2S), while the connection pads in the upper and lower rows are connected. Is reduced to the cell pitch S (= P / 2) to increase the pad density (see, for example, Patent Document 1). 52 is a wiring and 61 is a via.

ところで、上記したような接続パッドの配列を2列とする手法をさらに展開して多ピン化を実現するためには、各列の接続パッドのパッドピッチPを変更せずに、接続パッドの配列を3列以上に増やせばよい。接続パッド40の配列を4列に増やした図8では、各列の接続パッド40のパッドピッチPはセルピッチSの4倍(=4S)、4列の接続パッド40の全体のパッドピッチはセルピッチS(=P/4)となっている。   By the way, in order to further expand the method of arranging the connection pads as described above in two rows and realize a multi-pin configuration, the connection pads are arranged without changing the pad pitch P of the connection pads in each row. Can be increased to three or more rows. In FIG. 8 in which the arrangement of the connection pads 40 is increased to four rows, the pad pitch P of the connection pads 40 in each row is four times the cell pitch S (= 4S), and the total pad pitch of the four rows of connection pads 40 is the cell pitch S. (= P / 4).

一方、IO領域30上に接続パッドを配置してチップ面積の縮小を図る手法が非特許文献1で提案されている。図9は、図7に示した部分にこの手法を適用した例を示す。図7の例では、それぞれのIOセル31に対応した接続パッド40を、複数のIOセル31の外側に、2列に分けて配置した。これに対して図9では、接続パッド40をそれぞれのIOセル31上に配置することによって、IO領域30を配置するために必要なチップ面積が縮小されている。   On the other hand, Non-Patent Document 1 proposes a method for reducing the chip area by arranging connection pads on the IO region 30. FIG. 9 shows an example in which this method is applied to the portion shown in FIG. In the example of FIG. 7, the connection pads 40 corresponding to the respective IO cells 31 are arranged in two rows outside the plurality of IO cells 31. On the other hand, in FIG. 9, the chip area necessary for arranging the IO region 30 is reduced by arranging the connection pads 40 on the respective IO cells 31.

ところで、外部電極端子のファインピッチ化を図りつつ、外部電極端子の高密度化を図るために、半導体集積回路の周辺上に第2の外部電極端子を配置するとともに、半導体集積回路上に比較的大きなサイズの第1の外部電極端子を配置し、前者にはスタッドパッド電極を、後者にははんだバンプ電極を配設することが提案されている(特許文献2参照)。これによれば、サイズの大きな第1の外部電極端子を電源用に利用することにより、電圧降下を減少させることができる。
特開平11−087399号公報 特開2002−270643号公報 大庭久芳 著、「FUJITSU.55」、3、p.210−214、(2004年5月)
By the way, in order to increase the density of the external electrode terminals while reducing the fine pitch of the external electrode terminals, a second external electrode terminal is disposed on the periphery of the semiconductor integrated circuit, and the external electrode terminals are relatively disposed on the semiconductor integrated circuit. It has been proposed to arrange a first external electrode terminal having a large size, a stud pad electrode in the former, and a solder bump electrode in the latter (see Patent Document 2). According to this, the voltage drop can be reduced by using the first external electrode terminal having a large size for the power source.
Japanese Patent Laid-Open No. 11-087399 JP 2002-270643 A Ohba Hisayoshi, “FUJITSU.55”, 3, p. 210-214, (May 2004)

しかし、図8に示す手法は、図7および図9に比べて、パッド密度を2倍にすることはできるものの、図8の各列のパッドピッチPが図7および図9の各列のパッドピッチPと同じであるとすると、パッド全体のパッドピッチの縮小化によって、IOセル31のセル幅が、図7および図9のIOセル31のセル幅の半分に小さくなる。また、IOセル31の相互間には隣接境界領域36が必要となるため、図8におけるIOセル31の実効的なセル幅は更に小さくなる。このため、IOセル31に必要とされるIO回路やESD保護素子等のレイアウト配置が困難となってくる。   However, although the method shown in FIG. 8 can double the pad density as compared with FIGS. 7 and 9, the pad pitch P in each row in FIG. 8 is equal to the pad pitch in each row in FIGS. If it is the same as the pitch P, the cell width of the IO cell 31 is reduced to half the cell width of the IO cell 31 of FIGS. 7 and 9 by reducing the pad pitch of the entire pad. Further, since the adjacent boundary region 36 is required between the IO cells 31, the effective cell width of the IO cell 31 in FIG. 8 is further reduced. For this reason, layout arrangement of IO circuits, ESD protection elements, and the like required for the IO cells 31 becomes difficult.

また、最近ではIO領域30とコア領域20とで電源を分離することが一般的となり、コア領域20に独立した電源を供給するために多数の接続パッドが必要となっている。このため、IOセル31に対応させた接続パッドを設けただけでは、コア領域20に電源を供給するための接続パッドが不足する場合がある。   In recent years, it has become common to separate the power supply between the IO region 30 and the core region 20, and a large number of connection pads are required to supply independent power to the core region 20. For this reason, the connection pads for supplying power to the core region 20 may be insufficient if only the connection pads corresponding to the IO cells 31 are provided.

さらに、特許文献2に示す技術では、第1の外部電極端子と第2の外部電極端子とで接続パッドのタイプが異なっており、外部接続する際に異なった接続方法を適用しなければならず、組み立てコストの増大を招く恐れがある。   Furthermore, in the technique shown in Patent Document 2, the types of connection pads are different between the first external electrode terminal and the second external electrode terminal, and different connection methods must be applied for external connection. There is a risk of increasing the assembly cost.

本発明の目的は、コア領域への電源供給のための接続パッド不足を防止でき、IOセルのセル幅を小さくする必要がなく、さらに全ての接続パッドに同一接続方法が適用できるようにした半導体集積回路を提供することである。   An object of the present invention is to prevent a shortage of connection pads for supplying power to the core region, eliminate the need to reduce the cell width of the IO cells, and further allow the same connection method to be applied to all connection pads. It is to provide an integrated circuit.

上記目的を達成するために、請求項1に記載の発明は、複数の回路素子が配置されたコア領域と、前記コア領域の外側において、複数のIOセルが前記コア領域の一辺に沿って配置されるとともに、該複数のIOセルのそれぞれに対応する第1の接続パッドが配置されたIO領域とを有し、前記コア領域の前記一辺に沿う前記コア領域内に、複数の第2の接続パッドが配置され、前記第1および第2の接続パッドに対して同一の外部接続手段が接続されていることを特徴とする。
請求項2に記載の発明は、請求項1に記載の半導体集積回路において、前記外部接続手段がボンディングワイヤであることを特徴とする。
請求項3に記載の発明は、請求項1又は2に記載の半導体集積回路において、前記複数のIOセルが前記コア領域の前記一辺に沿って第1のピッチで配置され、前記複数の第2の接続パッドが前記コア領域の前記一辺に沿って前記第1のピッチの正の整数倍のピッチで配置されていることを特徴とする。
請求項4に記載の発明は、請求項1乃至3のいずれか1つに記載の半導体集積回路において、前記第1および第2の接続パッドは、前記コア領域の前記一辺に沿う方向の外形寸法が同一であることを特徴とする。
請求項5に記載の発明は、請求項1乃至4のいずれか1つに記載の半導体集積回路において、前記コア領域が、前記コア領域の前記一辺に沿って配置された、前記複数の回路素子に電源を供給する電源配線を含み、前記複数の第2の接続パッドの少なくとも一部が、前記電源配線に電源電圧を供給するために利用されていることを特徴とする。
請求項6に記載の発明は、請求項5に記載の半導体集積回路において、前記電源配線が高電位電源配線と低電位電源配線を含み、前記複数の第2の接続パッドの少なくとも一部が、前記高電位電源配線に沿って配置された第1群の接続パッドと、前記低電位電源配線に沿って配置された第2群の接続パッドとを含むことを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, there is provided a core region in which a plurality of circuit elements are arranged, and a plurality of IO cells arranged along one side of the core region outside the core region. And an IO region in which a first connection pad corresponding to each of the plurality of IO cells is disposed, and a plurality of second connections are provided in the core region along the one side of the core region. A pad is arranged, and the same external connection means is connected to the first and second connection pads.
According to a second aspect of the present invention, in the semiconductor integrated circuit according to the first aspect, the external connection means is a bonding wire.
According to a third aspect of the present invention, in the semiconductor integrated circuit according to the first or second aspect, the plurality of IO cells are arranged at a first pitch along the one side of the core region, and the plurality of second cells are arranged. The connection pads are arranged at a pitch that is a positive integer multiple of the first pitch along the one side of the core region.
According to a fourth aspect of the present invention, in the semiconductor integrated circuit according to any one of the first to third aspects, the first and second connection pads are external dimensions in a direction along the one side of the core region. Are the same.
A fifth aspect of the present invention is the semiconductor integrated circuit according to any one of the first to fourth aspects, wherein the core region is disposed along the one side of the core region. And at least a part of the plurality of second connection pads is used to supply a power supply voltage to the power supply wiring.
According to a sixth aspect of the present invention, in the semiconductor integrated circuit according to the fifth aspect, the power wiring includes a high potential power wiring and a low potential power wiring, and at least a part of the plurality of second connection pads includes: It includes a first group of connection pads arranged along the high potential power supply wiring and a second group of connection pads arranged along the low potential power supply wiring.

本発明によれば、コア領域に配置した第2の接続パッドを、主として、コア領域への電源供給のために利用することにより、コア領域への電源供給のためにパッド不足が発生することを防止できる。また、IO領域へは従来と同様に接続パッドを配置できるので、IO領域のセル幅を縮小する必要もない。そして、第1の接続パッドおよび第2の接続パッドに対して同一の外部接続手段を接続するので、低コスト化が可能である。特に、請求項2に記載のようにボンディングワイヤで接続することで、低コスト化が可能である。また、請求項3に記載のように第2の接続パッドの配置をIOセルの配置ピッチの正の整数倍にしておくことにより、第1および第2の接続パッドの両者への接続が容易となる。また、請求項4に記載の発明のように、コア領域の一辺に沿う方向の接続パッドの外形寸法を同一にすることにより、特に第2の接続パッドの配置密度を高めることができる。   According to the present invention, the second connection pads arranged in the core region are mainly used for power supply to the core region, so that a shortage of pads occurs for power supply to the core region. Can be prevented. In addition, since connection pads can be arranged in the IO region as in the conventional case, it is not necessary to reduce the cell width of the IO region. Since the same external connection means is connected to the first connection pad and the second connection pad, the cost can be reduced. In particular, the cost can be reduced by connecting with bonding wires as described in claim 2. Further, as described in claim 3, by arranging the second connection pads to be a positive integer multiple of the arrangement pitch of the IO cells, the connection to both the first and second connection pads can be facilitated. Become. Further, as in the invention described in claim 4, by making the outer dimensions of the connection pads in the direction along one side of the core region the same, the arrangement density of the second connection pads can be increased.

[第1の実施例]
図1は本発明の第1の実施例の半導体集積回路のIO領域の一部とコア領域の一部の説明図である。下列の接続パッド41a〜41cはIOセル31b,31d,31f上に配置され、中列の接続パッド42a〜42dはIOセル31a,31c,31e、31g上に配置され、上列の接続パッド43a〜43dはコア領域20のコア電源配線21(又はコア接地配線22)上に配置されている。それぞれのIOセル31は、入出力バッファ等のIO回路を構成する素子や、ESD保護素子等と、これらの素子間を相互に接続する配線を、図7において四角で示される領域内にあらかじめレイアウトしたものである。半導体集積回路の設計においては、あらかじめ用意されたIOセル31を、必要な個数だけ、コア領域20の一辺もしくは複数の辺に沿って一定のピッチで配置するとともに、それぞれのIOセル31に対応する第1の接続パッド(接続パッド41a〜41cおよび42a〜42d)を配置して、IO領域30を形成する(図6参照)。
[First embodiment]
FIG. 1 is an explanatory diagram of a part of an IO region and a part of a core region of the semiconductor integrated circuit according to the first embodiment of the present invention. Lower row connection pads 41a-41c are arranged on IO cells 31b, 31d, 31f, middle row connection pads 42a-42d are arranged on IO cells 31a, 31c, 31e, 31g, and upper row connection pads 43a-43c. 43 d is arranged on the core power supply wiring 21 (or the core ground wiring 22) in the core region 20. Each IO cell 31 lays out elements constituting an IO circuit such as an input / output buffer, ESD protection elements, etc., and wirings interconnecting these elements in advance in a region indicated by a square in FIG. It is a thing. In designing a semiconductor integrated circuit, a necessary number of IO cells 31 prepared in advance are arranged at a constant pitch along one side or a plurality of sides of the core region 20 and correspond to each IO cell 31. First connection pads (connection pads 41a to 41c and 42a to 42d) are arranged to form the IO region 30 (see FIG. 6).

接続パッド41a〜41cおよび42a〜42dのそれぞれは、対応するIOセル31上に配置されている。すなわち、それぞれの接続パッドは、少なくともその一部が、対応するIOセル31を構成する素子(四角で示された領域内に配置されている)の上方に位置するように配置されている。   Each of the connection pads 41 a to 41 c and 42 a to 42 d is arranged on the corresponding IO cell 31. That is, each connection pad is disposed so that at least a part thereof is located above the element (arranged in the region indicated by the square) constituting the corresponding IO cell 31.

コア電源配線21は、コア領域20に配置される複数の回路素子に高電位電圧(VDD)を供給する高電位電源配線であり、コア接地配線22は、コア領域20に配置される複数の回路素子に低電位電圧(GND)を供給する低電位電源配線である。コア電源配線21(またはコア接地配線22)は、コア領域20の一辺に沿って、コア領域20内に配置される(図6参照)。図1に示した例では、このコア電源配線21(またはコア接地配線22)上に、複数の第2の接続パッド(接続パッド43a〜43d)が配置されている。すなわち、接続パッド43a〜43dは、コア電源配線21(またはコア接地配線22)に沿って、かつ、少なくともその一部がコア電源配線21(またはコア接地配線22)の上方に位置するように、配置されている。   The core power supply wiring 21 is a high potential power supply wiring that supplies a high potential voltage (VDD) to a plurality of circuit elements arranged in the core region 20, and the core ground wiring 22 is a plurality of circuits arranged in the core region 20. A low-potential power supply wiring for supplying a low-potential voltage (GND) to the element. The core power supply wiring 21 (or the core ground wiring 22) is arranged in the core region 20 along one side of the core region 20 (see FIG. 6). In the example illustrated in FIG. 1, a plurality of second connection pads (connection pads 43 a to 43 d) are arranged on the core power supply wiring 21 (or the core ground wiring 22). That is, the connection pads 43a to 43d are positioned along the core power supply wiring 21 (or the core ground wiring 22) and so that at least a part thereof is located above the core power supply wiring 21 (or the core ground wiring 22). Has been placed.

IOセル31a〜31g上に配置された接続パッド41a〜41cおよび42a〜42dは、主として、対応するIOセル31a〜31g内の入力バッファ、出力バッファ、もしくは入出力バッファに接続され、それぞれ、入力パッド、出力パッド、もしくは入出力パッドとして利用される。接続パッド41a〜41cおよび42a〜42dは、また、IO領域30に設けられるIO領域用高電位電源配線もしくは接地電源配線(図示しない)に接続され、IO領域30用の高電位電圧(VDDO)もしくは低電位電圧(GNDO)を供給するためにも使用される。これら接続パッドとIOセルや電源配線との接続では、配線やヴィア61等が使用される。   Connection pads 41a-41c and 42a-42d arranged on IO cells 31a-31g are mainly connected to input buffers, output buffers, or input / output buffers in corresponding IO cells 31a-31g, respectively. Used as an output pad or input / output pad. The connection pads 41a to 41c and 42a to 42d are also connected to an IO region high potential power supply wiring or ground power supply wiring (not shown) provided in the IO region 30, and a high potential voltage (VDDO) for the IO region 30 or It is also used to supply a low potential voltage (GNDO). For connection between these connection pads and IO cells and power supply wiring, wiring, vias 61 and the like are used.

コア電源配線21(またはコア接地配線22)上に配置された接続パッド43a〜43dは、主としてコア領域べの電源供給のために使用される。具体的には、例えば、これらの接続パッド43a〜43dの直下に、もしくは隣接して設けられたヴィア(図示しない)を介してコア電源配線21(またはコア接地配線22)に接続され、コア領域20に配置される複数の回路素子に高電位電圧VDD(または低電位電圧GND)を供給するために利用される。もしくは、コア電源配線21(またはコア接地配線22)に隣接して配置される、図示しないコア接地配線22(またはコア電源配線21)に、ヴィアおよび配線を介して接続され、コア領域20に配置される複数の回路素子に低電位電圧GND(または高電位電圧VDD)を供給するために利用される。   The connection pads 43a to 43d arranged on the core power supply wiring 21 (or the core ground wiring 22) are mainly used for supplying power to the core region. Specifically, for example, the core region is connected to the core power supply wiring 21 (or the core ground wiring 22) via vias (not shown) provided directly below or adjacent to these connection pads 43a to 43d. 20 is used to supply a high potential voltage VDD (or low potential voltage GND) to a plurality of circuit elements arranged at 20. Alternatively, it is connected to a core ground wiring 22 (or core power wiring 21) (not shown) arranged adjacent to the core power wiring 21 (or core ground wiring 22) via vias and wirings and arranged in the core region 20. It is used for supplying a low potential voltage GND (or high potential voltage VDD) to a plurality of circuit elements.

本実施例では、各列の接続パッド41a〜41c,42a〜42d,43a〜43dのパッドピッチPはIOセル31a〜31gのセルピッチSの2倍(=2S)になっている。また、これら3列に分かれて配置された接続パッド全体のパッドピッチはP/3であり、したがってセルピッチSの2/3倍(=2S/3)となっている。つまり、2個のIOセル当り3つの接続パッドを配置できる構造となっている。これにより、図7および図9で説明した従来の千鳥状の2列パッド配置(1個のIOセル当り1個の接続パッド)に比べて、実質1.5倍の数の接続パッドを配置することが可能となる。また図8で説明した4列パッド配置と比較すると、IOセルのセル幅を2倍大きくすることができる。つまり、セル幅を図7および図9で説明したパッド配列の場合と同じにすることができる。   In this embodiment, the pad pitch P of the connection pads 41a to 41c, 42a to 42d, 43a to 43d in each column is twice (= 2S) the cell pitch S of the IO cells 31a to 31g. Further, the pad pitch of the entire connection pads arranged in these three rows is P / 3, and is therefore 2/3 times the cell pitch S (= 2S / 3). That is, the structure is such that three connection pads can be arranged per two IO cells. As a result, the number of connection pads is substantially 1.5 times that of the conventional staggered two-row pad arrangement (one connection pad per IO cell) described with reference to FIGS. It becomes possible. Further, the cell width of the IO cell can be doubled as compared with the 4-row pad arrangement described in FIG. That is, the cell width can be made the same as in the case of the pad arrangement described with reference to FIGS.

図2に各接続パッド41a〜41c,42a〜42d,43a〜43dにワイヤ70でワイヤボンディングした様子を示した。2列に分けて配置された第1の接続パッド41a〜41cおよぴ42a〜42dは、コア領域20の一辺に沿う方向(図1の横方向)に、IOセル31a〜31gの配置ピッチSの正の整数倍(図1の例では2倍)のピッチで配置される。コア電源配線21(またはコア接地配線22)上に配置された接続パッド43a〜43dについては、IOセル31a〜31gの配置とは無関係に配置することも可能である。しかし、実用的には、接続パッド43a〜43dについても、コア領域20の一辺に沿う方向(図1の横方向)の配置位置を、接続パッド41a〜41cおよび42a〜42dの同じ方向の配置位置に対して一定の単純な関係を保つようにすることが好ましい。これによって、自動ボンディング装置を用いてワイヤボンディングを行う際の、ボンディング位置の設定を容易にし、ボンディング不良発生を防止することができる。具体的には、例えば、接続パッド43a〜43dについても、コア領域20の一辺に沿う方向に、IOセル31a〜31gの配置ピッチSの正の整数倍(図1の例では2倍)のピッチで配置することが好ましい。特に、第1の接続パッド41a〜41cおよび42a〜42dの、コア領域20の一辺に沿う方向の配置ピッチをIOセル31a〜31gの配置ピッチSの正の整数倍とした場合には、接続パッド43a〜43dの配置ピッチを、これらの接続パッド41a〜41cおよび42a〜42dの配置ピッチのさらに正の整数倍(図1の例でほ1倍)とすることが好ましい。また、第1の接続パッド41a〜41c、42a〜42d、および第2の接続パッド43a〜43dの全体を千鳥状に配置することにより、さらにボンディングを容易にすることができる。   FIG. 2 shows a state in which the connection pads 41a to 41c, 42a to 42d, and 43a to 43d are wire-bonded with wires 70. The first connection pads 41a to 41c and 42a to 42d arranged in two rows are arranged with the arrangement pitch S of the IO cells 31a to 31g in a direction along one side of the core region 20 (lateral direction in FIG. 1). Are arranged at a pitch of a positive integer multiple of (2 in the example of FIG. 1). The connection pads 43a to 43d arranged on the core power supply wiring 21 (or the core ground wiring 22) can be arranged regardless of the arrangement of the IO cells 31a to 31g. However, practically, the connection positions of the connection pads 43a to 43d in the direction along one side of the core region 20 (the horizontal direction in FIG. 1) are the same as the connection positions of the connection pads 41a to 41c and 42a to 42d. It is preferable to maintain a certain simple relationship with respect to. This facilitates the setting of the bonding position when wire bonding is performed using an automatic bonding apparatus, and can prevent the occurrence of bonding failure. Specifically, for example, the connection pads 43a to 43d also have a positive integer multiple (double in the example of FIG. 1) of the arrangement pitch S of the IO cells 31a to 31g in the direction along one side of the core region 20. Is preferably arranged. In particular, when the arrangement pitch of the first connection pads 41a to 41c and 42a to 42d in the direction along one side of the core region 20 is a positive integer multiple of the arrangement pitch S of the IO cells 31a to 31g, the connection pads It is preferable to set the arrangement pitch of 43a to 43d to a positive integer multiple (approximately 1 in the example of FIG. 1) of the arrangement pitch of these connection pads 41a to 41c and 42a to 42d. Further, by arranging the first connection pads 41a to 41c, 42a to 42d and the second connection pads 43a to 43d in a staggered manner, bonding can be further facilitated.

前述したように、コア電源配線21(またはコア接地配線22)上に配置された第2の接続パッド43a〜43dについては、第1の接続パッド41a〜41cおよび42a〜42dに比較して大きなピッチで配置することも可能である。この場合には、第2の接続パッド43a〜43dのコア領域20の一辺に沿う方向(図1の横方向)の寸法を、第1の接続パッド41a〜41cおよび42a〜42dの同じ方向の寸法に比較して大きくすることも可能である。しかし、第2の接続パッド43a〜43dの配置ピッチを第1の接続パッド41a〜41cもしくは42a〜42dの配置ピッチと同一にして、パッド配置密度を高めるためには、第2の接続パッド43a〜43dのコア領域20の一辺に沿う方向の寸法についても、第1の接続パッド41a〜41c、42a〜42dの同じ方向の寸法と同一もしくは実質的に同一にすることが好ましい。   As described above, the second connection pads 43a to 43d arranged on the core power supply wiring 21 (or the core ground wiring 22) have a larger pitch than the first connection pads 41a to 41c and 42a to 42d. It is also possible to arrange with. In this case, the dimensions of the second connection pads 43a to 43d in the direction along the one side of the core region 20 (lateral direction in FIG. 1) are the same as the dimensions of the first connection pads 41a to 41c and 42a to 42d. It is also possible to make it larger than However, in order to increase the pad arrangement density by making the arrangement pitch of the second connection pads 43a to 43d the same as the arrangement pitch of the first connection pads 41a to 41c or 42a to 42d, the second connection pads 43a to 43d are used. The dimension in the direction along one side of the core region 20 of 43d is also preferably the same or substantially the same as the dimension in the same direction of the first connection pads 41a to 41c and 42a to 42d.

なお、これらの接続パッド41a〜41c、42a〜42d、および43a〜43dに対する外部接続手段としてボンディングワイヤを接続することにより、特に低コストでの実装が可能になる。しかし、本発明の半導体集積回路において利用する外部接続手段はボンディングワイヤには限定されない。例えば、金バンプを接続することも可態である。もしくは、再配置配線を介して半田バンプを接続することも可能である。いずれの場合においても、第1の接続パッド41a〜41cおよび42a〜42dと、第2の接続パッド43a〜43dとに対して、同一の外部接続手段を接続することにより、実装コストの抑制が可能である。   Note that by connecting bonding wires as external connection means for these connection pads 41a to 41c, 42a to 42d, and 43a to 43d, mounting at a particularly low cost becomes possible. However, the external connection means used in the semiconductor integrated circuit of the present invention is not limited to bonding wires. For example, it is possible to connect gold bumps. Alternatively, it is possible to connect the solder bumps via the rearrangement wiring. In any case, it is possible to reduce the mounting cost by connecting the same external connection means to the first connection pads 41a to 41c and 42a to 42d and the second connection pads 43a to 43d. It is.

[第2の実施例]
図3は本発明の第2の実施例の半導体集積回路のIO領域の一部とコア領域の一部の説明図である。本実施例は第1の実施例と同じ3列のパッド配列において、接続パッド41a〜41c,42a〜42dのIOセル31a〜31gへの接続構造は第1の実施例と同じであるが、配置位置が若干ずれている。このように、IOセル31の中心線と接続パッドの中心線が必ずしも重なっていなくても良く、パッド列内での接続パッドの配置とIOセル31の配置とは、接続パッドとIOセルとの接続が可能な範囲で任意の位置とすることが可能である。
[Second embodiment]
FIG. 3 is an explanatory diagram of a part of the IO region and a part of the core region of the semiconductor integrated circuit according to the second embodiment of the present invention. In this embodiment, in the same three-row pad arrangement as in the first embodiment, the connection structures of the connection pads 41a to 41c and 42a to 42d to the IO cells 31a to 31g are the same as those in the first embodiment. The position is slightly off. Thus, the center line of the IO cell 31 and the center line of the connection pad do not necessarily overlap, and the arrangement of the connection pad and the arrangement of the IO cell 31 in the pad row are the same as the connection pad and the IO cell. It is possible to set an arbitrary position as long as connection is possible.

第1および第2の実施例のいずれにおいても、第1の接続パッド(接続パッド41a〜41cおよび42a〜42d)のそれぞれを、対応するIOセル31上に配置した。これによって、IOセルおよび第1の接続パッドを配置するために必要なチップ面積を縮小することが可能である。しかし、本発明の半導体集積回路において、このように接続パッドを対応するIOセル上に配置することは必須ではない。チップ面積に余裕があるときには、例えば図7に示されたように、IOセルが配置された領域のさらに外側に第1の接続パッドを配置することも可能である。また、第2の接続パッド(接続パッド43a〜43d)についても、コア電源配線21(またはコア接地配線22)上に配置することは必須ではない。ただし、コア電源配線21(またはコア接地配線22)上に配置しない場合であっても、対応するコア電源配線21(またはコア接地配線22)に短い配線で接続し、高い電源供給能力を得ることが可能なように、コア電源配線21(またはコア接地配線22)に沿って配置することが好ましい。   In both the first and second embodiments, the first connection pads (connection pads 41 a to 41 c and 42 a to 42 d) are arranged on the corresponding IO cells 31. As a result, it is possible to reduce the chip area required for arranging the IO cells and the first connection pads. However, in the semiconductor integrated circuit of the present invention, it is not essential to arrange the connection pads on the corresponding IO cells in this way. When there is a margin in the chip area, for example, as shown in FIG. 7, it is possible to dispose the first connection pads further outside the region where the IO cells are disposed. Further, the second connection pads (connection pads 43a to 43d) are not necessarily arranged on the core power supply wiring 21 (or the core ground wiring 22). However, even if not arranged on the core power supply wiring 21 (or the core ground wiring 22), it is connected to the corresponding core power supply wiring 21 (or the core ground wiring 22) with a short wiring to obtain a high power supply capability. It is preferable to arrange them along the core power supply wiring 21 (or the core ground wiring 22).

[第3の実施例]
図4は本発明の第3の実施例の半導体集積回路のIO領域の一部とコア領域の一部の説明図であり、接続パッドを4列に配列した場合の実施例である。接続パッド41a〜41dはIOセル31c,31f,31i,31l上に配置され、接続パッド42a〜42eはIOセル31a,31d,31g、31j,31m上に配置され、接続パッド43a〜43eはIOセル31b,31e,31h、31k,31n上に配置され、接続パッド44a〜44eはコア領域20のコア電源配線21(又はコア接地配線22)上に配置されている。各列の接続パッド41a〜41d,42a〜42e,43a〜43e,44a〜44eのパッドピッチPはIOセル31a〜31nのセルピッチSの3倍(=3S)になっている。また、4列に分けて配置した接続パッド全体のパッドピッチはP/4であり、したがってセルピッチSの3/4倍(=3S/4)となっている。これにより、IOセル31の3個当り4つの接続パッドを配置できる構造となっている。
[Third embodiment]
FIG. 4 is an explanatory diagram of a part of the IO region and a part of the core region of the semiconductor integrated circuit according to the third embodiment of the present invention, and shows an example in which connection pads are arranged in four rows. Connection pads 41a-41d are arranged on IO cells 31c, 31f, 31i, 31l, connection pads 42a-42e are arranged on IO cells 31a, 31d, 31g, 31j, 31m, and connection pads 43a-43e are IO cells. The connection pads 44a to 44e are arranged on the core power supply wiring 21 (or the core ground wiring 22) in the core region 20 and arranged on 31b, 31e, 31h, 31k, 31n. The pad pitch P of the connection pads 41a to 41d, 42a to 42e, 43a to 43e, and 44a to 44e in each column is three times (= 3S) the cell pitch S of the IO cells 31a to 31n. Further, the pad pitch of the entire connection pads arranged in four rows is P / 4, and therefore, 3/4 times the cell pitch S (= 3S / 4). As a result, four connection pads can be arranged for three IO cells 31.

[第4の実施例]
図5は本発明の第4の実施例の半導体集積回路のIO領域の一部とコア領域の一部の説明図である。図5に示すのは、4列の接続パッドの内の1列の接続パッドをコア領域20のコア電源配線21上に、別の一列をコア領域20のコア接地配線22上に配置し、残りの2列をIOセル31上に配列した場合の実施例である。コア電源配線21上に配置された接続パッド43a〜43dは、主として、コア領域20に配置される複数の回路素子に高電位電圧VDDを供給するために利用される。コア接地配線22上に配置された接続パッド44a〜44dは、主として、コア領域20に配置される複数の回路素子に低電位電圧GNDを供給するために利用される。各列の接続パッド41a〜41c,42a〜42d,43a〜43d,44a〜44dのパッドピッチPはIOセル31a〜31gのセルピッチSの2倍(=2S)になっている。また、4列に分けて配置した接続パッド全体のパッドピッチはP/4であり、したがってセルピッチSの1/2倍(=S/2)となっている。これにより、IOセル31の2個当り4つの接続パッドを配置することが可能となる。
[Fourth embodiment]
FIG. 5 is an explanatory diagram of a part of the IO region and a part of the core region of the semiconductor integrated circuit according to the fourth embodiment of the present invention. FIG. 5 shows that one of the four rows of connection pads is arranged on the core power supply wiring 21 in the core region 20, and another row is arranged on the core ground wiring 22 in the core region 20. This is an example in the case where these two columns are arranged on the IO cell 31. The connection pads 43 a to 43 d arranged on the core power supply wiring 21 are mainly used for supplying the high potential voltage VDD to a plurality of circuit elements arranged in the core region 20. The connection pads 44 a to 44 d arranged on the core ground wiring 22 are mainly used for supplying the low potential voltage GND to a plurality of circuit elements arranged in the core region 20. The pad pitch P of the connection pads 41a to 41c, 42a to 42d, 43a to 43d, and 44a to 44d in each column is twice the cell pitch S of the IO cells 31a to 31g (= 2S). In addition, the pad pitch of the entire connection pads arranged in four rows is P / 4, and thus is 1/2 times the cell pitch S (= S / 2). As a result, four connection pads can be arranged for every two IO cells 31.

本例においては、第2の接続パッドが第1群の接続パッド43a〜43dと第2群の接続パッド44a〜44dとに分けられ、それぞれが1つの列を形成するように配置される。これにより、各列の接続パッドのパッドピッチを図1に示した第1の実施例の場合と同一(IOセルの配置ピッチSの2倍)に保ちながら、第2の接続パッドの個数を、第1の実施例の場合の2倍に増やすことができる。このため、第1の実施例の場合よりもさらに、コア領域への電源供給のためにパッド不足が発生する確率を減少させることができる。   In this example, the second connection pads are divided into a first group of connection pads 43a to 43d and a second group of connection pads 44a to 44d, and each is arranged so as to form one row. Thus, while maintaining the pad pitch of the connection pads in each column the same as in the first embodiment shown in FIG. 1 (twice the IO cell arrangement pitch S), the number of second connection pads is The number can be doubled in the case of the first embodiment. For this reason, the probability that the pad shortage occurs due to the power supply to the core region can be further reduced as compared with the case of the first embodiment.

本発明の第1の実施例の半導体集積回路のIO領域の一部とコア領域の一部の説明図である。It is explanatory drawing of a part of IO area | region and a part of core area | region of the semiconductor integrated circuit of 1st Example of this invention. 第1の実施例において接続パッドにワイヤボンディングを施した説明図である。It is explanatory drawing which performed the wire bonding to the connection pad in the 1st Example. 本発明の第2の実施例の半導体集積回路のIO領域の一部とコア領域の一部の説明図である。It is explanatory drawing of a part of IO area | region and a part of core area | region of the semiconductor integrated circuit of 2nd Example of this invention. 本発明の第3の実施例の半導体集積回路のIO領域の一部とコア領域の一部の説明図である。It is explanatory drawing of a part of IO area | region and a part of core area | region of the semiconductor integrated circuit of the 3rd Example of this invention. 本発明の第4の実施例の半導体集積回路のIO領域の一部とコア領域の一部の説明図である。It is explanatory drawing of a part of IO area | region and a part of core area | region of the semiconductor integrated circuit of the 4th Example of this invention. 従来の半導体集積回路の概略構成を示す平面図である。It is a top view which shows schematic structure of the conventional semiconductor integrated circuit. 図6の従来の半導体集積回路のIO領域の一部とコア領域の一部の説明図である。FIG. 7 is an explanatory diagram of a part of an IO region and a part of a core region of the conventional semiconductor integrated circuit of FIG. 6. 接続パッドを4列に配置した従来の半導体集積回路のIO領域の一部の説明図である。It is explanatory drawing of a part of IO area | region of the conventional semiconductor integrated circuit which has arrange | positioned the connection pad in 4 rows. 接続パッドをIO領域上に2列に配置した従来の半導体集積回路のIO領域の一部の説明図である。It is explanatory drawing of a part of IO area | region of the conventional semiconductor integrated circuit which has arrange | positioned the connection pad in 2 rows on IO area | region.

符号の説明Explanation of symbols

10:半導体装置
20:コア領域、21:コア電源配線、22:コア接地配線
30:IO領域、31,31a〜31n:IOセル、32:コア電源用セル、33:コア接地用セル、34:コア電源配線、35:コア接地配線、36:隣接境界領域
40,41a〜41d,42a〜42e,43a〜43e,44a〜44e:接続パッド
51,52:配線
61:ヴィア
70:ボンディングワイヤ
10: Semiconductor device 20: Core region, 21: Core power supply wiring, 22: Core ground wiring, 30: IO region, 31, 31a to 31n: IO cell, 32: Core power supply cell, 33: Core grounding cell, 34: Core power wiring, 35: Core ground wiring, 36: Adjacent boundary regions 40, 41a to 41d, 42a to 42e, 43a to 43e, 44a to 44e: Connection pads 51, 52: Wiring 61: Via 70: Bonding wire

Claims (6)

複数の回路素子が配置されたコア領域と、前記コア領域の外側において、複数のIOセルが前記コア領域の一辺に沿って配置されるとともに、該複数のIOセルのそれぞれに対応する第1の接続パッドが配置されたIO領域とを有し、
前記コア領域の前記一辺に沿う前記コア領域内に、複数の第2の接続パッドが配置され、前記第1および第2の接続パッドに対して同一の外部接続手段が接続されていることを特徴とする半導体集積回路。
A plurality of IO cells are arranged along one side of the core region, and a first region corresponding to each of the plurality of IO cells is disposed outside the core region in which the plurality of circuit elements are disposed. An IO region in which connection pads are arranged;
A plurality of second connection pads are arranged in the core region along the one side of the core region, and the same external connection means is connected to the first and second connection pads. A semiconductor integrated circuit.
前記外部接続手段がボンディングワイヤであることを特徴とする請求項1に記載の半導体集積回路。   2. The semiconductor integrated circuit according to claim 1, wherein the external connection means is a bonding wire. 前記複数のIOセルが前記コア領域の前記一辺に沿って第1のピッチで配置され、前記複数の第2の接続パッドが前記コア領域の前記一辺に沿って前記第1のピッチの正の整数倍のピッチで配置されていることを特徴とする請求項1又は2に記載の半導体集積回路。   The plurality of IO cells are arranged at a first pitch along the one side of the core region, and the plurality of second connection pads are a positive integer of the first pitch along the one side of the core region. 3. The semiconductor integrated circuit according to claim 1, wherein the semiconductor integrated circuit is arranged at a double pitch. 前記第1および第2の接続パッドは、前記コア領域の前記一辺に沿う方向の外形寸法が同一であることを特徴とする請求項1乃至3のいずれか1つに記載の半導体集積回路。   4. The semiconductor integrated circuit according to claim 1, wherein the first and second connection pads have the same outer dimensions in a direction along the one side of the core region. 5. 前記コア領域が、前記コア領域の前記一辺に沿って配置された、前記複数の回路素子に電源を供給する電源配線を含み、前記複数の第2の接続パッドの少なくとも一部が、前記電源配線に電源電圧を供給するために利用されていることを特徴とする請求項1乃至4のいずれか1つに記載の半導体集積回路。   The core region includes a power supply wiring arranged along the one side of the core region for supplying power to the plurality of circuit elements, and at least a part of the plurality of second connection pads is the power supply wiring. 5. The semiconductor integrated circuit according to claim 1, wherein the semiconductor integrated circuit is used to supply a power supply voltage. 前記電源配線が高電位電源配線と低電位電源配線を含み、前記複数の第2の接続パッドの少なくとも一部が、前記高電位電源配線に沿って配置された第1群の接続パッドと、前記低電位電源配線に沿って配置された第2群の接続パッドとを含むことを特徴とする請求項5に記載の半導体集積回路。   The power supply wiring includes a high potential power supply wiring and a low potential power supply wiring, and at least a part of the plurality of second connection pads is arranged along the high potential power supply wiring, 6. The semiconductor integrated circuit according to claim 5, further comprising a second group of connection pads arranged along the low potential power wiring.
JP2006133255A 2006-05-12 2006-05-12 Semiconductor integrated circuit Withdrawn JP2007305822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133255A JP2007305822A (en) 2006-05-12 2006-05-12 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133255A JP2007305822A (en) 2006-05-12 2006-05-12 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JP2007305822A true JP2007305822A (en) 2007-11-22

Family

ID=38839493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133255A Withdrawn JP2007305822A (en) 2006-05-12 2006-05-12 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2007305822A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003953A (en) * 2008-06-23 2010-01-07 Nec Electronics Corp Semiconductor integrated circuit
EP2242095A1 (en) * 2007-12-28 2010-10-20 Fujitsu Semiconductor Limited Semiconductor device and its manufacturing method
CN102760721A (en) * 2011-04-28 2012-10-31 瑞萨电子株式会社 Semiconductor device, semiconductor device design method, semiconductor design apparatus, and program
US8310059B2 (en) 2010-01-19 2012-11-13 Renesas Electronics Corporation Semiconductor integrated circuit
JP2015532530A (en) * 2012-09-26 2015-11-09 ベイサンド インコーポレーテッドBaysand Inc. Flexible and efficient input / output circuit elements for integrated circuits
US10186504B2 (en) 2014-10-24 2019-01-22 Socionext Inc. Semiconductor integrated circuit device
CN112868094A (en) * 2018-10-19 2021-05-28 株式会社索思未来 Semiconductor chip

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2242095A1 (en) * 2007-12-28 2010-10-20 Fujitsu Semiconductor Limited Semiconductor device and its manufacturing method
EP2242095A4 (en) * 2007-12-28 2013-06-05 Fujitsu Semiconductor Ltd Semiconductor device and its manufacturing method
US8519551B2 (en) 2007-12-28 2013-08-27 Fujitsu Semiconductor Limited Semiconductor device with I/O cell and external connection terminal and method of manufacturing the same
CN101615605B (en) * 2008-06-23 2014-02-12 瑞萨电子株式会社 Semiconductor integrated circuit
US8115325B2 (en) 2008-06-23 2012-02-14 Renesas Electronics Corporation Semiconductor integrated circuit including plurality of bonding pads
JP2010003953A (en) * 2008-06-23 2010-01-07 Nec Electronics Corp Semiconductor integrated circuit
US8310059B2 (en) 2010-01-19 2012-11-13 Renesas Electronics Corporation Semiconductor integrated circuit
CN102760721A (en) * 2011-04-28 2012-10-31 瑞萨电子株式会社 Semiconductor device, semiconductor device design method, semiconductor design apparatus, and program
CN102760721B (en) * 2011-04-28 2015-04-15 瑞萨电子株式会社 Semiconductor device, semiconductor device design method, semiconductor design apparatus, and program
CN104733425A (en) * 2011-04-28 2015-06-24 瑞萨电子株式会社 Semiconductor device, semiconductor device design method, semiconductor design apparatus, and program
JP2015532530A (en) * 2012-09-26 2015-11-09 ベイサンド インコーポレーテッドBaysand Inc. Flexible and efficient input / output circuit elements for integrated circuits
US10186504B2 (en) 2014-10-24 2019-01-22 Socionext Inc. Semiconductor integrated circuit device
US10438939B2 (en) 2014-10-24 2019-10-08 Socionext Inc. Semiconductor integrated circuit device
CN112868094A (en) * 2018-10-19 2021-05-28 株式会社索思未来 Semiconductor chip
CN112868094B (en) * 2018-10-19 2024-05-28 株式会社索思未来 Semiconductor Chip

Similar Documents

Publication Publication Date Title
US7872283B2 (en) Semiconductor integrated circuit and multi-chip module
JP3599108B2 (en) Internal circuit structure of semiconductor chip having array type bonding pad and manufacturing method thereof
US10665518B2 (en) Semiconductor device having electrode pads arranged between groups of external electrodes
US8456025B2 (en) Semiconductor chip having staggered arrangement of bonding pads
JP2007305822A (en) Semiconductor integrated circuit
CN112771655A (en) Semiconductor integrated circuit device and semiconductor package structure
JP7093020B2 (en) Semiconductor integrated circuit equipment
JP5264135B2 (en) Semiconductor integrated circuit and multichip module
JP5356904B2 (en) Semiconductor integrated circuit chip
JP6875642B2 (en) Semiconductor chips and semiconductor devices equipped with them
JP4708865B2 (en) Semiconductor device
JP2004179184A (en) Semiconductor integrated circuit
JP4034120B2 (en) Semiconductor device
US8669593B2 (en) Semiconductor integrated circuit
JP2005039134A (en) Semiconductor integrated circuit device
JP2010135454A (en) Semiconductor apparatus
JP2008060215A (en) Semiconductor device
JP2009206251A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804